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The Presentation Problem of the Conjugate
Cone of the Hardy Space H? (0 < p < 1)*

Jianyong WANG!

Abstract The Hardy space HP is not locally convex if 0 < p < 1, even though its conjugate
space (H?)* separates the points of HP. But then it is locally p-convex, and its conjugate
cone (H?P); is large enough to separate the points of H?. In this case, the conjugate cone
can be used to replace its conjugate space to set up the duality theory in the p-convex
analysis. This paper deals with the representation problem of the conjugate cone (H?); of

H? for 0 < p <1, and obtains the subrepresentation theorem (H?);, ~ L*(T,Cy}).
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1 Introduction

If X is a locally convex space, then its conjugate space X* is large enough to separate the
points of X. But a non-locally convex space may only have the trivial conjugate space {0}.
LP(y) is just such an example if 0 < p < 1 and p is a non-atomic measure (see [1-2]). For a
Hardy space H? (0 < p < 1), though its conjugate space (HP)* # {0} (see [3, p. 115]), it is
still not locally convex (see [1, p. 37]). Motivated by the oddness of LP(p) and HP, Simmons
[4] and Jarchow [5, p. 108] introduced the concept of the locally p-convex space in the sixties
of the last century. To remedy the shortcoming that the conjugate space X* of a non-locally
convex space X may be trivial, we first introduced in [6] the concept of the conjugate cone X5,
and proved that X is large enough to separate the points of X if X is locally p-convex. For a
locally p-convex X, we can use the conjugate cone X to replace its conjugate space X* (which
may be trivial or very small) to set up the duality theory in the p-convex analysis. It is one of
the most important problems to represent the conjugate cone X of a locally p-convex space.
The main purpose of this paper is to represent the conjugate cone (H?): of the Hardy space
H? for 0 < p < 1. The necessary basic theories of the p-convex analysis is presented in Section
2, the subrepresentation theorem (H?)s ~ L*(T, Cy) is obtained in Section 3.

2 Some Basic Theories of p-Convex Analysis

The locally p-convex spaces and their conjugate cones are the main concepts in this paper,

while the separating theorem and the Hahn-Banach extension theorem are the basic theorems
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of the p-convex analysis.
Let X be a vector space over the number field K, ® be the empty set, 0 be the zero vector,
the zero functional or the number zero, and 0 < p < 1 be a constant. A set A C X is called

p-convex if [z,y], C A for every z,y € A, where
[, ylp = {Az+ (1= )7y : A e [0, 1]}

is the p-segment arc with the endpoints x and y. For a general set A, the smallest p-convex set

cop, A containing A is called the p-convex hull of A. It is easy to show that

copA:{Z)\kxk: €A, M\ >0, Z)\izl, neN}.
k=1 k=1

A topological vector space X is called locally p-convex if there exists a 0-neighborhood basis
consisting of p-convex sets (see [5, p. 108]). It is easy to see that any locally p-convex space
has a 0-neighborhood basis consisting of circled open p-convex sets.

A real-valued functional f on X is called a p-subseminorm if

(a) f(x) >0, 2 € X

(b) f(tx) =tPf(x), t >0, z € X (positive p-homogeneity);

(©) fl@+y) < f(@) + f(y), 2.y € X.
We use XZ’, to denote the convex cone consisting of all p-subseminorms on X. If X is a topo-
logical vector space, then X is used to denote the subcone of XZ’, consisting of continuous
p-subseminorms, called the p-conjugate cone of X. A typical example of p-subseminorm is the

p-Minkowski functional
Pg (z)=inf{t >0:2€trB}, zeX (2.1)

generated by a p-convex algebraic 0-neighborhood B. It is easy to check that Pp, € X if and
only if 0 € int B (see [5, p. 106]). The study of p-convexity is called the p-convex analysis.

If there is a nonnegative real-valued functional || - ||, on X satisfying

@) llzll, =0 = = 0

(') ltzll, = |tP||x]lp, ¢t € K, 2 € X (absolute p-homogeneity);

(@) 1o+ yly < el + lgllps 29 € X,
then || - ||, is called a p-norm and (X, || - ||,) a p-normed space. With the 0-neighborhood basis
consisting of the p-convex sets

Us={xeX: |z|l, <e}, >0,

a p-normed space (X, ||-||p) is locally p-convex. A complete p-normed space is called a p-Banach
space (see [1, p. 7]). The spaces LP(u), P and HP (0 < p < 1) are three typical classes of
p-Banach spaces.

