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Abstract In the present paper, the solvability condition of the linearized Gauss-Codazzi
system and the solutions to the homogenous system are given. In the meantime, the
solvability of a relevant linearized Darboux equation is given. The equations are arising in
a geometric problem which is concerned with the realization of the Alexandrov’s positive
annulus in R

3.
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1 Introduction

Definition 1.1 (see [1]) Let T be an annulus, T = S1 × (0, 1), i.e. T = {(x1, x2) | x1 ∈
[−π, π], x2 ∈ (0, 1)} and (�r, g) is a smooth (analytic) nonnegative annulus,

�r : T → R
3, g = d�r2,

where �r, g are defined in T and satisfy Alexandrov’s assumption (see [1]) :
∫

T

Kdg = 4π and K = 0, ∇K �= 0 on ∂T, (1.1)

where K is the Gaussian curvature and K > 0 in T . In what follows, we call such an annulus
�r the Alexandrov’s positive annulus. And (1.1) is called the Alexandrov condition.

Choosing the origin such that �n · �r > 0, where �n is the unit outward normal, we define the
function

ρ =
1
2
�r · �r. (1.2)

Let us consider the Darboux equation satisfied by ρ (see [2])

F (x, ρ, ∂ρ, ∂2ρ) =
1
|g|det(∇2ρ − gI) − K(2ρ− |∇ρ|2) = 0. (1.3)
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Its linearized equation of ρ is

G = F ′(ρ)φ =
d
dt

(F (ρ + tφ))
∣∣∣
t=0

.

A direct computation shows that

G = −Khij(�r · �n)∇ijφ − 2K(φ − gijρiφj),

where (hij) = (hij)−1, (gij) = (gij)−1, gij , hij are the coefficients of the first and second
fundamental forms and �n is the outward unit normal.

Furthermore, we can rewrite the linearized equation in the divergence form as follows

− 1√|g|∂i

(K
√|g|hij∂jφ

(�r · �n)2
)
− 2Kφ

(�r · �n)3
= f, (1.4)

where
f =

G

(�r · �n)3
.

The Gauss-Codazzi system is well-known as a basic system satisfied by the coefficients of
the second fundamental form L, M and N .

For convenience, set

l =
L√|g| , m =

M√|g| , n =
N√|g| .

The Gauss-Codazzi system says that

ln − m2 = K, (1.5)

∂2l − ∂1m = −lΓ2
22 + 2mΓ2

12 − nΓ2
11, (1.6)

∂2m − ∂1n = lΓ1
22 − 2mΓ1

12 + nΓ1
11. (1.7)

Let

a1
1 = −a2

2 = ṁ,

a1
2 = −ṅ, a2

1 = l̇,

and then the perturbation of (1.5)–(1.7) is

a1
1 + a2

2 = 0, (1.8)

aj
1hj2 − aj

2hj1 = E (1.9)

and

∂1a
j
2 − ∂2a

j
1 + al

2Γ
j
l1 − al

1Γ
j
l2 = Cj , j = 1, 2. (1.10)

In the present paper, a new method to solve the linearized Gauss-Codazzi system (1.8)–
(1.10) is given. First of all, we transform the linearized system to a partial differential equation
of the second order discussed sufficiently in [3] and then obtain the solvability condition as well
as the solutions to the homogenous problem for the linearized system (1.8)–(1.10).
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For the Alexandrov positive annulus, the boundaries are planar (see [1]). We will discuss
two different cases respectively:

Case 1 The two boundary planes are parallel;
Case 2 The two boundary planes are not parallel.
For Case 1, let �k be a unit vector in R

3 which is parallel to the normals of the two boundary
planes, and then we have the following theorem.

Theorem 1.1 The necessary and sufficient condition that the system (1.8)–(1.10) is solvable
is

�k ·
∫

T

E�n + Cj∂j�r = 0. (1.11)

For Case 2, let �k = (0, 0, 1) be a unit vector in R
3 which is parallel to the normal of the

boundary planes P1 where
σ0 = ({x2 = 0} ∩ ∂T )

lies, and (0, sin θ, cos θ) be the normal of the boundary planes P2 where

σ1 = ({x2 = 1} ∩ ∂T )

lies and cos θ �= ±1. Then we have the following theorem.

Theorem 1.2 The necessary and sufficient condition that the system (1.8)–(1.10) is solvable
is

�k ·
∫

T

E�n + Cj∂j�r = sin θ�i ·
∫

T

(E�n + Cj∂j�r) × �r. (1.12)

In this paper we will see that for any case, the space of the solution to a homogenous problem
for the linearized Gauss-Codazzi system is one-dimensional.

For the Alexandrov positive annulus, the linearized Gauss-Codazzi system is a degenerate
elliptic system of the first order studied less than the degenerate elliptic equation of the second
order. Moreover, solving the partial differential equation of the second order in [3] is closely
related to the geometric aspects of the Alexandrov positive annulus in the study of isometric
embedding. At the same time, we will associate the linearized Darboux equation with the
linearized Gauss-Codazzi system. Concretely, we will turn the linearized Darboux equation to
the form of (1.8)–(1.10) with

E�n + Cj∂j�r = f
√
|g|�r. (1.13)

Therefore, we obtain the solvability condition as well as the solutions to the homogenous prob-
lem for (1.4).

