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Abstract The author considers a new class SHm
λμ(α) of normalized analytic functions

defined by a differential operator. Several basic properties and characteristics of the
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the unit disk U = {z ∈ C : |z| < 1}.
Let S∗ and K denote the usual classes of starlike and convex functions in U, respectively.
Suppose that f, g ∈ A. Then f is said to be subordinate to g, written as f ≺ g, if

f(z) = g(ω(z)), z ∈ U for some analytic function ω(z) with ω(0) = 0 and |ω(z)| < 1, z ∈ U.
The Hadamard product or convolution of the functions

f(z) = z +
∞∑

n=2

anzn and g(z) = z +
∞∑

n=2

bnzn

is given by

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn = (g ∗ f)(z), z ∈ U.

In [19] Stankiewicz and Wísniowska studied the class of functions SH(α) defined as folllows.
A function f ∈ A is said to be in the class SH(α) if it satisfies the condition

∣∣∣zf ′(z)
f(z)

− 2α(
√

2 − 1)
∣∣∣ <

√
2�zf ′(z)

f(z)
+ 2α(

√
2 − 1) (1.2)
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for some α (α > 0) and for all z ∈ U.
Note that f ∈ SH(α) if and only if zf ′(z)

f(z) lies in the hyperbolic domain

Ω(α) = {w = u + iv : v2 < 4αu + u2, u > 0} (1.3)

which is included in the right half-plane, is symmetric about the real axis with a vertex at the
origin.

It is easy to see that SH(α) ⊂ S∗ for all α > 0.
Denote by P(Pα) (α > 0) the family of functions p such that p ∈ P and p ≺ Pα in U, where

P is the well-known class of Carathéodory functions and Pα maps the unit disk conformally
onto the domain Ω(α) such that Pα(0) = 1 and P ′

α(0) > 0.
The function which plays the role of the extremal function for the class P(Pα) was obtained

in [19] and was given by

Pα(z) = (1 + 2α)

√
1 + bz

1 − z
− 2α, (1.4)

where

b = b(α) =
1 + 4α − 4α2

(1 + 2α)2
, (1.5)

the branch of the square root
√

w being chosen such that �√w ≥ 0.
If Pα(z) = 1 + B1z + B2z

2 + · · · , then (see [19])

B1 =
1 + 4α

1 + 2α
and B2 =

(1 + 4α)(1 + 4α + 8α2)
2(1 + 2α)3

. (1.6)

Denote by Fα (see [19]) the function satisfying

zF ′
α(z)

Fα(z)
= Pα(z) and F ′

α(0) = 1, (1.7)

where Pα is defined by (1.4). Elementary calculation shows that

Fα(z) = z
[(
√

1 + bz + i
√

b − bz)i
√

b

√
1 + bz +

√
1 − z

]2(1+2α)[ 2
(1 + i

√
b)i

√
b

]2(1+2α)

, (1.8)

where b is given by (1.5) and the branch of
√

w is chosen such that �√w ≥ 0.
It is easy to see that the function Fα plays the role of the extremal function for the class

SH(α). Note that since b is real (−1 < b < 1), both functions Pα and Fα have real coefficients.
Let f ∈ A. We consider the following differential operator introduced by Răducanu and

Orhan in [11]:

D0
λμf(z) = f(z),

D1
λμf(z) = Dλμf(z) = λμz2f ′′(z) + (λ − μ)zf ′(z) + (1 − λ + μ)f(z),

Dm
λμf(z) = Dλμ(Dm−1

λμ f(z)), (1.9)

where 0 ≤ μ ≤ λ and m ∈ N := {1, 2, · · · }.
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If the function f is given by (1.1), then from (1.9) we see that

Dm
λμf(z) = z +

∞∑
n=2

Φn(λ, μ, m)anzn, (1.10)

where

Φn(λ, μ, m) = [1 + (λμn + λ − μ)(n − 1)]m , n ≥ 2. (1.11)

From (1.10) it follows that Dm
λμf(z) can be written in terms of convolution as

Dm
λμf(z) = (f ∗ gλμ)(z), (1.12)

where

gλμ(z) = z +
∞∑

n=2

Φn(λ, μ, m)zn, z ∈ U. (1.13)

When λ = 1 and μ = 0, we obtain the Sălăgean differential operator (see [15]); when μ = 0,
we get the differential operator defined by Al-Oboudi [2].

