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Strong Unique Continuation of Sub-elliptic Operator on
the Heisenberg Group*
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Abstract In this paper, the Almgren’s frequency function of the following sub-elliptic
equation with singular potential on the Heisenberg group:

—Lu+V(z,t)u = —Xi(aij(z,t) X;u) + V(z,t)u =0

is introduced. The monotonicity property of the frequency is established and a doubling
condition is obtained. Consequently, a quantitative proof of the strong unique continuation
property for such equation is given.
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1 Introduction

The Heisenberg group H™ is a nilpotent Lie group of step two whose underlying manifold
is R?" x R with coordinates (z,t) = (z,v,t) = (1, ,Tn, Y1, - ,Yn,t) and its group action o
is given by

n
(0,0, to) o (x,y,t) = (CU + 20,y + Yo, T +to + QZ(Iiyoi - yixoi))' (1.1)

i=1

A basis for the Lie algebra of left-invariant vector fields on H™ is given by

0 0 .
Xi_axi_‘_Zyi&a 1_17"'5717
0 0
- Qe =1 1.2
Xn+’L a : xzata 1 17 , 1y ( )
0
T—g.

From (1.2), it is easy to check that X; and X, ; satisfy

[X’ivXnJrj] = _4T5ij7 [X’MX]] = [XnJriﬂXnJrj] = Oa Zv] = ]-7 s, N
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Therefore, the vector fields X;, X,4; (i =1,--- ,n) and their first order commutators span the
whole Lie algebra. The horizontal gradient of a function f is defined as

vH"f = Xf = (le)' o 7X7Lf7X7L+1f7" . aXQYLf)'
Let us denote by §, the Heisenberg group dilation
oz, y,t) = Az, Ay, A*t), A >0, (1.3)

which leads to a homogeneous dimension Q = 2n + 2.
For (z,t) € H™, we define the gauge norm from the origin

d(z,t) = [(i(m?ﬂ?)fﬂﬂ% = (|2* + 2)7, (1.4)

i=1

which satisfies d(dx(z,t)) = Ad(z,t), and means that d is homogeneous of degree one with
respect to the dilation 0y (see [4, 17, 19]).
In the sequel, we let

B, ={(z,t) € H" | d(z,t) <1}, 0B, ={(z,t) € H" | d(z,t) =1},

and call these sets a Heisenberg-ball and a sphere centered at the origin with radius r respec-
tively. Since d € C>(H™\{(0,0)}), the outer unit normal on 9B, is given by 7 = |Vd|~'Vd,
where Vd means the ordinary Euclidean gradient of d.

Introducing the function

2
o = Ldl? = |Z| 1.
1/1(27 ) |VH d(z,t)Q’ ( 5)
we define
Bl = [ wdadt and (0B, = 5B,
5 dr

Using the polar coordinates adapted to H™ introduced by Greiner [12], it is easy to obtain
that there exists a constant wg > 0 depending only on @ such that

|B,| = wor®. (1.6)
The Kohn-Laplacian on H" is

2n

§ : 2
AH’!L = A)(z 3

i=1

which is the sum of squares of vector fields. Since Hérmander’s work [13], the study of operators
of the type sum of squares of vector fields has received a strong impetus. Among the large body
of literature dedicated to sub-elliptic operators and Carnot-Caratheodory geometry, we briefly
recall Bony [5], Folland and Stein [7], Rothschild and Stein [17], Nagel, Stein and Wainger [16],
Sanchez-Calle [18] and Jerison [14]. The sub-elliptic operators have a wide range of applications,
from several complex variables and CR geometry (see for instance [7]) to control theory and
financial mathematics (see for instance [3, 11]).

In this paper, we study the strong unique continuation property of the following sub-elliptic
equation on Br, C H™:

2n
—Lu+V(z,tu=— Y Xi(ai;(z,t)X;u) + V(z,t)u=0. (1.7)

ij=1
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Our main concern is whether, under suitable assumptions on the coefficients (a;;) and the
potential V| the strong unique continuation property holds for the equation (1.7).

