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Abstract A new system of generalized nonlinear variational-like inclusions involving A-
maximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly
smooth Banach spaces is introduced, and then, by using the resolvent operator technique
associated with A-maximal m-relaxed η-accretive mappings due to Lan et al., the exis-
tence and uniqueness of a solution to the aforementioned system is established. Applying
two nearly uniformly Lipschitzian mappings S1 and S2 and using the resolvent operator
technique associated with A-maximal m-relaxed η-accretive mappings, we shall construct
a new perturbed N-step iterative algorithm with mixed errors for finding an element of the
set of the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1,S2) which is
the unique solution of the aforesaid system. We also prove the convergence and stability
of the iterative sequence generated by the suggested perturbed iterative algorithm under
some suitable conditions. The results presented in this paper extend and improve some
known results in the literature.

Keywords A-Maximal m-relaxed η-accretive mapping, System of generalized non-
linear variational-like inclusion, Resolvent operator technique, Conver-
gence and stability, Variational convergence

2000 MR Subject Classification 47H05, 47H09, 47J05

1 Introduction

The theory of variational inequalities, which was initially introduced by Stampacchia [55]
in 1964, is a branch of the mathematical sciences dealing with general equilibrium problems.
It has a wide range of applications in economics, operations research, industry, physics, and
engineering sciences. Many research papers have been written lately, both on the theory and
applications of this field. Important connections with main areas of pure and applied sciences
have been made, see for example [7, 19, 21] and the references cited therein. The development of
the variational inequality theory can be viewed as the simultaneous pursuit of two different lines
of research. On the one hand, it reveals the fundamental facts on the qualitative aspects of the
solution to important classes of problems; on the other hand, it also enables us to develop highly
efficient and powerful new numerical methods to solve, for example, obstacle, unilateral, free,
moving and the complex equilibrium problems. These activities have motivated researchers to
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generalize and extend the variational inequalities and related optimization problems in several
directions using new and novel techniques.

Variational inclusions introduced and studied by Hassouni and Moudafi [22], as the gener-
alization of variational inequalities, have been widely studied in recent years. Many efficient
ways have been studied to find solutions of variational inclusions. These methods include the
projection method and its various forms, linear approximation, descent and Newton’s method,
and the method based on the auxiliary principle technique, etc. The method based on the
resolvent operator technique is a generalization of the projection method and has been widely
used to solve variational inclusions.

Some new and interesting problems, which are called systems of variational inequality prob-
lems were introduced and studied. Pang [48], Cohen and Chaplais [13], Bianchi [8] and Ansari
and Yao [6] considered a system of scalar variational inequalities and Pang showed that the traf-
fic equilibrium problem, the spatial equilibrium problem, the Nash equilibrium problem and
the general equilibrium programming problem can be modeled as a variational inequality. He
decomposed the original variational inequality into a system of variational inequalities which
are easy to solve, and studied the convergence of such methods. Ansari et al. [5] introduced
and studied a system of vector variational inequalities by a fixed point theorem. Allevi et
al. [4] considered a system of generalized vector variational inequalities and established some
existence results under relative pseudo monotonicity. Kassay and Kolumban [29] introduced
a system of variational inequalities and proved an existence theorem by the Ky Fan lemma.
Kassay et al. [30] studied Minty and Stampacchia variational inequality systems with the help
of the Kakutani-Fan-Glicksberg fixed point theorem. Peng [49–51] introduced a system of
quasi-variational inequality problems and proved its existence theorem by the maximal element
theorems. Verma [57–59, 61–62] introduced and studied some systems of variational inequali-
ties and developed some iterative algorithms for approximating the solution to this system of
generalized nonlinear quasi-variational inequalities in Hilbert spaces. Kim and Kim [33] intro-
duced a new system of generalized nonlinear quasi-variational inequalities and obtained some
existence and uniqueness results of the solution to this system of generalized nonlinear quasi-
variational inequalities in Hilbert spaces. Cho et al. [10] introduced a new system of nonlinear
variational inequalities and proved some existence and uniqueness theorems of the solution to
this system of nonlinear variational inequalities in Hilbert spaces. As generalizations of the sys-
tem of variational inequalities, Agarwal et al. [2] introduced a system of generalized nonlinear
mixed quasi-variational inclusions and investigated the sensitivity of solutions to this system of
generalized nonlinear mixed quasi-variational inclusions in Hilbert spaces. Kazmi and Bhat [32]
introduced a system of nonlinear variational-like inclusions and gave an iterative algorithm for
finding its approximate solution. It is known that accretivity of the underlying operator plays
an indispensable role in the theory of variational inequality and its generalizations. In 2001,
Huang and Fang [26] were the first to introduce a generalized m-accretive mapping and gave
the definition of the resolvent operator for generalized m-accretive mappings in Banach spaces.
They also proved some properties of the resolvent operator for generalized m-accretive mappings
in Banach spaces. Subsequently, Fang and Huang [16], Yan et al. [65], Fang et al. [18], Lan et
al. [37,39], Fang and Huang [17], Peng et al. [52] introduced and investigated many new systems
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of variational inclusions involving H-monotone operators, (H, η)-monotone operators in Hilbert
spaces, generalized m-accretive mappings, H-accretive mappings and (H, η)-accretive mappings
in Banach spaces, respectively. In [56, 63], Verma introduced new notions of A-monotone and
(A, η)-monotone operators. Further, Cho et al. [12], Lan et al. [38] and Verma [56, 63] stud-
ied some properties of A-monotone and (A, η)-monotone operators in Hilbert spaces. In [36],
Lan et al. first introduced a new concept of (A, η)-accretive mappings, which generalizes the
existing monotone or accretive operators, studied some properties of (A, η)-accretive mappings
and defined resolvent operators associated with (A, η)-accretive mappings (also, see [11]). They
also investigated a class of variational inclusions using the resolvent operator associated with
(A, η)-accretive mappings. Subsequently, Lan [35] by using the concept of (A, η)-accretive
mappings and the new resolvent operator technique associated with (A, η)-accretive mappings,
introduced and studied a system of general mixed quasivariational inclusions involving (A, η)-
accretive mappings in Banach spaces and constructed a perturbed iterative algorithm with
mixed errors to this system of nonlinear (A, η)-accretive variational inclusions in q-uniformly
smooth Banach spaces.

Recently, Liu et al. [45] introduced and studied a new system of nonlinear variational-like
inclusions involving s-(G, η)-maximal monotone operators in Hilbert spaces and showed the
existence and uniqueness of a solution to the system of nonlinear variational-like inclusions.

Very recently, Liu et al. [44] introduced and investigated a new system of generalized nonlin-
ear variational-like inclusions involving s-(G, η)-maximal monotone operators in Hilbert spaces.
They also suggested a perturbed Mann iterative method with errors for approximating the
solution of the aforesaid system and discussed the convergence and stability of the iterative
sequence generated by their proposed algorithm.

On the other hand, related to the variational inequalities, we have the problem of finding the
fixed points of the nonexpansive mappings, which is the subject of current interest in functional
analysis. It is natural to consider a unified approach to these two different problems. Motivated
and inspired by the research going in this direction, Noor and Huang [47] considered the problem
of finding the common element of the set of the solutions of variational inequalities and the set
of the fixed points of the nonexpansive mappings. It is well known that every nonexpansive
mapping is a Lipschitzian mapping. Lipschitzian mappings have been generalized by various
authors. Sahu [53] introduced and investigated nearly uniformly Lipschitzian mappings as the
generalization of Lipschitzian mappings.