Making use of the operator Dm
λμ, we define the following class of functions.

Definition 1.1 A function f ∈ A is said to be in the class SHm
λμ(α), if Dm

λμf belongs to
SH(α), that is

∣∣∣z(Dm
λμf(z))′

Dm
λμf(z)

− 2α(
√

2 − 1)
∣∣∣ <

√
2�

{z(Dm
λμf(z))′

Dm
λμf(z)

}
+ 2α(

√
2 − 1) (1.14)

for some α > 0, 0 ≤ μ ≤ λ, m ∈ N0 := {0, 1, 2, · · · } and for all z ∈ U.

When m = 0, we have D0
λμf = f and thus the class SH0

λμ(α) reduces to the class SH(α).
Since SH(α) ⊂ S∗, it follows that if f ∈ SHm

λμ(α), then Dm
λμf ∈ S∗.

The main objective of this paper is to present a systematic investigation of the class
SHm

λμ(α). In particular, for this class of functions we obtain integral representations, coef-
ficient bounds, class preserving operators, sharp estimates of the functional |a3 − ηa2

2| and
Tδ-neighborhoods.

2 Integral Representations

In this section we provide integral representations for Dm
λμf and f , respectively.

Theorem 2.1 Let f ∈ SHm
λμ(α). Then

Dm
λμf(z) = z exp

{∫ z

0

Pα(ω(ζ)) − 1
ζ

dζ
}

, (2.1)

where ω is analytic with ω(0) = 0, |ω(z)| < 1, z ∈ U, and Pα is given by (1.4).

Proof Suppose f ∈ SHm
λμ(α). From Definition 1.1, we have

z(Dm
λμf(z))′

Dm
λμf(z)

≺ Pα(z), z ∈ U.
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It follows that there exists an analytic function ω(z) with ω(0) = 0 and |ω(z)| < 1, z ∈ U such
that

z(Dm
λμf(z))′

Dm
λμf(z)

= Pα(ω(z)), z ∈ U

or equivalently

log
Dm

λμf(z)
z

=
∫ z

0

Pα(ω(ζ)) − 1
ζ

dζ.

From the last equality, we get

Dm
λμf(z) = z exp

{∫ z

0

Pα(ω(ζ)) − 1
ζ

dζ
}

,

and thus the proof is completed.
Making use of Theorem 2.1, (1.12) and (1.13), we obtain the next integral representation

for a function in SHm
λμ(α).

Corollary 2.1 Let f ∈ SHm
λμ(α). Then

f(z) = hλμ(z) ∗
[
z exp

{ ∫ z

0

Pα(ω(ζ)) − 1
ζ

dζ
}]

, (2.2)

where ω is analytic with ω(0) = 0, |ω(z)| < 1, z ∈ U, Pα is given by (1.4), and hλμ is defined
by

hλμ(z) = z +
∞∑

n=2

zn

Φn(λ, μ, m)
. (2.3)

Theorem 2.2 Let f ∈ SHm
λμ(α). Then

Dm
λμf(z) = z2α(

√
2−1) exp

{∫
X

log(1 −
√

2xz)−
√

2αdμ(x)
}

, (2.4)

where μ(x) is a probability measure on X = {x : |x| = 1}.

Proof Let f ∈ SHm
λμ(α) and denote w =

z(Dm
λμf(z))′

Dm
λμf(z) . Then we have

|w − 2α(
√

2 − 1)| <
√

2�w + 2α(
√

2 − 1).

