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Analytic Functions Related with the Hyperbola

Dorina RADUCANU!

Abstract The author considers a new class SHY} (o) of normalized analytic functions
defined by a differential operator. Several basic properties and characteristics of the
functions belonging to the class SHY, () are investigated. These include integral rep-
resentations, coefficient bounds, the Fekete-Szego problem, class-preserving operators and
Ts-neighborhoods.
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1 Introduction
Let A denote the class of functions f of the form
f(z) :z—i—Zanz" (1.1)
n=2
which are analytic in the unit disk U= {z € C: |z| < 1}.
Let S* and K denote the usual classes of starlike and convex functions in U, respectively.
Suppose that f,g € A. Then f is said to be subordinate to g, written as f < g, if

f(2) = g(w(z)), z € U for some analytic function w(z) with w(0) =0 and |w(z)| <1, z € U.
The Hadamard product or convolution of the functions

flz)=z+ Z anz" and g(z)=z+ Z by 2"
n=2 n=2
is given by
(F9)(2) = 2+ anbuz" = (g5 f)(z), 2 €.
n=2

In [19] Stankiewicz and Wisniowska studied the class of functions SH («) defined as folllows.
A function f € A is said to be in the class SH(«) if it satisfies the condition

2 o5 2 HC NP
e 20(V2 —1)| < V2R e +2a(V2 - 1) (1.2)
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for some o (o« > 0) and for all z € U.
Note that f € SH(«) if and only if Z}fé? lies in the hyperbolic domain

Q(a):{w:u+iv:v2<4au+u2, u>0} (1.3)

which is included in the right half-plane, is symmetric about the real axis with a vertex at the
origin.

It is easy to see that SH(«) C S* for all a > 0.

Denote by P(P,) (« > 0) the family of functions p such that p € P and p < P, in U, where
P is the well-known class of Carathéodory functions and P, maps the unit disk conformally
onto the domain Q(«) such that P,(0) =1 and P.(0) > 0.

The function which plays the role of the extremal function for the class P(P,) was obtained

in [19] and was given by

1+ bz

P,y(z) = (14 2a)

- 2a, (1.4)

where

1+ 4o — 402
b=0b(a) = —————— 1.
(@) = g (15)
the branch of the square root /w being chosen such that $y/w > 0.

If Py(2) =1+ B1z+ Baz? + -+, then (see [19])
1 +4a (1+4a)(1 + 4a + 8a?)

B, = d B> = . 1.
Lo T42q M9 72 2(1 + 20)3 (16)

Denote by Fy (see [19]) the function satisfying

SFL(2)
Fu(z)

= P,(z) and F.(0)=1, (1.7)

where P, is defined by (1.4). Elementary calculation shows that

Fo(z)=

(V1 + bz + ivb — bz)VP 20+20) 2 2(1+20)
} [ } , (1.8)

VItbz+VI—2 (1+ivp)ive

where b is given by (1.5) and the branch of \/w is chosen such that Sv/w > 0.
It is easy to see that the function F, plays the role of the extremal function for the class
SH (). Note that since b is real (—1 < b < 1), both functions P, and F, have real coefficients.
Let f € A. We consider the following differential operator introduced by Raducanu and
Orhan in [11]:

DY, f(2) = f(2),
D}, f(2) = Dauf(2) = A2 " (2) + (A= p)zf'(2) + (1 = A+ ) f(2),
DY, f(2) = Dau (D3, f(2)), (1.9)

where 0 <p < Xand m e N:={1,2,---}.
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If the function f is given by (1.1), then from (1.9) we see that
(o)
Nf(z) =24 ®u( pym)anz", (1.10)
n=2

where
Dulhptym) = [1+ (n + A= )(n— D™, n>2. (1.11)

From (1.10) it follows that DY, f(2) can be written in terms of convolution as

DY, f(z) = (f * gap)(2), (1.12)
where
op(z) =2+ Z D, (N, p,m)z",  zeU. (1.13)
n=2

When A =1 and p = 0, we obtain the Salagean differential operator (see [15]); when p = 0,
we get the differential operator defined by Al-Oboudi [2].
Making use of the operator Dy, we define the following class of functions.

Definition 1.1 A function f € A is said to be in the class SH}\’L(a), if Df\”uf belongs to
SH(a), that is

2(D3,f(2)) 2Dy (2)
s = 2a(v2 - 1)| < VaR{ = L 2a(VE - 1 1.14
Dy f(2) ( ) { Dy (7) } +20( ) (1.14)

for some a >0, 0 < u <X méeNy:={0,1,2,---} and for all z € U.
When m = 0, we have Dguf = f and thus the class SHS\)H(O() reduces to the class SH(«).

