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Abstract The Hardy space Hp is not locally convex if 0 < p < 1, even though its conjugate
space (Hp)∗ separates the points of Hp. But then it is locally p-convex, and its conjugate
cone (Hp)∗p is large enough to separate the points of Hp. In this case, the conjugate cone
can be used to replace its conjugate space to set up the duality theory in the p-convex
analysis. This paper deals with the representation problem of the conjugate cone (Hp)∗p of
Hp for 0 < p ≤ 1, and obtains the subrepresentation theorem (Hp)∗p � L∞(T,C∗

p).
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1 Introduction

If X is a locally convex space, then its conjugate space X∗ is large enough to separate the
points of X . But a non-locally convex space may only have the trivial conjugate space {0}.
Lp(μ) is just such an example if 0 < p < 1 and μ is a non-atomic measure (see [1–2]). For a
Hardy space Hp (0 < p < 1), though its conjugate space (Hp)∗ �= {0} (see [3, p. 115]), it is
still not locally convex (see [1, p. 37]). Motivated by the oddness of Lp(μ) and Hp, Simmons
[4] and Jarchow [5, p. 108] introduced the concept of the locally p-convex space in the sixties
of the last century. To remedy the shortcoming that the conjugate space X∗ of a non-locally
convex space X may be trivial, we first introduced in [6] the concept of the conjugate cone X∗

p ,
and proved that X∗

p is large enough to separate the points of X if X is locally p-convex. For a
locally p-convex X , we can use the conjugate cone X∗

p to replace its conjugate space X∗ (which
may be trivial or very small) to set up the duality theory in the p-convex analysis. It is one of
the most important problems to represent the conjugate cone X∗

p of a locally p-convex space.
The main purpose of this paper is to represent the conjugate cone (Hp)∗p of the Hardy space
Hp for 0 < p ≤ 1. The necessary basic theories of the p-convex analysis is presented in Section
2, the subrepresentation theorem (Hp)∗p � L∞(T,C∗

p) is obtained in Section 3.

2 Some Basic Theories of p-Convex Analysis

The locally p-convex spaces and their conjugate cones are the main concepts in this paper,
while the separating theorem and the Hahn-Banach extension theorem are the basic theorems
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of the p-convex analysis.
Let X be a vector space over the number field K, Φ be the empty set, 0 be the zero vector,

the zero functional or the number zero, and 0 < p ≤ 1 be a constant. A set A ⊂ X is called
p-convex if [x, y]p ⊂ A for every x, y ∈ A, where

[x, y]p = {λx+ (1 − λp)
1
p y : λ ∈ [0, 1]}

is the p-segment arc with the endpoints x and y. For a general set A, the smallest p-convex set
copA containing A is called the p-convex hull of A. It is easy to show that

copA =
{ n∑

k=1

λkxk : xk ∈ A, λk ≥ 0,
n∑

k=1

λp
k = 1, n ∈ N

}
.

A topological vector space X is called locally p-convex if there exists a 0-neighborhood basis
consisting of p-convex sets (see [5, p. 108]). It is easy to see that any locally p-convex space
has a 0-neighborhood basis consisting of circled open p-convex sets.

A real-valued functional f on X is called a p-subseminorm if
(a) f(x) ≥ 0, x ∈ X ;
(b) f(tx) = tpf(x), t ≥ 0, x ∈ X (positive p-homogeneity);
(c) f(x+ y) ≤ f(x) + f(y), x, y ∈ X .

We use X ′
p to denote the convex cone consisting of all p-subseminorms on X . If X is a topo-

logical vector space, then X∗
p is used to denote the subcone of X ′

p consisting of continuous
p-subseminorms, called the p-conjugate cone of X . A typical example of p-subseminorm is the
p-Minkowski functional

PBp(x) = inf{t > 0 : x ∈ t
1
pB}, x ∈ X (2.1)

generated by a p-convex algebraic 0-neighborhood B. It is easy to check that PBp ∈ X∗
p if and

only if 0 ∈ intB (see [5, p. 106]). The study of p-convexity is called the p-convex analysis.
If there is a nonnegative real-valued functional ‖ · ‖p on X satisfying
(a′) ‖x‖p = 0 ⇔ x = 0;
(b′) ‖tx‖p = |t|p‖x‖p, t ∈ K, x ∈ X (absolute p-homogeneity);
(c′) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p, x, y ∈ X ,

then ‖ · ‖p is called a p-norm and (X, ‖ · ‖p) a p-normed space. With the 0-neighborhood basis
consisting of the p-convex sets

Uε = {x ∈ X : ‖x‖p < ε}, ε > 0,

a p-normed space (X, ‖·‖p) is locally p-convex. A complete p-normed space is called a p-Banach
space (see [1, p. 7]). The spaces Lp(μ), lp and Hp (0 < p < 1) are three typical classes of
p-Banach spaces.

The second separation theorem and the separating theorem given by [6] are the theoretical
basis of the p-convex analysis. For the sake of completeness, let us give their proofs here.

Theorem 2.1 (The Second Separation Theorem in [6]) Let 0 < p ≤ 1, and (X, τ) be a
locally p-convex space. Suppose that A is a nonempty closed p-convex subset of X (for p = 1,
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still assume 0 ∈ A), and that B is another nonempty closed subset of X with A ∩B = Φ. If A
or B is compact, then they can be strongly separated by some continuous p-subseminorm, i.e.
there is f ∈ X∗

p such that

(i) if A is compact, then

max{f(x) : x ∈ A} < 1 ≤ inf{f(x) : x ∈ B};

(ii) if B is compact, then

sup{f(x) : x ∈ A} ≤ 1 < min{f(x) : x ∈ B}.