Therefore

∣∣∣ w − 2α(
√

2 − 1)√
2w + 2α(

√
2 − 1)

∣∣∣ < 1

or

w − 2α(
√

2 − 1)√
2w + 2α(

√
2 − 1)

= xz
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for z ∈ U and x ∈ X = {x : |x| = 1}. This yields

(Dm
λμf(z))′

Dm
λμf(z)

= 2α(
√

2 − 1)
1 + xz

z(1 −√
2xz)

,

and therefore

log
Dm

λμf(z)

z2α(
√

2−1)
= −

√
2α log(1 −

√
2xz).

If μ(x) is a probability measure on X , then

Dm
λμf(z) = z2α(

√
2−1) exp

{∫
X

log(1 −
√

2xz)−
√

2αdμ(x)
}

,

and thus the proof is completed.

The next result follows from Theorem 2.2, (1.12) and (1.13).

Corollary 2.2 Let f ∈ SHm
λμ(α). Then

f(z) = hλμ(z) ∗
[
z2α(

√
2−1) exp

{∫
X

log(1 −
√

2xz)−
√

2αdμ(x)
}]

, (2.5)

where μ(x) is a probability measure on X = {x : |x| = 1} and hλμ is given by (2.3).

3 Class-Preserving Operators

In order to prove the main result of this section, we need the following lemma due to
Ruscheweyh and Sheil-Small.

Lemma 3.1 (see [13]) Suppose g ∈ K and h ∈ S∗. Then for any analytic function G in
U, we have

(g ∗ hG)(z)
(g ∗ h)(z)

∈ coG(U), z ∈ U,

where co G(U) is the closed convex hull of G(U).

The next theorem shows that the class SHm
λμ(α) is invariant under convolution with convex

functions.

Theorem 3.1 Let f ∈ SHm
λμ(α) and g ∈ K. Then g ∗ f ∈ SHm

λμ(α).

Proof Suppose f ∈ SHm
λμ(α). Then

z(Dm
λμf(z))′

Dm
λμf(z)

≺ Pα(z), z ∈ U

and Dm
λμf(z) ∈ S∗. Let g ∈ K. We have

z(Dm
λμ(f ∗ g)(z))′

Dm
λμ(f ∗ g)(z)

=
g(z) ∗ z(Dm

λμf(z))′

g(z) ∗ Dm
λμf(z)

=
g(z) ∗

(z(Dm
λμf(z))′

Dm
λμf(z)

)
Dm

λμf(z)

g(z) ∗ Dm
λμf(z)

.
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Since g ∈ K, Dm
λμf(z) ∈ S∗ and Ω(α) is convex, it follows from Lemma 3.1 that

z(Dm
λμ(f ∗ g)(z))′

Dm
λμ(f ∗ g)(z)

≺ Pα(z), z ∈ U.

Thus, g ∗ f ∈ SHm
λμ(α) and the proof of our theorem is completed.

Consider

g1(z) = − log(1 − z), log 1 = 0,

g2(z) = −2
[z + log(1 + z)

z

]

and

g3(z) =
∞∑

n=1

γ + 1
γ + n

zn, �γ > 0.

Note that the convolutions

(f ∗ g1)(z) =
∫ z

0

f(t)
t

dt,

(f ∗ g2)(z) =
2
z

∫ z

0

f(t)dt

and
(f ∗ g3)(z) =

γ + 1
zγ

∫ z

0

tγ−1f(t)dt

are the familiar Alexander, Libera and Bernardi operators, respectively.

Corollary 3.1 If f ∈ SHm
λμ(α), then f ∗ gi ∈ SHm

λμ(α) for each i = 1, 2, 3.

Proof It is well-known that the functions g1, g2, g3 are convex (see for example [4]). Thus,
the proof of the corollary follows as an application of Theorem 3.1.

