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Abstract In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic
model) from semiconductors or plasmas with boundary effects is considered. This system
takes the form of Euler-Poisson with an electric field and frictional damping added to the
momentum equations. The large-time behavior of uniformly bounded weak solutions to
the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system is
firstly presented. Next, two particle densities and the corresponding current momenta are
verified to satisfy the porous medium equation and the classical Darcy’s law time asymp-
totically. Finally, as a by-product, the quasineutral limit of the weak solutions to the
initial-boundary value problem is investigated in the sense that the bounded L∞ entropy
solution to the one-dimensional bipolar Euler-Poisson system converges to that of the cor-
responding one-dimensional compressible Euler equations with damping exponentially fast
as t → +∞. As far as we know, this is the first result about the asymptotic behavior and
the quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary
effects and a vacuum.
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1 Introduction

In this paper, we consider a bipolar hydrodynamic model in a one-dimensional space. De-
noting by ni, ji, P (ni), i = 1, 2, and E the charge densities, current densities, pressures and the
electric field, the scaled equations of a one-dimensional bipolar hydrodynamic model (cf. [10,
12, 16]) are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1t + j1x = 0,

j1t +
( j2

1

n1
+ P (n1)

)
x

= n1E − j1
τ

,

n2t + j2x = 0,

j2t +
( j2

2

n2
+ P (n2)

)
x

= −n2E − j2
τ

,

λ2Ex = n1 − n2.

(1.1)

Manuscript received March 22, 2012. Revised August 8, 2012.
1Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.
E-mail: ypleemei@yahoo.com.cn

∗Project supported by the National Natural Science Foundation of China (No. 11171223) and the Inno-
vation Program of Shanghai Municipal Education Commission (No. 13ZZ109).



530 Y. P. Li

The positive constants τ and λ denote the relaxation time and the Debye length, respectively.
The relaxation terms describe the damping effect in a very rough manner. The Debye length
is related to the Coulomb screening of the charged particles.

Recently, many efforts have been made for the one-dimensional bipolar hydrodynamic equa-
tions from semiconductors or plasmas. More precisely, Zhou-Li [19] and Tsuge [17] discussed
the unique existence of the stationary solutions to the one-dimensional bipolar hydrodynamic
model with proper boundary value conditions, respectively. Natalini [13] and Hsiao-Zhang [5]
established the global entropy weak solutions in the framework of compensated compactness on
the whole real line and the spatial bounded domain, respectively. Hattori and Zhu [20] proved
the stability of steady-state solutions to a recombined one-dimensional bipolar hydrodynamical
model. Gasser-Hsiao-Li [3] investigated the large-time behavior of smooth “small” solutions to
the initial value problem for the one-dimensional bipolar hydrodynamic model, and they found
that the frictional damping is the key to the nonlinear diffusive phenomena of hyperbolic waves.
Li [11] studied the similar results for the initial-boundary problem of the one-dimensional bipo-
lar hydrodynamic model in the quarter plane. Huang-Mei-Wang [7] discussed the large-time
behavior of the solution to the bipolar hydrodynamic model for semiconductors with the switch-
on case. Lastly, Huang and Li studied the large-time behavior and the quasi-neutral limit of
L∞ solution to the Cauchy problem with a vacuum and large data in [6]. As far as we know,
no result on the large-time behavior of weak solutions to the initial-boundary value problem of
the bipolar Euler-Poisson system can be found.

In [3–4], we have known that the re-scaled Debye limit and the relaxation limit of the
bipolar hydrodynamic model lead to a diffusive approximate model. Let us start with the
(pure) quasineutral limit λ → 0 for fixed τ . It is obvious that the Poisson equation requires the
limits of n1 and n2 to be equal, and we denote them by m. Taking the difference of the two
continuity equations and assuming the current densities to be equal at x = −∞ (or x = +∞),
one concludes the same limit j of the current densities j1 and j2. Moreover, the sum of the
momentum equations implies the elimination of the electric field. Therefore, we expect that
the system (1.1) converges to ⎧⎪⎨

⎪⎩
mt + jx = 0,

jt +
(j2

m
+ (P (m)

)
x

= − j

τ
.