We assume that A = (a;;(2,t)) is a 2nx2n matrix-valued function on Bp,, and for simplicity,
we assume that A(0) = I (note that this assumption really involves with no loss of generality,
because we can always achieve it with a suitable linear transformation, provided that the original
equation is at least elliptic at 0). We shall denote by B the matrix

B=A- IanQn-

Furthermore, we assume that A is symmetric and satisfies the following hypotheses:
(i) There exist 0 < A < A < oo such that for any n € R?",

2n
Anl* < agming < Alnl*. (1.8)

ij=1

(i) There exist positive constants C; and Cy such that

{|bij| = |aj; — 05| < Crpd, i,j=1,---,2n, (1.9)

| Xpaij| < Cotpz, Qg k=1, 2n.

We note that the condition (1.9) means that a,; is ¢-Lipschitz.
We require that the potential V' in (1.7) satisfies the following assumption: There exist a
constant M > 0 and an increasing function f : (0, Rg) — R™ such that

" @dr < 00, (1.10)
0
for which
V(2,t)| < M%w(z,t) for a.e. (2,t) € Br,. (1.11)

According to (1.10)—(1.11), the potential V is allowed to be singular (see [8]).
We need to introduce the following definitions.

Definition 1.1 A weak solution to (1.7) is a function u € C(Bg,) N L*(Bg,) such that
the horizontal gradient Xu € L*(Bg,), and (1.7) is satisfied in the distribution sense, i.e.,

/ ainiqucﬁdzdt + qubdzdt =0
BRO BRO

for every ¢ € C3°(Br,).

Definition 1.2 We say that u is polyradial in H™ if for any (z,t) = (21, , 2n,t) € H"
where zj = x; +iy; and |z;| = (7 + y?)%, we have u(z,t) = u*(|z1], -+ ,|znl, t) for some u*.

Definition 1.3 We say that u € L*(Bg,) vanishes up to infinite order at the origin, if for
every k > 0 one has

r—0 rk

1
lim — / u?pdzdt = 0.
B

We are ready to state our main results.
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Theorem 1.1 Let V satisfy (1.11) for some M and f, A be a symmetric matriz satisfying
(1.8)(1.9), and u be a polyradial solution to (1.7) in Br,. Then there exist positive constants
I'=T(u,\,A) and ro = ro(\, A), such that for any 2r < rg, we have

/ u?pdzdt < T / u?1pdzdt. (1.12)
Ba, B,

Note that (1.12) is often referred to as the doubling condition and it yields quantitative
information on the vanishing order at the origin of w. As well-known (see [8-9] and etc.),
Theorem 1.1 implies the following strong unique continuation property.

Theorem 1.2 With the assumptions of the Theorem 1.1, if u vanishes up to infinite order
at the origin, then w =0 in B,,, where ro is as in the statement of Theorem 1.1.

We mention that when the horizontal gradient is replaced by the classical gradient on R™,
ie.,

zn: ai (aij(a:)(%) ~0, (1.13)

a result due to [2] states that if the matrix (a;;) is Lipschitz continuous, then the equation
(1.13) possesses the strong unique continuation property. Furthermore, it was shown in [15]
that the Lipschitz continuous assumption on the coefficients is optimal. Our results can be seen
as a generalization of those in [2]. The approach, however, is different from that in [2], which
is based on Carleman inequalities that do not seem to be adaptable to our operator due to the
lack of ellipticity. Instead, we have used the ideas of Almgren’s frequency function that goes
back to Almgren [1] and has been developed in [8-10].

We note that when a;; = 6;;, the equation (1.7) becomes the Kohn-Laplace equation with
potential V on H™

2n
- XPu+Vu=0, (1.14)

i=1

which was studied by Garofalo and Lanconelli [8], under some assumptions of V' and with the
weak solution u, they proved the strong unique continuation property of equation (1.14). So our
results can also be seen as a generalization of those in [8]. Because of the variable coefficients,
we should overcome more difficulties to obtain the monotonicity of the frequency function by
using the refined geometry properties of H™.

The rest of the paper is organized as follows. In Section 2, we give some notations and
various technical estimates. In Section 3, we introduce the frequency function and prove its
monotonicity and the doubling condition, and finally we give the proofs of Theorems 1.1 and
1.2.

2 Preliminary Facts

We begin this section by giving some basic facts about the horizontal gradient V g» and the
operator £ on H™.

