
Chin. Ann. Math.
34B(3), 2013, 455–460
DOI: 10.1007/s11401-013-0769-9

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2013

Schwarz Lemma and Hartogs Phenomenon in
Complex Finsler Manifold∗

Bin SHEN1 Yibing SHEN1
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1 Introduction

The Schwarz lemma is a result of complex analysis of holomorphic functions from the open
unit disk to itself. Although the lemma is less celebrated than stronger theorems, such as the
Riemann mapping theorem, it is one of the simplest results capturing the rigidity of holomorphic
functions. Pick made a new expansion of Schwarz lemma, and Ahlfors first introduced the
geometry concept, curvature into the complex analysis (see [1]). In 1978, Yau generalized it
into the Kähler manifold (see [2]). Since it is useful in both analysis and geometry, we consider
the holomorphic map of the Finsler manifold. In the general case, we need the manifold to be
compact because the general maximum principle is not admitted.

The Hartogs phenomenon was first presented as the Hartogs’ extension theorem, which is
a fundamental result in the theory of functions of several complex variables. Informally, it
states that the support of the singularities of such functions cannot be compact. This property
of holomorphic functions is also called Hartogs’ phenomenon (see [3]). Griffiths and Shiffman
generalized it to the Hermitian manifold (see [4–5]). We also consider it in the Finsler case.
Given a Finsler curvature condition, the phenomenon is kept.

The method which we use in those problems is based on the definition of the holomorphic
curvature in Finsler geometry (see [6]). By this definition, we can also obtain the embedding
theorem as a corollary.

2 The Preliminaries

Given a complex manifold M , the real tangent bundle of M is denoted by TRM . T 1,0M
denotes the holomorphic tangent bundle of M and M̃ is T 1,0M\{0}. If the complex dimension
of M is n, let {z1, · · · , zn} be a set of local complex coordinates, where zα = xα + ixn+α.
x1, · · · , xn, xn+1, · · · , x2n come to be local real coordinates. A local frame over R for TRM̃ is
given by {∂o

1 , · · · , ∂
o

2n, ∂̇
o

1 , · · · , ∂̇
o

2n}, where ∂
o

a = ∂
∂xa and ∂̇

o

a = ∂
∂ua . Analogously, a local frame
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over C for T 1,0M̃ is given by {∂1, · · · , ∂n, ∂̇1, · · · , ∂̇n}, where ∂α = ∂
∂zα and ∂̇α = ∂

∂vα . In the
above, we denote by zα = xα + ixn+α the coordinates on the manifold and vα = uα + iun+α

the vectors on M̃ . Moreover, we use Roman indices to run from 1 to 2n, whereas Greek indices
to run from 1 to n. Then any (1, 0)-vector can be written as v = vα ∂

∂zα . {zα; vα} is a group of
local complex coordinates on T 1,0M . We define as follows.

Definition 2.1 A complex Finsler metric on a complex manifold M is a continuous function
F : T 1,0M → R+ satisfying

(a) G = F 2 is smooth on M̃.

(b) F (v) > 0 for any v ∈ M̃.
(c) F (λv) = |λ|F (v) for any v ∈ T 1,0M and λ ∈ C.

We call a complex manifold endowed with such a metric a complex Finsler manifold. More-
over, if the Levi matrix

Gαβ := (∂̇α∂̇βG)

is positively defined, we call F is strongly pseudoconvex. Generally, the Caratheodory and
Kobayashi metrics are strongly pseudoconvex in the strongly convex domain (see [7]). G is
smooth on the whole of T 1,0M , if and only if F is the norm associated to a Hermitian metric.
In this case, we shall say that F comes from a Hermitian metric (see [6]).

From the projective map π : TM →M , the definition of the real vertical bundle is given by

VR = ker π∗ ∈ TRM̃,

while the complexified vertical bundle is

VC = VR ⊗R C = ker π∗ ∈ TCM̃.

Here the π∗ commutes with the complex structure J , for the projection π is holomorphic. VC

splits into VC = V1,0 ⊕ V0,1, and we define the complex vertical bundle as

V = V1,0 = ker π∗ ∈ T 1,0M̃.

The complex horizontal bundle is a complex subbundle HC ∈ TCM̃ , which is J-invariant, a
conjugation invariant, such that

TCM̃ = HC ⊕ VC.

