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Abstract Based on the theory of semi-global classical solutions to quasilinear hyperbolic
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1 Introduction

There are many publications concerning the exact boundary controllability for linear hy-
perbolic systems (see [17–19] and the references therein). As a special case of second-order
hyperbolic equations, the exact boundary controllability for linear wave equations was obtained
in a complete manner (see [17–18]). Zuazua [25–26], Emanuilov [1] and Lasiecka and Triggiani
[5] established the exact boundary controllability for some semilinear wave equations. In the
quasilinear case, based on the result about the semi-global C2 solution, by a direct construc-
tive method, Li and Yu established the local exact boundary controllability for a single 1-D
quasilinear wave equation with various types of boundary conditions (see [11–13]). Later, this
result was applied to get the exact boundary controllability of the nodal profile and the exact
boundary controllability on a tree-like network for quasilinear wave equations, respectively (see
[3, 20]). For the following second-order quasilinear hyperbolic system

utt + A(u, ux, ut)utx +B(u, ux, ut)uxx = C(u, ux, ut), (1.1)

under different hypotheses on matrices A and B, the corresponding local exact boundary con-
trollability was obtained by Yu [22] and Wang [21], respectively.

On the other hand, as a dual problem of controllability, the exact boundary observability
for wave equations has been widely studied (see [2, 6, 17–18]). In fact, The essence of J.-
L. Lions’ HUM method is to use the duality to get the controllability by a corresponding
observability inequality. Based on the result about semi-global classical solutions to quasilinear
hyperbolic systems, by a constructive method, the exact boundary observability for a single
quasilinear wave equation was established by Li [12, 14] and Guo [4], respectively, and some
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implicit dualities have been shown between the exact boundary controllability and the exact
boundary observability in the quasilinear case. As to the second-order quasilinear hyperbolic
system (1.1), the corresponding local exact boundary observability was obtained by Yu [23]
under some hypotheses on matrices A and B.

In this paper, we consider a kind of coupled system of 1-D quasilinear wave equations, which
can be rewritten in the form of second-order quasilinear hyperbolic systems discussed in [21–
23], but the systems given in [21–23] are too general, which is not convenient to get the desired
results. Therefore, for the coupled system of quasilinear wave equations under consideration,
we restudy its controllability and observability to show the corresponding results in a clear
manner. Moreover, the corresponding discussions on the exact boundary null controllability
and the weak observability are added. Based on the existence and uniqueness of semi-global C2

solutions, by a constructive method developed by Li [8–14], we obtain the local exact boundary
(null) controllability and the local exact boundary (weak) observability for a coupled system of
quasilinear wave equations with different types of boundary conditions. The conclusions will
provide a foundation for studying the exact boundary synchronization for a coupled system of
wave equations (see [15]).

Consider the following coupled system of 1-D quasilinear wave equations:

∂2wi

∂t2
− a2

i (w)
∂2wi

∂x2
+

n∑
j=1

aij(w)wj = 0, (1.2)

where w = (w1, . . . , wn)T is the unknown vector function of (t, x), ai(w) and aij(w) (i, j =
1, · · · , n) are all C1 functions of w, satisfying

ai(0) > 0, i = 1, · · · , n. (1.3)

On one end x = 0, we prescribe any one of the following boundary conditions of Dirichlet
type, Neumann type, coupled third type and coupled dissipative type, respectively:

x = 0 : wi = hi(t), i = 1, · · · , n, (1.4a)

x = 0 :
∂wi

∂x
= hi(t), i = 1, · · · , n, (1.4b)

x = 0 :
∂wi

∂x
−

n∑
j=1

bij(w)wj = hi(t), i = 1, · · · , n, (1.4c)

x = 0 :
∂wi

∂x
−

n∑
j=1

cij(w)
∂wj

∂t
= hi(t), i = 1, · · · , n, (1.4d)

where bij = bij(w) and cij = cij(w) are C1 functions of w, hi(t) are C2 (in case (1.4a)) or C1