Theorem 1.3 Let �r ∈ C∞(T , R3) be an Alexandrov positive annulus and f ∈ C∞(T ). Then
the necessary and sufficient condition that (1.4) admits a solution φ ∈ C∞(T ) is

∫
T

f�rdAg = 0, (1.14)
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where Ag is the area element of the metric g. Moreover, the solution is unique up to �A · �r for
some constant vector �A.

Remark 1.1 If �r ∈ Cω(T , R3) and f ∈ Cω(T ), correspondingly φ ∈ Cω(T ) (see [4]).

2 Geometric Preliminaries

Before solving the equations (1.4), (1.8)–(1.10), we need several lemmas.

Lemma 2.1 (see [1]) If (1.1) is fulfilled, each component of �r(∂T ) is a planar curve li.

Lemma 2.2 (see [6]) Let M be a nonnegative compact surface which is of no planar point,
∂M = ∪li, and each li be a planar curve contained in a plane Pi which is tangential to M .
Then M is infinitesimal rigid.

3 The Fundamental Equation

Having the geometric and analytic preliminaries, we will derive the fundamental equation.
The process is partly seen in [5]. In what follows, we will turn the linear system (1.8)–(1.10) to
a degenerated elliptic equation (see [3]).

Let �X be a vector, and then d �X = ∂i
�Xdxi. Set aj

i∂j�r = �Yi, i = 1, 2, where aj
i , i, j = 1, 2

satisfy (1.8)–(1.10), and �Zi = ∂i
�X − �Yi which is to be fixed.

We claim that

∂1
�Z2 − ∂2

�Z1 = −E�n − Cj∂j�r. (3.1)

Remark 3.1 Here �Yi, �Zi are not the derivatives of vectors, but ∂i
�X are.

First, the Poincare lemma says d(d �X) = 0, and then

∂1
�Z2 − ∂2

�Z1 = −(∂1
�Y2 − ∂2

�Y1).

To see this, we compute the exterior derivative

d(�Yidxi) = (∂kaj
i∂j�r)dxk ∧ dxi + aj

i (Γ
l
jk∂l�r + hjke3)dxk ∧ dxi,

which implies

∂1
�Y2 − ∂2

�Y1 = (aj
1hj2 − aj

2hj1)�n + (aj
2 − ∂2a

j
1 + al

2Γ
j
l1 − al

1Γ
j
l2)∂j�r.

By (1.9)–(1.10), we have

∂1
�Z2 − ∂2

�Z1 = −E�n − Cj∂j�r.

Since aj
i∂j�r = �Yi, i = 1, 2,

a1
1 = g11∂1�r · �Y1 + g12∂2�r · �Y1,

a2
2 = g22∂2�r · �Y2 + g12∂1�r · �Y2.
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a1
1 + a2

2 = 0 means

g11∂1�r · �Y1 + g12(∂2�r · �Y1 + ∂1�r · �Y2) + g22∂2�r · �Y2 = 0.

Since �Zi = ∂i
�X − �Yi,

g11∂1�r · �X1 + g12(∂2�r · �X1 + ∂1�r · �X2) + g22∂2�r · �X2

= g11∂1�r · �Z1 + g12(∂2�r · �Z1 + ∂1�r · �Z2) + g22∂2�r · �Z2. (3.2)

Note that

∂1�r · �X1 = (∂1�r · �X)1 − Γ1
11∂1�r · �X − Γ2

11∂2�r · �X − h11�n · �X, (3.3)

∂1�r · �X2 + ∂2�r · �X1 = (∂2�r · �X)1 + (∂1�r · �X)2 − 2Γ1
12∂1�r · �X − 2Γ2

12∂2�r · �X − 2h12�n · �X, (3.4)

∂2�r · �X2 = (∂2�r · �X)2 − Γ1
22∂1�r · �X − Γ2

22∂2�r · �X − h22�n · �X. (3.5)

Set

u2 =
√
|g|(g11∂1�r · �X + g12∂2�r · �X), (3.6)

− u1 =
√
|g|(g12∂1�r · �X + g22∂2�r · �X) (3.7)

and

w = �n · �X, (3.8)

and hence

∂1�r · �X =
1√|g| (g11u2 − g12u1),

∂2�r · �X =
1√|g| (g12u2 − g22u1).

Then by (3.3)–(3.8), (3.2) becomes

1√|g| (∂1u2 − ∂2u1) = 2Hw + gij∂i�r · �Zj. (3.9)

Note that

wi = ∂i
�X · �n − hj

i∂j�r · �X = �Zi · �n − hj
i∂j�r · �X, (3.10)

i.e.,

∂1w = −K
√
|g|h2iui + �Z1 · �n,

∂2w = K
√
|g|h1iui + �Z2 · �n.

Inserting (3.10) into (3.9) yields the equation satisfied by w

− 1√|g|∂i(
√
|g|hij∂jw) − 2Hw = − 1√|g|∂i(

√
|g|hij �Zj · �n) + gij∂i�r · �Zj , (3.11)
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which is discussed sufficiently in [3].
If there exists w which solves (3.11), u1 and u2 are generated by (3.10). Thus �X is generated

by

�X =
u2∂1�r − u1∂2�r√|g| + w�n. (3.12)

Hence, once �Zi are constructed to satisfy (3.1) such that (3.11) is solvable, �X is determined.
Then ∂i

�X , �Yi = ∂i
�X − �Zi are given, so we obtain aj

i by aj
i∂j�r = �Yi.