The second separation theorem and the separating theorem given by [6] are the theoretical

basis of the p-convex analysis. For the sake of completeness, let us give their proofs here.

Theorem 2.1 (The Second Separation Theorem in [6]) Let 0 < p < 1, and (X,7) be a

locally p-convex space. Suppose that A is a nonempty closed p-convex subset of X (for p =1,
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still assume 0 € A), and that B is another nonempty closed subset of X with ANB=®. If A
or B is compact, then they can be strongly separated by some continuous p-subseminorm, i.e.
there is [ € X such that

(i) if A is compact, then

max{f(z) :x € A} <1 <inf{f(x): 2z € B};
(i) if B is compact, then

sup{f(z) :z € A} <1 < min{f(z):z € B}.

Proof Let Uy = {Uy : A € A} be a 0-neighborhood basis in X consisting of circled open

p-convex sets. Because A or B is compact, we assert that there is a Uy, € Up such that
(A+Uy,)NB=2.

If the assertion is not true, then there exist xx € A, yx» € B and z) € Uy, such that yy = zx+2)
for any A € A. Under the set-theoretic relation U; < Uy < Uy D Us, Uy is a semi-order set.
As < is directed, {zx}, {ya} and {z)} turn into three nets and zy — 0. If A is compact, there
exists some convergent subnet of {zy}. Without loss of generality, suppose x) — xo, and then
Yx = Tx + 2x — To. By the closeness of A and B, we have xg € AN B. This is contrary to the
fact that BN A = &. If B is compact, with the same argument we can also find a Uy, € Uy
such that AN (B + Uy,) = ®. This is equivalent to (A + Uy,) N B = ® as Uy, is circled.

Now take a Uy, € Uy such that (A + Uy,) N B = &, and take a Uy, € Uy such that
Ux, + Uy, CUy,. Then by (A+ Uy, + Uy, ) N B = ® and the circled property of Uy, we have

(A+Ux)N(B+Uy,) = (2.2)
and
(A+Ux)NB=29. (2.3)

As A + Uy, is an open p-convex 0-neighborhood, the p-Minkowski functional generated by

A+ Uy, is continuous, ie. f:= P, € X, . The equality (2.3) implies

A+UL Dp
flz) < fly), z€A, yeB. (2.4)
If A is compact, assume that f takes its maximum at zo € A, then
max{f(z):x € A} = f(xo) <1 <inf{f(x):x € B}.
If B is compact, assume that f takes its minimum at yg € B, then

sup{f(z):z € A} <1< f(yo) = min{f(z) : x € B}.

This completes the proof.
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Theorem 2.2 (Separating Theorem in [6]) Let 0 < p < 1 and X be a locally p-convex
Hausdorff space. Then the conjugale cone X separates the points of X, i.e. for each pair of
v,y € X, x #y, there is f € X such that f(z) # f(y)-

Proof Asz # y, wehavey & [0, z] or = & [0, y]. Without loss of generality assume y ¢ [0, z].
As X is of Hausdorff, the sets A = [0, z] and B = {y} satisfy the conditions of Theorem 2.1, so
there is f € X such that f(x) # f(y).

The conjugate space X™* of a locally p-convex space X may be trivial, but by Theorem 2.2
the p-conjugate cone X of X is large enough to separate the points of X. In this case X
is simply called the conjugate cone of X. We hope to use conjugate cone X to replace the
conjugate space X ™ to set up the duality theory in the p-convex analysis.

Let us recall the concept of normed cones and the further details can be found in [7].

Definition 2.1 Let Y be a proper cone with abstract addition and nonnegative scalar mul-
tiplication, i.e. x+y €Y, te €Y for everyx,y €Y andt >0, andz+y=0<x=y=0. If
there is a nonnegative real-valued functional || - || on 'Y satisfying

(n1) |lz|l=0<2=0;

(ng) |[tzl| = t|jz]|, z €Y, = 0;

(ms) NIl lyll < llz+yll < [l + lyll, z.y €Y,
then || - || is called a (conical) norm and (Y,|| - ||) a normed cone.

If (Y,||-]]) is a normed cone, then it is not difficult to see that the equation
plz,y) =inf{t >0: 3n,l €Y, |||, []l]| <tsuchthat x +h=y+1}, z,yeY (2.5)

defines a translation invariant metric on Y. Thus (Y, ||-||) = (Y, p) is called a normed topological
cone. Two normed cones Y7 and Y5 are said to be norm-preserving isomorphic if there exists
an algebra isomorphism 7' : Y7 — Y3 such that ||T'(x)|| = ||z| for all z € Y7.