4 Coefficient Bounds

Let fλμα(z) be defined by

fλμα(z) = (hλμ ∗ Fα)(z), z ∈ U, (4.1)

where the functions Fα and hλμ are given by (1.7) and (2.3), respectively. It is easy to check
that

z(Dm
λμfλμα(z))′

Dm
λμfλμα(z)

= Pα(z), z ∈ U.

Thus, the function fλμα(z) is the extremal function in the class SHm
λμ(α).

Taking into account the relation between the extremal functions in the classes P(Pα) and
SHm

λμ(α) and in view of (1.10), for fλμα(z) = z + A2z
2 + A3z

3 + · · · and Pα(z) = 1 + B1z +
B2z

2 + · · · we have the following coefficient relation

(n − 1)Φn(λ, μ, m)An =
n−1∑
k=1

Φk(λ, μ, m)AkBn−k, A1 = 1, n ≥ 2. (4.2)
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In particular, by straightforward computation, we obtain

A2 =
B1

Φ2(λ, μ, m)
(4.3)

and

A3 =
B2 + B2

1

2Φ3(λ, μ, m)
, (4.4)

where coefficients B1 and B2 are given by (1.6).
Note that the coefficients An and Bn are nonnegative.

Theorem 4.1 Let f given by (1.1) be in SHm
λμ(α). Then

|a2| ≤ A2, |a3| ≤ A3. (4.5)

Proof Assume f ∈ SHm
λμ(α). Let p(z) =

z(Dm
λμf(z))′

Dm
λμf(z) = 1 + p1z + p2z

2 + · · · . From the
relation between f and p, we have

(n − 1)Φn(λ, μ, m)an =
n−1∑
k=1

Φk(λ, μ, m)akpn−k, a1 = 1, n ≥ 2. (4.6)

Since Pα is univalent, the function

q(z) =
1 + P−1

α (p(z))
1 − P−1

α (p(z))
= 1 + c1z + c2z

2 + · · ·

is analytic in U and �q(z) > 0, z ∈ U. Equivalently, we can write

p(z) = Pα

(q(z) − 1
q(z) + 1

)
= 1 +

1
2
c1B1z +

[1
2
c2B1 +

1
4
c2
1(B2 − B1)

]
z2 + · · · .

In particular,

p1 =
1
2
c1B1, p2 =

1
2
c2B1 +

1
4
c2
1(B2 − B1). (4.7)

From (4.6) we have

a2 =
p1

Φ2(λ, μ, m)
(4.8)

and

a3 =
p2 + p2

1

2Φ3(λ, μ, m)
. (4.9)

Making use of (4.3) and (4.7)–(4.8), we obtain

|a2| =
|c1|
2

B1

Φ2(λ, μ, m)
=

|c1|
2

A2 ≤ A2,

where we have used the inequality |cn| ≤ 2, n ≥ 1. By virtue of the relation |p1|2+|p2| ≤ B2
1+B2

(see [19]), (4.4) and (4.9), we have

|a3| ≤ |p2| + |p1|2
2Φ3(λ, μ, m)

≤ B2 + B2
1

2Φ3(λ, μ, m)
= A3.

Thus, the proof is completed.
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Theorem 4.2 Let f of the form (1.1) be in the class SHm
λμ(α). Then

|an| ≤ (B1)n−1

(n − 1)!Φn(λ, μ, m)
, n ≥ 2, (4.10)

where (τ)n is the Pochhammer symbol, and Φn(λ, μ, m) is given by (1.11).

Proof In view of Theorem 4.1, the result is true for n = 2. Assume that the inequality
(4.10) is true for all integers k ≤ n − 1, n ≥ 2. Making use of (4.6), we have

|an| =
∣∣∣ 1
(n − 1)Φn(λ, μ, m)

n−1∑
k=1

Φk(λ, μ, m)akpn−k

∣∣∣

≤ 1
(n − 1)Φn(λ, μ, m)

n−1∑
k=1

Φk(λ, μ, m)
(B1)k−1

(k − 1)!Φk(λ, μ, m)
B1

=
B1

(n − 1)Φn(λ, μ, m)

[
1 +

n−1∑
k=2

(B1)k−1

(k − 1)!