Since SH(a) C S*, it follows that if f € SHY) («), then DY} f € S*.

The main objective of this paper is to present a systematic investigation of the class
SH;\Z(O&). In particular, for this class of functions we obtain integral representations, coef-
ficient bounds, class preserving operators, sharp estimates of the functional |az — na3| and
Ts-neighborhoods.

2 Integral Representations

In this section we provide integral representations for Dy, f and f, respectively.
Theorem 2.1 Let f € SHY, (). Then

Dy, f(2) = zexp{/oz %d{}, (2.1)

where w is analytic with w(0) =0, |w(z)| < 1, z € U, and P, is given by (1.4).

Proof Suppose f € SH}TL(oz). From Definition 1.1, we have

2(DXf(2)

Dy, 1(2) < Py(z), zel.
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It follows that there exists an analytic function w(z) with w(0) =0 and |w(z)| < 1, z € U such
that

2(DXf(2)
Dy f(2)

log Df\”uzf(z) _ /OZ Pa(w(g)) — 1d§.

From the last equality, we get
P,
Dy, f(z) = zexp / dC },

and thus the proof is completed.
Making use of Theorem 2.1, (1.12) and (1.13), we obtain the next integral representation

:Pa(W(Z)), ze€U

or equivalently

for a function in SHY} ().
Corollary 2.1 Let f € SHY} («). Then
z Pa _
F(2) = hau(2) * [zexp{/o %d{”, (2.2)

where w s analytic with w(0) =0, |w(z)| <1, z € U, P, is given by (1.4), and hy, is defined
by

P (2 Z A st (2.3)
Theorem 2.2 Let f € SHY, (). Then
0(:) = 22V exp { [ log(1 = Vann) (o)}, (2.4)
X

where p(x) is a probability measure on X = {x : |z| = 1}.

2(DY,, ()

IO Then we have

Proof Let f € SHY) (o) and denote w =

lw — 2a(vV2 — 1)] < V2Rw + 20(V2 - 1).

Therefore

w—2a(v2 - 1)
V2w + 2a(v/2 — 1)

or

w — 20((\/5 —1)
V2w + 2a(v2 — 1)

=Tz
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for z€ Uand v € X = {z : |z| = 1}. This yields

ORI o ltas
Dy f(2) =20(v2 1)z(l —V2zz2)’
and therefore
DY, f(2)
log m = —V2alog(1 — V2zz).

If u(x) is a probability measure on X, then

() = 22V D exp { [ Tog(1 = Vaw) Ve du(a) },

and thus the proof is completed.
The next result follows from Theorem 2.2, (1.12) and (1.13).
Corollary 2.2 Let f € SHY, (). Then

f(2) = hau(z) * 220(V2-1) ey { /X log(1 — \/ixz)*‘/ﬁadu(x)}], (2.5)

where p(x) is a probability measure on X = {x : |z| =1} and hy, is given by (2.3).

3 Class-Preserving Operators

In order to prove the main result of this section, we need the following lemma due to
Ruscheweyh and Sheil-Small.

Lemma 3.1 (see [13]) Suppose g € K and h € S*. Then for any analytic function G in
U, we have

(g * hG)(2)
(g +h)(2)
where € G(U) is the closed convex hull of G(U).

ecoGU), zeU,

The next theorem shows that the class SHY), () is invariant under convolution with convex

functions.

Theorem 3.1 Let f € SHY, () and g € K. Then g« f € SH}}, ().

Proof Suppose f € SH)’\’L(oz). Then

2(Dyf ()
Dy f(2)

and DY, f(z) € S*. Let g € K. We have

< Py(z), z€U

(DL ) o) (DR pey I ( Dy f(z)

Dy (fxg)(z) — g(z)« DL f(2) 9(2) * DY}, f(2)
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Since g € K, DY, f(2) € S* and Q(«) is convex, it follows from Lemma 3.1 that

2(D5,,(f * g)(2))
< P,(z), zel.
g )
Thus, g f € SHf\”ﬁ(a) and the proof of our theorem is completed.
Consider
g1(z) = —log(l —z), logl=0,
z+log(l+ z
g2(2) = =2 {7( )
z
and
= §R 0.
g3(2) ;’Y"‘nz, v >

Note that the convolutions

(f *gl)(z) = /OZ @dt,

and

are the familiar Alexander, Libera and Bernardi operators, respectively.

Corollary 3.1 If f € SHY, («), then f*g; € SHY, («) for eachi=1,2,3.

Proof Tt is well-known that the functions g1, g2, g3 are convex (see for example [4]). Thus,
the proof of the corollary follows as an application of Theorem 3.1.