(1.2)

The justification of the formal limit is an open challenging problem. The mathematically
rigorous results regarding this problem only concern the local smooth solution (cf. [2, 15, 18])
(i.e., up to the breakdown of classical solutions in time).

In (1.2), one can perform a relaxation limit, i.e., rescaling

s = τt, mτ = m
( s

τ
, x

)
, jτ =

1
τ
j
( s

τ
, x

)
,

we have ⎧⎪⎨
⎪⎩

mτ
s + jτ

x = 0,

τ2jτ
s +

(
τ2 jτ2

mτ
+ (P (mτ ))

)
x

= −jτ ,
(1.3)

and letting τ → 0, it is easy to see that the limit problem for the limit n of mτ is

ns = (P (n))xx. (1.4)
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On the other hand, if we let τ → 0 and let λ → 0, then we can also obtain (1.4) from
(1.1) at least at a formal level. From the above procedures, we can directly apply the re-scaling
Debye limit and the relaxation limit as follows. Assuming in (1.1) τ1 = τ2 = τ, λ2 = τ1+α with
α > −1 and rescaling

t → τt,

nτ
i = ni

( t

τ
, x

)
, jτ

i =
1
τ

ji

( t

τ
, x

)
, i = 1, 2,

Eτ = E
( t

τ
, x

)
,

we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nτ
1s + jτ

1x = 0,

τ2jτ
1s +

(
τ2 jτ2

1
nτ

1
+ P (nτ

1)
)

x
= nτ

1Eτ − jτ
1 ,

nτ
2s + jτ

2x = 0,

τ2jτ
2s +

(
τ2 jτ2

2
nτ

2
+ P (nτ

2)
)

x
= −nτ

2E
τ − jτ

2 ,

τ1+αEτ
x = nτ

1 − nτ
2 .

(1.5)

Note that this is a long-time scaling. Formally when τ → 0 for α > −1, the Poisson equation
implies that the limit n for nτ

1 is equal to that for nτ
2 . Then, we get the following porous media

equation (1.4) for n.
In this paper, we first study the large-time behavior of uniformly bounded weak solutions

to the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system
(1.1). Next, we show that two particle densities and the corresponding current momenta satisfy
the porous medium equation and the classical Darcy’s law time asymptotically. Finally, as
a by-product, we present the quasineutral limit of the weak solutions to the initial-boundary
value problem in the sense that the bounded L∞ entropy solution of the one-dimensional bipolar
Euler-Poisson system converges to that of the corresponding one-dimensional compressible Euler
equations with damping exponentially fast as t → +∞. To begin with, we assume in the present
paper that the pressure-density functions satisfy

P (ni) = nγ
i i = 1, 2, 1 < γ < 3,

and we set τ and λ as one for simplicity. Hence, the system (1.1) is simplified as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1t + j1x = 0,

j1t +
( j2

1

n1
+ P (n1)

)
x

= n1E − j1,

n2t + j2x = 0,

j2t +
( j2

2

n2
+ P (n2)

)
x

= −n2E − j2,

Ex = n1 − n2

(1.6)

for x ∈ (0, 1), t ∈ (0,∞). The initial conditions are prescribed as

ni(0, x) = ni0(x) ≥ 0, ji(0, x) = ji0(x), 0 < x < 1, (1.7)
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satisfying ∫ 1

0

n10(x)dx = n∗ =
∫ 1

0

n20(x)dx, (1.8)

where n∗ is a given positive constant, and (1.8) can avoid the trivial case n1 = n2 = 0. The
boundary conditions for ji (i = 1, 2) and E are

ji(0, t) = 0 = ji(1, t) (1.9)

and

E(0, t) = 0 a.e. t > 0, (1.10)

respectively.
Due to dissipation of the momentum equation and the boundary condition, the kinetic

energy is expected to vanish as time tends to infinity while the potential energy will converge
to a constant. Furthermore, it is easy to see∫ 1

0

n1(x, t)dx =
∫ 1

0

n10(x) =
∫ 1

0

n2(x, t)dx =
∫ 1

0

n20(x)dx = n∗,

due to the conservation law of the total mass. This suggests that the asymptotic state of
(n1, j1, n2, j2, E)(x, t) should be (n∗, 0, n∗, 0, 0). In this paper, we first investigate the large-
time behavior of weak solutions to (1.6)–(1.10), based on the existence results in [5].