]
,

where we have applied the induction hypothesis to |ak| and the Rogosinski result |pj | ≤ B1 (see
[12]). To complete the proof of the theorem, it sufficies to show that

B1

(n − 1)

[
1 +

n−1∑
k=2

(B1)k−1

(k − 1)!

]
=

(B1)n−1

(n − 1)!

or

1 +
n−1∑
k=2

(B1)k−1

(k − 1)!
=

(B1 + 1)n−2

(n − 2)!
. (4.11)

Equality (4.11) follows from the sequence of calculations listed below

1 +
n−1∑
k=2

(B1)k−1

(k − 1)!

=
1

(n − 2)!

[
(n − 2)! + (n − 2)!B1 +

(n − 2)!
2

B1(B1 + 1) + · · · + B1(B1 + 1) · · · (B1 + n − 3)
]

=
B1 + 1
(n − 2)!

[
(n − 2)! +

(n − 2)!
2

B1 +
(n − 2)!

3!
B1(B1 + 2) + · · · + B1(B1 + 2) · · · (B1 + n − 3)

]

=
(B1 + 1)(B1 + 2)

(n − 2)!

[ (n − 2)!
2

+
(n − 2)!

3!
B1 + · · · + B1(B1 + 3) · · · (B1 + n − 3)

]

= · · · =
(B1 + 1)n−2

(n − 2)!

as asserted in (4.11).

5 The Fekete-Szegö Problem

During the time, many authors have considered the problem of finding sharp upper bounds
for the functional |a3 − ηa2

2| for different subclasses of A (see, for instance [7–10]).
In this section we consider the Fekete-Szegö problem for functions in the class SHm

λμ(α).
For the class P of Carathéodory functions, the next result is well-known.
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Lemma 5.1 (see [6]) Let p be a function in the class P. If p(z) = 1+p1z+p2z
2+ · · · , z ∈

U, then for −∞ < u < ∞

|p2 − up2
1| ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 + (u − 1)|p1|2, u >
1
2
,

2 − 1
2
|p1|2, u =

1
2
,

2 − u|p1|2, u <
1
2
.

(5.1)

Similar estimates with (5.1) for a subclass of Carathóodory functions defined by conical
domains were obtained by Kanas [7] and more recently by Mishra and Gochhayat [9].

A coefficient inequality for the subclass P(Pα) is given in the following theorem.

Theorem 5.1 Let α > 0 be fixed and let Pα(z) = 1 + B1z + B2z
2 + · · · be defined by (1.4).

If the function p(z) = 1 + p1z + p2z
2 + · · · is a member of P(Pα), then for −∞ < u < ∞

|p2 − up2
1| ≤

⎧⎨
⎩

uB2
1 − B2, u > δ1,

B1, δ2 ≤ u ≤ δ1,
B2 − uB2

1 , u < δ2,
(5.2)

where

δ1 =
B1 + B2

B2
1

, δ2 =
B2 − B1

B2
1

, (5.3)

and B1, B2 are given by (1.6). All estimates in (5.2) are sharp.

Since the proof is similar to the proof of Theorem 3.1 in [9], we omit it.
Theorem 5.1 enables us to obtain a short and direct proof of the Fekete-Szegö inequalities

for the class SHm
λμ(α).

Theorem 5.2 Let f given by (1.1) be in the class SHm
λμ(α). Then

|a3 − ηa2
2|

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + 4α)2

(1 + 2α)2Φ3(λ, μ, m)

[Φ3(λ, μ, m)
Φ2

2(λ, μ, m)
η − 1 + 4α

4(1 + 2α)
− 1 + 2α

2(1 + 4α)

]
, η > δ1(α, λ, μ, m),

1 + 4α

2(1 + 2α)Φ3(λ, μ, m)
, δ2(α, λ, μ, m) ≤ η ≤ δ1(α, λ, μ, m),

(1 + 4α)2

(1 + 2α)2Φ3(λ, μ, m)