4 The Solvability

Without loss of generality, suppose that �Zj · �n = 0 on σk, otherwise replace w with w − u,
where u is a smooth function on σk, ∂ju = �Zj · �n, j = 1, 2, k = 0, 1.

It is necessary that

0 =
∮

σk

∂j
�X · �ndxj =

∮
σk

�Zj · �ndxj .

First, we introduce the boundary value problem for (3.11) (see [3])
⎧⎪⎪⎨
⎪⎪⎩
Lw = − 1√|g|∂i(

√
|g|hij∂jw) − 2Hw = F ,

∮
σk

√
|g|hij∂jwνi = 0,

(4.1)

where

F = − 1√|g|∂i(
√
|g|hij( �Zj · �n − ∂ju)) + gij∂i�r · �Zj − 2Hu,

�ν = (ν1, ν2) is the unit outward normal of ∂T .

Lemma 4.1 If there exist �Zi, i = 1, 2 satisfying (3.1) on σk, k = 0, 1,

ν2
�Z1 · �n − ν1

�Z2 · �n = 0, (4.2)∫
∂T

(ν2
�Z1 × �r − ν1

�Z2 × �r) =
∫

T

(−E�n − Cj∂j�r) × �r, (4.3)

then the system (1.8)–(1.10) is solvable.

Proof Once we prove if �zi, i = 1, 2 satisfy (3.1) and (4.2)–(4.3), (4.1) is solvable, finally
the system (1.8)–(1.10) is solvable.

As shown in [3], the differential operator L is formally self-adjoint and of Fredholmness.
Hence, to prove that the boundary value problem (4.1) is solvable, it suffices to verify that F
is perpendicular to the kernel of its adjoint problem. Since the problem is self-adjoint, we only
need to compute the kernel of (4.1).

Recalling that �Zj = 0 and
∮

σk

√
|g|hij∂jwνi =

∮
σk

u2ν1 + u1ν2 = 0, (4.4)
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then ∮
σk

( �X × �rj)νi = 0.

It is obvious that d�r · �X × d�r = 0. Noting that �Zj = 0 means E = 0 and Cj = 0, therefore
by (1.8)–(3.10),

∂1
�X × ∂2�r = ∂2

�X × ∂1�r,

and then there exists a position vector �υ such that d�υ = �X × d�r. By Lemmas 2.1–2.2, �r is
infinitesimal rigid. Such a �υ must come from the rigid motion of �r.

�υ = �A × �r + �B,

where �A and �B are constant vectors. Hence �X = �A,

aj
i = 0 (4.5)

and

w = �A · �n,

i.e., the kernel of L is spanned by �A · �n for any constant vector �A.
Thus we only need to verify

∫
T

(
− 1√|g|∂i(

√
|g|hij( �Zj · �n − ∂ju)) + gij∂i�r · �Zj − 2Hu

)
�A · �n = 0

for any constant �A, or simply
∫

T

(
− 1√|g|∂i(

√
|g|hij �Zj · �n − ∂ju) + gij∂i�r · �Zj

)
�n = 0. (4.6)

Note that the expression in the parenthesis in (4.6) is an invariant scalar function on T . Hence
we need to verify

∫
T

hij( �Zj · �n − ∂ju)∂i�n + (gij∂i�r · �Zj − 2Hu)�n = 0. (4.7)

By the Weingarten equation, we have

hij �Zj · �n∂i�n = −hij �Zj · �nhk
i ∂k�r

= −hij �Zj · �nhilg
lk∂k�r

= − �Zj · �ngjk∂k�r

= −gij �Zj · ∂i�r.

Hence (4.7) becomes
∫

T

−gij( �Zj · �n − ∂ju)∂i�r + (gij∂i�r · �Zj − 2Hu)�n = 0. (4.8)
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An integration by parts shows∫
T

−gij∂ju∂i�r + 2Hu�n

=
∫

T

− 1√|g|
√
|g|gij∂ju∂i�r + 2Hu�n

=
∫

T

− 1√|g|∂j(
√
|g|gij∂i�r)u + 2Hu�n−

∫
∂T

√
|g|ugij∂i�rνj .

With the Gauss equation and the identity

∂kgij = −gilΓj
kl − gjlΓi

kl,

we have

− 1√|g|∂j(
√

|g|gij∂i�r)u + 2Hu�n = 0.

Hence ∫
T

−gij∂ju∂i�r + 2Hu�n = −
∫

∂T

√
|g|ugij∂i�rνj , (4.9)

∫
T

−gij( �Zj · �n)∂i�r + gij(∂i�r · �Zj)�n =
∫

T

gij �Zj × (�n × ∂i�r)

=
∫

T

−1√|g|(
�Z1 × ∂2�r − �Z2 × ∂1�r).

Since

�Z1 × ∂2�r − �Z2 × ∂1�r = ∂2( �Z1 × �r) − ∂1( �Z2 × �r) + (∂1
�Z2 − ∂2

�Z1) × �r,

by (3.1) and integration by parts, we have
∫

∂T

(ν2
�Z1 × �r − ν1

�Z2 × �r −
√
|g|ugij∂i�rνj) =

∫
T

(−E�n − Cj∂j�r) × �r. (4.10)

By the definition of u, we have∫
∂T

((ν2
�Z1 · �n)�n × �r − (ν1

�Z2 · �n)�n × �r −
√
|g|ugij∂i�rνj)

= �n ×
∫

∂T

(ν2u1�r − ν1u2�r + ν2u∂1�r − ν1u∂2�r)

= �n ×
∫

∂T

(ν2(u�r)1 − ν1(u�r)2)

= 0.