Inspired and motivated by the above achievements, in this paper, we shall consider and
study a new system of generalized nonlinear variational-like inclusions with A-maximal m-
relaxed η-accretive (so-called (A, η)-accretive) mappings in Banach spaces. By using the re-
solvent operator technique associated with A-maximal m-relaxed η-accretive mappings due to
Lan et al., we prove a few existence and uniqueness theorems of the solution to the system
of generalized nonlinear variational-like inclusions in q-uniformly smooth Banach spaces. Ap-
plying two nearly uniformly Lipschitzian mappings S1 and S2 and using the resolvent operator
technique associated with A-maximal m-relaxed η-accretive mappings, we shall construct a new
perturbed N -step iterative algorithm with mixed errors for finding an element of the set of the
fixed points of the nearly uniformly Lipschitzian mapping Q = (S1,S2) which is the unique
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solution of the aforesaid system. We also establish the convergence and stability of the iterative
sequence generated by the suggested iterative algorithm under some suitable conditions. The
results presented in this paper improve and extend the corresponding results of [18, 23–24, 32,
43–45, 54] and many other recent works.

2 Preliminaries and Basic Results

Let X be a real Banach space with a dual space X∗, 〈 · , · 〉 be the dual pair between X

and X∗ and CB(X) denotes the family of all nonempty closed bounded subsets of X . The
generalized duality mapping Jq : X � X∗ is defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is
known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x �= 0 and Jq is single-valued if X∗ is
strictly convex. In the sequel, we always assume that X is a real Banach space such that Jq is
single-valued. If X is a Hilbert space, then J2 becomes the identity mapping on X .

The modulus of the smoothness of X is the function ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup
{1

2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)
t

= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth.

We recall that a nonlinear mapping T : X → X is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖, for all x, y ∈ X.

In the next definitions, several generalizations of the nonexpansive mappings which have
been introduced by various authors in recent years are stated.

Definition 2.1 A nonlinear mapping T : X → X is called
(a) L-Lipschitzian if there exists a constant L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ X ;

(b) generalized Lipschitzian if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L(‖x − y‖ + 1), ∀x, y ∈ X ;

(c) generalized (L, M)-Lipschitzian (see [53]) if there exist two constants L, M > 0 such that

‖Tx− Ty‖ ≤ L(‖x − y‖ + M), ∀x, y ∈ X ;
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(d) asymptotically nonexpansive (see [20]) if there exists a sequence {kn} ⊆ [1,∞) with
lim

n→∞ kn = 1 such that for each n ∈ N,

‖T nx − T ny‖ ≤ kn‖x − y‖, ∀x, y ∈ X ;

(e) pointwise asymptotically nonexpansive [34] if, for each integer n ≥ 1,

‖T nx − T ny‖ ≤ αn(x)‖x − y‖, x, y ∈ X,

where αn → 1 pointwise on X;
(f) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈ N,

‖T nx − T ny‖ ≤ L‖x − y‖, ∀x, y ∈ X.

Definition 2.2 (see [53]) A nonlinear mapping T : X → X is said to be
(a) nearly Lipschitzian with respect to the sequence {an} if for each n ∈ N, there exists a

constant kn > 0 such that

‖T nx − T ny‖ ≤ kn(‖x − y‖ + an), ∀x, y ∈ X, (2.1)

where {an} is a fix sequence in [0,∞) with an → 0 as n → ∞.
For an arbitrary, but fixed n ∈ N, the infimum of constants kn in (2.1) is called a nearly

Lipschitz constant and is denoted by η(T n). Notice that

η(T n) = sup
{‖T nx − T ny‖
‖x − y‖ + an

: x, y ∈ X, x �= y
}
.

A nearly Lipschitzian mapping T with the sequence {(an, η(T n))} is said to be
(b) nearly nonexpansive if η(T n) = 1 for all n ∈ N, that is,

‖T nx − T ny‖ ≤ ‖x − y‖ + an, ∀x, y ∈ X ;

(c) nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ∈ N and lim
n→∞ η(T n) = 1, in

other words, kn ≥ 1 for all n ∈ N with lim
n→∞ kn = 1;

(d) nearly uniformly L-Lipschitzian if η(T n) ≤ L for all n ∈ N, in other words, kn = L for
all n ∈ N.

Remark 2.1 It should be pointed that
(a) Every nonexpansive mapping is an asymptotically nonexpansive mapping and every

asymptotically nonexpansive mapping is a pointwise asymptotically nonexpansive mapping.
Also, the class of Lipschitzian mappings properly includes the class of pointwise asymptotically
nonexpansive mappings.

(b) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian mapping.
Furthermore, every mapping with a bounded range is a generalized Lipschitzian mapping. It
is easy to see that the class of generalized (L, M)-Lipschitzian mappings is more general than
the class of generalized Lipschitzian mappings.
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(c) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes the
class of generalized (L, M)-Lipschitzian mappings and that of uniformly L-Lipschitzian map-
pings. Note that every nearly asymptotically nonexpansive mapping is nearly uniformly L-
Lipschitzian.

Now, we present some new examples to investigate the relations between these mappings.

Example 2.1 Let X = R and define T : X → X as follows:

T (x) =

⎧⎨⎩
1
γ

, x ∈ [0, γ],

0, x ∈ (−∞, 0) ∪ (γ,∞),

where γ > 1 is a real constant. Evidently, the mapping T is discontinuous at the points x = 0, γ.
Since every Lipschitzian mapping is continuous, it follows that T is not Lipschitzian. For each
n ∈ N, take an = 1

γn . Then

|Tx − Ty| ≤ |x − y| + 1
γ

= |x − y| + a1, ∀x, y ∈ R.

Since T nz = 1
γ , for all z ∈ R and n ≥ 2, it follows that for all x, y ∈ R and n ≥ 2,

|T nx − T ny| ≤ |x − y| + 1
γn

= |x − y| + an.

Hence, T is a nearly nonexpansive mapping with respect to the sequence {an} = { 1
γn }.

The following example shows that the nearly uniformly L-Lipschitzian mappings are not
necessarily continuous.

Example 2.2 Let X = [0, b], where b ∈ (0, 1] is an arbitrary real constant, and let the
self-mapping T of X be defined as below:

T (x) =
{

γx, x ∈ [0, b),
0, x = b,

where γ ∈ (0, 1) is also an arbitrary real constant. It is plain that the mapping T is discontinuous
at the point b. Hence, T is not a Lipschitzian mapping. For each n ∈ N, take an = γn−1. Then
for all n ∈ N and x, y ∈ [0, b), we have

|T nx − T ny| = |γnx − γny| = γn|x − y| ≤ γn|x − y| + γn

≤ γ|x − y| + γn = γ(|x − y| + an).

If x ∈ [0, b) and y = b, then for each n ∈ N, we have T nx = γnx and T ny = 0. Since
0 < |x − y| ≤ b ≤ 1, it follows that for all n ∈ N,

|T nx − T ny| = |γnx − 0| = γnx ≤ γnb ≤ γn < γn|x − y| + γn

≤ γ|x − y| + γn = γ(|x − y| + an).

Hence, T is a nearly uniformly γ-Lipschitzian mapping with respect to the sequence {an} =
{γn−1}.
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Obviously, every nearly nonexpansive mapping is a nearly uniformly Lipschitzian mapping.
In the following example, we show that the class of nearly uniformly Lipschitzian mappings
properly includes the class of nearly nonexpansive mappings.

