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Abstract The authors consider ±(Φ, J)-holomorphic maps from Sasakian manifolds into
Kähler manifolds, which can be seen as counterparts of holomorphic maps in Kähler ge-
ometry. It is proved that those maps must be harmonic and basic. Then a Schwarz lemma
for those maps is obtained. On the other hand, an invariant in its basic homotopic class is
obtained. Moreover, the invariant is just held in the class of basic maps.
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1 Introduction

An odd dimensional Riemannian manifold (M, g) is said to be a Sasakian manifold if the
cone manifold (C(M), g̃) = (M ×R+, r2g +dr2) is Kähler. Sasakian geometry was introduced
by Sasaki [11] and is often described as an odd dimensional counterpart of Kähler geometry.
The following equivalent conditions provide three alternative characterizations of the Sasakian
property, and the proof can be found in [1]. Let (M, g) be a (2n + 1)-dimensional Riemannian
manifold. Then the following conditions are equivalent:

(1) There exists a Killing vector field ξ of unit length on M , so that the (1, 1) type tensor
field Φ, defined by Φ(X) = ∇Xξ, satisfies the condition

(∇XΦ)(Y ) = 〈ξ, Y 〉gX − 〈X, Y 〉gξ (1.1)

for any pair of vector fields X and Y on M .
(2) There exists a Killing vector field ξ of unit length on M , so that the Riemann curvature

satisfies the condition

R(X, ξ)Y = 〈ξ, Y 〉gX − 〈X, Y 〉gξ (1.2)

for any pair of vector fields X and Y on M .
(3) The metric cone (M × R+, r2g + dr2) is Kähler.

Set η(X) = 〈X, ξ〉g for any vector field X on M . In view of the above equivalent conditions,
(ξ, η, Φ) is called a contact structure on M . The Killing vector field ξ is called the characteristic
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or Reeb vector field, η is called the contact 1-form, and Φ is a (1, 1) tensor field which defines a
complex structure on the contact sub-bundle D = ker η which annihilates ξ. Sasakian geometry
is a special kind of contact metric geometry, such that the structure transverse to the Reeb vector
field ξ is Kähler and invariant under the flow of ξ. Recently, influenced by the recently found
relevance of Sasakian manifolds in string theory (see [14]), Sasakian geometry was extensively
studied. Various differential geometric aspects of Sasakian manifolds were studied by Boyer,
Galicki and their collaborators (see [1–5]). A Sasakian manifold (M, g) is said to be Sasakian-
Einstein if the Ricci tensor of the metric g satisfies the Einstein condition, i.e., Ricg = λg. The
existence of Sasakian-Einstein metrics is of great interest in the physics of the CFT/Ads duality
conjecture (see [6–10, 12, 14, 16–18, 20–21]).

On the other hand, harmonic map is a very useful tool in the study of differential geometry.
A lot of results about harmonic map were discovered, combining both global and local aspects.
A map between Riemannian manifolds is called harmonic if it is a critical point of the energy
functional. It is well-known that every holomorphic map between Kähler manifolds must be
harmonic. In this paper, we consider some special maps from Sasakian manifolds into Kähler
manifolds. Let (M, ξ, η, Φ, g) be a Sasakian manifold, and N be a smooth manifold. A map
f : M → N is called basic if it satisfies df(ξ) ≡ 0.

Definition 1.1 A smooth map f : M → N from a Sasakian manifold (M, ξ, η, Φ, g) to an
almost complex manifold (N, J) is called (±) (Φ, J)-holomorphic if it satisfies

df ◦ Φ = ±J ◦ df. (1.3)

In the following, ±(Φ, J)-holomorphic will also be called holomorphic (anti-holomorphic) for
simplicity. It is easy to check that the Hopf map S2n+1 → CPn must be holomorphic, where
S2n+1 and CPn have their natural Sasakian structure and Kähler structure. So, the Hopf
map is a non-trivial example of the holomorphic map from a Sasakian manifold into a Kähler
manifold. In this paper, we show that every holomorphic map from a Sasakian manifold into
Kähler must be basic and harmonic. We also get a Schwarz lemma about these holomorphic
maps.