Inserting the equality above into (4.10), we have
∫

∂T

ν2( �Z1 − ( �Z1 · �n)�n) × �r − ν1( �Z2 − ( �Z2 · �n)�n) × �r) =
∫

T

(−E�n − Cj∂j�r) × �r. (4.11)

Hence if on σk, k = 0, 1,

ν2
�Z1 · �n − ν1

�Z2 · �n = 0,



The Linearized Darboux Equation 443

then ∫
∂T

(ν2
�Z1 × �r − ν1

�Z2 × �r) =
∫

T

(−E�n − Cj∂j�r) × �r.

Hence if (4.2) and (4.3) are valid, the system (1.8)–(1.10) is solvable.

In what follows, we will give the necessary and sufficient condition that the system (1.8)–
(1.10) is solvable based on Lemma 4.1. In the next section, we will see that the solution to
(1.8)–(1.10) is not unique.

We will discuss the condition in two cases respectively:
Case 1 The two boundary planes are parallel;
Case 2 The two boundary planes are not parallel.
For Case 1, we choose the coordinates as follows. Let �k be a unit vector in R

3 which is
parallel to the normals of the two boundary planes, �a be a unit circle parameterized by the arc
length parameter x1 such that

�a⊥�k, |�a| = |�a′| = 1, ∀x1 ∈ [0, 2π].

Without loss of generality, suppose that the surface can be of the form

�r(x1, x2) = x2
�k + S(x1, x2)�a(x1), x1 ∈ [0, 2π], x2 ∈ [0, 1]. (4.12)

In the case, the unit outward norms of σ0 and σ1 are �ν = (0,−1) and �ν = (0, 1), respectively.
Thus (4.2)–(4.3) become

�Z1 · �n = 0, on σk, (4.13)∫
σ1

�Z1 × �r −
∫

σ0

�Z1 × �r =
∫

T

(−E�n − Cj∂j�r) × �r. (4.14)

In what follows, we will prove Theorem 1.1.

Proof of Theorem 1.1 The necessity follows easily. Recalling that

∂1
�Z2 − ∂2

�Z1 = −(∂1
�Y2 − ∂2

�Y1) (4.15)

with (3.1), we have

∂1
�Y2 − ∂2

�Y1 = E�n + Cj∂j�r, (4.16)

and hence ∫
T

E�n + Cj∂j�r =
∫

T

∂1
�Y2 − ∂2

�Y1 =
∫

σ0

�Y1 −
∫

σ1

�Y1.

Noting that on ∂T , aj
i∂j�r = �Yi, �Yi · �n = �Yi · �k = 0, therefore

�k ·
∫

T

E�n + Cj∂j�r =
∫

σ0

�Y1 · �n −
∫

σ1

�Y1 · �n = 0. (4.17)

The sufficiency is proved by Lemma 4.1, once we illustrate the fact that if (1.11) is valid,
then there exist �Zi, i = 1, 2 satisfying (3.1) and (4.2)–(4.3).
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Assume that �i = (1, 0, 0), �j = (0, 1, 0), �k = (0, 0, 1), �a(x1) = (cos(x1), sin(x1), 0), and

E�n + Cj∂j�r

=
( +∞∑

m=−∞
um(x2) exp(imx1),

+∞∑
m=−∞

vm(x2) exp(imx1),
+∞∑

m=−∞
wm(x2) exp(imx1)

)
, (4.18)

∫
T

(−E�n − Cj∂j�r) × �r = (C1, C2, C3). (4.19)

Set

�Z1 =
(
y1 +

∫ x2

0

u0, y2 +
∫ x2

0

v0 + cos(x1)
∫ x2

0

y3,

∫ x2

0

w0

)
, (4.20)

where yi are constants to be fixed.
By (1.11), we have

∫ 1

0 w0 = 0 which means such a �Z1 satisfies (4.13).
(4.14) can be rewritten as

∮
σ1

�Z1 × �r −
∮

σ0

�Z1 × �r = (C1, C2, C3), (4.21)

where on σ1,

�Z1 =
(
y1 +

∫ 1

0

u0, y2 +
∫ 1

0

v0 + y3 cos(x1), 0
)
, (4.22)

�r = (S(x1, 1) cos(x1), S(x1, 1) sin(x1), 1), (4.23)

and on σ0,

�Z1 = (y1, y2, 0),

�r = (S(x1, 0) cos(x1), S(x1, 0) sin(x1), 0).

(4.14) is an algebraic system of yi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π
(
y2 +

∫ 1

0

v0

)
= C1,

−2π
(
y1 +

∫ 1

0

u0

)
= C2,

∫ 2π

0

((S(x1, 1) − S(x1, 0))(sin(x1)y1 − cos(x1)y2) − S(x1, 1) cos2(x1)y3)dx1

= C3 + C4,

(4.24)

where

C4 = −
∫ 2π

0

(S(x1, 1) − S(x1, 0))
(

sin(x1)
∫ 1

0

u0 − cos(x1)
∫ 1

0

v0

)
dx1.