Before stating the main results, we first introduce the definition of the entropy solutions to
(1.6).

Definition 1.1 For every T > 0, we define a weak solution to (1.6)–(1.10) to be a pair of
bounded measurable functions (n1, j1, n2, j2, E)(x, t) which satisfies the following pair integral
identities:∫ T

0

∫ 1

0

(n1φt + j1φx)dxdt +
∫ 1

0

n10(x)φ(x, 0)dx = 0,

∫ T

0

∫ 1

0

(
j1φt +

( j2
1

n1
+ P (n1)

)
φx − j1φ + n1Eφ

)
dxdt +

∫ 1

0

j10(x)φ(x, 0)dx = 0,

∫ T

0

∫ 1

0

(n2φt + j2φx)dxdt +
∫ 1

0

n20(x)φ(x, 0)dx = 0,

∫ T

0

∫ 1

0

(
j2φt +

( j2
2

n1
+ P (n2)

)
φx − j2φ − n2Eφ

)
dxdt +

∫ 1

0

j20(x)φ(x, 0)dx = 0,

E(x, t) =
∫ x

−∞
(n1 − n2)(y, t)dy + E(0, t)

for any test function φ ∈ C∞
0 (IT ) satisfying φ(x, T ) = 0 for 0 ≤ x ≤ 1, and φ(0, T ) = φ(1, T ) =

0 for t ≥ 0, where IT = (0, 1) × (0, T ), and ji

ni
(i = 1, 2) vanish when ni = 0 (i = 1, 2).

Moreover, j1 and j2 satisfy the boundary condition (1.9) in the sense of trace, and the following
entropy inequality

ηet + qex +
( j2

1

n1
+

j2
2

n2
− j1E + j2E

)
≤ 0 (1.11)
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holds in the sense of distribution. Here, the entropy-flux pair (ηe, qe) for (1.11) is associated
with mechanical energy

ηe =:
2∑

i=1

η(ni, ji), η(n, j) =
j2

2n
+

1
γ − 1

nγ ,

qe =:
2∑

i=1

q(ni, ji), q(n, j) =
j3

2n2
+

γ

γ − 1
nγ−1j.

(1.12)

We are ready to state our main results.

Theorem 1.1 Let (n1, j1, n2, j2, E)(x, t) be the L∞ entropy solution to the initial-boundary
problem (1.6)–(1.10), defined in Definition 1.1, satisfying

0 ≤ n1, n2 ≤ a1 < ∞,

|j1| ≤ a2n1, |j2| ≤ a2n2, (1.13)

where a1, a2 are positive constants. Then, there exist constants b1, c1 > 0 depending on γ, n∗, a1

and the initial data such that

‖(n1 − n∗, j1, n2 − n∗, j2, E)(·, t)‖2
L2([0,1]) ≤ b1e−c1t. (1.14)

Next, we have known that the solutions to (1.6) with the initial data in large-time can be
captured by the decoupled system {

ñt = P (ñ)xx,

j̃ = −P (ñ)x,
(1.15)

where the first equation is the well-known porous medium equation while the second equation
states Darcy’s law. More precisely, when the initial data is small, smooth and away from a
vacuum, the global existence and diffusion wave phenomena of the solutions to (1.6) with (1.7)
were established by [3]. However, when the initial data is large or rough, shock will develop in
finite time, and one has to consider weak entropy solutions. Using and modifying the arguments
in [8–9], we recently studied the large-time behavior and the quasineutral limit of L∞ solution
to the Cauchy problem in [6]. Here we also believe that the weak solutions to (1.6)–(1.10) in
large-time converge to (1.15) with the initial-boundary conditions

ñ(x, 0) = ñ0(x), 0 < x < 1, ñx|x=0 = 0 = ñx|x=1. (1.16)

As the second aim of this paper, we show that the weak entropy solutions to (1.6)–(1.10)
converge to those of (1.15)–(1.16).