(in cases (1.4b)–(1.4d)) functions.
Similarly, on another end x = L, the boundary conditions are given as

x = L : wi = hi(t), i = 1, · · · , n, (1.5a)

x = L :
∂wi

∂x
= hi(t), i = 1, · · · , n, (1.5b)

x = L :
∂wi

∂x
+

n∑
j=1

bij(w)wj = hi(t), i = 1, · · · , n, (1.5c)



Exact Boundary Controllability and Observability for a Coupled System of Quasilinear Wave Equations 481

x = L :
∂wi

∂x
+

n∑
j=1

cij(w)
∂wj

∂t
= hi(t), i = 1, · · · , n, (1.5d)

where bij = bij(w) and cij = cij(w) are C1 functions of w, hi(t) are C2 (in case (1.5a)) or C1

(in cases (1.5b)–(1.5d)) functions.
The initial conditions are given by

t = 0 : (w,wt) = (ϕ(x), ψ(x)), 0 ≤ x ≤ L, (1.6)

where ϕ = (ϕ1, · · · , ϕn)T is a C2 vector function of x with small C2 norm on [0, L], ψ =
(ψ1, · · · , ψn)T is a C1 vector function of x with small C1 norm on [0, L], such that the conditions
of C2 compatibility at the points (t, x) = (0, 0) and (0, L) are satisfied, respectively.

Obviously, w = 0 is an equilibrium of system (1.2). Based on the theory of semi-global
C2 solutions, by a constructive method (see [8–14]), we will establish the local exact boundary
controllability and the local exact boundary observability around w = 0.

This paper is organized as follows. The existence and uniqueness of semi-global C2 solution
to the coupled system (1.2) of quasilinear wave equations with boundary conditions (1.4) and
(1.5) will be given in Section 2. Based on this, in Section 3, we obtain the corresponding local
exact boundary (null) controllability with boundary controls on one end or on two ends, and in
Section 4, we obtain the corresponding local exact boundary (weak) observability with observed
values on one end or on two ends.

2 Existence and Uniqueness of Semi-global C2 Solution

For the purpose of getting the local exact boundary controllability and observability for
system (1.2) with boundary conditions (1.4)–(1.5), we should first prove the existence and
uniqueness of semi-global C2 solution to the mixed initial-boundary value problem (1.2) and
(1.4)–(1.6). In order to get it in a unified manner, the best way is to reduce the system to a
first-order quasilinear hyperbolic system and use the corresponding results of semi-global C1

solutions.
Setting

ui =
∂wi

∂x
, vi =

∂wi

∂t
, i = 1, · · · , n, (2.1)

u = (u1, · · · , un)T, v = (v1, · · · , vn)T, (2.2)

system (1.2) can be reduced to the following first-order quasilinear system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w

∂t
= v,

∂u

∂t
− ∂v

∂x
= 0,

∂v

∂t
− Λ2(w)

∂u

∂x
= −A(w)w,

(2.3)

where Λ(w) = diag{a1(w), · · · , an(w)} and A(w) = (aij(w))n×n. Its equivalent matrix form is

∂

∂t

⎛⎝wu
v

⎞⎠ +

⎛⎝0 0 0
0 0 −In
0 −Λ2(w) 0

⎞⎠ ∂

∂x

⎛⎝wu
v

⎞⎠ =

⎛⎝ v
0

−A(w)w

⎞⎠ . (2.4)
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The characteristic equation of (2.3) or (2.4) is

det

⎛⎝λIn 0 0
0 λIn In
0 Λ2(w) λIn

⎞⎠ = λn|λ2In − Λ2(w)| = 0, (2.5)

whose solutions, the real eigenvalues of system (2.3) or (2.4), are

λ−i = −ai(w), λ0
i = 0, λ+

i = ai(w), i = 1, · · · , n, (2.6)

the corresponding left eigenvectors, which constitute a complete set, can be chosen as

l−i = (0, ai(w)ei, ei), l0i = (ei,0,0), l+i = (0,−ai(w)ei, ei), i = 1, · · · , n, (2.7)

in which 0 = (0, · · · , 0) is the zero vector of order n, ei = (0, · · · , (i)1 , · · · , 0) is a row vector of
order n. Thus, (2.3) or (2.4) reduced from system (1.2) is a first-order quasilinear hyperbolic
system.