Noting that S(x1, 1) > 0, cos2(x1) ≥ 0 and
∫ 2π

0
S(x1, 1) cos2(x1)dx1 > 0, then the algebraic

system is solvable.
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By (3.1), (4.18) and (4.20), we have

∂1
�Z2

=
(
−

∑
m �=0

um(x2) exp(imx1), y3 cos(x1) −
∑
m �=0

vm(x2) exp(imx1),−
∑
m �=0

wm(x2) exp(imx1)
)
,

which is solvable, and thus there exist such �Zi, i = 1, 2 as required in Lemma 4.1.
For Case 2, without loss of generality, assume that the equations satisfied by P1 and P2 are

z = 0 and sin θy + cos θz + 1 = 0, respectively.
Consider a family of planes with the parameter x2:

(1 − x2)z + x2(sin θy + cos θz + 1) = 0 (4.25)

with the corresponding normals

�n(x2) = (0, x2 sin θ, 1 − x2 + x2 cos θ).

Then the surface is of the form

�r(x1, x2) = x2
�n(x2)
|�n(x2)| + S(x1, x2)�a(x1)A(x2), x1 ∈ [0, 2π], x2 ∈ [0, 1], (4.26)

where A(x2) is a matrix defined by

A(x2) =
1

|�n(x2)|

⎛
⎝|�n(x2)| 0 0

0 1 − x2 + x2 cos θ −x2 sin θ
0 x2 sin θ 1 − x2 + x2 cos θ

⎞
⎠ .

In what follows we will prove Theorem 1.2.

Proof of Theorem 1.2 The necessity follows easily.
∫

σ1

�Y1 × �r −
∫

σ0

�Y1 × �r =
∫

T

∂2( �Y1 × �r) − ∂1( �Y2 × �r)

=
∫

T

(∂2
�Y1 − ∂1

�Y2) × �r) + �Y1 × ∂2�r − �Y2 × ∂1�r

=
∫

T

(−E�n − Cj∂j�r) × �r,

where we use (4.16) and

�Y1 × ∂2�r − �Y2 × ∂1�r = 0,

and hence

�i ·
(∫

σ1

�Y1 × �r −
∫

σ0

�Y1 × �r
)

=�i ·
∫

T

−E�n − Cj∂j�r. (4.27)

Recalling that �Yi · �n = 0 means �Y1 · �k = 0 on σ0 and sin θ �Y1 ·�j + cos θ �Y1 · �k = 0 on σ1, we have
on σ1, ∫

σ1

�Y1 ·�j =
cos θ

sin θ
�k ·

∫
T

E�n + Cj∂j�r (4.28)
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and
∫

σ1

�Y1 · �k = −�k ·
∫

T

E�n + Cj∂j�r, (4.29)

where we use (4.16) again.
Inserting (4.26) and (4.28)–(4.29) into (4.27) yields (1.12).
Similarly to Theorem 1.1, the sufficiency is proved by Lemma 4.1, once we illustrate the

fact that if (1.12) is valid, there exist �Zi, i = 1, 2 satisfying (3.1) and (4.2)–(4.3).
Set

�Z1 =
(∫ x2

0

u0 + sin(x1)
∫ x2

0

y1,−cos θ

sin θ

∫ 1

0

w0 −
∫ 1

x2

v0 − cos(x1)
∫ 1

x2

y2,

∫ x2

0

w0

)
, (4.30)

where yi are constants to be fixed.
It is easy to check that �Z1 satisfies (4.13). (4.14) can be rewritten as

∮
σ1

�Z1 × �r −
∮

σ0

�Z1 × �r = (C1, C2, C3),

where on σ1,

�Z1 =
(∫ 1

0

u0 + sin(x1)y1,−cos θ

sin θ

∫ 1

0

w0,

∫ 1

0

w0

)
,

�r = S(x1, 1)(cos(x1), cos θ sin(x1),− sin θ sin(x1)) + (0, sin θ, cos θ),

and on σ0,

�Z1 =
(
0,−cos θ

sin θ

∫ 1

0

w0 −
∫ 1

0

v0 − cos(x1)y2, 0
)
,

�r = S(x1, 0)(cos(x1), sin(x1), 0).

We obtain an algebraic system of yi

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0 w0

sin θ
= C1,

y1 sin θ

∫ 2π

0

S(x1, 1) sin2(x1)dx1 = C2 + C5,

y1 cos θ

∫ 2π

0

S(x1, 1) sin2(x1)dx1 − y2

∫ 2π

0

S(x1, 0) cos2(x1)dx1 = C3 + C6,

where

C5 = −
∫ 2π

0

S(x1, 1)
(∫ 1

0

w0 cos(x1) + sin θ

∫ 1

0

u0 sin(x1)
)
dx1 + 2π cos θ

∫ 1

0

u0,

C6 = −
∫ 2π

0

S(x1, 1)
(

cos θ

∫ 1

0

u0 sin(x1) +
cos θ

sin θ

∫ 1

0

w0 cos(x1)
)
dx1

+
∫ 2π

0

S(x1, 0)
(cos θ

sin θ

∫ 1

0

w0 +
∫ 1

0

v0

)
cos(x1)dx1 − 2π sin θ

∫ 1

0

u0.
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The first equation of the algebraic system above is nothing but (1.12). Note that S(x1, 1) >

0, S(x1, 0) > 0, sin2(x1) ≥ 0, cos2(x1) ≥ 0,
∫ 2π

0

S(x1, 1) sin2(x1)dx1 > 0,

∫ 2π

0

S(x1, 0) cos2(x1)dx1 > 0.