Theorem 1.2 Assume that the assumptions in Theorem 1.1 hold, and let (ñ, j̃) be the weak
solution to (1.15)–(1.16) with

∫ 1

0 ñ0(x)dx = n∗, 0 ≤ ñ0(x) ≤ a1, and j̃ = −P (ñ)x. Then, there
exist constants b2, c2 > 0 depending on γ, n∗, a1 and the initial data such that

‖(n1 − ñ, j1 − j̃, n2 − ñ, j2 − j̃)(·, t)‖2
L2([0,1]) ≤ b2e−c2t. (1.17)

Finally, as a by-product, we have the following quasi-neutral limit of the hydrodynamic
models in the sense that the bounded L∞ entropy solution to the one-dimensional bipolar
Euler-Poisson system converges to that of the corresponding one-dimensional compressible Euler
equations with damping exponentially fast as t → +∞.
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Theorem 1.3 Let the conditions in Theorem 1.1 hold. In addition, suppose that n10(x) =
n20(x) = n0(x) and j10(x) = j20(x) = j0(x). Let (m, j) be any bounded entropy solution
to (1.2) with the initial data m(0, x) = n0(x), j(0, x) = j0(x) and the boundary condition
j(0, t) = j(1, t) = 0. Then there exist constants b3, c3 > 0 such that

‖(n1 − m, j1 − j, n2 − m, j2 − j)‖2
L2([0,1]) ≤ b3e−c3t. (1.18)

Remark 1.1 The assumption 0 ≤ n1, n2 ≤ a1 is essential in Theorems 1.1–1.3. Although
this assumption seems natural, the uniform L∞ bounds of ni with respect to t is still an open
problem. However, away from a vacuum, the “small” smooth solution has been shown to exist
in [11], and such a solution satisfies the assumption (1.13). The boundary conditions (1.9) and
(1.10) are natural from the existence theorem. Furthermore, our initial data can contain a
vacuum and can be arbitrarily large.

Using and modifying the arguments in [8–9, 14], we can show Theorem 1.1. However, in
contrast with [14], we should overcome the difficulty from the coupling and cancellation inter-
actions between n1 and n2, and face the additional electric field. Finally, directly applying the
result in [14] and the triangle inequality, we also obtain the nonlinear diffusive wave phenom-
ena and the quasineutral limit of general entropy solutions to the bipolar hydrodynamic model
(1.6)–(1.10).

The rest of this paper is outlined as follows. In Section 2, the large-time behavior is es-
tablished by the energy method and the entropy analysis. The asymptotic behavior and the
quasineutral limit of solutions are presented in Section 3.

2 Large-Time Behavior

This section is devoted to the proof of Theorem 1.1. First we set

wi = ni − n∗, zi = ji, i = 1, 2,

which from (1.6) and (1.8) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1t + z1x = 0,

z1t +
( j2

1

n1

)
x

+ (P (n1) − P (n∗))x + z1 = (w1 + n∗)E,

w2t + z2x = 0,

z2t +
( j2

2

n2

)
x

+ (P (n2) − P (n∗))x + z2 = −(w2 + n∗)E,

Ex = w1 − w2

(2.1)

and ∫ 1

0

w1(x, t)dx =
∫ 1

0

w2(x, t)dx = 0.

Define the stream type functions

yi(x, t) = −
∫ x

0

wi(ξ, t)dξ, i = 1, 2,
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which imply that

y1x = −w1 = n∗ − n1, y1t = z1, y2x = −w2 = n∗ − n2, y2t = z2. (2.2)

Since ∫ 1

0

n1(x, t)dx =
∫ 1

0

n2(x, t)dx =
∫ 1

0

n10(x)dx =
∫ 1

0

n20(x)dx = n∗,

we have

y1(0) = y1(1) = y2(0) = y2(1) = 0, (2.3)

which together with E(0, t) = 0 implies

E = y2 − y1. (2.4)

Therefore, the second and fourth equations of (2.1) turn into

y1tt +
( j2

1

n1

)
x

+ (P (n1) − P (n∗))x + y1t = (w1 + n∗)(y2 − y1), (2.5)

y2tt +
( j2

2

n2

)
x

+ (P (n2) − P (n∗))x + y2t = −(w2 + n∗)(y2 − y1). (2.6)

