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Abstract The author studies the boundary value problem of the classical semilinear
parabolic equations

ut − Δu = |u|p−1u in Ω × (0, T ),

and u = 0 on the boundary ∂Ω × [0, T ) and u = φ at t = 0, where Ω ⊂ R
n is a compact

C1 domain, 1 < p ≤ pS is a fixed constant, and φ ∈ C1
0 (Ω) is a given smooth function.

Introducing a new idea, it is shown that there are two sets W̃ and Z̃, such that for φ ∈ W̃ ,
there is a global positive solution u(t) ∈ W̃ with H1 omega limit 0 and for φ ∈ Z̃, the
solution blows up at finite time.
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1 Introduction
In this paper, we study the Dirichlet boundary value problem of the classical semilinear

parabolic equation

ut − Δu = |u|p−1u, in Ω × (0, T ) (1.1)

with u = 0 on the boundary ∂Ω× [0, T ) and u = φ ∈ C1
0 (Ω) at t = 0, where T > 0, Ω ⊂ R

n is a
compact C1 domain, p > 1 is a fixed constant, and φ ∈ C1

0 (Ω) is a given smooth function. This
kind of problems arose from the models from the reaction-diffusion phenomenon (see [1–2]).
Assume that p ≤ pS = n+2

n−2 for n ≥ 3 and p < ∞ for n = 1, 2. By the standard theory, we
know that there is a local time positive solution to (1.1) provided φ > 0. With the help of
Nehari functional, one may find the threshold of the initial data, such that the solution either
exists globally or blows up in finite time. The stationary solutions to (1.1) share the similar
variational structure as the solitary waves studied in [3]. Other related results about (1.1) can
be found in the recent work (see [4–5]). Since equation (1.1) is a model problem, it deserves to
have more understanding. Introducing a new idea, we show in this paper that there are two new
sets W̃ and Z̃, such that for φ ∈ W̃ , there is a global positive solution in W̃ with the H1 omega
limit 0 and for φ ∈ Z̃, the solution blows up at finite time. We may extend the method used
in this paper to treat Neumann boundary value problem of the semilinear parabolic equation
with critical power or with negative power (see [6–7]). To define the invariant set Z̃, we shall
use the fact that the cones

C+ = {u ∈ C1
0 (Ω); u ≥ 0, u �= 0},

C− = {u ∈ C1
0 (Ω); u ≤ 0, u �= 0}
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are invariant sets of (1.1). This fact can be proved by applying the maximum principle.
We now recall the standard way to construct the invariant sets for (1.1). Formally, (1.1)

has a Lyapunov functional, namely,

J(u) =
∫

Ω

1
2
|∇u|2 − 1

1 + p
up+1.

Here and hereafter, we use
∫
Ω · to denote the integration

∫
Ω ·dx. In fact, we may consider (1.1)

as the negative L2-gradient flow of the functional J( · ), that is, abstractly, (1.1) can be written
as

ut = −J ′(u).

Hence, we have
d
dt

J(u(t)) = 〈J ′(u), ut〉 = −|ut|22 = −|J ′(u)|2L2 .

Let f(u) = up and its primitive

F (u) =
up+1

p + 1
.

Introduce the working space

Σ =
{

u ∈ H1
0 ; u �= 0,

∫
Ω

F (u) < ∞
}
.

The condition
∫
Ω F (u) < ∞ is always true by using the Sobolev inequality.

Define on Σ, the functional

M(u) =
1
2

∫
Ω

|u|2

and the Nehari functional

I(u) =
∫

Ω

|∇u|2 − uf(u) =
∫

Ω

|∇u|2 − |u|p+1.

Note that these two functionals are well-defined on Σ.
Along the flow (1.1), we can see that

d
dt

M(u) =
∫

Ω

uut = −I(u). (1.2)

Let
d = inf{J(u); u ∈ Σ, I(u) = 0}.

Define
W = {u ∈ Σ; J(u) < d, I(u) > 0} ∪ {0}

and
Z = {u ∈ Σ; J(u) < d, I(u) < 0}.

The classical result says that W and Z are invariant sets of (1.1). Furthermore, for 1 < p < pS

and for any initial data φ ∈ W , the solution exists globally; for 1 < p ≤ pS and for any initial
data φ ∈ Z, the solution blows up at finite time. One may see [2] for more results and references.

We now introduce new functionals. For λ ∈ R+, define

Eλ(u) = J(u) + λM(u).