The following is a basic proposition on normed topological cones.

Proposition 2.1 Let (Y, | - ||) = (Y, p) be a normed topological cone and let {g,} CY and
geyY. Then

() gn = 0 = |lgnll — 0;

(i) gn — g if and only if there are {hy,},{l,} CY with hy,l, — 0 such that g, +hy, = g+1,
for every n € N;

(iii) the norm || - || is continuous on Y.

Proof Suppose g, — 0 in the conical topology. Then by p(gn,0) — 0 and (2.5), there are
{hn},{ln} CY with ||hy]l, ||in]| — O such that g, + h,, = 0+ 1, for every n. By (n3) we have

lgnll < llgn + hnll = [ltn]l — O.
Conversely if ||g,|| — 0, then by g, +0 =0+ g,, and (2.5) we have

p(gn;0) < [lgnll = 0, ie. gn — 0.
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Thus (i) holds. The result (ii) follows (i) and definition (2.5). Suppose g, — g. Then by (ii)
there are {h,},{l,} C Y with h,, — 0, [,, — 0 such that g,, + h,, = g + [,, for every n. By (ns)

gnll = 7l < llgnll < llgn + hnll = llg + Lull < [lgll + [[Znl;
lgll = enll < llgll < llg + Il = llgn + hall < llgnll + [[2nll;

and hence
gnll = lglll < [[nll + [[En]l — O.

This completes the proof.

If (X, ||-][p) is a p-normed space, then by Theorem 2.2 its conjugate cone X is large enough
to separate the points of X. With the conical norm

[fll = sup f(z), feX, (2.6)
llll,=1
(X, |- |I) forms a normed topological cone, called the normed conjugate cone of X (see [7]).

By definition, it is not difficult to verify the following proposition.

Proposition 2.2 (see [5-6]) Let 0 < p < 1, X be a topological vector space and f € X,.
Then the following conditions are equivalent:

(i) f € X, (ie. f is continuous);

(ii) f is continuous at O;

(ili) 0 € intUy(e) for all € > 0, where

Urle) ={z e X: f(z)<e}

is the f-open ball of radius €;
(iv) If|| < oo if X is a p-normed space, and then f(x) < | f||||lx|p for all x € X.

The Hahn-Banach type extension theorems of p-subseminorms given by [8] are the most
important materials to set up the theoretical basis of the p-convex analysis. Considering that

some people may not be able to read Chinese, let us prove them here.

Lemma 2.1 (Control Extension Theorem in [8]) Let 0 <p <1, and Y be a subspace of a
linear space X . Suppose f € Y,, F € X, with f(x) < F(z), x € Y. Then there exists a g € X,
such that

g(@) = f(z), z€Y; g@)<F(x), z€X. (2.7)
Proof As f, F are nonnegative, the functional
glw) = wE{F(x—y)+ fy)}, z€X (2.8)
is well-defined. For every x € X, if ¢ > 0, then

glte) = inf {(Flt —y) + f@)} =1 inf {F (=) +7(3) ] =gl
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if t =0, g(te) = tPg(x)(= 0) is obvious, so g has positive p-homogeneity. If z1,z2 € X, then
for every € > 0, there exist y1,y2 € Y such that

g9(zi) + % > Flzi —yi) + flys), i=1,2
Thus
9(@1) + g(x2) + € > F((21 + 22) — (41 +42)) + f(11 +y2) = g(21 + 22).
Letting ¢ — 0, we have
g9(x1 +13) < g(21) + g(22),

and hence g € X). If v € X,

g(x) = Wl {F(z —y) + fW)} < Flz = 0) + f(0) = F(x).
IfzeY,

g(w) = wf {Fz —y) + f(y)} < Flo —2) + f2) = f(2).
On the other hand, by f < F on Y and the subadditivity of f, we have

g(e) = mf {F(z —y) + f(y)} 2 E{f (@ —y) + F)} = f(2),

0 (2.7) holds.

Theorem 2.3 (Norm-Preserving Extension Theorem in [8]) Let 0 < p < 1, and Y be a
subspace of a p-normed space (X, |- ||,). Then for every f €Y', there exists a g € X,; such
that

g(x) = f(z), xe¥; |gll=I7I (2.9)

Proof Let f € Y, . By Proposition 2.2, || f|| < co. Define
Fz) =[flll=llp, =e€X,

then F' € X5, |F|| = |f| and f(z) < F(z), # € Y. By Lemma 2.1, there exists a control
extension g € X, of f such that

g(@) = f(z), wEY: glz)<F@), w€X.