Theorem 1.1 Let (M, ξ, η, Φ, g) be a complete Sasakian manifold with Ricci curvature
bounded from below by −K1, and (N, H, J) be a Hermitian manifold with holomorphic bisec-
tional curvature bounded from above by −K2, where K1, K2 are constants, and K1 ≥ 2, K2 > 0.
Then for any ±(Φ, J)-holomorphic mapping f from M to N , we have

f∗dS2
N ≤ K1 − 2

K2
dS2

M . (1.4)

If K1 ≤ 2 and K2 > 0, then any ±(Φ, J)-holomorphic map f from M to N must be trivial.

As an application of the Bochner’s inequality obtained in the proof of Schwarz lemma, we
use it to get the following theorem.

Theorem 1.2 Let (M, g, ξ, η,Φ) be a complete noncompact Sasakian manifold without a
boundary of dimension 2n + 1. Let R(x) denote the pointwise lower bound of the transverse
Ricci curvature of M , and R−(x) be the negative part of R(x). Assume that R−(x) satisfies∫

M

R−dV < ∞,

∫
Br(y)

R−(x)dV = o(rβ(p−1))
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for some p > n, and some β < 2
n , where Br(y) denotes the ball centered at y with radius r.

Suppose that f is a non-constant (Φ, J)-holomorphic map from M to a Hermitian manifold
(N, h, J), which has holomorphic bisectional curvature bounded from the above by K(z) for all
z ∈ N . Suppose that the curvature of the image of M under f satisfies K(f(x)) ≤ −B for
some constant B > 0 and for all x ∈ M . Then, it must satisfy the inequality∫

M

RdV ≤
∫

M

K(f(x))|df |2dV.

In particular, if
∫

M
RdV ≥ 0, then f has to be identically constant.

Furthermore, we discuss the basic map from Sasakian manifolds to Kähler manifolds. Firstly,
we get a lemma about ∗dη. Then, using this identity, we get the following theorem.

Theorem 1.3 Let (M, g, ξ, η,Φ) be a compact Sasakian manifold, and (N, h, J) be a Kähler
manifold. Suppose that f is a (Φ, J)-holomorphic map from M to N . Let E′(f), E′′(f) be the
integrals of e′(f) = |df − J ◦ df ◦ Φ|2 and e′′(f) = |df + J ◦ df ◦ Φ|2, respectively. Then
E′(f)−E′′(f) is an invariant in its basic homotopic class. Moreover, the invariant is just held
in the class of basic maps.

2 Preliminary Results in Sasakian Geometry

Let (M, g, ξ, η, Φ) be a (2n + 1)-dimensional smooth Sasakian manifold. Denote by ∇ the
Levi-Civita connection of g, and R(X, Y ) the Riemann curvature tensor of ∇. We list the
following elementary properties of Sasakian structures, and the proof can be found in [1]:

η(ξ) = 1, dη(ξ, X) = 0, (2.1)

Φ(ξ) = 0, η(Φ(Y )) = 0, (2.2)

〈Φ(X), Y 〉g = −〈X, Φ(Y )〉g, Φ2 = −Id + η ⊗ ξ, (2.3)

dη(X, Y ) = 2〈Φ(X), Y 〉g, (2.4)

〈Φ(X), Φ(Y )〉g = 〈X, Y 〉g − η(X)η(Y ). (2.5)

The contact 1-form η defines a 2n-dimensional vector bundle D over M , where at each point
p ∈ M the fiber Dp of D is given by Dp = ker ηp. There is a decomposition of the tangent
bundle TM

TM = D ⊗ Lξ, (2.6)

where Lξ is the trivial bundle generated by the Reeb vector field ξ. On the sub-bundle D,
it is naturally endowed with both a complex structure Φ|D and a symplectic structure dη.
(D, Φ|D, dη) gives M a transverse Kähler structure with a Kähler form dη. The transverse
metric gT defined by

gT(X, Y ) =
1
2
dη(X, Φ(Y )) (2.7)

for any X, Y ∈ D. The transverse metric gT is related to the Sasakian metric g by

g = gT + η ⊗ η. (2.8)



578 B. Shen, Y. B. Shen and X. Zhang

From the transverse metric gT, one can define the transverse Levi-Civita connection on D

by

∇T
XY =

{
(∇XY )p, X ∈ D,

[ξ, Y ]p, X = ξ,
(2.9)

where Y is a section of D, and Xp is the projection of X onto D. It is easy to check that the
connection satisfies