Then along the flow (1.1), we have

d
dt

Eλ(u) = −|J ′(u)|22 − λI(u). (1.3)
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From this, it is clear that for λ ≥ 0, we have

d
dt

Eλ(u) < 0

for I(u) ≥ 0 and J ′(u) �= 0.
Introduce

dλ = inf{Eλ(u); u ∈ Σ, I(u) = 0}.
As in the case for the quantity d, we can give it the mountain-pass characterization.

Assume that it is finite at this moment. Define

Wλ = {u ∈ Σ; Eλ(u) < dλ, I(u) > 0} ∪ {0}.
For convenience, we set W0 = W . Arguing as in W , one can see that Wλ with λ > 0 is
non-empty.

Then by (1.3) and the standard argument, we know that for λ ≥ 0, Wλ is an invariant set
of the flow (1.1).

One of our main results for (1.1) is to show the following conclusion.

Theorem 1.1 Fixing any power 1 < p < pS, we have for λ > 0 that
(1) dλ is finite, and dλ > d for λ > 0.
(2) For φ ∈ Wλ with λ ≥ 0, the flow exists globally and its omega limit is 0. Hence,

W̃ :=
⋃
λ≥0

Wλ

is an invariant set of (1.1).

We remark that since dλ > d, we know that the set Wλ is different from the set W .
For 0 ≤ λ < λ1(Ω), where λ1(Ω) is the first eigenvalue of −Δ on H1

0 (Ω), we may let

Eλ(u) = E(u) − λM(u), Iλ(u) = I(u) − 2λM(u)

and
∨
dλ = inf{Eλ(u); u ∈ Σ; Iλ(u) = 0}.

Set
∨
Wλ = {u ∈ Σ; Eλ(u) <

∨
dλ, Iλ(u) < 0} ∪ {0}

and
∨
W =

⋃
0≤λ≤λ1(Ω)

∨
Wλ.

Then we can also show the result as follows.

Proposition 1.1
∨
W ∩ C+ is a set of initial data with the global flow of (1.1).

Since the proof of Proposition 1.1 is similar to that of Theorem 1.1, we omit the full proof.
To find the set for finite-time blow-up solutions to (1.1), we need to use the comparison

argument. We shall restrict the initial data to being positive. Let δ ≥ 0. Consider the
boundary value problem of the following semilinear parabolic equation:

vt − Δv + δv = vp, u > 0, in Ω × (0, T ) (1.4)

with u = 0 on the boundary ∂Ω × [0, T ) and u = φ at t = 0, where T := Tmax(φ) > 0 is
the maximal existence time of the solution v(t). The key point in our construction is that the
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positive solution to (1.4) is a sub-solution to (1.1) with the same initial and boundary data.
Define on Σ+ = Σ ∩ C+,

Jδ(v) = J(v) + δM(v),

Iδ(v) = I(v) + 2δM(v),

and on the set where {Iδ(v) = 0},

Eδ(v) = Jδ(v) =
(1

2
− 1

p + 1

)∫
Ω

|u|p+1.

Define
dδ = inf{Eδ(v); v ∈ Σ+, Iδ(u) = 0}.

For ε > 0, we have

dδ,ε = inf{Jδ(u); u ∈ Σ+; Iδ(u) = ε},
Zδ = {u ∈ Σ+; Jδ(u) < dδ, Iδ(u) < 0}.

Clearly, Zδ is non-empty and it is an invariant set of the flow (1.4). We remark that one may
make similar construction on Σ− = Σ ∩ C−.

Theorem 1.2 Fix 1 < p ≤ pS.
(1) For φ ∈ Zδ, the flow v(t) to (1.4) blows up in finite time.
(2) Let u(t) be the flow to (1.1) with the initial data φ as (1) above. Then u(t) ≥ v(t) and

u(t) blows up at some t < ∞.

As a consequence of Theorem 1.2, we have the corollary below.

Corollary 1.1 Set Z̃ =
⋃

δ≥0

Zδ. Then for any φ ∈ Z̃, the solution to (1.1) blows up at finite

time.

The results above will be proved in the next section.

2 Global Solution and Finite Time Blow-Up Solution
Proof of Theorem 1.1 (1) The finiteness of dλ can be obtained in the similar way as in

[2]. Since 1 < p < pS , we know that dλ can also be achieved by some function uλ (see [8–10]).
By this, we know that dλ is different from d for λ > 0. Hence, we have dλ > d for λ > 0.

(2) Since I(φ) > 0, we have I(u(t)) > 0 for all t ∈ [0, T ). Otherwise, for some t > 0,
I(u(t)) = 0. Using the definition of dλ, we have Eλ(u(t)) ≥ dλ. This is a contradiction to the
fact that

d
dt

Eλ(u(t)) < 0 and Eλ(u(t)) < Eλ(φ) < dλ.