The facts ' € X, and g(z) < F(z) imply that g is continuous at 0. For every z,y € X, by the
subadditivity of g

lg(z) — g(y)| < max{g(z —y),g9(y — x)}.

Hence g is continuous on X or g € X, and [|g|| < ||[F|| = || f]|. On the other hand

gl = sup g(x) = sup g(x) = sup f(zx) =/,
zeX z€Y z€Y

x x
lzllp=1 lzllp=1 lzllp=1

so [lgll = II/1-
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3 The Subrepresentation Theorem of Conjugate Cones of Hardy Spaces

To represent the conjugate cone X of a p-normed space (X,| - [|,) is one of the most

important problems in the p-convex analysis. Based on the theory of the above section, we are

*

» of the Hardy space

going to find out the specific representation of the conjugate cone (H?)
HP for 0 < p <1 in this section.

Let D be the open unit disk in the complex plane C, T the unit circle and i the imaginary
unit. Let (X, ) be the Lebesgue measure ring on [0, 27]. For a positive number 0 < p < oo,
the Hardy space HP is the vector space of analytic functions ¢ : D — C with

2

1 i
lellp = sup o lp(re'?)[Pd6 < oo.
0<r<1 47T Jo

1
When p > 1, the Hardy space H? is a Banach space with the norm || - ||7. In this paper we
are interested in the Hardy space H? for 0 < p < 1, which is a p-normed space with || - |,.
By Hardy’s convexity theorem in [3, p. 9] we know that - f02 " |p(rei?)|Pdl is an increasing

function of 7, so

. 1 27 ;
Il = lim 5= [ letre®)pas, e . (31)

r—1

Suppose 0 < p < 1. Let LP(T) be the L,-space of complex functions on 7T with the

normalized Haar measure %, 0 € [0,2x]. Then LP(T) is a p-normed space with

27
1 2 0
ol =5 [ lotePas. ¢ e L) (32)
T Jo
For 0 < p < 1, abundant literature uses F-norm ||-|| = ||-||Z to replace p-norm |- ||,, in deducing
1
the same topology (see [1-3]). We prefer || - ||, to || - ||; because the former satisfies the triangle

inequality, but the latter does not.

For a function ¢ analytic in D and a point e € T, if ¢(z) tends to a unique limit, say
¢(el?), as z tends to el? inside D along any path not tangent to the circle T', then ¢ is said to
have the nontangential limit at ¢! (see [3, p. 6]). Summing up a few results located at different

places of [3] we can obtain the following lemma.
Lemma 3.1 Suppose 0 < p <1 and o € HP. Then

(i) the nontangential limit (') exists almost everywhere on T and ¢(e'%) € LP(T) (see [3,
p- 17]);
(ii) the boundary function p(e'?) satisfies (see [3, p. 21])

2w 2T
lim l(rei?)[Pdo :/ lo(el?)[Pde (3.3)
r—1Jo 0
and
2m . )
lim l(rel?) — p(e?)[Pdo = 0. (3.4)

r—1 0
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If we use HP to denote the set of boundary functions ¢(e'?) of p € HP, then HP is a closed
subspace of LP(T) (see [3, p. 36]) and HP is isometric to HP by (3.3)—(3.4). So HP is a closed
proper subspace of LP(T') in the sense of isometry.

If 0 < p <1, the Hardy space H? is a p-Banach space with the p-norm of (3.1). Theorem
2.2 means that its conjugate cone (H p); is very large to constitute a normed topological cone
with

[fll= sup f(p), [fe€(H), (3.5)
el =1
The main purpose of this paper is to represent the normed conjugate cone ((H”), | - [|). Ev-

*

ery f € (HP); has no linearity except 0, it is almost impossible to give (H?); a complete

representation, so we need to introduce the concept of subrepresentation.

Definition 3.1 Let 0 < p <1, and (X, |- ||p) be a p-normed space. Let M be a subcone of
X,

(s1) If M separates the points of X, i.e. for each pair of v,y € X, x # y, there is F € M
such that F(x) # F(y), then M is called a separating subcone of X .

(s2) If M is a separating subcone of X and for each f € X}, there is F' € M such that
f<Fand|fll=|F|, then M is called a shadow cone or the subrepresentation of X,;, denoted
by X, ~ M.