Let

U = (w, u, v)T. (2.8)

Taking ⎧⎪⎨⎪⎩
V −

i = l−i U = ai(w)ui + vi,

V 0
i = l0iU = wi, i = 1, · · · , n,
V +

i = l+i U = −ai(w)ui + vi,

(2.9)

namely, ⎧⎪⎨⎪⎩
V − = Λ(w)u + v,

V 0 = w,

V + = −Λ(w)u + v,

(2.10)

we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w = V 0,

u =
1
2
Λ−1(V 0)(V − − V +),

v =
1
2
(V − + V +).

(2.11)

When system (1.2) is reduced to system (2.3) or (2.4), the boundary condition (1.4) will be
correspondingly replaced by

x = 0 : v = Ḣ(t), (2.12a)

x = 0 : u = H(t), (2.12b)

x = 0 : u−B(w)w = H(t), (2.12c)

x = 0 : u− C(w)v = H(t), (2.12d)

in which H(t) = (h1(t), · · · , hn(t))T, B(w) = (bij(w))n×n and C(w) = (cij(w))n×n.
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Noting (2.11), if

det(Λ−1(0) + C(0)) �= 0, (2.13)

then in a neighborhood of U = 0, the boundary condition (2.12) (namely, (1.4)) on x = 0 can
be rewritten as

x = 0 : V + = −V − + 2Ḣ(t), (2.14a)

x = 0 : V + = V − − 2Λ(V 0)H(t), (2.14b)

x = 0 : V + = V − − 2Λ(V 0)B(V 0)V 0 − 2Λ(V 0)H(t), (2.14c)

x = 0 : V + = (Λ−1(V 0) + C(V 0))−1(Λ−1(V 0) − C(V 0))V −

− 2(Λ−1(V 0) + C(V 0))−1H(t), (2.14d)

which can be uniformly expressed as

x = 0 : V + = G(t, V −, V 0) + H̃(t), (2.15)

where G and H̃ are C1 functions with respect to their arguments, and without loss of generality,
we may assume that

G(t, 0, 0) ≡ 0. (2.16)

Similarly, if

det(Λ−1(0) + C(0)) �= 0, (2.17)

then in a neighborhood of U = 0, the boundary condition (1.5) on x = L can be written in the
form

x = L : V − = G(t, V 0, V +) + H̃(t), (2.18)

in which G and H̃ are C1 functions with respect to their arguments, and without loss of
generality, we may assume that

G(t, 0, 0) ≡ 0. (2.19)

Meanwhile, the corresponding initial condition (1.6) can be written as

t = 0 : U = (ϕ(x), ϕ′(x), ψ(x))T, 0 ≤ x ≤ L. (2.20)

Together with the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) for
the coupled system of wave equations (1.2) with the boundary conditions (1.4)–(1.5) on x = 0
and x = L, respectively, and the initial condition (1.6), it is easy to see that the conditions
of C1 compatibility at these two points are also satisfied for the mixed initial-boundary value
problem (2.3), (2.15), (2.18) and (2.20).

For the convenience of statement, in the whole paper, we denote that

d =

{
2 for (1.4a),
1 for (1.4b)−(1.4d)

(2.21)
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and

d =

{
2 for (1.5a),
1 for (1.5b)−(1.5d).