Multiplying (2.5) and (2.6) by y1 and y2, and integrating over (0, 1), respectively, we have

d
dt

∫ 1

0

(
y1ty1 +

1
2
y2
1

)
dx −

∫ 1

0

y2
1tdx +

∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx

=
∫ 1

0

j2
1

n1
y1xdx +

∫ 1

0

(w1 + n∗)(y2 − y1)y1dx

and

d
dt

∫ 1

0

(
y2ty2 +

1
2
y2
2

)
dx −

∫ 1

0

y2
2tdx +

∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx

=
∫ 1

0

j2
2

n2
y2xdx −

∫ 1

0

(w2 + n∗)(y2 − y1)y2dx.

Since ni, ji = yit ∈ L∞([0, 1]) (i = 1, 2), we get

d
dt

∫ 1

0

(
y1ty1 +

1
2
y2
1

)
dx −

∫ 1

0

y2
1tdx +

∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx

=
∫ 1

0

n∗
n1

y2
1tdx −

∫ 1

0

y2
1tdx +

∫ 1

0

(w1 + n∗)(y2 − y1)y1dx

and

d
dt

∫ 1

0

(
y2ty2 +

1
2
y2
2

)
dx −

∫ 1

0

y2
2tdx +

∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx

=
∫ 1

0

n∗
n2

y2
2tdx −

∫ 1

0

y2
2tdx −

∫ 1

0

(w2 + n∗)(y2 − y1)y2dx,
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which lead to

d
dt

∫ 1

0

(
y1ty1 +

1
2
y2
1

)
dx +

∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx

=
∫ 1

0

n∗
n1

y2
1tdx +

∫ 1

0

(w1 + n∗)(y2 − y1)y1dx (2.7)

and

d
dt

∫ 1

0

(
y2ty2 +

1
2
y2
2

)
dx +

∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx

=
∫ 1

0

n∗
n2

y2
2tdx −

∫ 1

0

(w2 + n∗)(y2 − y1)y2dx. (2.8)

On the other hand, from E = y2 − y1 and (2.2) we have

∫ 1

0

(w1 + n∗)(y2 − y1)y1dx −
∫ 1

0

(w2 + n∗)(y2 − y1)y2dx

= −
∫ 1

0

n∗(y2 − y1)2dx +
∫ 1

0

(y2 − y1)(w1y1 − w2y2)dx

= −
∫ 1

0

n∗(y2 − y1)2dx − 1
4

∫ 1

0

(y1 + y2)x(y2 − y1)2dx

= −
∫ 1

0

n1 + n2 + 2n∗
4

(y1 − y2)2dx. (2.9)

Therefore, combination of (2.7)–(2.9) yields

d
dt

∫ 1

0

(
y1ty1 +

1
2
y2
1 + y2ty2 +

1
2
y2
2

)
dx +

∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx

+
∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx +
∫ 1

0

n1 + n2 + 2n∗
4

(y1 − y2)2dx

=
∫ 1

0

(n∗
n1

y2
1t +

n∗
n2

y2
2t

)
dx. (2.10)

In order to deal with the nonlinearity, we now use the entropy inequality, rather than the
usual energy method. We denote

η∗ = ηe − 1
γ − 1

P ′(n∗)(n1 − n∗) − 1
γ − 1

P ′(n∗)(n2 − n∗) − 2
γ − 1

P (n∗).

Thus, by the definition of the weak entropy solution in (1.12), the following entropy inequality
holds in the sense of distribution

η∗t +
P ′(n∗)
γ − 1

(n1 − n∗)t +
P ′(n∗)
γ − 1

(n2 − n∗)t + qex +
j2
1

n1
+

j2
2

n2
− j1E + j2E ≤ 0. (2.11)

By the conservation of mass and the theory of divergence-measure fields (cf. [1, 14]), we obtain

d
dt

∫ 1

0

η∗(x, t)dx +
∫ 1

0

( j2
1

n1
+

j2
2

n2

)
dx −

∫ 1

0

E(j1 − j2)dx ≤ 0. (2.12)
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Moreover, we can compute