If M is a shadow cone of X, it follows from (s1), (s2) and Proposition 2.2 that the topological
structure of X is determined completely by M. The condition (s2) means that the metric
structure of X is also determined by M to a great extent. So a shadow cone of X is very
similar to its shadow carrying almost all its properties, and once we find a shadow cone and
obtain its representation we shall grasp X itself to a great extent.

Let us recall some known results. Suppose that X is a Banach space. If p > 1 and (2, u) is
a finite measure space, then the X-valued function space LP(u, X) is a Banach space with the

norm
1
el = ([ letPau)”, o e 7. ).
Its conjugate space [LP(u, X)]* can be represented as
(L7 (p, X)I" = L (p, X7)

if X* has the Radon-Nikodym property with respect to u, where ¢ > 1 with % + % =1 (see ]9,
p. 98]). Thus for p =1 we have

(L (X)) = L™ (u, X7). (3.6)

If 0 < p < 1, then the p-normed X-valued sequence space IP(X) is a p-Banach space with

o0
lzlly = > leall?, 2= {2n} € IP(X).
n=1
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Its conjugate cone has the subrepresentation (see [10])

1P (X)) = 1°(X). (3.7)

If 0 < p < 1, by separating Theorem 2.2 the conjugate cone (Hp); of HP is large enough to
separate the points of HP. Thus it is quite natural for us to ask:

Can the conjugate cone (H?)% of H? (0 < p < 1) be represented with the formula similar
to (3.6) or (3.7)7

Let us find the shadow cone of (HP)s for 0 < p < 1 now. Under the usual topology, the
complex number field C is a p-normed space with |- |P, and its conjugate cone C, forms a

normed topological cone with the conical norm
I/l = sup f(2), [feC,.
zeT

Let L>°(T,Cj) denote the positive cone formed by all Cj-valued essentially norm-bounded

measurable functions (equivalent classes) on the unit circle T. Then with the essential norm

flloo = inf sup FEN,
Iflloe = iat oo 7))

L>(T, C}) forms a normed cone. If we use (f(e), z) to denote f(e!?)(z) formally, then

Iflls = inf  sup sup(f(e”),z), feL>(T,Cj). (3.8)
w(E)=0ge[0,27]\E 2€T

We should note that the function (f(e'?), -) = f(e!?)(-) is nonlinear and it is only a p-subseminorm
on C for each § € [0, 27]. From the following theorems we shall see that L>°(T', C) is the shadow

cone of (HP?)y.

Theorem 3.1 Suppose 0 < p < 1. For each f € L>(T, C}), the equation

EM—M—AWWWWWMymm (3.9)

defines a continuous p-subseminorm Fy € (HP)y with [|[Fy| < || f|co-

Proof Suppose f € L>(T,C}). By (3.8) there is a sequence of null sets £, such that

; 1
sup  sup(f(e),2) < [|ffloo + =
0el0,27]\E, z€T n

for every n € N. For the null set By = |J E,,

n=1

; 1
Ifllos < sup  sup(f(e),2z) <||floc + =, n€EN,
0€[0,2w]\Eo 2€T n
SO

[fllo = sup sup(f(e),z).
0e0,2w]\Eg 2€T
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If p € HP,
(), 9(re®)) < | fllp(re®)P, 0 € [0,22]\Fo, 7€ [0,1),
S0 f()QW(f(eia), ¢(re'?))dd defines a function of 7. By Lemma 3.1, the boundary function ¢(e'?) €
LP(T). From the nonnegativity of (f(e?), ¢(e!?)) and
27 ) ) )
[ e nas < [ ifladoetlras < o
0 [0727"]\E0

the integral fo27r<f(ei9)7 ©(el?))df is convergent. By (3.4)

2 . . 2 . .
[ e ptretyds - [ (7). oo
0 0
<1 loe / p(re®) — p(e®)Pdg — 0, r— 1,
[0,27]\ Eq

so F¢(p) is well-defined and

1

Fr(p) = %

/0 7T(f(ei‘g),go(eie))de, p € HP. (3.10)

As the boundary function ¢(e'?) is more abstract than the original one o(re'?), we would rather
use (3.9) than (3.10) to define Fy(p). Because

<f(eie)a > - f(eie)(') € C; ae, 0¢€ [07 27T]7

the positive p-homogeneity and the subadditivity of Fy are clear, i.e. Fy € (H?),. For every
0 # ¢ € HP, by (3.9)

r—1 21

1 :
Fy(p) < lim —/ o(re )P (| fllood® = [ flloo Il
[0,27]\ Eq

so || Fyll < ||fllec and Fy € (HP); by Proposition 2.2. This completes the proof.