We denote by S the 2n x (2n + 1) matrix relating the horizontal gradient Vg~ and the
standard gradient V in R?"*+! ie., Vg = S -V, where

- Lixn  Onxn (2y)T
S_<0n><n Lnxn (_zx)T ' (2.1)
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Hence we have

2n
Lu=Y" Xi(a;X;u) = div(STAV gnu) = div(STASVu).

i=1

Now we define a vector field
- 0 0
7 = 2t—.
z; ( oz, Y 8yi) RLEY

A direct calculation yields
2n n
= g;XidXiu, if Tu= ; (yzg—;i — ng—:;) =0.
Proposition 2.1 Letting Z and T be the above vector fields on H™, we have
(X, Zlu=Xu, i=1,---,2n
and

1 -
X, Xilu| < —|Xu|, if Tu=0,i,5=1,---,2n.
! |

|z

Proof By the definitions of the vector fields X; and Z, we have

[Xi, Zu = X, Zu — ZX,u
0 " Ou
- (Z”kai +yka§k +2t%>(§; Hyl(?;:)

Ou  Ou 8u
= 251“ + 20k Yk ot~ oz, + 2y; i = X;u

for any u € C*°. Hence [X;,Z] = X, fori=1,---,n
Similarly, we prove [X, 1, Z] = Xpyi fori=1,--- n.
A direct calculation yields

Ziniu—xanJriu = Z (yzggz Sng;) +QZ (23 +yz)(’;z;

i=1 i=1
=2 20u

- n
where we use Tu = Y (yz B — Tigy dy ) = 0 in the last equality. Thus
i=1 ‘

1 X ‘<4‘ ‘<—|X|

Next we prove some basic estimates that will be used later.

465

(2.2)

(2.3)

(2.4)
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Proposition 2.2 (1) The horizontal derivatives of the distance function d and the angle
Sfunction v satisfy
| X;d| < C®, i=1,--,2n,

1
| X9p| < cgwé, i=1,---,2n.
(2) The second horizontal derivatives of d satisfy
1
|X1X_]d| SCEW Za.jzla , 1,

1
[ XiXnjd] < O,
1
|Xn+ind| SCE, Z,]:L ,n,
1 o
|Xn+an+jd| S Caw, 1,] = 1, R 12

and
2n
> Xid(X; X;d)X;d = 0.
i,j=1

Proof By the definitions of d in (1.4) and w in (1.5),

Xﬂ:(m%+yz d= L (Patud). =1
Xn zd:( 21 d= i —xit), i=1,---n,
+ oy |Z|y zit), i n
|2|? 2x; 2|z|2 )
Xpb = X(dQ): - o-Xid, i=1-0m,

2\ 2y, 202
Xn+“/’:Xn+i<|Z—|2)——y—ﬂXn+id, i=1,--,n.

2 d3
This shows that
2 ozt oy

Xl = |GG+ =
22yt @ 1
|Xn+ld|:‘d_gg_ﬁg <C1/)27 Z:]-v 1

and
1 2 )
|Xi1/)|§CEw2, 1=1,---,2n.

We continue to compute the second derivative of d and this is done easily by using the
product rule. We only write the expressions for the second derivatives

22,3 + 2ysy; + |2%05; 3 (I2[P2i 4+ yit) (1225 + yyt)

Xz(XJd): 3 d7 )
2x;y; — 2y — it 212w + yit)(|2|%y; — xjt
Xi(Xpyyd) = iYj 531 J ijt 3(| @i + i 21(7| *y J ),
2uix; — 2@y + it 2Py — i) (|2 + y it
Xoii(X;d) = YiZj d?’zyj i _3(| "y i 21(7| "z +y; ),

2u:y; + 2z + |2)%0i; 22y — zit)(|2)%y; — x4t
Xopgi (X ) = 2 ;3] |70y _ (=l — @ zi(7| Py —25t),
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Hence,

X, X;d| < c%w, ij=1,-,m,
| X X,y 5d| < cé, ij=1,-,m,
| Xy X;d| < cé, ij=1,-,m,
| X i X id| < c%w, ij=1,--,n.