Example 2.3 Let X = R and let the self-mapping T of X be defined as follows:

T (x) =

⎧⎪⎪⎨⎪⎪⎩
1
2
, x ∈ [0, 1) ∪ {2},

2, x = 1,
0, x ∈ (−∞, 0) ∪ (1, 2) ∪ (2, +∞).

Evidently, the mapping T is discontinuous at the points x = 0, 1, 2. Hence, T is not a Lips-
chitzian mapping. For each n ∈ N, take an = 1

2n . Then T is not a nearly nonexpansive mapping
with respect to the sequence { 1

2n }, because taking x = 1 and y = 1
2 , we have Tx = 2, Ty = 1

2

and

|Tx − Ty| > |x − y| + 1
2

= |x − y| + a1.

However,

|Tx − Ty| ≤ 4
(
|x − y| + 1

2

)
= 4(|x − y| + a1), ∀x, y ∈ R

and for all n ≥ 2,

|T nx − T ny| ≤ 4
(
|x − y| + 1

2n

)
= 4(|x − y| + an), ∀x, y ∈ R,

since T nz = 1
2 , for all z ∈ R and n ≥ 2. Hence, for each L ≥ 4, T is a nearly uniformly

L-Lipschitzian mapping with respect to the sequence { 1
2n }.

It is clear that every uniformly L-Lipschitzian mapping is a nearly uniformly L-Lipschitzian
mapping. In the next example, we show that the class of nearly uniformly L-Lipschitzian
mappings properly includes the class of uniformly L-Lipschitzian mappings.

Example 2.4 Let X = R and let the self-mapping T of X be defined in the same way
as in Example 2.3. Then T is not a uniformly 4-Lipschitzian mapping. Since if x = 1 and
y ∈ (1, 3

2 ), then we have |Tx−Ty| > 4|x−y|, because 0 < |x−y| < 1
2 . But, in view of Example

2.3, T is a nearly uniformly 4-Lipschitzian mapping.

The following example shows that the class of generalized Lipschitzian mappings properly
includes the class of Lipschitzian mappings and that of mappings with a bounded range.

Example 2.5 (see [9]) Let X = R and let T : X → X be defined by

T (x) =

⎧⎪⎪⎨⎪⎪⎩
x − 1, x ∈ (−∞,−1),
x − √

1 − (x + 1)2, x ∈ [−1, 0),
x +

√
1 − (x − 1)2, x ∈ [0, 1],

x + 1, x ∈ (1,∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and whose range is not
bounded.



600 J. Balooee

Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces, Xu [64]
proved the following result.

Lemma 2.1 The real Banach space X is q-uniformly smooth if and only if there exists a
constant cq > 0 such that for all x, y ∈ X,

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖q.

Lemma 2.2 (see [40]) For any two nonnegative real numbers r and s, we have

(r + s)q ≤ 2q(rq + sq).

Definition 2.3 A set-valued mapping T : X � X is called ξ-Ĥ-Lipschitz continuous, if
there exists a constant ξ > 0 such that

Ĥ(T (x), T (y)) ≤ ξ‖x − y‖, ∀x, y ∈ X,

where Ĥ is the Hausdorff pseudo-metric, that is, for any two nonempty subsets A, B of X,

Ĥ(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

,

where d(u, K) = inf
v∈K

‖u − v‖.

It should be pointed that if the domain of Ĥ is restricted to closed bounded subsets CB(X),
then Ĥ is the Hausdorff metric.

Definition 2.4 Let X be a q-uniformly smooth Banach space, and T, A : X → X,
η : X × X → X be single-valued mappings.

(a) T is said to be accretive if

〈T (x) − T (y), Jq(x − y)〉 ≥ 0, ∀x, y ∈ X ;

(b) T is called strictly accretive if T is accretive and

〈T (x) − T (y), Jq(x − y)〉 = 0,

if and only if x = y;
(c) T is said to be r-strongly accretive if there exists a constant r > 0 such that

〈T (x) − T (y), Jq(x − y)〉 ≥ r‖x − y‖q, ∀x, y ∈ X ;

(d) T is called m-relaxed accretive if there exists a constant m > 0 such that

〈T (x) − T (y), Jq(x − y)〉 ≥ −m‖x − y‖q, ∀x, y ∈ X ;

(e) T is said to be (ζ, ς)-relaxed cocoercive if there exist constants ζ, ς > 0 such that

〈T (x) − T (y), Jq(x − y)〉 ≥ −ζ‖T (x) − T (y)‖q + ς‖x − y‖q, ∀x, y ∈ X ;
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(f) T is said to be 	-Lipschitz continuous if there exists a constant 	 > 0 such that

‖T (x) − T (y)‖ ≤ 	‖x − y‖, ∀x, y ∈ X ;

(g) η is said to be τ-Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x − y‖, ∀x, y ∈ X ;

(h) η is said to be ε-Lipschitz continuous in the first argument if there exists a constant
ε > 0 such that

‖η(x, u) − η(y, u)‖ ≤ ε‖x − y‖, ∀x, y, u ∈ X ;

(i) η is said to be (ρ, ξ)-relaxed cocoercive with respect to A in the first argument if there
exist constants ρ, ξ > 0 such that

〈η(x, u) − η(y, u), Jq(A(x) − A(y))〉 ≥ −ρ‖η(x, u) − η(y, u)‖q + ξ‖x − y‖q, ∀x, y, u ∈ X.

In a similar way to (h) and (i), we can define the Lipschitz continuity of the mapping η in the
second argument and the relaxed cocoercivity of η with respect to A in the second argument.

Definition 2.5 Let X be a q-uniformly smooth Banach space and T : X × X → X be a
single-valued mapping. Then T is said to be (α, β)-Lipschitz continuous if there exist constants
α, β > 0 such that

‖T (x, y)− T (x′, y′)‖ ≤ α‖x − x′‖ + β‖y − y′‖, ∀x, x′, y, y′ ∈ X.

Definition 2.6 Let X be a q-uniformly smooth Banach space, η : X × X → X and
H, A : X → X be three single-valued mappings. A set-valued mapping M : X � X is said to
be

(a) accretive if

〈u − v, Jq(x − y)〉 ≥ 0, ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(b) η-accretive if

〈u − v, Jq(η(x, y))〉 ≥ 0, ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(c) strictly η-accretive if M is η-accretive and the equality holds if and only if x = y;
(d) r-strongly η-accretive if there exists a constant r > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ r‖x − y‖q, ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(e) α-relaxed η-accretive if there exists a constant α > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ −α‖x − y‖q, ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(f) m-accretive if M is accretive and (I + λM)(X) = X for all λ > 0, where I denotes the
identity operator on X;

(g) generalized m-accretive if M is η-accretive and (I + λM)(X) = X for all λ > 0;
(h) H-accretive if M is accretive and (H + λM)(X) = X for all λ > 0;
(i) (H, η)-accretive if M is η-accretive and (H + λM)(X) = X for all λ > 0.
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Remark 2.2 It should be noticed that
(1) The class of generalized m-accretive operators was first introduced by Huang and Fang

[26] and includes that of m-accretive operators as a special case. The class of H-accretive
operators was first introduced and studied by Fang and Huang [14] and also includes that of
m-accretive operators as a special case.

(2) When X = H, (a)–(i) of Definition 2.6 reduce to the definitions of monotone oper-
ators, η-monotone operators, strictly η-monotone operators, strongly η-monotone operators,
relaxed η-monotone operators, maximal monotone operators, maximal η-monotone operators,
H-monotone operators, and (H, η)-monotone operators, respectively.