(2.22)

Based on the theory of semi-global C1 solutions to the first-order quasilinear hyperbolic
system with zero eigenvalues (see [7, 11–14, 24]), it is easy to get the following

Lemma 2.1 Under the hypotheses given in Section 1, suppose that the conditions of C2

compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Suppose further-
more that (2.13) and (2.17) hold. For any given and possibly quite large T > 0, if

‖(ϕi, ψi)‖C2[0,L]×C1[0,L], ‖hi‖Cd[0,T ], ‖hi‖Cd[0,T ], i = 1, · · · , n

are suitably small, then the forward mixed initial-boundary value problem (1.2) and (1.4)–(1.6)
admits a unique semi-global C2 solution w = w(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤
T, 0 ≤ x ≤ L}, and

‖w‖C2[R(T )] ≤ C
( n∑

i=1

‖(ϕi, ψi)‖C2[0,L]×C1[0,L] +
n∑

i=1

‖(hi, hi)‖Cd[0,L]×Cd[0,L]

)
, (2.23)

where C is a positive constant possibly depending on T.

Corollary 2.1 Under the hypotheses given in Section 1, if ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] (i =
1, · · · , n) are suitably small, then Cauchy problem (1.2) and (1.6) admits a unique global C2

solution w = w(t, x) on its whole maximum determinate domain and

‖w‖C2 ≤ C

n∑
i=1

‖(ϕi, ψi)‖C2[0,L]×C1[0,L], (2.24)

where C is a positive constant.

As for the backward mixed initial-boundary value problem (1.2), (1.4)–(1.5) with the final
condition

t = T : (w,wt) = (Φ(x),Ψ(x)), 0 ≤ x ≤ L, (2.25)

in which Φ = (Φ1, · · · ,Φn)T is a C2 vector function of x with small C2 norm on [0, L], Ψ =
(Ψ1, · · · ,Ψn)T is a C1 vector function of x with small C1 norm on [0, L], such that the conditions
of C2 compatibility at the points (t, x) = (T, 0) and (T, L) are satisfied, respectively, similarly
we have

Lemma 2.2 Under the hypotheses given in Section 1, suppose that the conditions of C2

compatibility are satisfied at the points (t, x) = (T, 0) and (T, L), respectively. Suppose further-
more that

det(Λ−1(0) − C(0)) �= 0 (2.26)

and

det(Λ−1(0) − C(0)) �= 0. (2.27)
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For any given and possibly quite large T > 0, if

‖(Φi,Ψi)‖C2[0,L]×C1[0,L], ‖hi‖Cd[0,T ], ‖hi‖Cd[0,T ], i = 1, · · · , n

are suitably small, then the backward mixed initial-boundary value problem (1.2), (2.25) and
(1.4)–(1.5) admits a unique semi-global C2 solution w = w(t, x) on the domain R(T ) = {(t, x) |
0 ≤ t ≤ T, 0 ≤ x ≤ L} and

‖w‖C2[R(T )] ≤ C
( n∑

i=1

‖(Φi,Ψi)‖C2[0,L]×C1[0,L] +
n∑

i=1

‖(hi, hi)‖Cd[0,L]×Cd[0,L]

)
, (2.28)

where C is a positive constant possibly depending on T.

Remark 2.1 If ai, aij , bij , bij , cij , cij are all independent of w, then the problem is linear
and it is not necessary to assume the smallness of initial (resp. finial) data and boundary
functions in Lemma 2.1 (resp. Lemma 2.2). Moreover, the C2 solution exists globally in time.

Remark 2.2 Suppose that ai(w) ≡ a > 0 (i = 1, · · · , n) are the same constant, the
conditions (2.13) and (2.17) in Lemma 2.1 mean that −a is not an eigenvalue of both matrices
C(0) and C(0), while the conditions (2.26)–(2.27) in Lemma 2.2 mean that a is not an eigenvalue
of both matrices C(0) and C(0).

Remark 2.3 By Lemma 2.1, conditions (2.13) and (2.17) for matrices C and C in boundary
conditions (1.4d) and (1.5d) of coupled dissipative type are imposed to guarantee the well-
posedness of the corresponding forward mixed initial-boundary value problem, while, by Lemma
2.2, conditions (2.26) and (2.27) for matrices C and C in boundary conditions (1.4d) and (1.5d)
of coupled dissipative type are imposed to guarantee the well-posedness of the corresponding
backward mixed initial-boundary value problem. Other coupled matrices A, B and B, however,
can be completely arbitrary.