Finally, with the first and second horizontal derivatives of d in hand, we obtain

2n
> Xid(XiX;d)X;d
i,j=1
= > [Xid(XiX;d) X;d + Xid(X; Xy jd) Xy 5
i,j=1
+ Xn_;,_zd(XnJ,_szd)de + Xn-‘rzd(Xn-‘ern-‘rjd)Xn-‘rjd] == 0

At the end of this section, we give an inequality (see [8, Theorem 2.2]).

Lemma 2.1 For every u € C§°(H™\{(0,0)}) and every r > 0, we have

[ 2 (), ot

3 The Frequency Function and Unique Continuation

The purpose of this section is to prove Theorems 1.1 and 1.2. The main step is to show a
monotonicity of the frequency function, which was first discovered by Almgren [1]. We begin
by introducing the relevant quantities that will appear in the proofs. Hereafter, the summation
convention over repeated indices will be adopted.

Definition 3.1 For a weak solution u of (1.7) in Br, and 0 < r < Ry, we define its height
in B, as follows:

AV nd, V gy d)
H(r :/ u2<—7dH2n.
= o, vd

We also let
D(r) = / <AVH7zu, VHWU>dZdt,
B,

I(?") = / (<AVHW’U,, VHWU,> + V'U;Q)dzdt7
By

and call these quantities the Dirichlet integral and the total energy of u in B,., respectively.
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Remark 3.1 In view of the elliptic assumption (1.8) and the fact |V g« d|? = 9, there exist

constants C7 and C5, such that

Y 2 / o ¥ 2
C/ W —=—dH*™ < H(r) < C u?—=—dH™, 3.1
om " VA <) v (31)
%) / IV smuf2dzdt < D(r) < Cs / IV | 2d 2. (3.2)
B, B,

Lemma 3.1 Let u be a weak solution of (1.7) in Br,. Then there exists anro > 0 depending
only on Q, M and f in (1.11), such that either w =0 in By, or H(r) # 0 for every r € (0,79).

Proof Suppose that for some ro < Ry, H(rg) = 0. Then v = 0 a.e. on dB,,. Therefore,
from (2.2), the divergence theorem and the outer unit normal on 9B, being 7 = |Vd|~1Vd,
we have

D(ro) = I(ro) —/B V(z, t)u?(z, t)dzdt

IN

1
5/ E(uQ)dzdt—l—/ [V (2, t)|u?(z, t)dzdt
By

B,

1
-1 / div(ST AV o ?)dzdt + / V(2 )] (z, £)dzdt
By B

0

AV n n

:/ WAV Vi d>dH2”+/ V(2 (2, £)dzdt
oB Vd| B

)

0

_ / IV (2, ) [u2(z, £)d =t (3.3)
B

ro

Now we use the assumption of V' (1.11) and (2.7) of Lemma 2.1 to get the bound

/ \V (2, t)|[u? (2, t)dzdt

B,

< Mf(ro) / %quzdt
By

g (O D, mats ], foraen]

0

< Cf(ro)D(ro). (3-4)

Since by (1.10) lir(r)l+ f(r) = 0, we obtain a contradiction from (3.3)—(3.4) unless D(rg) = 0,
rTr—

which implies that v = 0 in B,,,. This completes the proof of the lemma.

Lemma 3.1 allows us to introduce the Almgren’s generalized frequency of w on B, as fol-
lowing:

rI(r) .
N(r)=< H(r)’ it ##0,
0, if H=0.

Lemma 3.1 also implies that » — N (r) is absolutely continuous on (0, 7). Therefore, if we set

Qo ={r e (0,70) | N(r) > max{1, N(ro)}}, (3.5)
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then ,, is an open subset of R. Hence there holds a decomposition

(o]
Qo = | J(a;,b5) with aj,b; ¢ Q. (3.6)
j=1
Obviously in Q,,, we have N(r) > 1, i.e.,
H
() < I(r) for everyr e Q. (3.7)
,
Lemma 3.2 There exists a constant C = C(Q, M, f) > 0, such that for every r € Q,,, we

have
D(r) < CI(r). (3.8)
Proof As in the proof of (3.4), we have

D(r) SI(T)+/ V(2 Olulz, £)2dzdt
10+ (g (S5 22 o)
2 2

< [+ G5 MIO|I0) + (g0g) MICIDG),

where in the last inequality we have used (3.7). We can choose small 79 > 0 such that
(%)2Mf(ro) < 1, and thus we prove D(r) < CI(r).