Definition 2.7 Let A : X → X, η : X × X → X be two single-valued mappings and
M : X � X be a set-valued mapping. Then M is called A-maximal m-relaxed η-accretive
(so-called (A, η)-accretive in [36]) if M is m-relaxed η-accretive and (A + λM)(X) = X for
every λ > 0.

Remark 2.3 For appropriate and suitable choices of m, A, η and the space X , it is easy
to see that Definition 2.7 includes a number of definitions of monotone operators and accretive
operators (see [36]).

In [36], Lan et al. showed that (A + ρM)−1 is a single-valued operator if M : X � X is an
A-maximal m-relaxed η-accretive mapping and A : X → X is a r-strongly η-accretive mapping.
Based on this fact, we can define the resolvent operator Rη,M

ρ,A associated with an A-maximal
m-relaxed η-accretive mapping M as follows.

Definition 2.8 Let A : X → X be a strictly η-accretive mapping and M : X � X be an
A-maximal m-relaxed η-accretive mapping. The resolvent operator Rη,M

ρ,A : X → X associated
with A and M is defined by

Rη,M
ρ,A (x) = (A + ρM)−1(x), ∀x ∈ X.

Proposition 2.1 (see [36]) Let X be a q-uniformly smooth Banach space, η : X ×X → X

be τ-Lipschitz continuous, A : X → X be an r-strongly η-accretive mapping and M : X � X

be an A-maximal m-relaxed η-accretive mapping. Then the resolvent operator Rη,M
ρ,A : X → X

is τq−1

r−ρm -Lipschitz continuous, i.e.,

‖Rη,M
ρ,A (x) − Rη,M

ρ,A (y)‖ ≤ τq−1

r − ρm
‖x − y‖, ∀x, y ∈ X,

where ρ ∈ (0, r
m ) is a constant.

3 A New System of Generalized Nonlinear Variational-Like Inclusions

In this section, we introduce a new system of generalized nonlinear variational-like inclusions
in q-uniformly smooth Banach spaces and prove the existence and uniqueness theorems of the
solution to the aforesaid system.
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For i = 1, 2, let Xi be a qi-uniformly smooth Banach space with qi > 1, and S1, Q2 :
X1 → X2, T1, P2 : X2 → X1, P1, T2 : X1 → X1, Q1, S2 : X2 → X2, Ai, fi, gi, θi : Xi → Xi,
ηi : Xi × Xi → Xi and Ni : X2 × X1 × X1 × X2 → Xi, be single-valued mappings. Further,
suppose that for i ∈ {1, 2} and j ∈ {1, 2}�{i}, hi : Xj × Xi → Xi and Mi : Xi × Xj � Xi

are any nonlinear mappings such that for all xj ∈ Xj , Mi(·, xj) : Xi � Xi is an Ai-maximal
mi-relaxed ηi-accretive mapping with Range(fi−gi)∩dom Mi(·, xj) �= ∅. For any given a ∈ X1,
b ∈ X2, λ1, λ2 > 0, our problem is finding (x, y) ∈ X1 × X2 such that{

a ∈ N1(S1(x), T1(y), P1(x), Q1(y)) − (h1(y, x) + θ1(x) − λ1M1((f1 − g1)(x), y)),
b ∈ N2(S2(y), T2(x), P2(y), Q2(x)) − (h2(x, y) + θ2(y) − λ2M2((f2 − g2)(y), x)), (3.1)

where (fi − gi)(x) = fi(x) − gi(x) for all x ∈ Xi and i ∈ {1, 2}.
The problem (3.1) is called a system of generalized nonlinear variational-like inclusions in-

volving A-maximal m-relaxed η-accretive mappings in uniformly smooth Banach spaces. Next,
we denote by SGNVLI the set of the solutions of the system (3.1).

Remark 3.1 For appropriate and suitable choices of Xi, Si, Ti, Pi, Qi, Mi, Ni, ηi, λi,
Ai, fi, gi, hi, θi (i = 1, 2), a and b in the above system, one can obtain different problems
considered and studied in [24, 28, 42, 44–45, 54, 60] and the references therein.

Now, we prove the existence and uniquness of solution of the system (3.1). For this purpose,
we need the following lemma which offers a good approach to solve the system (3.1).

Lemma 3.1 For i = 1, 2, let Xi, Si, Ti, Pi, Qi, Mi, Ni, ηi, λi, Ai, fi, gi, hi, θi, a and
b be the same as in the system (3.1). Then an element (x∗, y∗) ∈ X1 × X2 is a solution of the
system (3.1), if and only if it satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1(x∗) = g1(x∗) + R
η1,M1(·,y∗)
ρ1λ1,A1

[A1(f1 − g1)(x∗)
− ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)) − h1(y∗, x∗) − θ1(x∗) − a)],

f2(y∗) = g2(y∗) + R
η2,M2(·,x∗)
ρ2λ2,A2

[A2(f2 − g2)(y∗)
− ρ2(N2(S2(y∗), T2(x∗), P2(y∗), Q2(x∗)) − h2(x∗, y∗) − θ2(y∗) − b)],

(3.2)

where ρ1, ρ2 > 0 are two constants.

Proof The conclusion follows directly from Definition 2.8 and some simple arguments.

Theorem 3.1 For i = 1, 2, let Xi, Si, Ti, Pi, Qi, Mi, Ni, ηi, λi, Ai, fi, gi, hi, θi, a and
b be the same as in the system (3.1). Further, suppose that for i = 1, 2,

(a) Si, Ti, Pi and Qi are ξi-Lipschitz continuous, ζi-Lipschitz continuous, ςi-Lipschitz
continuous and δi-Lipschitz continuous, respectively;

(b) fi and gi are ωi-Lipschitz continuous and πi-Lipschitz continuous, respectively;
(c) fi − gi is (κi, 	i)-relaxed cocoercive and hi is (εi, oi)-Lipschitz continuous;
(d) ηi and θi are τi-Lipschitz continuous and ιi-Lipschitz continuous, respectively;
(e) Ai is ri-strongly ηi-accretive and γi-Lipschitz continuous;
(f) Ni is εi-Lipschitz continuous in the first argument, υi-Lipschitz continuous in the second

argument, ι′i-Lipschitz continuous in the third argument and νi-Lipschitz continuous in the
fourth argument;
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(g) Ni(Si(.), u, v, w) is (σi, �i)-relaxed cocoercive with respect to f ′
i , for all u, v ∈ X1 and

w ∈ X2, where f ′
i : Xi → Xi is defined by

f ′
i(x) = Ai ◦ (fi − gi)(x) = Ai(fi − gi)(x),

for all x ∈ Xi;
(h) there exist constants ρi ∈ (0, ri

λimi
) and μi > 0 such that for i ∈ {1, 2} and j ∈

{1, 2}�{i},

‖Rηi,Mi(·,x)
ρiλi,Ai

(z) − R
ηi,Mi(·,y)
ρiλi,Ai

(z)‖ ≤ μi‖x − y‖, ∀z ∈ Xi, x, y ∈ Xj (3.3)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ2 + q1
√

1 − q1	1 + 2q1(cq1 + q1κ1)(ω
q1
1 + πq1

1 ) < 1,

μ1 + q2
√

1 − q2	2 + 2q2(cq2 + q2κ2)(ω
q2
2 + πq2

2 ) < 1,

qi

√
2qiγqi

i (ωqi

i + πqi

i ) − qiρi(−σiε
qi

i ξqi

i + �i) + cqi(ρiεiξi)qi

< τ1−qi

i (ri − ρiλimi)χi − ρi(ι′iςi + oi + ιi),

(3.4)

where

χ1 = 1 − (μ2 + q1

√
1 − q1	1 + 2q1(cq1 + q1κ1)(ω

q1
1 + πq1

1 )) − ρ2τ
q2−1
2 (ν2δ2 + υ2ζ2 + ε2)

r2 − ρ2λ2m2
,

χ2 = 1 − (μ1 + q2

√
1 − q2	2 + 2q2(cq2 + q2κ2)(ω

q2
2 + πq2

2 )) − ρ1τ
q1−1
1 (ν1δ1 + υ1ζ1 + ε1)

r1 − ρ1λ1m1

and cq1 and cq2 are two constants guaranteed by Lemma 2.1. Then the system (3.1) admits a
unique solution in X1 × X2.