Remark 2.4 Lemmas 2.1–2.2 and Corollary 2.1 are still valid for the following systems:

∂2wi

∂t2
− a2

i (w)
∂2wi

∂x2
+

n∑
j=1

aij(w)
∂wj

∂t
= 0 (2.29)

or

∂2wi

∂t2
− a2

i (w)
∂2wi

∂x2
+

n∑
j=1

aij(w)wj +
n∑

j=1

aij(w)
∂wj

∂t
= 0, (2.30)

in which ai(w) and aij(w), aij(w) are all C1 functions with respect to their arguments, and
(1.3) holds.

3 Local Exact Boundary Controllability

Theorem 3.1 (Two-Sided Control) Under the hypotheses given in Section 1, suppose
furthermore that (2.13) and (2.17) hold. Let

T > L max
i=1,··· ,n

( 1
ai(0)

)
. (3.1)
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For any given initial data (ϕ, ψ) and final data (Φ,Ψ) with small norms ‖(ϕi, ψi)‖C2[0,L]×C1[0,L]

and ‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), there exist boundary controls H = (h1, · · · , hn)
and H = (h1, · · · , hn) with small norms ‖hi‖Cd[0,T ] and ‖hi‖Cd[0,T ] (i = 1, · · · , n), such that
the mixed initial-boundary value problem (1.2) and (1.4)–(1.6) admits a unique C2 solution
w = w(t, x) with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
exactly satisfies the final condition (2.25).

In order to prove Theorem 3.1, it suffices to use the constructive method suggested in [8–13]
to prove the following lemma, we omit the details here.

Lemma 3.1 Under the assumptions of Theorem 3.1, for any given initial data (ϕ, ψ) and
final data (Φ,Ψ) with small norms‖(ϕi, ψi)‖C2[0,L]×C1[0,L] and ‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i =
1, · · · , n), the coupled system of quasilinear wave equations (1.2) admits a C2 solution w =
w(t, x) with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
satisfies simultaneously the initial condition (1.6) and the final condition (2.25).

Remark 3.1 If ai, aij , bij , bij , cij , cij are all independent of w, then the problem is linear,
Theorem 3.1 implies the corresponding global exact boundary controllability.

Remark 3.2 The exact controllability time (3.1) given in Theorem 3.1 is sharp.

Theorem 3.2 (One-Sided Control) Under the hypotheses given in Section 1, suppose fur-
thermore that (2.13), (2.17) and (2.26) hold. Let

T > 2L max
i=1,··· ,n

( 1
ai(0)

)
. (3.2)

For any given initial data (ϕ, ψ) and final data (Φ,Ψ) with small norms‖(ϕi, ψi)‖C2[0,L]×C1[0,L]

and ‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), for any given boundary functions H = (h1, · · · , hn)
on x = 0 with small norms ‖hi‖Cd[0,T ] (i = 1, · · · , n), such that the conditions of C2 com-
patibility are satisfied at the points (t, x) = (0, 0) and (T, 0) respectively, there exist boundary
controls H = (h1, · · · , hn) on x = L with small norms ‖hi‖Cd[0,T ] (i = 1, · · · , n), such that
the mixed initial-boundary value problem (1.2) and (1.4)–(1.6) admits a unique C2 solution
w = w(t, x) with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
exactly satisfies the final condition (2.25).

In order to get Theorem 3.2, similarly it suffices to prove the following lemma.

Lemma 3.2 Under the assumptions of Theorem 3.2, for any given initial data (ϕ, ψ) and
final data (Φ,Ψ) with small norms ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] and ‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i =
1, · · · , n), for any given boundary functions H = (h1, · · · , hn) on x = 0 with small norm
‖hi‖Cd[0,T ] (i = 1, · · · , n), such that the conditions of C2 compatibility are satisfied at the
points (t, x) = (0, 0) and (T, 0), respectively, the coupled system of quasilinear wave equations
(1.2) with the boundary condition (1.4) on x = 0 admits a C2 solution w = w(t, x) with small
C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies simultaneously
the initial condition (1.6) and the final condition (2.25).