45∇T
XY −∇T

Y X − [X, Y ]p = 0 (2.10)

and

XgT(Z, W ) = gT(∇T
XZ, W ) + gT(Z,∇T

XW ) (2.11)

for any X, Y ∈ TM and Z, W ∈ D. This means that the transverse Levi-Civita connection is
torsion-free and metric compatible. The transverse curvature relating with the above transverse
connection is defined by

RT(V, W )Z = ∇T
V ∇T

W Z −∇T
W∇T

V Z −∇T
[V,W ]Z, (2.12)

where V, W ∈ TM and Z ∈ D. From the above transverse curvature operator, we define the
transverse Ricci curvature by

RicT(X, Y ) = 〈RT(X, ei)ei, Y 〉g, (2.13)

where ei is an orthonormal basis of D and X, Y ∈ D. On the other hand, one can check easily
that

RicT(X, Y ) = Ric(X, Y ) + 2gT(X, Y ) (2.14)

for any X, Y ∈ D.
A p-form θ on the Sasakian manifold (M, g, ξ, η, φ) is called basic if

iξθ = 0, Lξθ = 0, (2.15)

where iξ is the contraction with the Killing vector field ξ, and Lξ is the Lie derivative with
respect to ξ. It is easy to see that the exterior differential preserves basic forms. Namely, if
θ is a basic form, so is dθ. Let ∧p

B(M) be the sheaf of germs of basic p-forms and Ωp
B(M) =

Γ(M,∧p
B(M)) the set of all sections of ∧p

B(M). The basic cohomology can be defined in a usual
way (see [13]).

Let T CM be the complexification of the tangent bundle of (M, g), and DC be the complexifi-
cation of the sub-bundle D. The contact structure (ξ, η, Φ) on (M, g) defines the decomposition

T CM = C ⊗ ξ ⊕ D1,0 ⊕ D0,1 (2.16)

and

DC = D1,0 ⊕ D0,1, (2.17)

where C ⊗ ξ, D1,0 and D0,1 are eigenspaces of Φ with eigenvalues 0,
√−1 and −√−1, respec-

tively. For p, q ≥ 0, we define

Dp,q = (∧pD1,0) ⊗ (∧qD0,1). (2.18)
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Therefore, we have a decomposition

∧sDC =
s⊕

i=0

Di,s−i (2.19)

for all s > 0.
Let θ be a basic complex p-form. Since iξθ = 0, the evaluation of θ on ∧dT CM is determined

by the evaluation of θ on the sub-bundle ∧DC . We will say that a basic form θ is of type (i, p−i),
if the evaluation of θ on Dj,p−j vanishes for all j �= i. Let ∧i,j

B (M) denote the sheaf of germs of
basic (i, j)-type forms. Similarly, we have the following decomposition:

∧p
B(M) ⊗ C =

⊕
i+j=p

∧i,j
B (M). (2.20)

In the end of this section, we will show the harmonicity of ±(Φ, J) holomorphic maps. Let
f : M → N be a smooth map from a Sasakian manifold (M, ξ, η, Φ, g) to an almost Hermitian
manifold (N, J, H), and suppose that it is ±(Φ, J)-holomorphic. By the definition, it is easy to
check that

df(ξ) = ∓J ◦ df ◦ Φ(ξ) = 0 (2.21)

and

J(∇df(X, Y )) + (∇N
df(X)J)(df(Y )) = ±{df((∇M

X Φ)Y ) + ∇df(X, ΦY )} (2.22)

for any (Φ, J)-holomorphic (anti-holomorphic) map f : M → N .
Choosing an orthonormal basis {ei}2m+1

i=1 on M , such that e2m+1 = ξ, we have

ξ|df |2 = 2〈∇ξdf, df〉
= 2

∑
i

〈(∇ξdf)(ei), df(ei)〉H

= −2
∑

i

〈df(∇M
ξ ei), df(ei)〉H

= −2
∑
i,k

〈df(ek), df(ei)〉H〈∇M
ξ ei, ek〉g

= 2
∑
i,k

〈df(ek), df(ei)〉H〈∇M
ξ ek, ei〉g

= 0. (2.23)

Theorem 2.1 Any ±(ϕ, J)-holomorphic map f from a Sasakian manifold to a Kähler

manifold must be basic and harmonic.