By (3.9) we have Fy, 4y, = Fy, + Fy, and Fof, = aFy, for every fi, fa € L®(T,Cy), a € R
and Fy =0 <« f = 0. So the mapping f — FY is an algebraic isomorphism between L>(T', C})
and the subcone {Fy : f € L>(T,Cy)} of (HP);. If we endow L*°(T',C};) with another norm

11l =11Ell, e L>(T, Cp), (3.11)

then (L>°(T,C}), | -1|) is a new normed topological cone. From now on, we always treat L>°(T,
C}) as the normed cone with this norm, and make no distinction between each f € L>(T', Cy)

and the corresponding functional Fy € (H?);. By Theorem 3.1 we have the following corollary.

Corollary 3.1 The normed topological cone (L>(T,Cy), || -||) is a subcone of (HP); in the
sense of norm-preserving isomorphism.

Theorem 3.2 Suppose 0 < p < 1. Then L*(T,C}) is a separating subcone of (HP).
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Proof Theorem 3.1 implies that L°°(T', Cy) is a subcone of (HP);. Let @, € HP, ¢ # 1.
Then their boundary functions, still denoted by ¢ and 1, respectively, belong to LP(T") and are

not equal, i.e.

n({0 € [0,27) : () # B(e)}) > 0.

We are going to construct f € L>(T, Cy) such that Fy(p) # F¢(3) in the following three cases.
If ol < [[¢lp, define f € L>=(T, Cy) by

(f(€9),2) = =P, 6e[0,2n], =»€C,
then by (3.10)

Fr(p) = llellp < [[¥llp = Fr ().

If ||oll, = |||, and there exists an Ey € ¥ with p(Ep) > 0 such that
9] < [6(e)] ae., € By,

then by [11, p. 104]
[ te@nras < [ pueypas.
Eo EO

Take a sufficiently large number M > 0 such that

/ o(@)Pdo+ M [ |o(e?)Pds < / ()8 + M [ () e,
[O,QW]\EO

Eo [0,27]\ Eo Eo
Define f € L>(T,C;) by

i0 _ |Z|pa NS [0727T]\E0a z e Ca
<f(e )aZ> - {]\4|Z|p7 6 € Ey, z€C,

then Fy(p) < Fy(¢) by (3.10) and the above inequality.
Now suppose @], = [[¢ll, and [15(e)] = [p(e'®)| a.c., 8 € [0,27]. By ¢ # v, the set

Eo={0€[0,27] : p(e”) # v(e”), [¢()] = [p(e)|(> 0)}
has positive measure. For each 6 € Ej, let
L(6) = span{ip(e'’), (e}

be the real linear hull spanned by ¢(e?) and v (e'?). Then L(6) is either the whole complex
plane C or a line across 0 according to the real linear relationship between ((e?) and ) (el?).
Let

B(6) = co,,((L(e) NnD)u {%(i;)})

where D is the closed unit disk in C. Then B(6) is a p-convex O-neighborhood in L(f). By
Proposition 2.2, the p-Minkowski functional Ppgg), generated by B() belongs to [L(0)];. The
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relation L(#)ND C B(@) means Pp gy, (2) < 1 for all z € L(#)ND. By the construction, Pg(g),

takes its minimum 5 at the only point (e,ggl on the compact set L(0) NT, so

lo
1 () ()
5 = PB(G)p (M) < PB(G)p (M), 0 € Ey.

By Theorem 2.3, Pp(g), can be extended to a continuous p-subseminorm f (el) € C,, with
1) = [1Ppa), | < 1 for every 0 € Ep.

Let w be the mapping from [0, 27] to T defined by w(#) = ei®. To verify the measurability
of f on w[Ey], let

M, My
on =D ZJ(‘n)Xw[Eﬁ”)]’ =3 w§'n)Xw[E§-">] € LA(T)
j=1 j=1

be two sequences of simple functions such that
on(€?) = @), Pn(e?) = ¥(e?) (n — 0) ae, 0 € Ey,

where {Ej(")} is a measurable partition of Ey for each n, Xw[ is the the characteristic

EM)]
(n) (n) , (n) ; (n) (m) )y, ()
BV and z; 7, w; € C with 2, # w;™, |27 = |w; 7 |(> 0). For each n € N

and 0 € B\, let

function of w]

Ly (0) = span{z{" ,w{"}

and

7 2™
Bn(f)):cop((Ln(f))ﬂE)U{2 L })

B

Then with the same argument we have Pg (g), € [L,(0)]; and its norm-preserving extension
fn(e) € C,. By the construction, f,, can be chosen to be the Cj-valued simple functions on
w[Ey] such that f,(el?) — f(e'?)(n — o) a.e., § € Ey, so f is measurable on w[E).