Proposition 3.1 For a.e. r € (0, Ry), the total energy of u on B, can be expressed by the
surface integral

AV n n
I(r) = / WAV Viind) § pron, (3.9)
9B, Vd|

Proof By using the divergence theorem, (2.2) and the fact Lu = Vu,

<Aan’U,, VHn d> )
dH*"
/iiBr |Vd|

= / u(ST AV g, 7 )dH?"
OB,

= / div(uST AV grnu)dzdt
B,

= / udiv(ST AV grnu)dzdt + / VuST AV ynudzdt
B B,

r

= / Vuldzdt + / (AV o, V gnu)dzdt = I(r).
B, B,

This completes the proof of the proposition.
By the definition of N (r), we get
N’ 1 I H’
() _ 1,16 HO) 0
N(r)y r I(r) H(r)

Next, we compute H'(r) and I’(r) respectively by using the conditions (1.8)—(1.9) on the
coefficients (a;;) and some estimates given in Section 2.
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Theorem 3.1 There exists a positive constant C1 = C1(\, A), such that for a.e. r € (0, Ry),
one has

Q-1

r

‘H'(r) - H(r) —21(r)| < CLH (). (3.11)

Proof The divergence theorem gives

AVHHd VH'rLd>
H(r) = / 2 AV &N d) o
D=, vd

= / (ST AV ynd, W)dH™
OB,

= / div(u?ST AV grnd)dzdt
B,

z/ quiv(STAVHnd)dzdt—l—/ (STAV gnd, Vu?)dzdt
By

By

z/ u2£ddzdt+/ 2u{AV gnd, V gnu)dzdt.
B,

By

dHN Y, (3.12)

We now recall Federer’s co-area formula (see [6]): Let f € L*(RY) and g € Lip(R"). Then
x)
(

RN f(w)dz = /J:o ds /{gs} )|

provided that Vg does not vanish on the set {g = s} for a.e. s € R.
Using (3.12) and Proposition 3.1, and differentiating H (r) with respect to r, we obtain

2Ld 2u<Aand VHnu>
H'(r) = / YR / i dH?"
)= | T9d) s, vd]

w2Ld
=2I(r) + / dH?.
OF s, T

f(
Vg

This implies
Q-1
r

w2Ld Q-1 <Aand VHnd>
= dH?" — / uP L dH "
/83T |Vd| r 0B, |Vd|

div(STBV gnd) Agnd
= [ W22 g 4 / u? dH?"
~/83T V| o, |Vd|

H'(r) — H(r) —2I(r)

Q_]'/ 2<BVH77d,VHﬂd>dH2n_Q_1/ u2|vH"d2dH2n
T OB, Vd| T OB, |Vd|

Using the formula

Q-1

AHnd — T|VH"d|27

we get

H/(T) _ QT_ 1

_/ 2wdmn_@—1/ 2BV d Vignd) § pyon,
OB, Vd] " OB vd

H(r)—2I(r)
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We estimate the two terms on the right-hand side, which thanks to (1.8)—(1.9), yields

(AV gnd, ¥ o d)
vd| ’

<BVH"d7 VH"d> < Cd <andﬂ vad>

<Cd
[Vad| [Vad| -

and thus

Q—l/ 5 (BVgnd, Vgnd) 9
dH"| < CH(r).
‘ v Jon " Vd| < CH(r)

Finally, we estimate the first term on the right-hand side. Writing the divergence term as
div(STBV gnd) = Xi(bi; X;d) = (X;byy) - Xjd + bij - (X X;d)

and taking into account the assumption (1.9) and Proposition 2.1, we get the following inequal-
ities:

|(Xibiy) Xjd] < | Xibyy| - | X;d| < Copz -9p2 < O

and
1
|bij (Xi X;d)| < [bij| - | XiX;d| < Copd - 7 S0
Hence,
div(ST BV ad) "
Ww——"——""JH" < C u? —=—dH?>" < CH(r).
L, v op, " V] )
Therefore,
/ Q -1
‘H (r) = ——H(r) - 2I(r)‘ < CLH(r).