4 Coefficient Bounds
Let faua(z) be defined by
Fapa(2) = (hap * Fo)(2), z€T, (4.1)

where the functions F,, and hy, are given by (1.7) and (2.3), respectively. It is easy to check
that

ADY ral2)
D;(L,f)\ua (Z)

Thus, the function fiuq(2) is the extremal function in the class SHY, ().

=P,(z), =zel.

Taking into account the relation between the extremal functions in the classes P(P,) and
SH)’\’L(a) and in view of (1.10), for faua(z) = 2z + A22? + A323 + -+ and P,(z) = 1+ Biz +
Byz? 4 - -+ we have the following coefficient relation

n—1
(n—1)@u(A\ ,m)An = > Bp(A, 1, m)AxBp_, A1 =1, n>2. (4.2)
k=1
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In particular, by straightforward computation, we obtain

B,
Ay = ————
? @2()‘7 s m)
and
By + B?
Ag= 201
205(A, u,m)

where coefficients By and By are given by (1.6).
Note that the coefficients A,, and B,, are nonnegative.

Theorem 4.1 Let f given by (1.1) be in SHY, (). Then

las| < Aa,  |ag| < As.

2(DY, f(2))

Proof Assume f € SHY), (a). Let p(z) = DR = 1+ piz+paz? + .

relation between f and p, we have
(TL - 1) A /’l/) an - Z (bk A M) akpn—k7 ayp = 17 n 2 2

Since P, is univalent, the function
1+ P Y(p(z
(o) = LR 0)
1—Pa(p(2))
is analytic in U and Rq(z) > 0, z € U. Equivalently, we can write

q(z) -1
q(z) +1

=14ciz4coz?+---

p(z):Pa( )—1—|— clBlz—i—[

2 2 4

In particular,

1
p1 = 561317 p2 = 26231 + 461(32 — By).

From (4.6) we have

o — P
2 Do (A, 1, m)
and
 p2a+pi
ag = ————.
205(A, u,m)
Making use of (4.3) and (4.7)—(4.8), we obtain
el B lea]
jaz| 2 Dy(\, p,m) g 2=

CQB1+—61(BQ—B1) 2y

521

(4.5)

From the

(4.6)

where we have used the inequality |c,| < 2, n > 1. By virtue of the relation |p1 |>+|p2| < B?+Bs

(see [19]), (4.4) and (4.9), we have

p2| + 11 _  Ba+ BY

= As.
las| < 205(\, p,m) — 23N, pom)

Thus, the proof is completed.
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Theorem 4.2 Let f of the form (1.1) be in the class SHY} (o). Then

Bl n—
(n— 1()!<I>)n(A1,u, m)y "= (4.10)

where (T),, is the Pochhammer symbol, and ®,,(\, u, m) is given by (1.11).

lan| <

Proof In view of Theorem 4.1, the result is true for n = 2. Assume that the inequality
(4.10) is true for all integers k <mn — 1, n > 2. Making use of (4.6), we have

Z‘I’k (A, p,m akpn—k‘

|a"| B (n - 1 >‘ y s T
(B1)k—1
<
N (n - 1 A ) M, TN Z Q)k A e - 1)'<I>k()\,u,m) Bl
- }
RCER e

where we have applied the induction hypothesis to |ak| and the Rogosinski result |p;| < By (see
[12]). To complete the proof of the theorem, it sufficies to show that

{1_’_2 (B1)k— 1} _ (B1)n-1

(n— (n—1)!
= (By)ko1 By +1)p_2
1+y° ((k _)’“1)! _ ! (n+_ 2))! . (4.11)
k=2

Equality (4.11) follows from the sequence of calculations listed below

(n —2)!

(n—2)! + (n — 2)!B; +

(n —2)!
2

Bl(Bl+1)+"'+Bl(Bl+1)"'(Bl+n_3)}

(n—' )!B1(B1+2)+-'-+B1(B1+2)-~(B1+n—3)}

el
|

(n—2)! + By +

(n—2)
_ (B1+1)(B1+2) [(n —-2)! . (n —2)!
(n —2)! 2 3!
. (B1 4+ 1)n—2
(n—2)!

as asserted in (4.11).

Bi+-- +Bl(Bl+3)---(Bl+n—3)}

5 The Fekete-Szego Problem

During the time, many authors have considered the problem of finding sharp upper bounds
for the functional |ag — na3| for different subclasses of A (see, for instance [7-10]).

In this section we consider the Fekete-Szegd problem for functions in the class SHY (a).