Since HC is also J-invariant, we can write HC = H1,0 ⊕ H0,1, where H1,0 = HC ∩ T 1,0M̃ .
Moreover, H1,0 = H0,1, which means that a complex horizontal bundle is completely determined
by its (1, 0)-part H1,0. We simply denote H1,0 as H.

Locally, we shall denote by indices like α, β and so on the derivatives with respect to the
v-coordinates, for example, Gαβ = ∂2G

∂vα∂vβ . On the other hand, the derivatives with respect to

the z-coordinates will be denoted by indices after a semicolon, for instance, G;μν = ∂2G
∂zμ∂zν or

Gα;ν = ∂2G
∂zν∂vα . Levi matrix induces the fundamental tensor Gαβdzα ⊗ dzβ . Setting

δ

δzα
:=

∂

∂zα
−Nβ

α

∂

∂vβ
, δvα := dvα +Nα

β dzβ, Nα
β := GαγGγ;β ,

we have
TCM̃ = H⊕H⊕ V ⊕ V,

where H = span
{

δ
δzα

}
, V = span

{
∂

∂vα

}
.

To any Hermitian metric, there is an associated unique complex linear connection such that
the metric tensor is parallel: the Chern connection. Analogously, to any strongly pseudoconvex
Finsler metric, there is a unique good complex vertical connection D making the Hermitian
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structure parallel. This connection is the Chern-Finsler connection. Precisely, Gαβdzα ⊗ dzβ

is a Hermitian metric on the bundle H, i.e., 〈δα, δβ〉 := Gαβ . The Hermitian connection of
this metric is called the Chern-Finsler connection of a complex Finsler metric. The connection
1-form is (see [6])

ωα
β := Gαγ∂Gβγ = Γα

β;ηdzη + Cα
βηδv

η,

where
Γα

β;η := GαγδηGβγ , Cα
βη := GαγGβγη.

3 The Holomorphic Curvature

Let us consider the Finsler manifold (M,F ) now. The curvature form of the Chern-Finsler
connection can be expressed as

Ωα
β := Rα

β;γηdz
γ ∧ dzη + Sα

βγ;ηδv
γ ∧ dzη + Pα

βη;γdzγ ∧ δvη +Qα
βγηδv

γ ∧ δvη. (3.1)

Moreover, we set Rαβ;γη := GμβR
μ
α;γη, where “;” denote the vertical derivative and G = F 2.

The holomophic curvature on a Finsler manifold (M,F ) is defined as follows.

Definition 3.1 The holomophic curvature KF (v) along the direction v is

KF (v) = KF (χ(v)) =
〈Ω(χ, χ)χ, χ〉v

G(v)2
.

Here v ∈ T 1,0M\{0} and χ is the horizontal lifting from T 1,0M to HTM .

Under the local coordinates, we rewrite it as

KF (v) = − 1
G2

Gαδβ(Γα
;γ)vγvβ = − 1

G2
δβ(G;γ)vγvβ .

When F is Hermitian metric, KF is the holomorphic curvature of the Hermitian metric. So
the first term in the curvature form is a Hermitian quantum, while the other three terms are
the non-Hermitian quanta.

Abate and Patrizio gave the following equation:

K(ϕ∗G)(0) = KF (v) − 2
G(v)2

∥∥∥∇(ϕ′)H (ϕ′)H − 〈∇(ϕ′)H (ϕ′)H , χ〉v
〈χ, χ〉v χ

∥∥∥2

v
,

where ϕ : Δ →M is a holomorphic map from the unit disk in C to the manifold M . Based on
it, they gave another analytic expression (see [6])

KF (v) = sup
c
KF |c([v]). (3.2)

The supremum is taken in all the Gauss surfaces that are tangent to v at p.

Remark 3.1 This definition is first given in [6, p. 110, p. 144]. The supremum in their
definition is taken in the family of holomorphic maps φ from the unit disk in C to the manifold
M with φ(0) = p and φ′(0) = λv for λ ∈ C∗. Such families are just the complex 1-dimensional
submanifolds passing point p with direction v. The complex 1-dimensional submanifolds of a
Finsler manifold are Gauss surfaces. So the definition here is the same as the one given in [6].

When it is on a Riemannian surface, such definition is just the Gauss curvature. Deriving
from the definition, we know that the following proposition holds.