Proof Let Uθ = {Uλ : λ ∈ Λ} be a 0-neighborhood basis in X consisting of circled open
p-convex sets. Because A or B is compact, we assert that there is a Uλ0 ∈ Uθ such that

(A+ Uλ0) ∩B = Φ.

If the assertion is not true, then there exist xλ ∈ A, yλ ∈ B and zλ ∈ Uλ0 such that yλ = xλ+zλ

for any λ ∈ Λ. Under the set-theoretic relation U1 ≺ U2 ⇔ U1 ⊃ U2, Uθ is a semi-order set.
As ≺ is directed, {xλ}, {yλ} and {zλ} turn into three nets and zλ → 0. If A is compact, there
exists some convergent subnet of {xλ}. Without loss of generality, suppose xλ → x0, and then
yλ = xλ + zλ → x0. By the closeness of A and B, we have x0 ∈ A ∩B. This is contrary to the
fact that B ∩ A = Φ. If B is compact, with the same argument we can also find a Uλ0 ∈ Uθ

such that A ∩ (B + Uλ0) = Φ. This is equivalent to (A+ Uλ0) ∩B = Φ as Uλ0 is circled.
Now take a Uλ0 ∈ Uθ such that (A + Uλ0) ∩ B = Φ, and take a Uλ1 ∈ Uθ such that

Uλ1 + Uλ1 ⊂ Uλ0 . Then by (A+ Uλ1 + Uλ1) ∩B = Φ and the circled property of Uλ1 we have

(A+ Uλ1) ∩ (B + Uλ1) = Φ (2.2)

and

(A+ Uλ1) ∩B = Φ. (2.3)

As A + Uλ1 is an open p-convex 0-neighborhood, the p-Minkowski functional generated by
A+ Uλ1 is continuous, i.e. f := P(A+Uλ1

)p
∈ X∗

p . The equality (2.3) implies

f(x) < f(y), x ∈ A, y ∈ B. (2.4)

If A is compact, assume that f takes its maximum at x0 ∈ A, then

max{f(x) : x ∈ A} = f(x0) < 1 ≤ inf{f(x) : x ∈ B}.

If B is compact, assume that f takes its minimum at y0 ∈ B, then

sup{f(x) : x ∈ A} ≤ 1 < f(y0) = min{f(x) : x ∈ B}.

This completes the proof.
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Theorem 2.2 (Separating Theorem in [6]) Let 0 < p ≤ 1 and X be a locally p-convex
Hausdorff space. Then the conjugate cone X∗

p separates the points of X, i.e. for each pair of
x, y ∈ X, x �= y, there is f ∈ X∗

p such that f(x) �= f(y).

Proof As x �= y, we have y �∈ [θ, x] or x �∈ [θ, y]. Without loss of generality assume y �∈ [θ, x].
As X is of Hausdorff, the sets A = [θ, x] and B = {y} satisfy the conditions of Theorem 2.1, so
there is f ∈ X∗

p such that f(x) �= f(y).

The conjugate space X∗ of a locally p-convex space X may be trivial, but by Theorem 2.2
the p-conjugate cone X∗

p of X is large enough to separate the points of X . In this case X∗
p

is simply called the conjugate cone of X . We hope to use conjugate cone X∗
p to replace the

conjugate space X∗ to set up the duality theory in the p-convex analysis.

Let us recall the concept of normed cones and the further details can be found in [7].

Definition 2.1 Let Y be a proper cone with abstract addition and nonnegative scalar mul-
tiplication, i.e. x+ y ∈ Y , tx ∈ Y for every x, y ∈ Y and t ≥ 0, and x+ y = 0 ⇔ x = y = 0. If
there is a nonnegative real-valued functional ‖ · ‖ on Y satisfying

(n1) ‖x‖ = 0 ⇔ x = 0;

(n2) ‖tx‖ = t‖x‖, x ∈ Y, t ≥ 0;

(n3) ‖x‖, ‖y‖ ≤ ‖x+ y‖ ≤ ‖x‖ + ‖y‖, x, y ∈ Y ,
then ‖ · ‖ is called a (conical) norm and (Y, ‖ · ‖) a normed cone.

If (Y, ‖ · ‖) is a normed cone, then it is not difficult to see that the equation

ρ(x, y) = inf{t > 0 : ∃h, l ∈ Y, ‖h‖, ‖l‖ ≤ t such that x+ h = y + l}, x, y ∈ Y (2.5)

defines a translation invariant metric on Y . Thus (Y, ‖·‖) = (Y, ρ) is called a normed topological
cone. Two normed cones Y1 and Y2 are said to be norm-preserving isomorphic if there exists
an algebra isomorphism T : Y1 → Y2 such that ‖T (x)‖ = ‖x‖ for all x ∈ Y1.

The following is a basic proposition on normed topological cones.

Proposition 2.1 Let (Y, ‖ · ‖) = (Y, ρ) be a normed topological cone and let {gn} ⊂ Y and
g ∈ Y . Then

(i) gn → 0 ⇔ ‖gn‖ → 0;

(ii) gn → g if and only if there are {hn}, {ln} ⊂ Y with hn, ln → 0 such that gn +hn = g+ ln
for every n ∈ N;

(iii) the norm ‖ · ‖ is continuous on Y .