Next, we need to estimate I'(r), letting
o= <AVH7Ld, VHnd>, vV = <BVHnd, VH'rLd>, (313)

and note that A\ < u < Ay, and moreover ¢ = i — v.
Consider the vector field F defined as follows:

2n

F = g Z ainjdXi, (314)
i,j=1
ie.,
d
Fu= ;<AVH71d, VHH’LL>. (315)
Hence

Fd = (F,Vd) = d. (3.16)
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Lemma 3.3 (Rellich-Type Identity) Let F' be the above considered vector field in H™.
Then we have the following identity:

/ (AN o, V gnu) (F, 70 )dH™
OB,

= 2/ aijj’U,<Xk,H)>F’U,dH2n
19}

r

—2/ aijju[Xk,F]udzdt—l—/ div(F)(AV gnu, V gnu)dzdt
B

r

+/ <(FA)VHnu,VHnu)dzdt—2/ Fuludzdt.
B B,

T

Proof The divergence theorem yields
/ (AV grou, V gnu)(F, 0 )dH?™
9B,
= / div(F(AV gnu, V gnu))dzdt
B
= / (divF){(AV gnu, Vgnu)dzdt + / (FA)V gnu, Vgnu)dzdt
B,

B,

+ 2/ <AVH7LU, FVHrLU>dZdt
B

r

On the other hand,

2 / a;ji X;u(Xy, 7)) Fud H*"
5]

= 2/ div(a;jrX;uFuXy)dzdt
B,

= 2/ div(Xy)a,p X;uFudzdt + 2/ Xk (ajXju)Fudzdt + 2/ a;x X ju(XpFu)dzde.
B, B,

In view of the fact div(X}) = 0, and the identities
XpFu— FXpu=[Xy, Flu for any k,

we obtain
/ (AV o, V gnu) (F, 0 )dH?"
9B,

=2 / ajr Xju(Xy, W)y Fud H*" — 2 / a;r X ju[ Xy, Fludzdt
B

™ ™

+ / le(F) <AVHH u, VH?L U>dzdt + / <(FA)VHM u, VH’IL U>dzdt
B B

™ ™

—2/ Fuludzdt.
B

r

This completes the proof of Lemma 3.3.
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Theorem 3.2 Let u be a polyradial solution to (1.7), then there exist positive constants
Cy = Co (M, A) and C3 = C5(\, A), such that for a.e. r € Q,,, we have

, L (AV 10, Ve d)? £r)
r'(r) > 2 /{jBT - et - R ) — €t (), (3.17)

where p is defined in (3.13).

Remark 3.2 On H!, a polyradial function u is equivalent to Tu = (yz Do — i g;) = 0.

On H™ (n > 1), a polyradial function w implies that Tu = 0, however, the converse is false.
For example, for (z1,z2,y1,y2,t) € H?, take u = 2122 + y1y2 + t. A direct calculation yields
Tu = 0, but u is not a polyradial function. However, over the course of our proof of Theorem
3.2, we only need the condition Tu = 0. Thus we have the following more general result.

Corollary 3.1 Let u be a solution to (1.7) satisfying Tu=0. Then Theorem 3.2 also holds.
Proof of Theorem 3.2 By using the co-area formula (3.12),

v (AV o, Vignu) / / )
= dH*dp + —dH "dp.
/0 /aB,, Vd| o5, |Vd|

Differentiating I(r) with respect to r, we get

AV g, V grnow) Vu?
I'(r :/ < ’ dH?" —|—/ ——dH
= v o5, 1V

From (3.16), Lu = Vu and Rellich-type identity Lemma 3.3, we obtain
1 Vd Vu?
I'(r) = - / (AV grnu, Vo) dH* + / ——dH*"
r Jos, < |Vd|> oB, |Vd|
2

2
== / ajp Xu(Xy, W)y Fud H?" — = / a;ji Xju[ Xy, Fludzdt
T T B,

r

r

2 / Vu?
- - FuVudzdt + / ——dH
T /B, o, |Vd|

=L +L+Is+14+15+ 6. (3.18)