[ 1 + 4α

4(1 + 2α)
+

1 + 2α

2(1 + 4α)
− Φ3(λ, μ, m)

Φ2
2(λ, μ, m)

η
]
, η < δ2(α, λ, μ, m),

where

δ1(α, λ, μ, m) =
Φ2

2(λ, μ, m)
Φ3(λ, μ, m)

[ 1 + 4α

4(1 + 2α)
+

1 + 2α

1 + 4α

]
,

δ2(α, λ, μ, m) =
Φ2

2(λ, μ, m)
Φ3(λ, μ, m)

1 + 4α

4(1 + 2α)
,

and Φ2(λ, μ, m), Φ3(λ, μ, m) are given by (1.11) with n = 2 and n = 3, respectively. All estimates
are sharp.
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Proof Assume f ∈ SHm
λμ(α) and let

p(z) =
z(Dm

λμf(z))′

Dm
λμf(z)

= 1 + p1z + p2z
2 + · · · . (5.4)

Then p(z) ≺ Pα(z) and thus p ∈ P(Pα). Equating the coefficients of z and z2 in (5.4), we
obtain

a2 =
p1

Φ2(λ, μ, m)
, a3 =

p2 + p2
1

2Φ3(λ, μ, m)
.

We have

|a3 − ηa2
2| =

1
2Φ3(λ, μ, m)

∣∣∣p2 −
(2Φ3(λ, μ, m)

Φ2
2(λ, μ, m)

η − 1
)
p2
1

∣∣∣.
Making use of Theorem 5.1 with

u =
2Φ3(λ, μ, m)
Φ2

2(λ, μ, m)
η − 1,

we obtain the desired result.

Remark 5.1 For m = 0, our Theorem 5.2 yields the Fekete-Szegö inequalities for the class
SH(α) found in [19].

6 Tδ-Neighborhoods

In this section we investigate the Tδ-neighborhoods of functions in SHm
λμ(α).

Given a sequence T = {Tn}∞n=2 consisting of positive real numbers, the Tδ-neighborhoods
(δ > 0) of a function f given by (1.1) is defined by

Tδ(f) =
{
g ∈ A; g(z) = z +

∞∑
n=2

bnzn :
∞∑

n=2

Tn|an − bn| ≤ δ
}

. (6.1)

The notion of the Tδ-neighborhoods was introduced in [16].
Note that if T = {n}∞n=2, then the Tδ-neighborhood becomes the δ-neighborhoods Nδ(f)

introduced by Ruscheweyh in [14].
The problem of δ-neighborhoods or Tδ-neighborhoods for typical subclasses of A was studied

by many authors (see [1, 3, 5, 18]).
In the following theorem, a necessary and sufficient condition for a function f ∈ A to be in

the class SHm
λμ(α) is given.

Theorem 6.1 Let 0 ≤ μ ≤ λ, m ∈ N and α > 0. Then a function f ∈ A belongs to the
class SHm

λμ(α) if and only if (f∗Hλμ)(z)
z �= 0 in U, where

Hλμ(z) = (gλμ ∗ h)(z) (6.2)

with gλμ(z) given by (1.13),

h(z) =
z

(1 − z)2
[
1 +

w(t)z
1 − w(t)

]
(6.3)

and

w(t) = t ± i
√

t2 + αt, t > 0. (6.4)



Analytic Functions Related with the Hyperbola 525

Proof Suppose f ∈ SHm
λμ(α). Then from (1.14) we have that the values of z(Dm

λμf(z))′

Dm
λμf(z) lie

in the domain Ω(α) defined by (1.3). Therefore

z(Dm
λμf(z))′

Dm
λμf(z)

�= t ± i
√

t2 + αt = w(t) (6.5)

with z ∈ U and t > 0. Applying the properties of the Hadamard product and (1.12), the
condition (6.5) will hold if

f(z) ∗ zg′λμ(z) − w(t)gλμ(z)
z(1 − w(t))

�= 0. (6.6)

Making use of (1.13) it follows from (6.6) that (f∗Hλμ)(z)
z �= 0, where Hλμ is given by (6.2).