For the class P of Carathéodory functions, the next result is well-known.
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Lemma 5.1 (see [6]) Let p be a function in the class P. If p(z) = 1+p1z+pez?+---, 2z €
U, then for —oco < u < o0

1
2+(U—1)|p1|2, ’U,>§,
1 1
[p2 —upil < {2 - 5lpi %, u=g (5.1)
2 — ulp1|? u<l
P17, 2"

Similar estimates with (5.1) for a subclass of Carathéodory functions defined by conical
domains were obtained by Kanas [7] and more recently by Mishra and Gochhayat [9].

A coefficient inequality for the subclass P(P,) is given in the following theorem.

Theorem 5.1 Let o > 0 be fized and let Po(2) = 1+ B1z + Boz? + -+ be defined by (1.4).
If the function p(z) = 1+ p1z + p2z? + -+ is a member of P(Py), then for —oo < u < 0o

uB? — By,  u > 6y,
lp2 —upi| << Bi, 2 <u <6y, (5.2)
BQ—’U,B%, u<52,

where

6_Bl+BQ 5_32—31
1= B% ; 2 — B% )
and By, By are given by (1.6). All estimates in (5.2) are sharp.

Since the proof is similar to the proof of Theorem 3.1 in [9], we omit it.

Theorem 5.1 enables us to obtain a short and direct proof of the Fekete-Szego inequalities
for the class SHY}, ().

Theorem 5.2 Let f given by (1.1) be in the class SHY, (o). Then

laz — 77Cl§|

2 .

(1+ 2(;);;?(()&#%) @Eizg" a 4(111420;) B 2(111240;)}’ n > di(a A pm),

=30+ 2;;1>§?A,u,m)’ O2(e A ) < < dr(s A g m),

2

(1+ 2(;)j¢tiz\,uam) [4(111420;) 2(111240;) a 2285% ”}’ 0 < d2(00 A, pym),

where

o) = ey * T
So(a, A\, pr,m) = ifgi Z’ ;4(111420;),

and o (A, 1, m), P3(A, p,m) are given by (1.11) withn = 2 and n = 3, respectively. All estimates
are sharp.
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Proof Assume f € SH{; (o) and let

o) = ZPLIC)
D3, (2)

Then p(z) < P,(z) and thus p € P(P,). Equating the coefficients of z and 22 in (5.4), we
obtain

=14piz+p2i+---. (5.4)

a2 = 72)1 a3 = 7])2 + p%
':1)2(>\,/~L77n)7 2@3(>\,/~L7m)
We have
1 205(A, u,m)
21 3(A, 1y ) 2 ‘
_ — — —1 .
las = naz| 203 (N, i, m) ‘pQ ( D2\, p,m) p1

Making use of Theorem 5.1 with
2®3(\
— 23( ?/‘L777/L)77_17
(1)2(/\’ s m)

we obtain the desired result.

Remark 5.1 For m = 0, our Theorem 5.2 yields the Fekete-Szego inequalities for the class
SH(a) found in [19].

6 Ts-Neighborhoods

In this section we investigate the Ts-neighborhoods of functions in SH}TL(Q).
Given a sequence T = {T),}.~, consisting of positive real numbers, the Ts-neighborhoods
(0 > 0) of a function f given by (1.1) is defined by

Ts(f) = {g €A g(z) =24+ Y buz": Y Tulan —bal < 5}. (6.1)
n=2 n=2

The notion of the Ts-neighborhoods was introduced in [16].

Note that if 7" = {n} ~,, then the Ts-neighborhood becomes the d-neighborhoods Nj(f)
introduced by Ruscheweyh in [14].

The problem of §-neighborhoods or Ts-neighborhoods for typical subclasses of A was studied
by many authors (see [1, 3, 5, 18]).

In the following theorem, a necessary and sufficient condition for a function f € A to be in
the class SHY), () is given.

Theorem 6.1 Let 0 < u < X\, m € N and o > 0. Then a function f € A belongs to the
class SHY,, () if and only if (f*Hi;“)(z) %0 in U, where

H)\u(z) = (g)\u * h)(z) (6'2)
with gxu(z) given by (1.13),
oz w(t)z
Mz) = (1 —2)2 {1 + 1-— w(t)} (6:3)

and

w(t) =txivVt2+at, t>0. (6.4)
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2(DY, () lie

Proof Suppose f € SHY} (a). Then from (1.14) we have that the values of o RIE)

in the domain Q(«) defined by (1.3). Therefore

(DY (2) g
= #ti V24 at =w(t (6.5)
DY, f(z)
with z € U and ¢ > 0. Applying the properties of the Hadamard product and (1.12), the
condition (6.5) will hold if

295, (2) — w(t)gru(z)

L )

£0. (6.6)

Making use of (1.13) it follows from (6.6) that M # 0, where H),, is given by (6.2).