Proposition 3.1 The holomorphic curvature of the submanifold of any Finsler manifold is
declined.
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By the curvature declined condition, we see that there must be a section of negative curvature
on a manifold of negative holomorphic curvature. We have the following result.

Theorem 3.1 A compact complex Finsler manifold with negative holomorphic curvature
must be a Hodge manifold.

Proof By Proposition 3.1, there is a line bundle with negative curvature on a negative
curved Finsler manifold. The dual bundle is positive. The classical Kodaira embedding theorem
implies that a compact complex manifold admitting a positive line bundle can be embedded
into CPn holomorphically, which is independent of the metric. By this, such a manifold must
be a Hodge manifold.

4 The Schwarz Lemma

Using (3.2), we can prove the following Schwarz lemma.

Theorem 4.1 Let (M1, F1), (M2, F2) be two Finsler manifolds, and (M1, F1) be compact.
Their corresponding holomorphic curvatures satisfy KF1 ≥ −B,KF2 ≤ −A for A,B > 0. Let
ϕ be the holomorphic map from M1 to M2. Then ϕ∗F 2

2 ≤ B
AF

2
1 .

Proof For i = 1, 2, KFi = sup
C
KFi|c([v]). Let ϕ∗F 2

2 = μ(p, v)F 2
1 for a positive function μ

depending on p and v. Since the restriction of metric F1 on the Gauss surface is a Hermitian
metric, we set F 2

1 |c = λdzdz, where z is the complex coordinate on c. As the setting,

ϕ∗F 2
2 |c = μF 2

1 |c = μ
(
ξ(z), ξ∗

( ∂

∂z

))
λdzdz,

where ξ is a holomorphic map from a Gauss surface to M , such that p = ξ(z) and v = ξ∗( ∂
∂z ).

By the definition of Gauss curvature on the Gauss surface, we see

sup
c
Kϕ∗F2|c([v]) = sup

c

(
− Δz logμ+ Δz logλ

μλ

)
.

The Laplacian is taken on c. Since μ takes the maximum on PTM, which is compact since M1

is compact, we have μ(ξ(z), ξ∗( ∂
∂z )) ≤ μ(ξ(0), ξ∗( ∂

∂z |0)) for ξ from the unit disk in C to M with
ξ(0) = p0, ξ∗( ∂

∂z |0) = v0 and max
PTM

μ = μ(p0, v0). It gives Δz logμ(0) ≤ 0.

By the definition, the curvatures can be written as

KF1(v) = sup
c
{KF1|c([v])} = sup

c
{K(ψ∗F 2

1 )(0)},

where ψ is the holomorphic map from c to M1 with ψ(0) = p, ψ∗
(

∂
∂z = v

)
.

Kϕ∗F2(v) = sup
c
{Kϕ∗F2|c([v])} = sup

c
{K(ψ∗ϕ∗F 2

2 )(0)},
KF2(ϕ∗v) = sup

c
{KF2|c([ϕ

∗v])} = sup
c
{K(ξ∗F 2

2 )(0)},

where ξ is the holomorphic map from c to M2 with ξ(0) = ϕ(p), ξ∗
(

∂
∂z = ϕ∗v

)
.

It is easy to see Kϕ∗F2(v) ≤ KF2(ϕ∗v), and it follows immediately that

1
μ0

sup
c

(
− Δz logλ

λ

)
≤ −A,

where μ0 is the maximum of μ and is independent of c. By the definition of KF1 and the
assumption, it gives

ϕ∗F 2
2 ≤ μ0F

2
1 ≤ B

A
F 2

1 .

It immediately gives the following corollary.
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Corollary 4.1 Let (M1, g) be a compact Hermitian (or Sasakian) manifold, and (M2, F2)
be a Finsler manifold. Their corresponding holomorphic curvatures (or transverse holomorphic
curvatures) satisfy K1 ≥ −B,KF2 ≤ −A for A,B > 0. Let ϕ be the holomorphic (or (Φ, J)-
holomorphic) map from M1 to M2. Then ϕ∗F 2

2 ≤ B
Ag (or ϕ∗F 2

2 ≤ B
Ag

T).