Proof For any given ρ1 > 0 and ρ2 > 0, define

Ψρ1 : X1 × X2 → X1 and Φρ2 : X1 × X2 → X2

by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψρ1(x, y) = x − (f1 − g1)(x) + R

η1,M1(·,y)
ρ1λ1,A1

[A1(f1 − g1)(x)
− ρ1(N1(S1(x), T1(y), P1(x), Q1(y)) − h1(y, x) − θ1(x) − a)],

Φρ2(x, y) = y − (f2 − g2)(y) + R
η2,M2(·,x)
ρ2λ2,A2

[A2(f2 − g2)(y)
− ρ2(N2(S2(y), T2(x), P2(y), Q2(x)) − h2(x, y) − θ2(y) − b)]

(3.5)

for all (x, y) ∈ X1 × X2, where a ∈ X1 and b ∈ X2 are the same as in the system (3.1). Also,
define Fρ1,ρ2 : X1 × X2 → X1 × X2 as follows:

Fρ1,ρ2(x, y) = (Ψρ1(x, y), Φρ2(x, y)), (x, y) ∈ X1 × X2. (3.6)

Consider a function ‖ · ‖∗ on X1 × X2 which is defined by

‖(x, y)‖∗ = ‖x‖ + ‖y‖, ∀(x, y) ∈ X1 × X2.
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Obviously, (X1 ×X2, ‖ · ‖∗) is a Banach space. Now, we prove that F is a contraction mapping
on (X1×X2, ‖·‖∗). Let (x, y), (x′, y′) ∈ X1×X2 be given. It follows from (3.3) and Proposition
2.1, that

‖Ψρ1(x, y) − Ψρ1(x
′, y′)‖

= ‖x − (f1 − g1)(x) + R
η1,M1(·,y)
ρ1λ1,A1

[A1(f1 − g1)(x) − ρ1(N1(S1(x), T1(y), P1(x), Q1(y))

− h1(y, x) − θ1(x) − a)] − (x′ − (f1 − g1)(x′) + R
η1,M1(·,y′)
ρ1λ1,A1

[A1(f1 − g1)(x′)

− ρ1(N1(S1(x′), T1(y′), P1(x′), Q1(y′)) − h1(y′, x′) − θ1(x′) − a)])‖
≤ ‖x − x′ − [(f1 − g1)(x) − (f1 − g1)(x′)]‖

+ ‖Rη1,M1(·,y)
ρ1λ1,A1

[A1(f1 − g1)(x) − ρ1(N1(S1(x), T1(y), P1(x), Q1(y))

− h1(y, x) − θ1(x) − a)]

− R
η1,M1(·,y′)
ρ1λ1,A1

[A1(f1 − g1)(x′) − ρ1(N1(S1(x′), T1(y′), P1(x′), Q1(y′))

− h1(y′, x′) − θ1(x′) − a)]‖
≤ ‖x − x′ − [(f1 − g1)(x) − (f1 − g1)(x′)]‖

+ ‖Rη1,M1(·,y)
ρ1λ1,A1

[A1(f1 − g1)(x) − ρ1(N1(S1(x), T1(y), P1(x), Q1(y))

− h1(y, x) − θ1(x) − a)]

− R
η1,M1(·,y′)
ρ1λ1,A1

[A1(f1 − g1)(x) − ρ1(N1(S1(x), T1(y), P1(x), Q1(y))

− h1(y, x) − θ1(x) − a)]‖
+ ‖Rη1,M1(·,y′)

ρ1λ1,A1
[A1(f1 − g1)(x) − ρ1(N1(S1(x), T1(y), P1(x), Q1(y))

− h1(y, x) − θ1(x) − a)]

− R
η1,M1(·,y′)
ρ1λ1,A1

[A1(f1 − g1)(x′) − ρ1(N1(S1(x′), T1(y′), P1(x′), Q1(y′))

− h1(y′, x′) − θ1(x′) − a)]‖
≤ ‖x − x′ − [(f1 − g1)(x) − (f1 − g1)(x′)]‖ + μ1‖y − y′‖

+
τq1−1
1

r1 − ρ1λ1m1
{ρ1(‖N1(S1(x), T1(y), P1(x), Q1(y)) − N1(S1(x), T1(y), P1(x), Q1(y′))‖

+ ‖N1(S1(x), T1(y), P1(x), Q1(y′)) − N1(S1(x), T1(y), P1(x′), Q1(y′))‖
+ ‖N1(S1(x), T1(y), P1(x′), Q1(y′)) − N1(S1(x), T1(y′), P1(x′), Q1(y′))‖
+ ‖h1(y, x) − h1(y′, x′)‖ + ‖θ1(x) − θ1(x′)‖)
+ ‖A1(f1 − g1)(x) − A1(f1 − g1)(x′) − ρ1(N1(S1(x), T1(y′), P1(x′), Q1(y′))

− N1(S1(x′), T1(y′), P1(x′), Q1(y′)))‖}. (3.7)

By Lemma 2.1, there exists cq1 > 0 such that

‖x − x′ − [(f1 − g1)(x) − (f1 − g1)(x′)]‖q1

≤ ‖x − x′‖q1 − q1〈(f1 − g1)(x) − (f1 − g1)(x′), Jq1 (x − x′)〉
+ cq1‖(f1 − g1)(x) − (f1 − g1)(x′)‖q1 .

Since f1 − g1 is (κ1, 	1)-relaxed cocoercive and f1, g1 are ω1-lipschitz continuous and π1-
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Lipschitz continuous, respectively, by Lemma 2.2, we obtain

‖x − x′ − [(f1 − g1)(x) − (f1 − g1)(x′)]‖q1

≤ ‖x − x′‖q1 + (cq1 + q1κ1)‖(f1 − g1)(x) − (f1 − g1)(x′)‖q1 − q1	1‖x − x′‖q1

≤ 2q1(cq1 + q1κ1)(‖f1(x) − f1(x′)‖q1 + ‖g1(x) − g1(x′)‖q1) + (1 − q1	1)‖x − x′‖q1

= (1 − q1	1 + 2q1(cq1 + q1κ1)(ω
q1
1 + πq1

1 ))‖x − x′‖q1 . (3.8)

In view of that N1 is υ1-Lipschitz continuous in the second argument, ι′1-Lipschitz is continuous
in the third argument, ν1-Lipschitz is continuous in the fourth argument and T1, P1, Q1 are
ζ1-Lipschitz continuous, and ς1-Lipschitz continuous, δ1-Lipschitz continuous, respectively, we
conclude that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖N1(S1(x), T1(y), P1(x), Q1(y)) − N1(S1(x), T1(y), P1(x), Q1(y′))‖
≤ ν1‖Q1(y) − Q1(y′)‖ ≤ ν1δ1‖y − y′‖,
‖N1(S1(x), T1(y), P1(x), Q1(y′)) − N1(S1(x), T1(y), P1(x′), Q1(y′))‖

≤ ι′1‖P1(x) − P1(x′)‖ ≤ ι′1ς1‖x − x′‖,
‖N1(S1(x), T1(y), P1(x′), Q1(y′)) − N1(S1(x), T1(y′), P1(x′), Q1(y′))‖

≤ υ1‖T1(y) − T1(y′)‖ ≤ υ1ζ1‖y − y′‖.