If 6 € [0,27]\Ep, define f(e!) =0 € C;. Then f € L>=(T,C}) with || f||ec < 1. Now from
lo(el?)| = |[v(e'?)] ae., € Ey and

Lo (e, 2O < (5@, LY pem,

lp(ei®)] |9 (ei?)]
we have
e1«9
Rl =g [ et 19>|f’< (@), Zis )6
P(e?)

<3 W (1) iy )00 = )

This completes the proof of L>*(T', Cy) separating the points of H”. This completes the proof.

Let us make a preparation for the next theorem.
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Lemma 3.2 Let 0 <p <1 and f € [LP(T)];. Define

0, z =0,
i) = {Supuups 1 flz), 2 #0 (312)

|z

and
Q(z) = q(2)|z|", =z €C, (3.13)

where | € LP(T') is a nonnegative real-valued function on T. Then

(1) q(tz) =q(z) for allt >0 and z € C;
(i) a(z) < If]l for all 2 € C;
(iii) @€ Cj and [|QI <[]l

Proof The conclusions (i)—(ii) can be obtained directly from (3.12) and (2.6). The positive
p-homogeneity of @ follows (i). Suppose that @ satisfies the subadditivity. Then the result (ii)
means [|Q[| < [|f|| and Q € C;, by Proposition 2.2.

Now nothing remains but to check the subadditivity of @, i.e.

q(z + w)|z + w? < q(2)|2|” + ¢g(w)|wl?, z,we C. (3.14)

If z=0, w=0or z+w = 0, the inequality (3.14) is clear. Suppose z # 0, w # 0 and z+w # 0.
Let a be the included angle between z and z+w, and 3 be that between w and z+w. If &« = 0,
then there is a ¢ > 0 such that z +w = tz and ¢(z + w) = ¢(z). By w # 0 we know ¢ # 1. If
0 <t<1,then |z +w| < |z| and (3.14) is clear; if ¢ > 1, then

w=(t—1)z, q(z)=q(w)=q(z+w),

and thus we have (3.14) by |z + w|? < |z|P + |w|P. If a = 7, without loss of generality, assume
that |w| > |z|. Thus we have (3.14) by |z +w| < |w| and ¢(z + w) = ¢(w). If 3 =0 or 7. Then
(3.14) also holds with the same argument. If o, 8 € (0, 7), then by the Sine theorem

sin 3
2| = mV + wl
and
sin o
lw| = mV + wl.
Then (3.14) is equivalent to
a(z +w) < (ﬁ)pq(z) + (ﬁ)pq(w). (3.15)
By
z 4w sinf  z sina w

lz4+w|  sin(a+8)|z] ' sin(a+ ) Jw|’
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we have
z+w z+w
e o) = g SEEE)
[z +wl/ <’ Nz +

sin 3 sin o w

z
< ”lsuuqf(lsm(a—f—ﬂ) |z|) |ls|‘p21f<lsin(a+5) m)
B sin 8 Pz sin Porw
N (sin(oz + ﬁ)) q( |z|) + (sin(a + ﬁ)) q<|w|)
sin 8 P sin « P
- (sin(a + 5)) a(z) + (sin(a + 5)) g(w).
Thus we have shown the inequalities (3.14)—(3.15) and the conclusion (iii).

Theorem 3.3 Suppose 0 < p < 1. Then for each f € (HP)y, there is I' € L>(T, C;) such
that [ < F and |F|| = | f]|

Proof Suppose f € (H?);. As H? is a closed subspace of LP(T'), by Theorem 2.3 f can be
extended norm-preservingly to a continuous p-subseminorm on LP(T'), still denoted by f. Use

the function @) € C; in Lemma 3.2 to define a Cj-valued constant function g on 1" by

(9(€), 2) = g(e'?)(2) = Q(2), 0 €[0,2n], z € C.

Then g € L>(T, Cp), |lgllec = [[QI < |[f]| and

1 1 0
%Q(z)u(E) =5 /E<g(e ),z)df, Eec¥, ze€C. (3.16)
By Theorem 3.1, the equation
1 27 X X
Fie) = 3= | (o). o@)a0, g e mr (317)

defines a functional Fy, € L>°(T,Cy) C (HP); with [|[Fy|| < [|gllec < [|f]]- Now if we can verify
the inequality of f < F, on HP?, then we have the equality || Fy|| = || f||, and this completes the
proof.