Thus the algebraic system is solvable.
By (3.1), (4.18) and (4.30), we have that

∂1
�Z2 =

(
y1 sin(x1) −

∑
m �=0

um(x2) exp(imx1)
)
�i

+
(
y2 cos(x1) −

∑
m �=0

vm(x2) exp(imx1)
)
�j −

∑
m �=0

wm(x2) exp(imx1)�k,

which is solvable, and thus there exist such �Zi, i = 1, 2 as required in Lemma 4.1.
In the remainder of the section, we will turn the linearized Darboux equation (1.4) to the

form of (1.8)–(1.10) with (1.13) and then prove Theorem 1.3.

Proof of Theorem 1.3 Choosing the local coordinate (x1, x2) on T , we assume

�r = λi∂i�r + μ�n,

where λi = gij∂j�r · �r, μ = �r · �n. Since μ �= 0, ∂1�r, ∂2�r and �r form another moving framework.
Noting that on ∂T , (�r · �n)1 = ∂1�r · �n + �r · �n1 = 0, hence on ∂T , μ ≡ constant.
Letting φ solve (1.4), we have

�τ = gijφi∂j�r +
φ − gijφiρj

μ
�n,

where ρ is defined in (1.2). Then

φ = �τ · �r,
�τ · ∂i�r = φi,

and hence

∂i�τ · �r = 0.

Then (1.4) becomes

N(�τ1 · ∂1�r) − M(�τ1 · ∂2�r + �τ2 · ∂1�r) + L(�τ2 · ∂2�r) = f |g|(�r · �n)2. (4.31)

Since φ = �τ · �r is periodic in x1, ∂i�r · �τ = φi, �τ is periodic in x1 too.
Note that ∂i�τ · �r = 0. Then

∂i�τ = �r ×
(∂i�τ × �r

2ρ

)
.

Set

∂i�τ × �r

2ρ
= aj

i∂j�r + bi�r,
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and then

∂i�τ = �r × aj
i∂j�r.

By (4.31) we have

−(aj
1hj2 − aj

2hj1) = f
√
|g|�r · �n. (4.32)

Since (�τ1 · �r)2 − (�τ2 · �r)1 = φ12 − φ21 = 0, �τ1 · ∂2�r − �τ2 · ∂1�r = 0, i.e.,

a1
1 + a2

2 = 0. (4.33)

In what follows, we will derive the other equations satisfied by aj
i .

The Poincare lemma says d2�τ = 0, and therefore

�r × (a1
1∂1�r + a2

1∂2�r)2 + ∂2�r × (a1
1∂1�r + a2

1∂2�r)

= �r × (a1
2∂1�r + a2

2∂2�r)1 + ∂1�r × (a1
2∂1�r + a2

2∂2�r).

Since a1
1 + a2

2 = 0, we have

�r × (a1
1∂1�r + a2

1∂2�r)2 = �r × (a1
2∂1�r + a2

2∂2�r)1.

By (4.32), we have

(a1
1∂1�r + a2

1∂2�r)2 − (a1
2∂1�r + a2

2∂2�r)1 = −f
√
|g|�r. (4.34)

(4.33) and (4.34) form a system satisfied by aj
i which is nothing but the linearized Gauss-Codazzi

system.
Since

∮
σk

∂1�τdx1 = 0,
∮

σk

�r × (a1
1∂1�r + a2

1∂2�r)dx1

=
∮

σk

(λi∂i�r + μ�n) × (a1
1∂1�r + a2

1∂2�r)dx1

= �n

∮
σk

|g|(λ1a
2
1 − λ2a

1
1)dx1 + μ�n ×

∮
σk

(a1
1∂1�r + a2

1∂2�r)dx1.

Hence
∮

σk
(a1

1∂1�r + a2
1∂2�r)dx1 = 0.

Integrating both sides of (4.34) by parts yields
∫

T

f�rdAg =
∮

∂T

(a1
1∂1�r + a2

1∂2�r)dx1.

Thus we have proved the necessity in Theorem 1.3.
As to the sufficiency, first we note that the system (4.33)–(4.34) is nothing but (1.8)–(1.9)

with (1.13).
Set

�Z1 =
(∫ x2

0

u0,

∫ x2

0

v0,

∫ x2

0

w0

)
. (4.35)
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By (1.14), we have
∫ 1

0 u0 = 0,
∫ 1

0 v0 = 0 and
∫ 1

0 w0 = 0, which mean that �Z1 = 0 on σk, and
such a �Z1 satisfies (4.13)–(4.14). Set

∂1
�Z2 =

(
−

∑
m �=0

um(x2) exp(imx1),−
∑
m �=0

vm(x2) exp(imx1),−
∑
m �=0

wm(x2) exp(imx1)
)

which is solvable, and thus there exist such �Zi, i = 1, 2 as required in Lemma 4.1. Hence the
system (4.33)–(4.34) is solvable.

Furthermore, 0 =
∮

σk
∂j

�X · �ndxj and
∮

σk

√
|g|hij∂jwνi =

∮
σk

u2ν1 + u1ν2 = 0. (4.36)

So
∮

σk
( �X × �rj)dxj = 0.