Proof Observing (2.21), we only need to prove that f is harmonic. Letting X, Y ∈ ker η,
and by (2.22), we have

J(∇df(X, Y )) = ±{df((∇XΦ)Y ) + ∇df(X, ΦY )}
= ±{df(〈Y, ξ〉X − 〈X, Y 〉ξ) + ∇df(X, ΦY )}
= ±∇df(X, ΦY ), (2.24)
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where we have used (1.1) and ∇NJ = 0. Then, Considering the symmetry of ∇df( · , · ), we
have

∇df(ΦX, ΦY ) = ±J(∇df(ΦX, Y )) = −∇df(X, Y ). (2.25)

Choosing an orthonormal basis {ei}2m+1
i=1 , such that e2m+1 = ξ, we have

τ(f) =
2m∑
i=1

∇df(ei, ei) + ∇df(ξ, ξ)

=
1
2

{ 2m∑
i=1

∇df(ei, ei) +
2m∑
i=1

∇df(Φei, Φei)
}

=
1
2

2m∑
i=1

{∇df(ei, ei) + ∇df(Φei, Φei)} = 0. (2.26)

3 A Schwarz Lemma for (Φ, J)-Holomorphic Maps

We first review local coordinates on a Sasakian manifold. In [15], it was proved that every
Sasakian manifold can be locally generated by a free real function of 2n variables. This function
is a Sasakian analogue of the Kähler potential for the Kähler geometry. More precisely, for
any point P in M , one can choose local coordinates (x, z1, z2, · · · , zn) ∈ R × Cn on a small
neighborhood U around P , such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ =
∂

∂x
,

η = dx −√−1(hjdzj − hjdzj),
Φ =

√−1{Xj ⊗ dzj − Xj ⊗ dzj},
g = η ⊗ η + 2hijdzidzl,

(3.1)

where h : U → R is a local basic function, i.e., ∂h
∂x = 0, hi = ∂h

∂zi , hij = ∂2h
∂zi∂zj , Xj =

∂
∂zj +

√−1hj
∂
∂x and Xj = ∂

∂zj −
√−1hj

∂
∂x . In the above, we set 2dzidzj = dzi⊗dzj +dzj⊗dzi.

In such local coordinates, D ⊗ C is spanned by Xi and X i. It is clear that⎧⎪⎨⎪⎩
ΦXi =

√−1Xi, ΦX i = −√−1Xi,

[Xi, Xj ] = [Xi, Xj ] = [ξ, Xi] = [ξ, Xi] = 0,

[Xi, Xj ] = −2
√−1hijξ.

(3.2)

Obviously, {η, dzi, dzj} is the dual basis of { ∂
∂x , Xi, Xj}, and

dη = 2
√−1hijdzi ∧ dzj . (3.3)

Then, the transverse metric is as follows:

gT = 2gT
ij

dzidzj = 2hijdzidzj , (3.4)

where gT
ij

= gT(Xi, Xj) = hij . By (2.9), we know that ∇T
∂

∂x

Xi = ∇T
∂

∂x

Xj = 0. Define ΓA
BC by

∇T
XB

XC = ΓA
BCXC (3.5)
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for A, B, C = 1, 2, · · · , n, 1, 2, · · · , n, where Xj = Xj . Since ∇T is torsion free, metric compati-
ble, and ∇TJ = 0, by (2.9), it is easy to check that only Γi

jk and Γi
j k

may not vanish as in the
Kähler case, where i, j, k = 1, 2, · · · , n. Moreover,

Γi
jk = Γi

kj = hil
∂hjl

∂zk
, (3.6)

where
n∑

l=1

hilhjl = δi
j . One can check that the transverse Ricci curvature can be expressed by

RT
ij

= − ∂2

∂zi∂zj
log det(hst). (3.7)

Remark 3.1 For a fixed point P ∈ M , one can always choose the above local coordinates
(x, z1, · · · , zn) centered at P satisfying additionally that { ∂

∂zi |P } ∈ Dc or equivalently hi(P ) = 0
for all j. Indeed, one can only change local coordinates by (y, u1, · · · , un), where y = x −√−1hi(P )zi +

√−1hj(P )zj and uk = zk for all k = 1, · · · , n, and change the potential function
by h∗ = h − hi(P )ui − hj(P )uj . Furthermore, in the same way as that in Kähler’s case, one
can choose a normal coordinate system (x, z1, · · · , zn), such that hi(P ) = 0, hij(P ) = δi

j and
d(hij)|P = 0, i.e., Γi

jk|P = 0 for all i, j, k. This local coordinate system also be called a normal
coordinate system on the Sasakian manifold.