Proof Suppose gn → 0 in the conical topology. Then by ρ(gn, 0) → 0 and (2.5), there are
{hn}, {ln} ⊂ Y with ‖hn‖, ‖ln‖ → 0 such that gn + hn = 0 + ln for every n. By (n3) we have

‖gn‖ ≤ ‖gn + hn‖ = ‖ln‖ → 0.

Conversely if ‖gn‖ → 0, then by gn + 0 = 0 + gn and (2.5) we have

ρ(gn, 0) ≤ ‖gn‖ → 0, i.e. gn → 0.
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Thus (i) holds. The result (ii) follows (i) and definition (2.5). Suppose gn → g. Then by (ii)
there are {hn}, {ln} ⊂ Y with hn → 0, ln → 0 such that gn + hn = g + ln for every n. By (n3)

‖gn‖ − ‖hn‖ ≤ ‖gn‖ ≤ ‖gn + hn‖ = ‖g + ln‖ ≤ ‖g‖ + ‖ln‖,
‖g‖ − ‖ln‖ ≤ ‖g‖ ≤ ‖g + ln‖ = ‖gn + hn‖ ≤ ‖gn‖ + ‖hn‖,

and hence

|‖gn‖ − ‖g‖| ≤ ‖hn‖ + ‖ln‖ → 0.

This completes the proof.

If (X, ‖ ·‖p) is a p-normed space, then by Theorem 2.2 its conjugate cone X∗
p is large enough

to separate the points of X . With the conical norm

‖f‖ = sup
‖x‖p=1

f(x), f ∈ X∗
p , (2.6)

(X∗
p , ‖ · ‖) forms a normed topological cone, called the normed conjugate cone of X (see [7]).
By definition, it is not difficult to verify the following proposition.

Proposition 2.2 (see [5–6]) Let 0 < p ≤ 1, X be a topological vector space and f ∈ X ′
p.

Then the following conditions are equivalent:
(i) f ∈ X∗

p (i.e. f is continuous);
(ii) f is continuous at 0;
(iii) 0 ∈ intUf (ε) for all ε > 0, where

Uf (ε) = {x ∈ X : f(x) < ε}

is the f -open ball of radius ε;
(iv) ‖f‖ <∞ if X is a p-normed space, and then f(x) ≤ ‖f‖‖x‖p for all x ∈ X.

The Hahn-Banach type extension theorems of p-subseminorms given by [8] are the most
important materials to set up the theoretical basis of the p-convex analysis. Considering that
some people may not be able to read Chinese, let us prove them here.

Lemma 2.1 (Control Extension Theorem in [8]) Let 0 < p ≤ 1, and Y be a subspace of a
linear space X. Suppose f ∈ Y ′

p, F ∈ X ′
p with f(x) ≤ F (x), x ∈ Y . Then there exists a g ∈ X ′

p

such that

g(x) = f(x), x ∈ Y ; g(x) ≤ F (x), x ∈ X. (2.7)

Proof As f , F are nonnegative, the functional

g(x) = inf
y∈Y

{F (x− y) + f(y)}, x ∈ X (2.8)

is well-defined. For every x ∈ X , if t > 0, then

g(tx) = inf
y∈Y

{F (tx− y) + f(y)} = tp inf
y∈Y

{
F

(
x− y

t

)
+ f

(y
t

)}
= tpg(x);
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if t = 0, g(tx) = tpg(x)(= 0) is obvious, so g has positive p-homogeneity. If x1, x2 ∈ X , then
for every ε > 0, there exist y1, y2 ∈ Y such that

g(xi) +
ε

2
≥ F (xi − yi) + f(yi), i = 1, 2.

Thus

g(x1) + g(x2) + ε ≥ F ((x1 + x2) − (y1 + y2)) + f(y1 + y2) ≥ g(x1 + x2).

Letting ε→ 0, we have

g(x1 + x2) ≤ g(x1) + g(x2),

and hence g ∈ X ′
p. If x ∈ X ,

g(x) = inf
y∈Y

{F (x− y) + f(y)} ≤ F (x− 0) + f(0) = F (x).

If x ∈ Y ,

g(x) = inf
y∈Y

{F (x− y) + f(y)} ≤ F (x − x) + f(x) = f(x).

On the other hand, by f ≤ F on Y and the subadditivity of f , we have

g(x) = inf
y∈Y

{F (x− y) + f(y)} ≥ inf
y∈Y

{f(x− y) + f(y)} ≥ f(x),

so (2.7) holds.

Theorem 2.3 (Norm-Preserving Extension Theorem in [8]) Let 0 < p ≤ 1, and Y be a
subspace of a p-normed space (X, ‖ · ‖p). Then for every f ∈ Y ∗

p , there exists a g ∈ X∗
p such

that

g(x) = f(x), x ∈ Y ; ‖g‖ = ‖f‖. (2.9)

Proof Let f ∈ Y ∗
p . By Proposition 2.2, ‖f‖ <∞. Define

F (x) = ‖f‖‖x‖p, x ∈ X,

then F ∈ X∗
p , ‖F‖ = ‖f‖ and f(x) ≤ F (x), x ∈ Y . By Lemma 2.1, there exists a control

extension g ∈ X ′
p of f such that

g(x) = f(x), x ∈ Y ; g(x) ≤ F (x), x ∈ X.

The facts F ∈ X∗
p and g(x) ≤ F (x) imply that g is continuous at 0. For every x, y ∈ X , by the

subadditivity of g

|g(x) − g(y)| ≤ max{g(x− y), g(y − x)}.