And ∮
σk

(∂j
�X × �r)dxj =

∮
σk

( �X × �r)jdxj −
∮

σk

( �X × �rj)dxj = 0. (4.37)

By (4.37) we have ∮
σk

�τjdxj = −
∮

σk

ai
j∂i�r × �r

= −
∮

σk

�Yj × �rdxj

=
∮

σk

( �Zj − �Xj) × �rdxj

= 0.

Thus there exists a �τ such that

∂i�τ = �r × aj
i∂j�r,

where aj
i satisfy (4.33)–(4.34), and then the function φ = �τ · �r is the solution to (1.4).

5 The Solution to the Homogenous Problem

Consider the case of E = 0 and Cj = 0, i.e., the homogenous problem for (1.8)–(1.10). For
convenience, define the operator �L of aj

i by

�L(aj
i ) = ∂1

⎛
⎜⎜⎝

0
0
a1
2

a2
2

⎞
⎟⎟⎠ − ∂2

⎛
⎜⎜⎝

0
0
a1
1

a2
1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0 1
h12 h22 −h11 −h21

−Γ1
12 −Γ1

22 Γ1
11 Γ1

21

−Γ2
12 −Γ2

22 Γ2
11 Γ2

21

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a1
1

a2
1

a1
2

a2
2

⎞
⎟⎟⎠ . (5.1)

It is easy to follow from �L(aj
i ) = 0 that

∂2
�Y1 − ∂1

�Y2 = 0 (5.2)

and

∂2(�r × �Y1) − ∂1(�r × �Y2) = 0. (5.3)
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By (5.3), integration by parts yields

0 =
∫

T

(∂2(�r × �Y1) − ∂1(�r × �Y2))

=
∫

∂T

(ν2�r × �Y1 − ν1�r × �Y2)

=
∫

∂T

�n
√
|g|(ν2((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1) + ν2(�r · �n)�n × (a1

1∂1�r + a2
1∂2�r))

−
∫

∂T

(�n
√
|g|ν1((g11ρ1 + g21ρ2)a2

2 − (g12ρ1 + g22ρ2)a1
2)

+ ν1(�r · �n)�n × (a1
2∂1�r + a2

2∂2�r)). (5.4)

By (5.2), integration by parts yields

0 =
∫

T

(∂2
�Y1 − ∂1

�Y2)

=
∫

∂T

(ν2
�Y1 − ν1

�Y2)

=
∫

∂T

(ν2(a1
1∂1�r + a2

1∂2�r) − ν1(a1
2∂1�r + a2

2∂2�r)). (5.5)

It is worth mentioning that

Lemma 5.1 If for σk, k = 0, 1,∫
σk

(ν2
�Y1 − ν1

�Y2) = 0, (5.6)
∫

σk

(ν2�r × �Y1 − ν1�r × �Y2) = 0, (5.7)

then the kernel of �L is a zero space.

Proof If (5.6)–(5.7) are valid, there exists a vector �Y such that d�Y = �Yidxi, and

0 =
∫

σk

(ν2�r × �Y1 − ν1�r × �Y2)

= −
∫

σk

(ν2∂1�r × �Y − ν1∂2�r × �Y )

= −
∫

σk

d�r × �Y ,

which means that there exists an isometric deformation �υ such that d�υ = �Y × d�r. By Lemmas
2.1–2.2, �r is infinitesimal rigid. By (4.5), we have aj

i = 0, i.e. the kernel of �L is a zero space if
we impose the boundary conditions (5.6)–(5.7).

In Case 1, (5.4)–(5.5) are of the form

�k
(∫

σ1

+
∫

σ0

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1)

)

+ �k ×
( ∫

σ1

+
∫

σ0

(a1
1∂1�r + a2

1∂2�r)
)

= 0, (5.8)
∫

σ1

(a1
1∂1�r + a2

1∂2�r) −
∫

σ0

(a1
1∂1�r + a2

1∂2�r) = 0. (5.9)



The Linearized Darboux Equation 451

By (5.8) and ∂i�r · �k = 0 on σk, k = 0, 1, it is automatic that
∫

σ1

+
∫

σ0

(a1
1∂1�r + a2

1∂2�r) = 0.

Combining the above equality with (5.9), we have

0 =
∫

σ0

(a1
1∂1�r + a2

1∂2�r)

=
∫

σ1

(a1
1∂1�r + a2

1∂2�r),

i.e., (5.6) is automatically satisfied.
Introduce a boundary value problem for the homogenous equations �L(aj

i ) = 0,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�L(aj
i ) = 0,

∮
σ1

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1) = 1,

∮
σ0

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1) = −1.

(5.10)

Theorem 5.1 There exists a solution to (5.10) which is unique, and the kernel of the
operator �L is spanned by the solution.

Proof The uniqueness follows easily from Lemma 5.1. The existence of the solution is due
to the existence of such �Zi satisfying (3.1), (4.2)–(4.3) and

⎧⎪⎪⎨
⎪⎪⎩

�k ·
∮

σ1

�Z1 × �r = 1,

�k ·
∮

σ0

�Z1 × �r = −1.
(5.11)

By Lemma 4.1, if �Zi satisfy (3.1) and (4.2)–(4.3), the homogenous equations �L(aj
i ) = 0 are

solvable. Recalling (4.1) and the definition of �X,

�X =
u2∂1�r − u1∂2�r√|g| + w�n,

we have ∮
σk

�X × ∂1�r = 0, k = 0, 1,

and then ∮
σk

∂1
�X × �r = 0, k = 0, 1.