(3.9)

Since A1, f1, g1 are γ1-Lipschitz continuous, ω1-Lipschitz continuious, and π1-Lipschitz contin-
uous, N1(S1(·), u, v, w) is (σ1, �1)-relaxed cocoercive with respect to f ′ = A1 ◦ (f1 − g1) in the
first argument, for all u, v ∈ X1 and w ∈ X2, N1 is ε1-Lipschitz continuous in the first argument
and S1 is ξ1-Lipschitz continuous, by Lemmas 2.1–2.2, we get

‖A1(f1 − g1)(x) − A1(f1 − g1)(x′) − ρ1(N1(S1(x), T1(y′), P1(x′), Q1(y′))

− N1(S1(x′), T1(y′), P1(x′), Q1(y′)))‖q1

≤ ‖A1(f1 − g1)(x) − A1(f1 − g1)(x′)‖q1 + cq1ρ
q1
1 ‖N1(S1(x), T1(y′), P1(x′), Q1(y′))

− N1(S1(x′), T1(y′), P1(x′), Q1(y′)))‖q1 − q1ρ1〈N1(S1(x), T1(y′), P1(x′), Q1(y′))

− N1(S1(x′), T1(y′), P1(x′), Q1(y′)), Jq1 (A1(f1 − g1)(x) − A1(f1 − g1)(x′))〉
≤ γq1

1 (‖f1(x) − f1(x′)‖ + ‖g1(x) − g1(x′)‖)q1 + cq1ρ
q1
1 εq1

1 ‖S1(x) − S1(x′)‖q1

− q1ρ1(−σ1‖N1(S1(x), T1(y′), P1(x′), Q1(y′))

− N1(S1(x′), T1(y′), P1(x′), Q1(y′))‖q1 + �1‖x − x′‖q1)

≤ 2q1γq1
1 (‖f1(x) − f1(x′)‖q1 + ‖g1(x) − g1(x′)‖q1) + cq1(ρ1ε1ξ1)q1‖x − x′‖q1

− q1ρ1(−σ1ε
q1
1 ‖S1(x) − S1(x′)‖q1 + �1‖x − x′‖q1)

≤ [2q1γq1
1 (ωq1

1 + πq1
1 ) − q1ρ1(−σ1ε

q1
1 ξq1

1 + �1) + cq1(ρ1ε1ξ1)q1 ]‖x − x′‖q1 , (3.10)

where cq1 is the constant as in Lemma 2.1.
It follows from (ε1, o1)-Lipschitz continuity of h1 and ι1-Lipschitz continuity of θ1, that

‖h1(y, x) − h1(y′, x′)‖ ≤ ε1‖y − y′‖ + o1‖x − x′‖ (3.11)

and

‖θ1(x) − θ1(x′)‖ ≤ ι1‖x − x′‖. (3.12)
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Combining (3.8)–(3.12) with (3.7), we get

‖Ψρ1(x, y) − Ψρ1(x
′, y′)‖ ≤ ϕ1‖x − x′‖ + φ1‖y − y′‖, (3.13)

where

ϕ1 = q1

√
1 − q1	1 + 2q1(cq1 + q1κ1)(ω

q1
1 + πq1

1 ) +
τq1−1
1 (ρ1(ι′1ς1 + o1 + ι1) + Γ1)

r1 − ρ1λ1m1
,

Γ1 = q1

√
2q1γq1

1 (ωq1
1 + πq1

1 ) − q1ρ1(−σ1ε
q1
1 ξq1

1 + �1) + cq1(ρ1ε1ξ1)q1 ,

φ1 = μ1 +
ρ1τ

q1−1
1 (ν1δ1 + υ1ζ1 + ε1)

r1 − ρ1λ1m1
.

Similarly, one can easily get

‖Φρ2(x, y) − Φρ2(x
′, y′)‖ ≤ ϕ2‖x − x′‖ + φ2‖y − y′‖, (3.14)

where

φ2 = q2

√
1 − q2	2 + 2q2(cq2 + q2κ2)(ω

q2
2 + πq2

2 ) +
τq2−1
2 (ρ2(ι′2ς2 + o2 + ι2) + Γ2)

r2 − ρ2λ2m2
,

Γ2 = q2

√
2q2γq2

2 (ωq2
2 + πq2

2 ) − q2ρ2(−σ2ε
q2
2 ξq2

2 + �2) + cq2(ρ2ε2ξ2)q2 ,

ϕ2 = μ2 +
ρ2τ

q2−1
2 (ν2δ2 + υ2ζ2 + ε2)

r2 − ρ2λ2m2

and cq2 is the constant as in Lemma 2.1. The inequalities (3.13)–(3.14) imply that

‖Ψρ1(x, y) − Ψρ1(x
′, y′)‖ + ‖Φρ2(x, y) − Φρ2(x

′, y′)‖ ≤ ϑ(‖x − x′‖ + ‖y − y′‖), (3.15)

where ϑ = max{ϕ1 + ϕ2, φ1 + φ2}. By using (3.6) and (3.15), we obtain

‖Fρ1,ρ2(x, y) − Fρ1,ρ2(x
′, y′)‖∗ ≤ ϑ‖(x, y) − (x′, y′)‖∗. (3.16)

From (3.4), we know that 0 ≤ ϑ < 1 and it follows from (3.16) that Fρ1,ρ2 : X1×X2 → X1×X2

is a contraction mapping. According to the Banach fixed point theorem, there exists a unique
point (x∗, y∗) ∈ X1 × X2 such that Fρ1,ρ2(x∗, y∗) = (x∗, y∗). By (3.5)–(3.6), we conclude that

f1(x∗) = g1(x∗) + R
η1,M1(·,y∗)
ρ1λ1,A1

[A1(f1 − g1)(x∗) − ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗))

− h1(y∗, x∗) − θ1(x∗) − a)],

f2(y∗) = g2(y∗) + R
η2,M2(·,x∗)
ρ2λ2,A2

[A2(f2 − g2)(y∗) − ρ2(N2(S2(y∗), T2(x∗), P2(y∗), Q2(x∗))

− h2(x∗, y∗) − θ2(y∗) − b)].

Now, in view of Lemma 3.1, (x∗, y∗) is a unique solution of the system (3.1) and this is the
desired result.

4 Variational Convergence and the Perturbed Iterative Algorithm

In this section, by using two nearly uniformly Lipschitzian mappings S1 and S2, the resol-
vent operator technique associated with A-maximal m-relaxed η-accretive mappings and the
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equivalent formulation (3.2), we construct a new perturbed N -step iterative algorithm with
mixed errors for finding an element of the set of the fixed points Q which is the unique solution
of the system (3.1).

Definition 4.1 For each n ≥ 0, let Mn, M : X � X be set-valued mappings. We
say that the sequence {Mn} is graph-convergent to M (denoted by Mn

G−→ M), if for every
(x, u) ∈ Gph(M), there exists (xn, un) ∈ Gph(Mn) such that xn → x and un → u as n → ∞,
where Gph(M) is defined as follows:

Gph(M) = {(x, u) ∈ X × X : u ∈ M(x)}.