Using (1.2), we know that M(u(t)) < M(φ). With the help of the condition Eλ(u(t)) < d
and 1 < p < pS , we know that u(t) ∈ H1 is uniformly bounded and the bounding constant
depends only on d, p, |Ω| and M(φ).

The H1 omega limit at t = ∞ can be determined below. It is a classical fact that the H1

omega limit set ω(φ) consists of classical equilibria (see [2]). If v ∈ ω(φ), we have I(v) = 0. If
v is nontrivial, we have

Eλ(v) ≥ dλ.

It is impossible. Hence, v = 0, that is, ω(φ) = {0}.
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 Introduce

A = inf
{ |∇u|22 + δ|u|22

|u|2p+1

; u ∈ H1
0 (Ω), u �= 0

}
.
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Then it is easy to see that dδ = p−1
2(p+1)A

p+1
p−1 (see [8–10]). Assume that 0 �= v ∈ H1

0 (Ω), such
that Iδ(v) = −ε. Then

Eδ(v) =
p − 1

2(p + 1)

∫
Ω

(|∇v|2 + δv2) − ε

p + 1
. (2.1)

Using the definition of A, we have
∫

Ω

(|∇v|2 + δv2) ≤
∫

Ω

|v|p+1 ≤ A− p+1
2

(∫
Ω

(|∇v|2 + δv2)
) p+1

2
.

Hence, ∫
Ω

(|∇v|2 + δv2) ≥ A
p+1
p−1 .

Combining this with (2.1), we have

dδ,ε ≥ dδ − ε

p + 1
. (2.2)

We now prove (1) in the statement of Theorem 1.2.
(1) Take ε > 0, such that

ε < min(−Iδ(φ), dδ − Jδ(φ)).

Then by using
d
dt

Jδ(v(t)) = −|J ′
δ(v(t))|2 ≤ 0

and (2.2), we know that
Jδ(v(t)) ≤ Jδ(φ) < dδ,ε

for t ∈ [0, T ). Since Iδ(φ) < −ε, by using the definition of dδ,ε and the continuity, we know that

Iδ(v(t)) < −ε.

Note that
Iδ(v) = 2Jδ(v) −

(
1 − 2

p + 1

)∫
Ω

|v|p+1.

Assume that T = Tmax > 0 is the maximal time of the flow v(t). Assume that T = ∞. On one
hand, applying the similar formula to (1.2), we have

1
2

d
dt

∫
Ω

v2 = −Iδ(v) ≥ ε > 0,

and then ∫
Ω

v2 ≥
∫

Ω

φ2 + 2εt → ∞,

that is, |v(t)|L2 → ∞ as t → ∞.
On the other hand,

1
2

d
dt

∫
Ω

v2 = −Iδ(v) ≥ −2dε +
(
1 − 2

p + 1

) ∫
Ω

|v|p+1.

Then we have
d
dt

M(v(t)) ≥ −2dε + C(p, |Ω|)M(v(t))
p+1
2
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for some uniform constant C(p, |Ω|) > 0. Then, using M(v(t)) → ∞, we know that there exists
a T1 > 0, such that for any t > T1,

d
dt

M(v(t)) ≥ 1
2
C(p, |Ω|)M(v(t))

p+1
2 .

However, this implies that T < ∞, which is a contradiction. Hence, T < ∞ and |v(t)|∞ → ∞
as t → T .

We shall prove (2) in the statement of Theorem 1.2 by using the comparison lemma.
(2) Let Tmax < ∞ be the blow-up time of the flow v(t). Recall that v(t) > 0 for t ∈ (0, Tmax).

Let w(t) = u(t) − v(t), t < Tmax. Then w(t) is bounded in any finite time before the blowing
up time of the solution u(t). Note that

wt − Δw = pξp+1w + δv. (2.3)

Here ξ is some smooth function between u and v. Recall that w(0) = 0 and w(t)|∂Ω = 0. Let
w−(t) be the negative part of w(t). Multiplying both sides of (2.3) by w−(t) and integrating
over Ω by w−(t), we get

d
dt

∫
Ω

|w−(t)|2 = −
∫

Ω

|∇w−(t)|2 + p

∫
Ω

ξp+1|w−(t)|2 + δ

∫
Ω

vw−(t).

We remark that the last term is non-positive. Then we have

d
dt

∫
Ω

|w−(t)|2 ≤ C

∫
Ω

|w−(t)|2.

By the Gronwall inequality, we know that
∫
Ω
|w−(t)|2 = 0 for any t > 0. Hence, we have

u(t) ≥ v(t), and then
|u(t)|∞ ≥ |v(t)|∞ → ∞,

as t → Tmax < ∞.
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