Proof of Theorem 1.1 Let ∇̃N be the Chern connection on the Hermitian manifold
(N, H, J). We know that the Chern connection must be compatible with a metric structure
and a complex structure, i.e.,

∇̃NH = 0, ∇̃NJ = 0, (3.8)

where J is the almost complex structure of N . Usually, the Chern connection is not torsion
free, but the (1, 1) part of its torsion tensor vanishes.

Let us choose a normal coordinate (x, z1, · · · , zm) as explained in the above remark on the
considered point. Since f is ±(Φ, J)-holomorphic, we have

J(∇̃N
df(Xi)

df(Xj)) = ±∇̃N
df(Xi)

df(ΦXj) = ∓√−1∇̃N
df(Xi)

df(Xj) (3.9)

and

J(∇̃N
df(Xj)

df(Xi)) = ±∇̃N
df(Xj)

df(ΦXi) = ±√−1∇̃N
df(Xj)

df(Xi). (3.10)

On the other hand, since the (1, 1) part of torsion tensor vanished, we get

∇̃N
df(Xi)

df(Xj) = ∇̃N
df(Xj)

df(Xi) + [df(Xi), df(Xj)]

= ∇̃N
df(Xj)

df(Xi) + df(−2
√−1hijξ)

= ∇̃N
df(Xj)

df(Xi). (3.11)

So we have

∇̃N
df(Xi)

df(Xj) = ∇̃N
df(Xj)

df(Xi) = 0 (3.12)

for all i, j = 1, · · · , m. By (1.1) and (3.2), we have

−√−1∇M
Xi

Xj = ∇M
Xi

(ΦXj)

= (∇M
Xi

Φ)Xj + Φ(∇M
Xi

Xj)

= −〈Xi, Xj〉gξ + Φ(∇M
Xi

Xj), (3.13)
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and similarly,

√−1∇M
Xj

Xi = −〈Xi, Xj〉gξ + Φ(∇M
Xj

Xi). (3.14)

From (3.2), we have

∇M
Xj

Xi −∇M
Xi

Xj = [Xj , Xi] = 2
√−1hijξ. (3.15)

So, we have

∇M
Xj

Xi + ∇M
Xi

Xj = −√−1Φ(∇M
Xj

Xi −∇M
Xi

Xj) = 0, (3.16)

and then

∇M
Xj

Xi = −∇M
Xi

Xj =
√−1hijξ. (3.17)

By direct calculation and (2.23), we have

�|df |2 = ∇d(|df |2)(ξ, ξ) + 2hij∇Md(|df |2)(Xi, Xj)

= 2hij{XiXj |df |2} + 2hijd(|df |2)(∇M
Xi

Xj)

= 4hij{XiXj(hkl〈df(Xk), df(Xl)〉H)}
= 4hij{XiXj(hkl)〈df(Xk), df(Xl)〉H + hklXiXj(〈df(Xk), df(Xl)〉H)}
= 4hij{XiXj(hkl)}〈df(Xk), df(X l)〉H

+ 4hijhkl{〈∇̃N
df(Xi)

df(Xk), ∇̃N
df(Xj)

df(Xl)〉H
+ 〈df(Xk), ∇̃N

df(Xi)
∇̃N

df(Xj)
df(Xl)〉H}

= 4hij{XiXj(hkl)}〈df(Xk), df(X l)〉H
+ 4hijhkl{〈∇̃N

df(Xi)
df(Xk), ∇̃N

df(Xj)
df(Xl)〉H

+ 〈df(Xk), R̃N (df(Xi), df(Xj))df(X l)〉H}
= 4hijhkl〈∇̃N

df(Xi)
df(Xk), ∇̃N

df(Xj)
df(Xl)〉H

− 4hknhml ∂2

∂zm∂zn (log det(hst))〈df(Xk), df(Xl)〉H
− 4hijhkl〈R̃N (df(Xi), df(Xj))df(Xk), df(X l)〉H .