Theorem 4.1 Suppose that, for each n ≥ 0, ηn, η : X×X → X are τn-Lipschitz continuous
and τ-Lipschitz continuous, respectively, An : X → X is rn-strongly ηn-accretive and αn-
Lipschitz continuous and A : X → X is an r-strongly η-accretive mapping. For each n ≥ 0, let
Mn, M : X � X be An-maximal mn-relaxed ηn-accretive and A-maximal m-relaxed η-accretive
mappings, respectively. Further, assume that for any given constant ρ > 0, the sequences( τq−1

n

rn−ρmn

)∞
n=0

and
( αnτq−1

n

rn−ρmn

)∞
n=0

are bounded and lim
n→∞An(x) = A(x), for any x ∈ X. Then

for any given constant ρ > 0, the sequence {Mn} is graph-convergent to M , if and only if
Rηn,Mn

ρ,An
(z) → Rη,M

ρ,A (z) for all z ∈ X.

Proof Suppose that {Mn} is graph-convergent to M and z ∈ X , ρ > 0 are arbitrary.
Since (A + ρM)(X) = X , there exists (x, u) ∈ Gph(M) for which z = A(x) + ρu and thus by
Definition 4.1, there exists a sequence {(xn, un)} ⊆ Gph(Mn) such that xn → x and un → u as
n → ∞. Clearly, (x, u) ∈ Gph(M) and {(xn, un)} ⊆ Gph(Mn) imply that

x = Rη,M
ρ,A [A(x) + ρu], xn = Rηn,Mn

ρ,An
[An(xn) + ρun]. (4.1)

Put zn = An(xn) + ρun. By using Proposition 2.1, the relation (4.1) and the assumptions, we
obtain

‖Rηn,Mn

ρ,An
(z) − Rη,M

ρ,A (z)‖
≤ ‖Rηn,Mn

ρ,An
(zn) − Rη,M

ρ,A (z)‖ + ‖Rηn,Mn

ρ,An
(zn) − Rηn,Mn

ρ,An
(z)‖

≤ ‖Rηn,Mn

ρ,An
(An(xn) + ρun) − Rη,M

ρ,A (A(x) + ρu)‖ +
τq−1
n

rn − ρmn
‖zn − z‖

≤ ‖xn − x‖ +
τq−1
n

rn − ρmn
(‖An(xn) − A(x)‖ + ρ‖un − u‖)

≤
(
1 +

αnτq−1
n

rn − ρmn

)
‖xn − x‖ +

τq−1
n

rn − ρmn
(‖An(x) − A(x)‖ + ρ‖un − u‖).

In view of the assumptions, the right side of the above inequality approaches zero as n → ∞
hence we conclude that Rηn,Mn

ρ,An
(z) → Rη,M

ρ,A (z) as n → ∞.
Conversely, assume that for any given constant ρ > 0, Rηn,Mn

ρ,An
(z) → Rη,M

ρ,A (z) as n → ∞
for all z ∈ X . Then for any given u ∈ M(x), we have x = Rη,M

ρ,A (A(x) + ρu) and hence
Rηn,Mn

ρ,An
(A(x) + ρu) → x. Now, taking xn = Rηn,Mn

ρ,An
(A(x) + ρu), we deduce that A(x) + ρu ∈

(An +ρMn)(xn) and thus there exists un ∈ Mn(xn) such that A(x)+ρu = An(xn)+ρun. Then
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one has

ρ‖un − u‖ = ‖An(xn) − A(x)‖ ≤ ‖An(xn) − An(x)‖ + ‖An(x) − A(x)‖
≤ βn‖xn − x‖ + ‖An(x) − A(x)‖.

Now, xn → x and An(x) → A(x) as n → ∞, guarantee that un → u as n → ∞. This completes
the proof.

Let S1 : X1 → X1 be a nearly uniformly L1-Lipschitzian mapping with the sequence {an}∞n=1

and S2 : X2 → X2 be a nearly uniformly L2-Lipschitzian mapping with the sequence {bn}∞n=1.
We define the self-mapping Q of X1 × X2 as follows:

Q(x, y) = (S1x,S2y), ∀(x, y) ∈ X1 × X2. (4.2)

Then Q = (S1,S2) : X1 × X2 → X1 × X2 is a nearly uniformly max{L1, L2}-Lipschitzian
mapping with the sequence {an + bn}∞n=1 with respect to the norm ‖ · ‖∗ in X1 ×X2. Because,
for any (x, y), (x′, y′) ∈ X1 × X2 and n ∈ N, we have

‖Qn(x, y) −Qn(x′, y′)‖∗
= ‖(Sn

1 x,Sn
2 y) − (Sn

1 x′,Sn
2 y′)‖∗

= ‖(Sn
1 x − Sn

1 x′,Sn
2 y − Sn

2 y′)‖∗
= ‖Sn

1 x − Sn
1 x′‖ + ‖Sn

2 y − Sn
2 y′‖

≤ L1(‖x − x′‖ + an) + L2(‖y − y′‖ + bn)

≤ max{L1, L2}(‖x − x′‖ + ‖y − y′‖ + an + bn)

= max{L1, L2}(‖(x, y) − (x′, y′)‖∗ + an + bn).

We denote the sets of all the fixed points of Si (i = 1, 2) and Q by Fix(Si) and Fix(Q),
respectively. Evidently, for any (x, y) ∈ X1 × X2, (x, y) ∈ Fix(Q) if and only if x ∈ Fix(S1)
and y ∈ Fix(S2), that is, Fix(Q) = Fix(S1,S2) = Fix(S1) × Fix(S2). We now characterize
the problem. If (x∗, y∗) ∈ Fix(Q) ∩ SGNVLI, then x∗ ∈ Fix(S1), y∗ ∈ Fix(S2) and (x∗, y∗) ∈
SGNVLI. Accordingly, it follows from Lemma 3.1 that for all n ∈ N,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x∗ = Sn
1 x∗ = x∗ − (f1 − g1)(x∗) + R

η1,M1(·,y∗)
ρ1λ1,A1

(Ω(x∗, y∗))

= Sn
1 [x∗ − (f1 − g1)(x∗) + R

η1,M1(·,y∗)
ρ1λ1,A1

(Ω(x∗, y∗))],

y∗ = Sn
2 y∗ = y∗ − (f2 − g2)(y∗) + R

η2,M2(·,x∗)
ρ2λ2,A2

(Θ(x∗, y∗))

= Sn
2 [y∗ − (f2 − g2)(y∗) + R

η2,M2(·,x∗)
ρ2λ2,A2

(Θ(x∗, y∗))],

(4.3)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω(x∗, y∗) = A1(f1 − g1)(x∗) − ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗))

− h1(y∗, x∗) − θ1(x∗) − a),
Θ(x∗, y∗) = A2(f2 − g2)(y∗) − ρ2(N2(S2(y∗), T2(x∗), P2(y∗), Q2(x∗))

− h2(x∗, y∗) − θ2(y∗) − b).