Hence g is continuous on X or g ∈ X∗
p and ‖g‖ ≤ ‖F‖ = ‖f‖. On the other hand

‖g‖ = sup
x∈X

‖x‖p=1

g(x) ≥ sup
x∈Y

‖x‖p=1

g(x) = sup
x∈Y

‖x‖p=1

f(x) = ‖f‖,

so ‖g‖ = ‖f‖.
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3 The SubrepresentationTheorem of Conjugate Cones of Hardy Spaces

To represent the conjugate cone X∗
p of a p-normed space (X, ‖ · ‖p) is one of the most

important problems in the p-convex analysis. Based on the theory of the above section, we are
going to find out the specific representation of the conjugate cone (Hp)∗p of the Hardy space
Hp for 0 < p ≤ 1 in this section.

Let D be the open unit disk in the complex plane C, T the unit circle and i the imaginary
unit. Let (Σ, μ) be the Lebesgue measure ring on [0, 2π]. For a positive number 0 < p < ∞,
the Hardy space Hp is the vector space of analytic functions ϕ : D → C with

‖ϕ‖p = sup
0≤r<1

1
2π

∫ 2π

0

|ϕ(reiθ)|pdθ <∞.

When p ≥ 1, the Hardy space Hp is a Banach space with the norm ‖ · ‖
1
p
p . In this paper we

are interested in the Hardy space Hp for 0 < p ≤ 1, which is a p-normed space with ‖ · ‖p.
By Hardy’s convexity theorem in [3, p. 9] we know that 1

2π

∫ 2π

0 |ϕ(reiθ)|pdθ is an increasing
function of r, so

‖ϕ‖p = lim
r→1

1
2π

∫ 2π

0

|ϕ(reiθ)|pdθ, ϕ ∈ Hp. (3.1)

Suppose 0 < p ≤ 1. Let Lp(T ) be the Lp-space of complex functions on T with the
normalized Haar measure dθ

2π , θ ∈ [0, 2π]. Then Lp(T ) is a p-normed space with

‖ϕ‖p =
1
2π

∫ 2π

0

|ϕ(eiθ)|pdθ, ϕ ∈ Lp(T ). (3.2)

For 0 < p < 1, abundant literature uses F -norm ‖·‖ = ‖·‖
1
p
p to replace p-norm ‖·‖p in deducing

the same topology (see [1–3]). We prefer ‖ · ‖p to ‖ · ‖
1
p
p because the former satisfies the triangle

inequality, but the latter does not.
For a function ϕ analytic in D and a point eiθ ∈ T , if ϕ(z) tends to a unique limit, say

ϕ(eiθ), as z tends to eiθ inside D along any path not tangent to the circle T , then ϕ is said to
have the nontangential limit at eiθ (see [3, p. 6]). Summing up a few results located at different
places of [3] we can obtain the following lemma.

Lemma 3.1 Suppose 0 < p ≤ 1 and ϕ ∈ Hp. Then

(i) the nontangential limit ϕ(eiθ) exists almost everywhere on T and ϕ(eiθ) ∈ Lp(T ) (see [3,
p. 17]);

(ii) the boundary function ϕ(eiθ) satisfies (see [3, p. 21])

lim
r→1

∫ 2π

0

|ϕ(reiθ)|pdθ =
∫ 2π

0

|ϕ(eiθ)|pdθ (3.3)

and

lim
r→1

∫ 2π

0

|ϕ(reiθ) − ϕ(eiθ)|pdθ = 0. (3.4)
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If we use Hp to denote the set of boundary functions ϕ(eiθ) of ϕ ∈ Hp, then Hp is a closed
subspace of Lp(T ) (see [3, p. 36]) and Hp is isometric to Hp by (3.3)–(3.4). So Hp is a closed
proper subspace of Lp(T ) in the sense of isometry.

If 0 < p ≤ 1, the Hardy space Hp is a p-Banach space with the p-norm of (3.1). Theorem
2.2 means that its conjugate cone (Hp)∗p is very large to constitute a normed topological cone
with

‖f‖ = sup
‖ϕ‖p=1

f(ϕ), f ∈ (Hp)∗p. (3.5)

The main purpose of this paper is to represent the normed conjugate cone ((Hp)∗p, ‖ · ‖). Ev-
ery f ∈ (Hp)∗p has no linearity except 0, it is almost impossible to give (Hp)∗p a complete
representation, so we need to introduce the concept of subrepresentation.

Definition 3.1 Let 0 < p ≤ 1, and (X, ‖ · ‖p) be a p-normed space. Let M be a subcone of
X∗

p .
(s1) If M separates the points of X, i.e. for each pair of x, y ∈ X, x �= y, there is F ∈M

such that F (x) �= F (y), then M is called a separating subcone of X∗
p .

(s2) If M is a separating subcone of X∗
p and for each f ∈ X∗

p , there is F ∈ M such that
f ≤ F and ‖f‖ = ‖F‖, then M is called a shadow cone or the subrepresentation of X∗

p , denoted
by X∗

p �M .

IfM is a shadow cone ofX∗
p , it follows from (s1), (s2) and Proposition 2.2 that the topological

structure of X is determined completely by M . The condition (s2) means that the metric
structure of X∗

p is also determined by M to a great extent. So a shadow cone of X∗
p is very

similar to its shadow carrying almost all its properties, and once we find a shadow cone and
obtain its representation we shall grasp X∗

p itself to a great extent.
Let us recall some known results. Suppose that X is a Banach space. If p ≥ 1 and (Ω, μ) is

a finite measure space, then the X-valued function space Lp(μ,X) is a Banach space with the
norm

‖ϕ‖ =
( ∫

Ω

‖ϕ(t)‖pdμ(t)
) 1

p

, ϕ ∈ Lp(μ,X).