Hence

�k ·
∮

σi

∂1
�X × �r = 0.
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Recalling

∂1
�X = �Z1 + �Y1,

�k ·
∮

σi

�Z1 × �r = �k ·
∮

σk

�r × �Y1, k = 0, 1,

�k · ∮σi
�r × �Y1 is nothing but the boundary integral in (5.10).

Set

�Z1 = −y1

(
x2

∫ 2π

0

S(x1, 0) cos2(x1)dx1 − (1 − x2)
∫ 2π

0

S(x1, 1) cos2(x1)dx1

)
cos(x1)�j,

where yi are constants to be fixed.
In the similar way to the proof of Theorem 1.1, we have that the algebraic system satisfied

by yi is

1 =
∫ 2π

0

S(x1, 0) cos2(x1)dx1

∫ 2π

0

S(x1, 1) cos2(x1)dx1y1,

which is solvable.
Then let

∂1
�Z2 = −y1

(∫ 2π

0

S(x1, 0) cos2(x1)dx1 +
∫ 2π

0

S(x1, 1) cos2(x1)dx1

)
cos(x1)�j,

which is solvable. Thus there exist such �Zi, i = 1, 2 satisfying (3.1), (4.2)–(4.3) and (5.11).
In Case 2, (5.4)–(5.5) are of the form

0 = �n(1)
(∫

σ1

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1)

)
+ �n(1) ×

∫
σ1

(a1
1∂1�r + a2

1∂2�r)

− �n(0)
( ∫

σ0

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1)

)
− �n(0) ×

∫
σ0

(a1
1∂1�r + a2

1∂2�r),
∫

σ1

(a1
1∂1�r + a2

1∂2�r) −
∫

σ0

(a1
1∂1�r + a2

1∂2�r) = 0. (5.12)

Note that

�n(1) ·
∫

σ1

(a1
1∂1�r + a2

1∂2�r) = 0,

�n(0) ·
∫

σ0

(a1
1∂1�r + a2

1∂2�r) = 0.

So by (5.12),
∫

σk
(a1

1∂1�r + a2
1∂2�r) are parallel to �n(0) × �n(1), k = 0, 1.

Assume that ∫
σk

(a1
1∂1�r + a2

1∂2�r) = C�n(0) × �n(1),

where C is a constant determined by
∫

σk
(a1

1∂1�r + a2
1∂2�r). Then

⎧⎪⎪⎨
⎪⎪⎩

�n(1)
(
C(1 − �n(1) · �n(0)) +

∫
σ1

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1)

)
= 0,

�n(0)
(
C(1 − �n(1) · �n(0)) −

∫
σ0

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1)

)
= 0.

(5.13)
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If
∮

σk
(a1

1∂1�r + a2
1∂2�r) = 0, k = 0, 1, by (5.13) we have

∫
σk

√
|g|((g11ρ1 + g21ρ2)a2

1 − (g12ρ1 + g22ρ2)a1
1) = 0,

which means (5.6)–(5.7) are valid.
Introduce a boundary value problem for the homogenous equations �L(aj

i ) = 0,
⎧⎪⎨
⎪⎩

�L(aj
i ) = 0

∫
σk

(a1
1∂1�r + a2

1∂2�r) = �n(0) × �n(1), k = 0, 1.
(5.14)

Theorem 5.2 There exists a solution to (5.14) which is unique, and the kernel of the
operator �L is spanned by the solution.

Proof The uniqueness follows easily from Lemma 5.1. The existence of the solution is due
to the existence of such �Zi satisfying (3.1), (4.2)–(4.3) and

∮
σk

�Z1 = �n(1) × �n(0), k = 0, 1. (5.15)

By Lemma 4.1, if �Zi satisfy (3.1) and (4.2)–(4.3), the homogenous equations �L(aj
i ) = 0 are

solvable.
Recalling

∂1
�X = �Z1 + �Y1,

−
∮

σk

�Z1 =
∮

σk

�Y1, k = 0, 1,

then
∮

σk

�Y1 is nothing but the boundary integral in (5.14).
Set

�Z1 =
( sin θ

2π
+ sin(x1)

∫ x2

0

y1,− cos(x1)
∫ 1

x2

y2, 0
)
,

where yi are constants to be fixed.
Similarly to the proof of Theorem 1.2, the algebraic system satisfied by yi is

⎧⎪⎪⎨
⎪⎪⎩

sin θ
( ∫ 2π

0

S(x1, 1) sin2(x1)dx1

)
y1 = C7,

cos θ
(∫ 2π

0

S(x1, 1) sin2(x1)dx1

)
y1 −

(∫ 2π

0

S(x1, 0) cos2(x1)dx1

)
y2 = C8,

where

C7 = sin θ cos θ − sin2 θ

2π

∫ 2π

0

S(x1, 1) sin(x1)dx1,

C8 =
sin(θ)

2π

∫ 2π

0

S(x1, 1) sin(x1)dx1 − sin2 θ − sin θ cos θ

2π

∫ 2π

0

S(x1, 1) sin(x1)dx1,



454 C. H. Li

which is solvable.
Then

∂1
�Z2 = (y1 sin(x1), y2 cos(x1), 0),

which is solvable, and thus there exist such �Zi, i = 1, 2 satisfying (3.1), (4.2)–(4.3) and (5.15).
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