Conversely, if (f∗Hλμ)(z)
z �= 0 in U, then the values of

z(Dm
λμf(z))′

Dm
λμf(z) lie completely inside Ω(α)

or its complement. Since

z(Dm
λμf(z))′

Dm
λμf(z)

∣∣∣
z=0

= 1 ∈ Ω(α),

we obtain
z(Dm

λμf(z))′

Dm
λμf(z) ∈ Ω(α) which shows that f ∈ SHm

λμ(α).

Theorem 6.2 The coefficients hn of the function Hλμ given by (6.2) satisfy the inequality

|hn| ≤

⎧⎪⎨
⎪⎩

nΦn(λ, μ, m)√
2α(1 − α)

, 0 < α <
1
2
,

nΦn(λ, μ, m), α ≥ 1
2
,

where Φn(λ, μ, m), n ≥ 2 is given by (1.11).

Proof From the Taylor expansion of the function Hλμ, we have

hn = Φn(λ, μ, m)
n − w(t)
1 − w(t)

and therefore

|hn|2 = [Φn(λ, μ, m)]2
∣∣∣n − w(t)
1 − w(t)

∣∣∣2 = [Φn(λ, μ, m)]2V (t),

where

V (t) =
2t2 + 2t(2α − n) + n2

2t2 + 2t(2α − 1) + 1
.

We have

V (t) = 1 +
(n − 1)(n + 1 − 2t)
2t2 + 2t(2α − 1) + 1

≤ 1 +
n2 − 1

2t2 + 2t(2α − 1) + 1
.

It is easy to see that

2t2 + 2t(2α − 1) + 1 ≥

⎧⎪⎨
⎪⎩

2α(1 − α), 0 < α <
1
2
,

1, α ≥ 1
2
.
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Therefore, for 0 < α <
1
2
, we have

|hn|2 ≤ [Φn(λ, μ, m)]2
[
1 +

n2 − 1
2α(1 − α)

]
≤ [Φn(λ, μ, m)]2

n2

2α(1 − α)
,

and for α ≥ 1
2 ,

|hn|2 ≤ [Φn(λ, μ, m)]2(1 + n2 − 1) = [Φn(λ, μ, m)]2n2.

Thus, the proof of our theorem is completed.

Corollary 6.1 Let f(z) = z + azn. If

|a| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2α(1 − α)

nΦn(λ, μ, m)
, 0 < α <

1
2
,

1
nΦn(λ, μ, m)

, α ≥ 1
2
,

then f ∈ SHm
λμ(α).

Proof Since
∣∣∣ (f ∗ Hλμ)(z)

z

∣∣∣ = |1 + ahnzn−1| ≥ 1 − |hn||a||z| ≥ 1 − |z| > 0, z ∈ U,

it folllows that f ∈ SHm
λμ(α).

In order to establish the Tδ-neighborhoods of functions belonging to the class SHm
λμ(α), we

need the following lemma.

Lemma 6.1 Let f ∈ A and ε ∈ C with |ε| < γ for some γ > 0. If the function

Fε(z) =
f(z) + εz

1 + ε
, z ∈ U (6.7)

belongs to the class SHm
λμ(α), then

∣∣∣1
z
(f ∗ Hλμ)(z)

∣∣∣ ≥ γ, z ∈ U,

where Hλμ is given by (6.2).

Proof Assume Fε(z) ∈ SHm
λμ(α). Then by Theorem 6.1 it follows

1
z
(Fε ∗ Hλμ)(z) �= 0, z ∈ U.

Equivalently

(f ∗ Hλμ)(z) + εz

(1 + ε)z
�= 0 or

(f ∗ Hλμ)(z)
z

�= −ε.