Its conjugate space [Lp(μ,X)]∗ can be represented as

[Lp(μ,X)]∗ = Lq(μ,X∗)

if X∗ has the Radon-Nikodym property with respect to μ, where q > 1 with 1
p + 1

q = 1 (see [9,
p. 98]). Thus for p = 1 we have

[L1(μ,X)]∗ = L∞(μ,X∗). (3.6)

If 0 < p < 1, then the p-normed X-valued sequence space lp(X) is a p-Banach space with

‖x‖p =
∞∑

n=1

‖xn‖p, x = {xn} ∈ lp(X).
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Its conjugate cone has the subrepresentation (see [10])

[lp(X)]∗p � l∞(X∗
p ). (3.7)

If 0 < p < 1, by separating Theorem 2.2 the conjugate cone (Hp)∗p of Hp is large enough to
separate the points of Hp. Thus it is quite natural for us to ask:

Can the conjugate cone (Hp)∗p of Hp (0 < p ≤ 1) be represented with the formula similar
to (3.6) or (3.7)?

Let us find the shadow cone of (Hp)∗p for 0 < p ≤ 1 now. Under the usual topology, the
complex number field C is a p-normed space with | · |p, and its conjugate cone C∗

p forms a
normed topological cone with the conical norm

‖f‖ = sup
z∈T

f(z), f ∈ C∗
p.

Let L∞(T,C∗
p) denote the positive cone formed by all C∗

p-valued essentially norm-bounded
measurable functions (equivalent classes) on the unit circle T . Then with the essential norm

‖f‖∞ = inf
μ(E)=0

sup
θ∈[0,2π]\E

‖f(eiθ)‖,

L∞(T,C∗
p) forms a normed cone. If we use 〈f(eiθ), z〉 to denote f(eiθ)(z) formally, then

‖f‖∞ = inf
μ(E)=0

sup
θ∈[0,2π]\E

sup
z∈T

〈f(eiθ), z〉, f ∈ L∞(T,C∗
p). (3.8)

We should note that the function 〈f(eiθ), ·〉=f(eiθ)(·) is nonlinear and it is only a p-subseminorm
on C for each θ ∈ [0, 2π]. From the following theorems we shall see that L∞(T,C∗

p) is the shadow
cone of (Hp)∗p.

Theorem 3.1 Suppose 0 < p < 1. For each f ∈ L∞(T,C∗
p), the equation

Ff (ϕ) = lim
r→1

1
2π

∫ 2π

0

〈f(eiθ), ϕ(reiθ)〉dθ, ϕ ∈ Hp (3.9)

defines a continuous p-subseminorm Ff ∈ (Hp)∗p with ‖Ff‖ ≤ ‖f‖∞.

Proof Suppose f ∈ L∞(T,C∗
p). By (3.8) there is a sequence of null sets En such that

sup
θ∈[0,2π]\En

sup
z∈T

〈f(eiθ), z〉 ≤ ‖f‖∞ +
1
n

for every n ∈ N. For the null set E0 =
∞⋃

n=1
En,

‖f‖∞ ≤ sup
θ∈[0,2π]\E0

sup
z∈T

〈f(eiθ), z〉 ≤ ‖f‖∞ +
1
n
, n ∈ N,

so

‖f‖∞ = sup
θ∈[0,2π]\E0

sup
z∈T

〈f(eiθ), z〉.
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If ϕ ∈ Hp,

〈f(eiθ), ϕ(reiθ)〉 ≤ ‖f‖∞|ϕ(reiθ)|p, θ ∈ [0, 2π]\E0, r ∈ [0, 1),

so
∫ 2π

0
〈f(eiθ), ϕ(reiθ)〉dθ defines a function of r. By Lemma 3.1, the boundary function ϕ(eiθ) ∈

Lp(T ). From the nonnegativity of 〈f(eiθ), ϕ(eiθ)〉 and

∫ 2π

0

〈f(eiθ), ϕ(eiθ)〉dθ ≤
∫

[0,2π]\E0

‖f‖∞|ϕ(eiθ)|pdθ <∞,

the integral
∫ 2π

0
〈f(eiθ), ϕ(eiθ)〉dθ is convergent. By (3.4)

∣∣∣
∫ 2π

0

〈f(eiθ), ϕ(reiθ)〉dθ −
∫ 2π

0

〈f(eiθ), ϕ(eiθ)〉dθ
∣∣∣

≤ ‖f‖∞
∫

[0,2π]\E0

|ϕ(reiθ) − ϕ(eiθ)|pdθ → 0, r → 1,

so Ff (ϕ) is well-defined and

Ff (ϕ) =
1
2π

∫ 2π

0

〈f(eiθ), ϕ(eiθ)〉dθ, ϕ ∈ Hp. (3.10)

As the boundary function ϕ(eiθ) is more abstract than the original one ϕ(reiθ), we would rather
use (3.9) than (3.10) to define Ff (ϕ). Because

〈f(eiθ), ·〉 = f(eiθ)(·) ∈ C∗
p a.e., θ ∈ [0, 2π],

the positive p-homogeneity and the subadditivity of Ff are clear, i.e. Ff ∈ (Hp)′p. For every
0 �= ϕ ∈ Hp, by (3.9)

Ff (ϕ) ≤ lim
r→1

1
2π

∫
[0,2π]\E0

|ϕ(reiθ)|p‖f‖∞dθ = ‖f‖∞‖ϕ‖p,

so ‖Ff‖ ≤ ‖f‖∞ and Ff ∈ (Hp)∗p by Proposition 2.2. This completes the proof.