As H? C LP(T'), and f and F, (being extended norm-preservingly to L”(T")) are continuous
on LP(T), let us verify the inequality f(¢) < F,(y) for all ¢ € LP(T) in the following three

cases. If p = ) 2; X, (g, € LP(T) is a simple function, then by the equalities (3.16)-(3.17),
j=1

) < Zf (z; X w[E] ) < Z SUP lzj)”ZjXW[Ej]HP

=1 <

ZQ Ey) = o / ”<g(ew),¢(ew>>d9:Fg@),

27T

If ¢ € LP(T) is bounded, then there exists a sequence of uniformly bounded simple functions
{¢n} on T such that
on(€?) = p(e?)(n — o), a.e. € [0,27].
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By Egoroff’s theorem in [9, p. 41], {¢,} also converges in mean to ¢, i.e.

1 27 . X
lim — / lon(€?) = p(e'?)]df = 0.
0

n—oo 27

By the Holder’s inequality

1 27
I\wn—wllp=g/o lon (

@

) = ple)Pao

555

i.e. {¢n} converges in the p-norm to ¢. We have already shown f(p,) < Fy(py,) for all n, so

by the continuity of f and Fj; we have

flp) = lim f(pn) < lim Fy(pn) = Fy(e).

n—oo

If o € LP(T) is a general complex function on 7', then the measure v defined by the indefinite

integral

1 .
W(E) = %/EW(ela)V’d@, Eey

is absolutely continuous with respect to the Lebesgue measure y, and the series

o0

Yo eo,2m: fp(e)P > n})

n=1

is convergent (see [11, p. 115]). So u({6 € [0,27] : |p(e'?)[P > n}) — 0(n — o0). Let

iy _ [ e(e), le(e)r <n,
euld?) = { #E0 EI ST pe 0,20

Then ¢,, is bounded and

1 2

_ - 0y _ 0\ |p
lon=llo =5 [ leale®) = (e s

1 .
[ |<p(e‘9)|pdt9 — 0.
21 Jioe(0,27): 0 (1) P >n}

Thus by the continuity of f and Fj, we have

flp) = lim f(pn) < lim Fy(pn) = Fy(e).

n—oo

This completes the proof of Theorem 3.3.

Now we are in the position to show the main result of this paper.

Theorem 3.4 (The Subrepresentation Theorem) Suppose 0 < p < 1. Then L=(T,C;)

is a shadow cone of (HP); in the sense of morm-preserving isomorphism, or (HP)y has the

P
subrepresentation

(H?), ~ L>=(T, C,).

(3.18)
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Proof By Theorems 3.1-3.2, L*(T, C}) is a separating subcone of (H?);. By Theorem

3.3 for each f € (HP)y, there exists an F' € L>(T, Cy) such that f(p) < F(p) for all p € H?
and || f|| = [[F']|. Thus by Definition 3.1, L>(T', C}) is a shadow cone of (H?);. So we have the
subrepresentation (3.18).

References

(1]

w S

CRCIRENNCEORIT)

=

(10]

(11]

Kalton, N. J., Peck, N. T. and Roberts, J. W.,; An F-space Sampler, Cambridge University Press, London,
1984.

Rolewicz, S., Metric Linear Spaces, Polish Scientific Publishers, Warszawa, 1985.

Duren, P. L., Theory of HP Spaces, Academic Press, New York, 1970.

Simmons, S., Boundness in linear topological spaces, Trans. Amer. Math. Soc., 113, 1964, 169-180.
Jarchow, H., Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.

Wang, J. Y. and Ma, Y. M., The second separation theorem in locally 8-convex space and the boundedness
theorem in its conjugate cone, J. Math. Res. Exposition, 22(1), 2002, 25-34.

Wang, J. Y., Quasi-translation invariant topological cones and the conjugate cones of locally (-convex
spaces, Math. Practice Theory, 33(1), 2003, 89-97 (in Chinese).

Wang, J. Y., The Hahn-Banach theorems about [-subseminorms in locally (-convex spaces and their
applications, Journal of Changshu Institue of Technology, 20(4), 2006, 19-24 (in Chinese).

Diestel, J. and Uhl, J. J., Vector Measures, Mathematical Surveys, 15, Amer. Math. Soc., Providence,
Rhode Island, 1977.

Wang, J. Y., The subrepresentation theorem of the conjugate cone of I?(X) (0 < p < 1), Adv. Math.,
39(6), 2010, 709-718.

Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950.