Proof The Hermitian case is obvious, and now we see the Sasakian one. Since ϕ is (Φ, J)-
holomorphic, (ϕ∗F2)(X) = F2(dϕ(X)). Taking X to be ξ, we get (ϕ∗F2)(ξ) = 0, which means
that the pull back metric ϕ∗F2 just depends on the transverse metric gT.

Remark 4.1 The Sasakian manifold is an odd dimensional one, which is considered as the
twin sister of the Kähler manifold. One can refer to [8–9] for more details.

5 The Hartogs Phenomenon

The Hartogs phenomenon is from the Hartogs extension theorem. The theorem shows
that, when n ≥ 2 and 0 ≤ a < b, any holomorphic function defined in a spherical shell
Dn

a,b = {z ∈ Cn | a < |z|2 < b} can be extended to the ball Bn
b (of radius centered at the

origin). In other words, there exists a holomorphic function on Bn
b whose restriction on Dn

a,b is
just f . In general, we have the following definition (see [10]).

Definition 5.1 A complex manifold Mn is said to obey the Hartogs phenomenon, if for
any 1 > a ≥ 0, any holomorphic map from D2

a,1 into M can be extended to a holomorphic map
from the unit ball B2 into M .

According to [10], if M obeys the Hartogs theorem, then for m ≥ 2 and any 0 ≤ a < b,
any holomorphic map from Dm

a,b into M can be extended to a holomorphic map from Bm
b into

M . One may restrict such a map to the intersection of a 2-dimensional complex plane with the
spherical shell, and then apply the definition. There are complex manifolds that do not obey
the Hartogs phenomenon. For example, when n ≥ 2, Cn \ {0} does not obey it, and any Hopf
manifold does not obey it, either.

Griffiths and Shiffman proved the following theorem (see [10]).

Theorem 5.1 (Griffiths-Shiffman) Any complete Hermitian manifold with non-positive
holomorphic sectional curvature obeys the Hartogs phenomenon.

Based on the proof of the above theorem by Griffiths and Shiffman, we can prove the
following theorem.

Theorem 5.2 Any complete complex Finsler manifold with non-positive holomorphic cur-
vature obeys the Hartogs phenomenon.

Proof Let (Mn, F ) be such a manifold. Let f be the holomorphic map from D := D2
a,1 to

M , where D2
a,1 = {z ∈ C2 | a < |z|2 < 1}.

By the non-positive holomorphic curvature assumption, with the same argument, it follows
that

0 ≥ Kf∗F (v) = sup
c

{
− Δz lnμ+ Δz lnλ

μλ

}
.

Noticing μ > 0, for any direction fixed,

Δz lnμ
λ

≥ sup
c

(
− Δz lnλ

λ

)
= 0.

It means that for any fixed direction v, we have

Δμ ≥ 0.
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When we fix v, μ(z, v) is a subharmonic function on D. Next we want to show that for any
ε > 0, there is a constant C > 0, such that f ∗ F 2 ≤ Cg0, where g0 is the Hermitian metric on
D.

Fix a1, such that a < a1 < 1 − ε, and denote D′ = D2
a,1−ε, D′′ = D2

a1,1−ε. Let C be
sup
SD′′

μ <∞ since D′′ is compact, and so does SD′′.

For any p in D′ with |p| ≥ a1, it follows that μ ≤ C. When |p| ≤ a1, let P be the complex
line path through point p and orthogonal to the line connecting 0 and p. We see that P ∩D′

is a disc of p, while P ∩D′′ is an annulus. Take a loop γ in D′′ around p. We have that for
any fixed v, μ(p, v) ≤ 1

|γ|
∫

γ
μdv ≤ C. With these two cases, we have that for a fixed direction

v, f∗F 2 ≤ Cg0.
Any sequence approaching p ∈ Sa in the radial direction is a Cauchy sequence. For any pk,

pl in D can be jointed by a line with the tangent vector v. Then it follows that d(f(pk), f(pl)) ≤
Cd0(pk, pl). f(pk) converges to a point in M by the complicity of M . Then, any holomorphic
map f from D to M can be extended on the inner boundary Sa of D. Fixing p ∈ Sa, there
is a neighborhood U ⊂ D, such that U is an open neighborhood of p in D. f is given by n
holomorphic functions on U . The classical Hartogs theorem shows that f can be extended onto
D2

a′,1 with a′ < a.
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