By (3.9) we have Ff1+f2 = Ff1 +Ff2 and Faf1 = aFf1 for every f1, f2 ∈ L∞(T,C∗
p ), a ∈ R+

and Ff = 0 ⇔ f = 0. So the mapping f → Ff is an algebraic isomorphism between L∞(T,C∗
p )

and the subcone {Ff : f ∈ L∞(T,C∗
p )} of (Hp)∗p. If we endow L∞(T,C∗

p ) with another norm

‖f‖ = ‖Ff‖, f ∈ L∞(T,C∗
p ), (3.11)

then (L∞(T,C∗
p ), ‖ · ‖) is a new normed topological cone. From now on, we always treat L∞(T ,

C∗
p ) as the normed cone with this norm, and make no distinction between each f ∈ L∞(T,C∗

p)
and the corresponding functional Ff ∈ (Hp)∗p. By Theorem 3.1 we have the following corollary.

Corollary 3.1 The normed topological cone (L∞(T,C∗
p ), ‖ · ‖) is a subcone of (Hp)∗p in the

sense of norm-preserving isomorphism.

Theorem 3.2 Suppose 0 < p ≤ 1. Then L∞(T,C∗
p) is a separating subcone of (Hp)∗p.
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Proof Theorem 3.1 implies that L∞(T,C∗
p) is a subcone of (Hp)∗p. Let ϕ, ψ ∈ Hp, ϕ �= ψ.

Then their boundary functions, still denoted by ϕ and ψ, respectively, belong to Lp(T ) and are
not equal, i.e.

μ({θ ∈ [0, 2π] : ϕ(eiθ) �= ψ(eiθ)}) > 0.

We are going to construct f ∈ L∞(T,C∗
p) such that Ff (ϕ) �= Ff (ψ) in the following three cases.

If ‖ϕ‖p < ‖ψ‖p, define f ∈ L∞(T,C∗
p) by

〈f(eiθ), z〉 = |z|p, θ ∈ [0, 2π], z ∈ C,

then by (3.10)

Ff (ϕ) = ‖ϕ‖p < ‖ψ‖p = Ff (ψ).

If ‖ϕ‖p = ‖ψ‖p and there exists an E0 ∈ Σ with μ(E0) > 0 such that

|ϕ(eiθ)| < |ψ(eiθ)| a.e., θ ∈ E0,

then by [11, p. 104]
∫

E0

|ϕ(eiθ)|pdθ <
∫

E0

|ψ(eiθ)|pdθ.

Take a sufficiently large number M > 0 such that
∫

[0,2π]\E0

|ϕ(eiθ)|pdθ +M

∫
E0

|ϕ(eiθ)|pdθ <
∫

[0,2π]\E0

|ψ(eiθ)|pdθ +M

∫
E0

|ψ(eiθ)|pdθ.

Define f ∈ L∞(T,C∗
p) by

〈f(eiθ), z〉 =
{|z|p, θ ∈ [0, 2π]\E0, z ∈ C,
M |z|p, θ ∈ E0, z ∈ C,

then Ff (ϕ) < Ff (ψ) by (3.10) and the above inequality.
Now suppose ‖ϕ‖p = ‖ψ‖p and |ψ(eiθ)| = |ϕ(eiθ)| a.e., θ ∈ [0, 2π]. By ϕ �= ψ, the set

E0 = {θ ∈ [0, 2π] : ϕ(eiθ) �= ψ(eiθ), |ψ(eiθ)| = |ϕ(eiθ)|(> 0)}

has positive measure. For each θ ∈ E0, let

L(θ) = span{ϕ(eiθ), ψ(eiθ)}

be the real linear hull spanned by ϕ(eiθ) and ψ(eiθ). Then L(θ) is either the whole complex
plane C or a line across 0 according to the real linear relationship between ϕ(eiθ) and ψ(eiθ).
Let

B(θ) = cop

(
(L(θ) ∩D) ∪

{2
1
pϕ(eiθ)
|ϕ(eiθ)|

})
,

where D is the closed unit disk in C. Then B(θ) is a p-convex 0-neighborhood in L(θ). By
Proposition 2.2, the p-Minkowski functional PB(θ)p

generated by B(θ) belongs to [L(θ)]∗p. The



552 J. Y. Wang

relation L(θ)∩D ⊂ B(θ) means PB(θ)p
(z) ≤ 1 for all z ∈ L(θ)∩D. By the construction, PB(θ)p

takes its minimum 1
2 at the only point ϕ(eiθ)

|ϕ(eiθ)| on the compact set L(θ) ∩ T , so

1
2

= PB(θ)p

( ϕ(eiθ)
|ϕ(eiθ)|

)
< PB(θ)p

( ψ(eiθ)
|ψ(eiθ)|

)
, θ ∈ E0.