Remark 3.3 Similar results hold if we take the boundary controls H(t) (0 ≤ t ≤ T ) at
x = 0 instead of H(t) at x = L and hypothesis (2.26) is replaced by (2.27).
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Remark 3.4 If ai, aij , bij , bij , cij , cij are all independent of w, then the problem is linear,
Theorem 3.2 implies the corresponding global exact boundary controllability.

Remark 3.5 The exact controllability time (3.2) given in Theorem 3.2 is sharp.

If we only consider the corresponding null controllability (see [10]), for which the final data
(2.25) are specially taken as

t = T : w = 0, wt = 0, 0 ≤ x ≤ L, (3.3)

then for boundary conditions (1.4d) (resp. (1.5d)) of coupled dissipative type, the condition
(2.26) (resp. (2.27)) is not necessary. In fact, in this situation, similar to [10], we have the
following theorem.

Theorem 3.3 (One-Sided Null Control) Let T > 0 satisfy (3.2). Suppose that (2.13) and
(2.17) hold. Suppose furthermore that

H(t) ≡ 0. (3.4)

For any given initial data (ϕ, ψ) with small ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), such that
the conditions of C2 compatibility are satisfied at the point (t, x) = (0, 0), there exist boundary
controls H = (h1, · · · , hn) on x = L with small norms ‖hi‖Cd[0,T ] (i = 1, · · · , n), such that
the mixed initial-boundary value problem (1.2) and (1.4)–(1.6) admits a unique C2 solution
w = w(t, x) with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
exactly satisfies the null final condition (3.3).

Remark 3.6 Similar results hold if we take the boundary controls H(t) (0 ≤ t ≤ T ) on
x = 0 instead of H(t) at x = L, and hypothesis (3.4) is replaced by

H(t) ≡ 0. (3.5)

Remark 3.7 Theorems 3.1–3.3 are still valid for the coupled system (2.29) or (2.30).

4 Local Exact Boundary Observability

We now consider the exact boundary observability for the mixed initial-boundary value
problem (1.2) and (1.4)–(1.6), in which the boundary functions hi(t) and hi(t) (i = 1, · · · , n)
are given.

The principle of choosing the observed values on the boundary is that the observed val-
ues together with the boundary conditions can uniquely determine the values (w,wx) on the
boundary.

Hence, the observed values at x = 0 can be taken as
(1) wix = ki(t) (i = 1, · · · , n), for boundary conditions (1.4a) of Dirichlet type, then

x = 0 : (wi, wix) = (hi(t), ki(t)); (4.1a)

(2) wi = ki(t) (i = 1, · · · , n), for boundary conditions (1.4b) of Neumann type, then

x = 0 : (wi, wix) = (ki(t), hi(t)); (4.1b)
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(3) wi = ki(t) (i = 1, · · · , n), for boundary conditions (1.4c) of coupled third type, then

x = 0 : (wi, wix) =
(
ki(t),

n∑
j=1

bijkj(t) + hi(t)
)
; (4.1c)

(4) wi = ki(t) (i = 1, · · · , n), for boundary conditions (1.4d) of coupled dissipative type,
then

x = 0 : (wi, wix) =
(
ki(t),

n∑
j=1

cijk
′
j(t) + hi(t)

)
, (4.1d)

where ki(t) (i = 1, · · · , n) ∈ C1 for (1.4a) or ∈ C2 for (1.4b)–(1.4d). Thus, by means of the
observed values at x = 0, we have

x = 0 : (w,wx) = (a(t), b(t)), (4.2)

and for any given T > 0,

‖(a, b)‖C2[0,T ]×C1[0,T ] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖hi‖Cd[0,T ]

)
, (4.3)

where C is a positive constant, d is given by (2.21) and

l =

{
1 for (1.4a),
2 for (1.4b)–(1.4d).