By the assumption and the above identity, we obtain the following Bochner type inequality for
the ±(Φ, J)-holomorphic map f :

�|df |2 ≥ −2(K1 − 2)|df |2 + K2|df |4, (3.18)

where we have used (2.14) and (3.7). In the following, we follow Yau’s discuss in [20]. Set
ρ = (|df |2 + C)−

1
2 , where C is a positive constant. Since ρ is bounded, using Yau’s maximum

principle on complete Riemannian manifolds, we have that, for all ε > 0, there exists a point
p ∈ M , such that at p,

|∇ρ| < ε, �ρ > −ε, ρ(p) < inf ρ + ε. (3.19)
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On the other hand, direct computation shows that

ρ�ρ = −1
2
ρ−2�|df |2 + 3|∇ρ|2. (3.20)

Applying (3.18)–(3.20), at point p ∈ M , we have

−ε(inf ρ + ε) − 3ε2 ≤ 1
2
ρ4(2(K1 − 2)|df |2 − K2|df |4). (3.21)

When ε → 0, ρ goes to its infimum, and |df |2 goes to its supremum. If K1 ≤ 2 and K2 > 0,
then |df |2 ≡ 0. If K1 > 2 and K2 > 0, we have

|df |2 ≤ 2(K1 − 2)
K2

. (3.22)

So we get the above Schwarz lemma, i.e., we complete the proof of Theorem 1.1.

Now we turn to prove Theorem 1.2.

Proof of Theorem 1.2 From the process of deducing (3.18), by noticing

〈∇̃N
df(Xi)

df(Xk), ∇̃N
df(Xj)

df(Xl)〉H
� hmn〈∇̃N

df(Xi)
df(Xk), df(Xm)〉H〈∇̃N

df(Xj)
df(Xl), df(Xn)〉H ,

the assumption implies the Bochner’s inequality

�|df |2 − |∇|df |2|2
|df |2 ≥ 2R(x)|df |2 − K(f(x))|df |4. (3.23)

By the Hölder inequality and the assumption,∫
Br(y)

Rp′
−dV ≤

(∫
Br(y)

R−dV
) p−p′

p−1
( ∫

Br(y)

Rp
−dV

) p′−1
p−1

= o(rβ(p′−1)),

where β < 2
n and p′ = 2

β + 1 > n + 1.

There is some p′ > n + 1, such that
∫

Br(y)
Rp′

−dV = o(r2). By [11, Corollary 1.2], Vr(y) =
o(r2(p+1)) as r → ∞. Applying those and (3.23) to [11, Theorem 2.3], we know∫

Br(y)

(|df |)2p′
dV = o(r2). (3.24)

Using the notations above and considering (3.24) with [11, Theorem 2.1], it is easy to see

0 ≥
∫

M

−K|df |2dV +
∫

M+

2RdV.

If we further assume
∫

M RdV ≥ 0, we get

0 ≤
∫

M+

2RdV ≤
∫

M

K(f(x))|df |2dV ≤ −B

∫
M

|df |2dV < 0.

We get a contradiction, because the set of |df | �= 0 is a null set, where f is a non-constant
map.

Remark 3.2 Recently, Tosatti [19] proved the Schwarz lemma in an almost Hermitian case.
By the concept of almost Hermitian, our theorems can be generalized to the target manifold
to as the almost Hermitian one. It is just because there exists a unique almost Hermitian
connection ∇ on (M, J, H) whose torsion has an everywhere vanishing (1,1) part.
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4 A Homotopic Invariant for Basic Maps

As in Kähler geometry, we can find some homotopic invariants to study the properties of
the basic map in the Sasakian case. We begin from a decomposition of the energy density.

Let M be a Sasakian manifold with dimension m = 2n + 1, and N be a Kähler manifold
with an even dimension. Let f be a smooth map defined as above. The energy density can be
expressed as

|df |2 =
1
4
|df − J ◦ df ◦ Φ|2 +

1
4
|df + J ◦ df ◦ Φ|2

+
1
2
〈df − J ◦ df ◦ Φ, df + J ◦ df ◦ Φ〉.

Use e′(f) and e′′(f) to denote |df − J ◦ df ◦ Φ|2 and |df + J ◦ df ◦Φ|2, respectively. Then

e′(f) − e′′(f) = −4〈df, J ◦ df ◦ Φ〉 = −4〈f∗ωN , dη〉,

where ωN is the Kähler form on N .
Define E′(f), E′′(f) to be the integrals of e′(f) and e′′(f), respectively. Then E′(f)−E′′(f)

is −4
∫ 〈f∗ωN , dη〉. To prove Theorem 4.1, we need the following lemma. It shows ∗dη =

|dη|2η ∧ (dη)n−1 by direct computation.

Lemma 4.1 Let (M, ξ, η, Φ, g) be a Sasakian manifold. Then ∗(dη) = n2η ∧ (dη)n−1.