Conversely, if M # 0 in U, then the values of 2D, 1 (2)

NIFION lie completely inside Q(a)
or its complement. Since

Dm z !/
ADRIE) g
D)\Mf(z) z=0

we obtain % € () which shows that f € SHY), (a).

Theorem 6.2 The coefficients hy, of the function Hy, given by (6.2) satisfy the inequality
n®,, (A, w,m)

|ha| < 2a(1 — «)

1
nq)n(Avl‘Lvm)v Qv Z 57

O< <_1
«
’ 27

where @, (A, u,m), n > 2 is given by (1.11).

Proof From the Taylor expansion of the function H),, we have

n—w(t)

fin = n (s m) 0

and therefore

- [(bn()‘a My m)]QV(t)v

haf? = [0 ) 2 O

1—w(t)
where
2% 4 2t(200 — 2
V(t) = + 2420 n)+n.
202 +2t(2a— 1)+ 1
We have
(n—1)(n+1-2t) n?—1
Vit)=1 <1 .
O =1t a1 +1 = T 2@y a1 41

It is easy to see that

1
20l —a), O0<a<_,
2% + 2t(2a — 1)+ 1 > L2

3
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1
Therefore, for 0 < a < 5 we have

n?—1 n?

|hn|2 < [‘IJn()\,u,m)P[l + m < [‘I)n()\aﬂvm)]22a(1 — a)’

Vv
Rl

and for « ,

|hn|2 < [(I>n()\aﬂvm)]2(1 +n — 1) = [(bn()\aﬂvm)]QnQ'
Thus, the proof of our theorem is completed.

Corollary 6.1 Let f(z) =z + az". If

2a(1 — ) 0<a< 1

) « )

la] < n®, (A, pu,m) 2
o 1 S 1
- 4>z
n®,, (X, u,m)’ -2

then f € SHY, ().

Proof Since
(f * Hxp)(2)
z

it folllows that f € SHY ().

=1+ ahn,z" | > 1~ |hy|lal|z] > 12| >0, z€TU,

D. Raducanu

In order to establish the Ts-neighborhoods of functions belonging to the class SHY), (), we

need the following lemma.
Lemma 6.1 Let f € A and e € C with |e| <~y for some v > 0. If the function

J(2) + ez

Fe(2) = 1+4+e€

, z€U

belongs to the class SHY; (), then

S HE)] 20, zeU,

where Hy,, is given by (6.2).

Proof Assume F(z) € SHY, (o). Then by Theorem 6.1 it follows

! (Fex Hyy)(2) #0, zel.

z

Equivalently
(f * Hyu)(z) + ez (f * Hxu)(2)
(1 —I—M €)z 70 % 7 e

Since €| < 7, it easily follows that

~(f+ Ha)(2)| 29
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and thus, the proof is completed.

In the sequence, we give the definition of the Ts-neighborhoods of a function in f € S HY, (@)
of the form (1.1).
Let 6 > 0 and let the sequence {77, },~, of positive real numbers be defined by

T, :=n®, (A, p,m), n>2, 0<pu<A meN.
Then the Ts-neighborhoods defined in (6.1) becomes

T5(f) = {gGAg —z+sz Zn@n()\,u,m)|bn—an|§5},
n=2

We have the following result on the Ts-neighborhoods for the class SHY), («).
Theorem 6.3 Let f € A and v > 0. For e € C with |¢| < 7, let the function F. defined by
(6.7) be in SHY, («). Then Ts(f) C SHY; () for

1
v 2a(l — a), O<oz<§7

\
—

> —.
s 04_2

Proof Let g€ A, g(z) =2z + anz” be in Ts(f). Then
n=2

(g% B ()| = |2+ Baa)(2) + 5 (9 - £) *sz)\
>0+ B G| - S = 1) ) ()

Making use of Lemma 6.1, we obtain

o) 2 - |3 Lo

[ee]
> =) |bn = anllhnl.
n=2

We have
1
- \/an@ (A, 1, m) by, — an, 0<0¢<§7
Z|bn_an||hn| < 00 1
n=2 Z n®, (N, g, m) by, — anl, o> 7
n=2

Since g € Ts(f), it follows that
o0
Zn‘bn(/\,u,mﬂbn —ap| <96

and thus

1

S(g+ Ha)(2)| >y =7 =0,
Therefore, |£(g* HM)(z)‘ # 0. In virtue of Theorem 6.1, we obtain g € SHY), () which proves
that T5(f) C SHY,, ().
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