By Theorem 2.3, PB(θ)p
can be extended to a continuous p-subseminorm f(eiθ) ∈ C∗

p with
‖f(eiθ)‖ = ‖PB(θ)p

‖ ≤ 1 for every θ ∈ E0.
Let ω be the mapping from [0, 2π] to T defined by w(θ) = eiθ. To verify the measurability

of f on ω[E0], let

ϕn =
mn∑
j=1

z
(n)
j X

ω[E
(n)
j ]

, ψn =
mn∑
j=1

w
(n)
j X

ω[E
(n)
j ]

∈ Lp(T )

be two sequences of simple functions such that

ϕn(eiθ) → ϕ(eiθ), ψn(eiθ) → ψ(eiθ) (n→ ∞) a.e., θ ∈ E0,

where {E(n)
j } is a measurable partition of E0 for each n, X

ω[E
(n)
j ]

is the the characteristic

function of ω[E(n)
j ] and z

(n)
j , w

(n)
j ∈ C with z

(n)
j �= w

(n)
j , |z(n)

j | = |w(n)
j |(> 0). For each n ∈ N

and θ ∈ E
(n)
j , let

Ln(θ) = span{z(n)
j , w

(n)
j }

and

Bn(θ) = cop

((
Ln(θ) ∩D) ∪

{2
1
p z

(n)
j

|z(n)
j |

})
.

Then with the same argument we have PBn(θ)p
∈ [Ln(θ)]∗p and its norm-preserving extension

fn(eiθ) ∈ C∗
p. By the construction, fn can be chosen to be the C∗

p-valued simple functions on
ω[E0] such that fn(eiθ) → f(eiθ)(n→ ∞) a.e., θ ∈ E0, so f is measurable on ω[E0].

If θ ∈ [0, 2π]\E0, define f(eiθ) = 0 ∈ C∗
p. Then f ∈ L∞(T,C∗

p) with ‖f‖∞ ≤ 1. Now from
|ϕ(eiθ)| = |ψ(eiθ)| a.e., θ ∈ E0 and

1
2

=
〈
f(eiθ),

ϕ(eiθ)
|ϕ(eiθ)|

〉
<

〈
f(eiθ),

ψ(eiθ)
|ψ(eiθ)|

〉
, θ ∈ E0,

we have

Ff (ϕ) =
1
2π

∫
E0

|ϕ(eiθ)|p
〈
f(eiθ),

ϕ(eiθ)
|ϕ(eiθ)|

〉
dθ

<
1
2π

∫
E0

|ψ(eiθ)|p
〈
f(eiθ),

ψ(eiθ)
|ψ(eiθ)|

〉
dθ = Ff (ψ).

This completes the proof of L∞(T,C∗
p) separating the points of Hp. This completes the proof.

Let us make a preparation for the next theorem.
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Lemma 3.2 Let 0 < p ≤ 1 and f ∈ [Lp(T )]∗p. Define

q(z) =
{

0, z = 0,
sup‖l‖p≤ 1

|z|p
f(lz), z �= 0 (3.12)

and

Q(z) = q(z)|z|p, z ∈ C, (3.13)

where l ∈ Lp(T ) is a nonnegative real-valued function on T . Then

(i) q(tz) = q(z) for all t > 0 and z ∈ C;
(ii) q(z) ≤ ‖f‖ for all z ∈ C;
(iii) Q ∈ C∗

p and ‖Q‖ ≤ ‖f‖.
Proof The conclusions (i)–(ii) can be obtained directly from (3.12) and (2.6). The positive

p-homogeneity of Q follows (i). Suppose that Q satisfies the subadditivity. Then the result (ii)
means ‖Q‖ ≤ ‖f‖ and Q ∈ C∗

p by Proposition 2.2.
Now nothing remains but to check the subadditivity of Q, i.e.

q(z + w)|z + w|p ≤ q(z)|z|p + q(w)|w|p, z, w ∈ C. (3.14)

If z = 0, w = 0 or z+w = 0, the inequality (3.14) is clear. Suppose z �= 0, w �= 0 and z+w �= 0.
Let α be the included angle between z and z+w, and β be that between w and z+w. If α = 0,
then there is a t > 0 such that z + w = tz and q(z + w) = q(z). By w �= 0 we know t �= 1. If
0 < t < 1, then |z + w| < |z| and (3.14) is clear; if t > 1, then

w = (t− 1)z, q(z) = q(w) = q(z + w),

and thus we have (3.14) by |z + w|p ≤ |z|p + |w|p. If α = π, without loss of generality, assume
that |w| > |z|. Thus we have (3.14) by |z +w| < |w| and q(z +w) = q(w). If β = 0 or π. Then
(3.14) also holds with the same argument. If α, β ∈ (0, π), then by the Sine theorem

|z| =
sinβ

sin(α+ β)
|z + w|

and

|w| =
sinα

sin(α+ β)
|z + w|.

Then (3.14) is equivalent to

q(z + w) ≤
( sinβ

sin(α+ β)

)p

q(z) +
( sinα

sin(α+ β)

)p

q(w). (3.15)

By

z + w

|z + w| =
sinβ

sin(α + β)
z

|z| +
sinα

sin(α+ β)
w

|w| ,
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we have

q(z + w) = q
( z + w

|z + w|
)

= sup
‖l‖p≤1

f
(
l
z + w

|z + w|
)

≤ sup
‖l‖p≤1

f
(
l

sinβ
sin(α+ β)

z

|z|
)

+ sup
‖l‖p≤1

f
(
l

sinα
sin(α + β)

w

|w|
)

=
( sinβ

sin(α+ β)

)p

q
( z

|z|
)

+
( sinα

sin(α+ β)

)p

q
( w

|w|
)

=
( sinβ

sin(α+ β)

)p

q(z) +
( sinα

sin(α+ β)

)p

q(w).

Thus we have shown the inequalities (3.14)–(3.15) and the conclusion (iii).