+ 1 / le(F)<AVHrL u, VH?Lu>dZdt + l / <(FA)VH7LU, VHrLU>dZdt
B, rJB,

First, by using the definition of F, we deal with I; as follows:

2
Il = —/ aijj’U,<Xk, W>F’U/dH2n
r

T

r

1 (AVpynd, VHnU,> 9
= 2/ —- dH"". 3.19
aB, M Vd| ( )

Now we use (1.11), (3.1) and (3.7) to get the bound of Ig as follows:
VIu? oo
Is| < dH="

< Cf:Q) / u? |de|dH2n Cfgar) Hir) < fgnr)I(r). (320)

2 Xid d
= —/ aijju—k <Aand VHnu> H2n
OB,




474 H. R. Liu and X. P. Yang
By using conditions (1.9) and (3.13), we estimate |F'u| as follows:

d d d
|Fu| = —ainideu = —binideu + —dequ
Jz Jz Jz

IA

d d
—[bij || Xed| | Xjul + = Xid][ Xiu]
[ [

< Cdyp~3|Xul.
With the help of (1.11) and (2.7), we can estimate I5 as follows:

2

<2 [ FullVeollutz ol
B,

SC@/ w§—|u||Xu|dzdt
r B, d

2

EANA 2dzdt
T T

<D 1 I pey < oW i) (3.21)

r
Next we get a bound for I4: For every r,s =1, -+ ,2n, we have
d

|Fa7«3| = ‘;ainide(am)
‘ﬁ
I
d d
;|bz‘j||Xid||Xj(ars)| + E|Xid||Xib,,S|

IN

binide (ars)

+ ‘édeXzbrs
y%

IN

< Lappryt + Lytpt < cu
0 I
Hence
1
L] < ;/ [((FA)V gnu, Vgnu)|dzdt
1
é C—/ d<VHnu, VHrLu>dZdt
T JB,
< CD(r) < CI(r). (3.22)
We now would like to get a bound for I3: Because of div(X;) = 0 for every i = 1,---,2n, we
get

divF = div(zaijxjdxi) - %aijxjd(divxi) + Xi(zaijxjd) = X; (%(aij)xjd)

1 d d d
= —Xid(aij)de — —QXi,uainjd—l— —(Xiaij)de—l— —aij(Xind)
H 2 2 2
= L xiam)x,d+ Lxiaxid — LX) Xd - L xipx,d
" i@\ 045 ) A 5 0 1L32 % ,LLQ i 045 ) A g M2 PN
d d d
+ ;(Xiaij)de + ;b”(Xszd) + ;(Xzde)
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Here
XZ<AVHHd, VH'rLd>
= Xl(alekXmd)
= Xz(akl)XkXmd + 2akl(XiXkd)de
= Xz(akl)XkXmd + Qbkl(XiXkd)de + Q(XiXkd)Xkd,
and then

|Xip| < Céwé. (3.23)
According to X;d(X; Xxd)Xpd = 0, we have
d d
EXiu(aij)de + FXiHXid
- %{Xi(akl)XkXmd(bij)de b (X3 X)Xy (b1 ) Xy + 2( X, Xd) Xl (by) X
F (Xiam) XpdXidXd + 20 (X Xpd) X1dXod + 2(X; Xpd) X pd Xid)}
< C%W < Cd.
Therefore,

|d1V F| < (b”X dX d + (X d) ) Z(Xibinjd + binind + Xzde) + Cd

<

Q=

and thus
1
T3] < C’;/ (AV gnu, V gnu)dzdt
B,
1 1
< C;D(r) < C;I(r). (3.24)
Finally, under the assumption Tu = 0, we get (2.4). Let us estimate Iy as follows:
d d d
Fu= —ainideu = —binideu + —dequ
I I
d d
= Loy XidX u+ = ( Zu) = Sby XidXu + Y Zu
I 0 0
d
= —binideu + Zu — KZu
M M
Hence

d
(X4, Flu = [Xk, b XX [+ Xy, Z]u— [Xk, %Z}u (3.25)
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We estimate the first term of (3.25) as follows:

Xk, %bijxide}u‘

IA

d d
Xk(;bijxid)xju‘ + ‘;bijxid[xk,xj]u‘

IA

1 d d
= Xy XidXju| + ‘—QXkubinideu‘ + ‘—Xkbinideu
p p "

d d
+ ‘;bij(Xkad)Xju‘ + ‘;bijxid[xk,xj]u‘

d
< Cd|Xu| + ‘—binid[Xk,Xj]u‘
1

d 1

< Cd| Xul.
Because of (2.4) and | Xv| = Xp(bys X, dXd) < Cw%, the last term of (3.25) is

[ 2] = [ L]

< ’Xk(% : gXid) ‘|Xiu| + ’% : %Xid[Xk,Xi]u
< O Xul.

Therefore,

1
2dzdt < CI(r). (3.26)

1
L <ct / IV
rJB,

Substituting (3.19)—(3.22), (3.24) and (3.26) in (3.18), we obtain

1 <AVHnd VH7LU>2 2 f(?") 1
I'(r)>2 —- ’ H" — Co—=1I(r) — C3—1(r).
CELYI S - 0ot () — G 1)

With the help of (3.10), Theorems 3.1 and 3.2, we get the monotonicity of the frequency
function.

Theorem 3.3 Let u be a polyradial solution to (1.7). Then there exist positive constants
ro =ro(A,A) and C = C(\ A), such that for a.e. v € ,, we have

%(:)) > —C4@ — 05% (3.27)

Proof Applying (3.11) and (3.17) in (3.10), we obtain

N'(r)

" [Vd| _
N ) + Co

1(r)
1(r)
H{(r)

AV gynd,V gnu)? n
L1 2op, o SRR pe)
or

-1
Q-1
T

> —04@ = C5-

?
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where we have applied Proposition 3.1 and the Cauchy-Schwarz inequality.

By using the monotonicity of N(r), it is easy to prove Theorems 1.1-1.2, and we give the
proof in the current setting for completeness.

Proof of Theorem 1.1 We rewrite inequality (3.11) as

() <2 e o). (3.28)

Integrating (3.28) between r and 2r, with 2r < ro, we have

H(2r) o r 1
R S < _
hl(H(r) 21°Q) < Cir+2 [ Nga
1 1
< Clr+2/ N(t)—dt+2/ N(t)-dt, (3.29)
(7r,2r)N8rg t I t

where J, = {t € (r,2r) | t ¢ Q,.,, N(t) > 0}. Due to (3.5), on J, we have 0 < N(t) <
max(1, N(rp)),

/JT N(t)%dt < max(1, N(TO))/" ' %dt = max(1, N(rp))In2. (3.30)

On the other hand, by using the monotonicity of N(r), i.e., (3.27), we have

N(b;) [ N'(®) " f() "1
In N(;) _/T N(t)dtz_al ; Tdt—05/r Zdt.

From the above inequality, recalling that b; ¢ €,,, we have

o f )

N(r) <exp <C4 Tdt +Cs1n %) max(1, N(rg)) for every r € Q.
0

Hence

Ro
/ N(t)2dt < exp (04 IO 44 csm 7"—0) max(1, N(ro)) In 2. (3.31)
(7,27)NQ2r g t 0 t r

Applying (3.30)—(3.31) in (3.29), we finally obtain
H(2r)<TH(r).
Integrating with respect to r and using the co-area formula we finally prove (1.12).

Proof of Theorem 1.2 Letting rg be as in Theorem 1.1, we obtain after k interactions of
(1.12)

/ u?tp(z, t)dedt < -+ < Fk/ u1h(z, t)dzdt (3.32)
Br By—k g
— T*By iy, [P / W2z 0dadt,  (3.33)
|B2_k7’0| B2_k7‘0

where § > 0 is a number to be suitably chosen later. By (1.6), we have

I \F I\
By |” =i (53) =180l (350) -
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We now choose 3 such that 2[% = 1. Then, (3.32) becomes

1

2 B
u“P(z,t)dzdt < |B,|" —=
/B N

ro

/ u?1h(z, t)dzdt. (3.34)
BQ—krO

Let k — oo. Then the right-hand side of (3.34) goes to zero, because of the assumption that u
vanishes to infinite order at the origin. We conclude that it must be v =0 in B, .
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