Since |ε| < γ, it easily follows that
∣∣∣1
z
(f ∗ Hλμ)(z)

∣∣∣ ≥ γ
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and thus, the proof is completed.

In the sequence, we give the definition of the Tδ-neighborhoods of a function in f ∈ SHm
λμ(α)

of the form (1.1).
Let δ > 0 and let the sequence {Tn}∞n=2 of positive real numbers be defined by

Tn := nΦn(λ, μ, m), n ≥ 2, 0 ≤ μ ≤ λ, m ∈ N.

Then the Tδ-neighborhoods defined in (6.1) becomes

Tδ(f) =
{
g ∈ A; g(z) = z +

∞∑
n=2

bnzn :
∞∑

n=2

nΦn(λ, μ, m)|bn − an| ≤ δ
}

.

We have the following result on the Tδ-neighborhoods for the class SHm
λμ(α).

Theorem 6.3 Let f ∈ A and γ > 0. For ε ∈ C with |ε| < γ, let the function Fε defined by
(6.7) be in SHm

λμ(α). Then Tδ(f) ⊂ SHm
λμ(α) for

δ :=

⎧⎪⎨
⎪⎩

γ
√

2α(1 − α), 0 < α <
1
2

,

γ, α ≥ 1
2
.

Proof Let g ∈ A, g(z) = z +
∞∑

n=2

bnzn be in Tδ(f). Then

∣∣∣1
z
(g ∗ Hλμ)(z)

∣∣∣ =
∣∣∣1
z
(f ∗ Hλμ)(z) +

1
z
((g − f) ∗ Hλμ)(z)

∣∣∣
≥

∣∣∣1
z
(f ∗ Hλμ)(z)

∣∣∣ − ∣∣∣1
z
((g − f) ∗ Hλμ)(z)

∣∣∣.
Making use of Lemma 6.1, we obtain

∣∣∣1
z
(g ∗ Hλμ)(z)

∣∣∣ ≥ γ −
∣∣∣

∞∑
n=2

(bn − an)hnzn

z

∣∣∣

> γ −
∞∑

n=2

|bn − an||hn|.

We have

∞∑
n=2

|bn − an||hn| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2α(1 − α)

∞∑
n=2

nΦn(λ, μ, m)|bn − an|, 0 < α <
1
2
,

∞∑
n=2

nΦn(λ, μ, m)|bn − an|, α ≥ 1
2
.

Since g ∈ Tδ(f), it follows that
∞∑

n=2

nΦn(λ, μ, m)|bn − an| ≤ δ

and thus ∣∣∣1
z
(g ∗ Hλμ)(z)

∣∣∣ > γ − γ = 0.

Therefore,
∣∣ 1
z (g ∗Hλμ)(z)

∣∣ �= 0. In virtue of Theorem 6.1, we obtain g ∈ SHm
λμ(α) which proves

that Tδ(f) ⊂ SHm
λμ(α).
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Math. Sci., 27, 2004, 1429–1436.

[3] Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a certain family of multivalent functions
with negative coefficients, Comput. Math. Appl., 47, 2004, 1667–1672.

[4] Barnard, R. W. and Kellogg, C., Applications of convolution operators to problems in univalent function
theory, Michigan Math. J., 27(1), 1980, 81–94.

[5] Bednarz, U. and Sokól, J., On T -neighborhoods of analytic functions, J. Math. Appl., 32, 2010, 25–32.

[6] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag,
New York, Berlin, Heidelberg, Tokio, vol. 259, 1983.

[7] Kanas, S., Coefficient estimates in subclasses of the Carathéodory class related to conic domains, Acta.
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[8] Mishra, A. K. and Gochhayat, P., Fekete-Szegö problem for k-uniformly convex functions and for a class
defined by the Owa-Srivastava operator, J. Math. Anal. Appl., 347, 2008, 563–572.

[9] Mishra, A. K. and Gochhayat, P., A coefficient inequality for a subclass of Carathéodory functions defined
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