Theorem 3.3 Suppose 0 < p ≤ 1. Then for each f ∈ (Hp)∗p, there is F ∈ L∞(T,C∗
p) such

that f ≤ F and ‖F‖ = ‖f‖.
Proof Suppose f ∈ (Hp)∗p. As Hp is a closed subspace of Lp(T ), by Theorem 2.3 f can be

extended norm-preservingly to a continuous p-subseminorm on Lp(T ), still denoted by f . Use
the function Q ∈ C∗

p in Lemma 3.2 to define a C∗
p-valued constant function g on T by

〈g(eiθ), z〉 = g(eiθ)(z) = Q(z), θ ∈ [0, 2π], z ∈ C.

Then g ∈ L∞(T,C∗
p), ‖g‖∞ = ‖Q‖ ≤ ‖f‖ and

1
2π
Q(z)μ(E) =

1
2π

∫
E

〈g(eiθ), z〉dθ, E ∈ Σ, z ∈ C. (3.16)

By Theorem 3.1, the equation

Fg(ϕ) =
1
2π

∫ 2π

0

〈g(eiθ), ϕ(eiθ)〉dθ, ϕ ∈ Hp (3.17)

defines a functional Fg ∈ L∞(T,C∗
p) ⊂ (Hp)∗p with ‖Fg‖ ≤ ‖g‖∞ ≤ ‖f‖. Now if we can verify

the inequality of f ≤ Fg on Hp, then we have the equality ‖Fg‖ = ‖f‖, and this completes the
proof.

As Hp ⊂ Lp(T ), and f and Fg (being extended norm-preservingly to Lp(T )) are continuous
on Lp(T ), let us verify the inequality f(ϕ) ≤ Fg(ϕ) for all ϕ ∈ Lp(T ) in the following three

cases. If ϕ =
n∑

j=1

zjXω[Ej] ∈ Lp(T ) is a simple function, then by the equalities (3.16)–(3.17),

f(ϕ) ≤
n∑

j=1

f(zjXω[Ej]) ≤
n∑

j=1

sup
‖l‖p≤ 1

|zj|p
f(lzj)‖zjXω[Ej]‖p

=
1
2π

n∑
j=1

Q(zj)μ(Ej) =
1
2π

∫ 2π

0

〈g(eiθ), ϕ(eiθ)〉dθ = Fg(ϕ).

If ϕ ∈ Lp(T ) is bounded, then there exists a sequence of uniformly bounded simple functions
{ϕn} on T such that

ϕn(eiθ) → ϕ(eiθ)(n → ∞), a.e. θ ∈ [0, 2π].



The Presentation Problem of the Conjugate Cone of the Hardy Space Hp (0 < p ≤ 1) 555

By Egoroff’s theorem in [9, p. 41], {ϕn} also converges in mean to ϕ, i.e.

lim
n→∞

1
2π

∫ 2π

0

|ϕn(eiθ) − ϕ(eiθ)|dθ = 0.

By the Hölder’s inequality

‖ϕn − ϕ‖p =
1
2π

∫ 2π

0

|ϕn(eiθ) − ϕ(eiθ)|pdθ

≤ 1
(2π)p

( ∫ 2π

0

|ϕn(eiθ) − ϕ(eiθ)|dθ
)p

→ 0,

i.e. {ϕn} converges in the p-norm to ϕ. We have already shown f(ϕn) ≤ Fg(ϕn) for all n, so
by the continuity of f and Fg we have

f(ϕ) = lim
n→∞ f(ϕn) ≤ lim

n→∞Fg(ϕn) = Fg(ϕ).

If ϕ ∈ Lp(T ) is a general complex function on T , then the measure ν defined by the indefinite
integral

ν(E) =
1
2π

∫
E

|ϕ(eiθ)|pdθ, E ∈ Σ

is absolutely continuous with respect to the Lebesgue measure μ, and the series

∞∑
n=1

μ({θ ∈ [0, 2π] : |ϕ(eiθ)|p > n})

is convergent (see [11, p. 115]). So μ({θ ∈ [0, 2π] : |ϕ(eiθ)|p > n}) → 0(n→ ∞). Let

ϕn(eiθ) =
{
ϕ(eiθ), |ϕ(eiθ)|p ≤ n,
0, |ϕ(eiθ)|p > n,

θ ∈ [0, 2π].

Then ϕn is bounded and

‖ϕn − ϕ‖p =
1
2π

∫ 2π

0

|ϕn(eiθ) − ϕ(eiθ)|pdθ

=
1
2π

∫
{θ∈[0,2π]:|ϕ(eiθ)|p>n}

|ϕ(eiθ)|pdθ → 0.

Thus by the continuity of f and Fg, we have

f(ϕ) = lim
n→∞ f(ϕn) ≤ lim

n→∞Fg(ϕn) = Fg(ϕ).

This completes the proof of Theorem 3.3.

Now we are in the position to show the main result of this paper.

Theorem 3.4 (The Subrepresentation Theorem) Suppose 0 < p ≤ 1. Then L∞(T,C∗
p )

is a shadow cone of (Hp)∗p in the sense of norm-preserving isomorphism, or (Hp)∗p has the
subrepresentation

(Hp)∗p � L∞(T,C∗
p). (3.18)
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Proof By Theorems 3.1–3.2, L∞(T,C∗
p) is a separating subcone of (Hp)∗p. By Theorem

3.3 for each f ∈ (Hp)∗p, there exists an F ∈ L∞(T,C∗
p) such that f(ϕ) ≤ F (ϕ) for all ϕ ∈ Hp

and ‖f‖ = ‖F‖. Thus by Definition 3.1, L∞(T,C∗
p) is a shadow cone of (Hp)∗p. So we have the

subrepresentation (3.18).
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