−
∫ 1

0

(j1 − j2)Edx =
∫ 1

0

(z1 − z2)(y1 − y2)dx =
∫ 1

0

(y1t − y2t)(y1 − y2)dx

=
d
dt

∫ 1

0

(y1 − y2)2

2
dx =

d
dt

∫ 1

0

E2

2
dx. (2.13)

Therefore, (2.12)–(2.13) yield

d
dt

∫ 1

0

(
η∗(x, t) +

1
2
E2

)
dx +

∫ 1

0

(y2
1t

n1
+

y2
2t

n2

)
dx ≤ 0. (2.14)

Choosing K = max{2, 2a1 + n∗}, and then adding (2.10) to (2.14)×K, we have

d
dt

∫ 1

0

(
Kη∗ + y1y1t +

1
2
y2
1 + y2y2t +

1
2
y2
2 +

K

2
E2

)
dx

+
∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx +
∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx

+
∫ 1

0

n1 + n2 + 2n∗
4

E2dx +
∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t

)
dx ≤ 0. (2.15)

Further, using the expression of η∗, we get

d
dt

∫ 1

0

( K

2n1
y2
1t + y1y1t +

1
2
y2
1 +

K

2n2
y2
2t + y2y2t +

1
2
y2
2 +

K

2
E2

+
K

γ − 1
(P (n1) − P (n∗) − P ′(n∗)(n1 − n∗) + P (n2) − P (n∗) − P ′(n∗)(n2 − n∗))

)
dx

+
∫ 1

0

(P (n1) − P (n∗))(n1 − n∗)dx +
∫ 1

0

(P (n2) − P (n∗))(n2 − n∗)dx

+
∫ 1

0

n1 + n2 + 2n∗
4

(y1 − y2)2dx +
∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t

)
dx ≤ 0. (2.16)

Clearly, Lemma 5.2 in [14] implies∫ 1

0

K

γ − 1
(P (n1) − P (n∗) − P ′(n∗)(n1 − n∗) + P (n2) − P (n∗) − P ′(n∗)(n2 − n∗))dx

≤ C1K

γ − 1

∫ 1

0

((P (n1) − P (n∗))(n1 − n∗) + (P (n2) − P (n∗))(n2 − n∗))dx.

On the other hand, since P is a convex function, Lemma 4.1 of [8–9] and Poincaré’s inequality
imply that there exist positive constants C2 and C3 such that

d
dt

∫ 1

0

( K

2n1
y2
1t + y1y1t +

1
2
y2
1 +

K

2n2
y2
2t + y2y2t +

1
2
y2
2 +

K

2
E2

)
dx

≤ C2

∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t

)
dx +

∫ 1

0

(y2
1 + y2

2 +
1
2
E2)dx

≤ C2

∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t +

1
2
E2

)
dx +

∫ 1

0

(y2
1x + y2

2x)dx

≤ C2

∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t +

1
2
E2

)
dx
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+ C3

∫ 1

0

((P (n1) − P (n∗))(n1 − n∗) + (P (n2) − P (n∗))(n2 − n∗))dx. (2.17)

Therefore, it follows that for C4 = max{C2, C3},

d
dt

∫ 1

0

(
Kη∗ + y1y1t +

1
2
y2
1 + y2y2t +

1
2
y2
2 +

1
2
E2

)
dx

≤ C4

( ∫ 1

0

(K − n∗
n1

y2
1t +

K − n∗
n2

y2
2t +

1
2
E2

)
dx

+
∫ 1

0

((P (n1) − P (n∗))(n1 − n∗) + (P (n2) − P (n∗))(n2 − n∗))dx
)
. (2.18)

Therefore, from (2.16)–(2.18), we conclude that there exists a positive constant C5 such that

d
dt

∫ 1

0

(
Kη∗ + y1y1t +

1
2
y2
1 + y2y2t +

1
2
y2
2 +

K

2
E2

)
dx

+ C5

∫ 1

0

(
Kη∗ + y1y1t +

1
2
y2
1 + y2y2t +

1
2
y2
2 +

K

2
E2

)
dx ≤ 0. (2.19)