(4.4)

The corresponding observed values ki(t) (i = 1, · · · , n) at x = L can be similarly taken,
then we have

x = 0 : (w,wx) = (a(t), b(t)), (4.5)

and for any given T > 0,

‖(a, b)‖C2[0,T ]×C1[0,T ] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖hi‖Cd[0,T ]

)
, (4.6)

where C is a positive constant, d is given by (2.22) and

l =

{
1 for (1.5a),
2 for (1.5b)–(1.5d).

(4.7)

By the constructive method suggested in [4, 10, 12, 14], we can prove the following theorems.

Theorem 4.1 (Two-Sided Observation) Under the hypotheses given in Section 1, suppose
furthermore that (2.13) and (2.17) hold. Let T > 0 satisfy (3.1). For any given initial condition
(ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are suitably small and the conditions of C2 compati-
bility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. If we have the observed
values ki(t) (i = 1, · · · , n) at x = 0 and ki(t) (i = 1, · · · , n) at x = L on the interval [0, T ],
then the initial data (ϕ, ψ) can be uniquely determined and we have the following observability
inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖(ki, ki)‖Cl[0,T ]×Cl[0,T ] +
n∑

i=1

‖(hi, hi)‖Cd[0,T ]×Cd[0,T ]

)
, (4.8)

where C is a positive constant.
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Remark 4.1 If ai, aij , bij , bij , cij , cij are all independent of w, then the problem is linear,
Theorem 4.1 implies the corresponding global exact boundary observability.

Remark 4.2 The exact observability time (3.1) given in Theorem 4.1 is sharp.

Theorem 4.2 (One-Sided Observability) Under the hypotheses given in Section 1, suppose
furthermore that (2.13), (2.17) and (2.27) hold. Let T > 0 satisfy (3.2). For any given initial
condition (ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are suitably small and the conditions of C2

compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. If we have the
observed values ki(t) (i = 1, · · · , n) at x = 0 on the interval [0, T ], then the initial data (ϕ, ψ)
can be uniquely determined and we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖(hi, hi)‖Cd[0,T ]×Cd[0,T ]

)
, (4.9)

where C is a positive constant.

Remark 4.3 Similar results hold if we take observed values ki(t) (i = 1, · · · , n) at x = L

instead of ki(t) (i = 1, · · · , n) at x = 0 and hypothesis (2.27) is replaced by (2.26).

Remark 4.4 If ai, aij , bij , bij , cij , cij are all independent of w, then the problem is linear,
Theorem 3.2 implies the corresponding global exact boundary observability.

Remark 4.5 The exact observability time (3.2) given in Theorem 4.2 is sharp.

If we only consider the corresponding weak observability (see [10]), for which the final
condition (2.25) can be uniquely determined by the observed values ki(t) (i = 1, · · · , n) at
x = 0, then for boundary conditions (1.4d) (resp. (1.5d)) of coupled dissipative type, the
condition (2.26) (resp. (2.27)) is not necessary. In fact, in this situation, we have the following
theorem.

Theorem 4.3 (One-Sided Weak Observability) Under the hypotheses given in Section 1,
suppose furthermore that (2.13), (2.17) hold. Let T > 0 satisfy (3.2). For any given initial
condition (ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are suitably small and the conditions of C2

compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Then the final
data (Φ,Ψ) can be uniquely determined by the observed values ki(t) (i = 1, · · · , n) at x = 0 and
the boundary conditions hi(t) and hi(t) on the interval [0, T ], and we have the following weak
observability inequality:

‖(Φ,Ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖(hi, hi)‖Cd[0,T ]×Cd[0,T ]

)
, (4.10)

where C is a positive constant.

Remark 4.6 Similar results hold if we take observed values ki(t) (i = 1, · · · , n) at x = 0
instead of ki(t) (i = 1, · · · , n) at x = L.

Remark 4.7 Theorems 4.1–4.3 are still valid for the coupled system (2.29) or (2.30).
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