Proof We can express η and dη as below in local coordinates in a Sasakian manifold of
dimension m = 2n + 1 (see [15]),

η = dx +
√−1

m∑
j=1

hjdzj −√−1
m∑

j=1

hjdzj ,

dη =
√−1

m∑
i,j=1

hjidzi ∧ dzj −√−1
m∑

i,j=1

hjidzi ∧ dzj .

So

∗(dη) =
√−1

√
G

2!(m − 2)!
δ1,2,··· ,m
i,j,1,i4,··· ,im

gikgjlhkldx ∧ dzi4 ∧ · · · ∧ dzj

−
√−1

√
G

2!(m − 2)!
δ1,2,··· ,m
i,j,1,i4,··· ,im

gikgjlhkldx ∧ dzi4 ∧ · · · ∧ dzj .

Since η ∧ (dη)n =
√

Gdx ∧ dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn, we derive the equation below:
√−1η ∧ (dη)n−1hji

=
√

Gδ1,2,··· ,m
1,i4,··· ,im,j,idx ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn,

√−1η ∧ (dη)n−1hji

=
√

Gδ1,2,··· ,m
1,i4,··· ,im,i,jdx ∧ dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

where x̂ means taking away the x term in the wedge product. Then,

∗(dη) = (
√−1)2η ∧ (dη)n−1(−2|h|2) = |dη|2η ∧ (dη)n−1.
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We have |dη|2 = n2, since |dη| =
∑
i

dη(ei, ei) =
∑
i

〈Φei, ei〉 = n.

With this lemma, we can prove Theorem 1.3 as follows.

Proof of Theorem 1.3 In a general Riemannian manifold, we have ∂
∂tf

∗
t ωN = dαt, where

α = f∗
t i(∂ft

∂t )ω (see [7]).
With the above lemma, the quantum is

∂

∂t
(E′(ft) − E′′(ft)) = −4

∂

∂t

∫
M

|dη|2f∗
t ωN ∧ η ∧ (dη)n−1

= −4n2

∫
M

dαt ∧ η ∧ (dη)n−1

= −4n2

∫
M

{d[αt ∧ η ∧ (dη)n−1] + αt ∧ (dη)n}.

αt ∧ (dη)n = 0 is equal to αt(ξ) = 0, i.e.,[
f∗

t i
(∂ft

∂t

)
ω
]
(ξ) = i

(∂ft

∂t

)
ω(ft∗ξ) = ω

(∂ft

∂t
, ft∗ξ

)
= 0,

which implies

ft∗ξ = 0.

Suppose that f is not a basic map. There is a variation of f in its homotopic class with
f0 = f , such that ft∗ξ �= 0. Let

∂ft

∂t

∣∣∣
t=0

= f0∗ξ.

Then

ω
(∂ft

∂t
, ft∗ξ

)∣∣∣
t=0

�= 0.

E′(f)−E′′(f) is not a constant in a small neighborhood of f0 = f , by the continuous property.

Definition 4.1 We call two functions f1, f2 (or forms ω1, ω2) basic homotopy to each other,
if f1, f2 (or ω1, ω2) are homotopy to each other and ft (or ωt) are all basic.

The basic homotopy is stronger than homotopy. Since the 1-form η is defined on M unitarily,
the basic forms on the Sasakian manifold have the following property.

Proposition 4.1 Let α1, α2 be basic 1-forms on a Sasakian manifold (M, g, ξ, η, Φ). If
they are homotopy to each other, they are basic homotopy.

Corollary 4.1 Let f1, f2 be holomorphic and anti-holomorphic maps from a Sasakian
manifold (M, g, ξ, η,Φ) to a Kähler manifold (N, h, J), respectively. Then f1, f2 are impossible
to be basic homotopy to each other, only if they are constant maps.

Proof Let f1, f2 be basic holomorphic and basic anti-holomorphic maps, respectively. If
they are basic homotopy, then

E(f1) = E′(f1) + E′′(f1) = E′(f1) − E′′(f1)

= E′(f2) − E′′(f2) = −E′(f2) − E′′(f2)

= −E(f2).

It implies E(f1) = E(f2) = 0.

Similarly, we have the following corollary.
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Corollary 4.2 The holomorphic or anti-holomorphic map from a Sasakian manifold to a
Kähler manifold is the energy minimal map in its basic homotopy class.

Acknowledgement The authors would like to thank Dr. B. Chen for the useful discussion
with respect to the last part.
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