Furthermore, since K > 2a1 > 2ni (i = 1, 2), we know that

Kη∗ + y1y1t +
1
2
y2
1 + y2y2t +

1
2
y2
2 +

1
2
E2

≥ 2y2
1t + y1y1t +

1
2
y2
1 + 2y2

2t + y2y2t +
1
2
y2
2 +

1
2
E2 +

K

γ − 1
(P (n1)

− P (n∗) − P ′(n∗)(n1 − n∗) + P (n2) − P (n∗) − P ′(n∗)(n2 − n∗))

≥ y2
1t + y2

2t + E2 + C6((n1 − n∗)2 + (n2 − n∗)2), (2.20)

where C6 is a positive constant. Hence, (2.20) implies that

∫ 1

0

(
Kη∗ + y1y1t +

1
2
y2
1 + y2y2t +

1
2
y2
2 +

1
2
E2

)
dx ≤ C7e−C5t (2.21)

and ∫ 1

0

(y2
1t + y2

2t + E2 + (n1 − n∗)2 + (n2 − n∗)2)dx ≤ C7e−C5t. (2.22)

This completes the proof of Theorem 1.1.

3 The Asymptotic Behavior and the Quasineutral Limit

In this section we are going to prove Theorems 1.2–1.3. We first state the large-time behavior
of (1.15)–(1.16).

Lemma 3.1 (cf. [14]) Let ñ0(x) satisfy 0 ≤ ñ0(x) ≤ a3 and
∫ 1

0
ñ0(x)dx = n∗. Then for

the global weak solution ñ(x, t) to (1.15)–(1.16) and j̃ = −P̃x, there exist positive constants b4

and c4 > 0 such that ∫ 1

0

((ñ − n∗)2 + j̃2)dx ≤ b4e−c4t. (3.1)
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Next, [14] also established the weak entropy solution and its asymptotic behavior for the
compressible Euler equation (1.2) with proper initial-boundary value conditions. Let us intro-
duce it as follows.

Lemma 3.2 Let (m, j)(x, t) be the L∞ entropy solution to (1.2) with the initial data
m(0, x) = n0(x), j(0, x) = j0(x) and the boundary condition j(0, t) = j(1, t) = 0, satisfying

0 ≤ m ≤ a4 < ∞,

|j| ≤ a5m,

where a4, a5 are positive constants. Then, there exist constants b5, c5 > 0 depending on γ, n∗, a4

and the initial data such that

‖(m − n∗, j)(·, t)‖2
L2([0,1]) ≤ b5e−c5t. (3.2)

Proof of Theorem 1.2 Let (n1, j1, n2, j2, E) be any L∞ entropy solution to (1.6)–(1.10).
Theorem 1.1 implies,

‖(n1 − n∗, n2 − n∗)(x, t)‖2
L2([0,1]) + ‖(j1, j2)(x, t)‖2

L2([0,1]) ≤ b1e−c1t. (3.3)

On the other hand, if ñ(x, t) is the global weak solution to (1.15)–(1.16) and j̃ = −P̃x, Lemma
3.1 implies ∫ 1

0

((ñ − n∗)2 + j̃2)dx ≤ b4e−c4t. (3.4)

Hence, combining (3.3) and (3.4), and using the triangle inequality, we complete the proof of
Theorem 1.2.

Proof of Theorem 1.3 Let (n1, j1, n2, j2, E) be any L∞ entropy solution to (1.6)–(1.10).
Theorem 1.1 implies

‖(n1 − n∗, n2 − n∗)(x, t)‖2
L2([0,1]) + ‖(j1, j2)(x, t)‖2

L2([0,1]) ≤ b1e−c1t. (3.5)

On the other hand, if (m, j) is any bound entropy solution to (1.2) with the initial data m(0, x) =
n0(x), j(0, x) = j0(x) and the boundary condition j(0, t) = j(1, t) = 0, Lemma 3.2 implies

‖m − n∗(x, t)‖2
L2([0,1]) + ‖j(x, t)‖2

L2([0,1]) ≤ b5e−c5t. (3.6)

Hence, combining (3.5) and (3.6), and using the triangle inequality, we complete the proof of
Theorem 1.3.
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