(4.4)

The fixed point formulation (4.3) enables us to suggest the following perturbed N -step iterative
algorithm with mixed errors for finding an element of the set of the fixed points of the nearly
uniformly Lipschitzian mapping Q = (S1,S2) which is the unique solution of the system (3.1).
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Algorithm 4.1 For i = 1, 2, let Xi, Si, Ti, Pi, Qi, Mi, Ni, ηi, λi, Ai, fi, gi, hi, θi, a and b

be the same as in the system (3.1), and for i = 1, 2 and for all n ∈ N, let ηn,i : Xi × Xi → Xi,
An,i : Xi → Xi be single-valued mappings. Assume that for i ∈ {1, 2}, j ∈ {1, 2}�{i} and
for all n ∈ N, Mn,i : Xi × Xj � Xi are any nonlinear operators such that for all xj ∈ Xj

and n ∈ N, Mn,i(·, xj) : Xi � Xi is an An,i-maximal mn,i-relaxed ηn,i-accretive mapping
with Range(fi − gi) ∩ dom Mn,i(·, xj) �= ∅. Further, for i = 1, 2, let Si : Xi → Xi be a nearly
uniformly Lipschitzian mapping. For any given (x1, y1) ∈ X1×X2, define the iterative sequence
{(xn, yn)}∞n=1 in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1Sn
1 [zn,1 − (f1 − g1)(zn,1)

+ R
ηn,1,Mn,1(·,tn,1)
ρ1λ1,An,1

(Ω(zn,1, tn,1))] + αn,1en,1 + βn,1jn,1 + rn,1,

yn+1 = (1 − αn,1 − βn,1)yn + αn,1Sn
2 [tn,1 − (f2 − g2)(tn,1)

+ R
ηn,2,Mn,2(·,zn,1)
ρ2λ2,An,2

(Θ(zn,1, tn,1))] + αn,1pn,1 + βn,1sn,1 + kn,1,

zn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1Sn
1 [zn,i+1 − (f1 − g1)(zn,i+1)

+ R
ηn,1,Mn,1(·,tn,i+1)
ρ1λ1,An,1

(Ω(zn,i+1, tn,i+1))]
+ αn,i+1en,i+1 + βn,i+1jn,i+1 + rn,i+1,

tn,i = (1 − αn,i+1 − βn,i+1)yn + αn,i+1Sn
2 [tn,i+1 − (f2 − g2)(tn,i+1)

+ R
ηn,2,Mn,2(·,zn,i+1)
ρ2λ2,An,2

(Θ(zn,i+1, tn,i+1))]
+ αn,i+1pn,i+1 + βn,i+1sn,i+1 + kn,i+1,

...
zn,N−1 = (1 − αn,N − βn,N )xn + αn,NSn

1 [xn − (f1 − g1)(xn)
+ R

ηn,1,Mn,1(·,yn)
ρ1λ1,An,1

(Ω(xn, yn))] + αn,Nen,N + βn,N jn,N + rn,N ,

tn,N−1 = (1 − αn,N − βn,N)yn + αn,NSn
2 [yn − (f2 − g2)(yn)

+ R
ηn,2,Mn,2(·,xn)
ρ2λ2,An,2

(Θ(xn, yn))] + αn,Npn,N + βn,Nsn,N + kn,N ,

i = 1, 2, · · · , N − 2,

(4.5)

where, for all n ∈ N and i = 1, 2, · · · , N − 1,

Ω(zn,i, tn,i) = A1(f1 − g1)(zn,i) − ρ1(N1(S1(zn,i), T1(tn,i), P1(zn,i), Q1(tn,i))

− h1(tn,i, zn,i) − θ1(zn,i) − a),

Θ(zn,i, tn,i) = A2(f2 − g2)(tn,i) − ρ2(N2(S2(tn,i), T2(zn,i), P2(tn,i), Q2(zn,i))

− h2(zn,i, tn,i) − θ2(tn,i) − b),

Ω(xn, yn) = A1(f1 − g1)(xn) − ρ1(N1(S1(xn), T1(yn), P1(xn), Q1(yn))

− h1(yn, xn) − θ1(xn) − a),

Θ(xn, yn) = A2(f2 − g2)(yn) − ρ2(N2(S2(yn), T2(xn), P2(yn), Q2(xn))

− h2(xn, yn) − θ2(yn) − b),

ρ1, ρ2 > 0 are two constants, {αn,i}∞n=1, {βn,i}∞n=1 (i = 1, 2, · · · , N), are 2N sequences in [0, 1]

such that for all n ∈ N and i = 1, 2, · · · , N ,
∞∑

n=1

N∏
i=1

αn,i = ∞,
∞∑

n=1
βn,i < ∞, αn,i + βn,i ≤ 1,

and {en,i}∞n=1, {pn,i}∞n=1, {jn,i}∞n=1, {sn,i}∞n=1, {rn,i}∞n=1, {kn,i}∞n=1 (i = 1, 2, · · · , N) are 6N

sequences to take into account a possible inexact computation of the resolvent operator point
satisfying the following conditions: For i = 1, 2, · · · , N , {jn,i}∞n=1 are N bounded sequences in
X1, {sn,i}∞n=1 are N bounded sequences in X2 and {(en,i, pn,i)}∞n=1, {(rn,i, kn,i)}∞n=1 are 2N
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sequences in X1 × X2 such that for all n ∈ N and i = 1, 2, · · · , N ,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

en,i = e′n,i + e′′n,i, pn,i = p′n,i + p′′n,i,

lim
n→∞ ‖(e′n,i, p

′
n,i)‖∗ = 0,

∞∑
n=1

‖(e′′n,i, p
′′
n,i)‖∗ < ∞,

∞∑
n=1

‖(rn,i, kn,i)‖∗ < ∞.

(4.6)

Let {(un, vn)}∞n=1 be any sequence in X1 × X2 and define {εn}∞n=1 by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn = ‖(un+1, vn+1) − (En, Dn)‖∗,
En = (1 − αn,1 − βn,1)un + αn,1Sn

1 [νn,1 − (f1 − g1)(νn,1)
+ R

ηn,1,Mn,1(·,wn,1)
ρ1λ1,An,1

(Ω(νn,1, wn,1))] + αn,1en,1 + βn,1jn,1 + rn,1,

Dn = (1 − αn,1 − βn,1)vn + αn,1Sn
2 [wn,1 − (f2 − g2)(wn,1)

+ R
ηn,2,Mn,2(·,νn,1)
ρ2λ2,An,2

(Θ(νn,1, wn,1))] + αn,1pn,1 + βn,1sn,1 + kn,1,

νn,1 = (1 − αn,2 − βn,2)un + αn,2Sn
1 [νn,2 − (f1 − g1)(νn,2)

+ R
ηn,1,Mn,1(·,wn,2)
ρ1λ1,An,1

(Ω(νn,2, wn,2))] + αn,2en,2 + βn,2jn,2 + rn,2,

wn,1 = (1 − αn,2 − βn,2)vn + αn,2Sn
2 [wn,2 − (f2 − g2)(wn,2)

+ R
ηn,2,Mn,2(·,νn,2)
ρ2λ2,An,2

(Θ(νn,2, wn,2))] + αn,2pn,2 + βn,2sn,2 + kn,2,
...

νn,N−2 = (1 − αn,N−1 − βn,N−1)un + αn,N−1Sn
1 [νn,N−1 − (f1 − g1)(νn,N−1)

+ R
ηn,1,Mn,1(·,wn,N−1)
ρ1λ1,An,1

(Ω(νn,N−1, wn,N−1))]
+ αn,N−1en,N−1 + βn,N−1jn,N−1 + rn,N−1,

wn,N−2 = (1 − αn,N−1 − βn,N−1)vn + αn,N−1Sn
2 [wn,N−1 − (f2 − g2)(wn,N−1)

+ R
ηn,2,Mn,2(·,νn,N−1)
ρ2λ2,An,2

(Θ(νn,N−1, wn,N−1))]
+ αn,N−1pn,N−1 + βn,N−1sn,N−1 + kn,N−1,

νn,N−1 = (1 − αn,N − βn,N )un + αn,NSn
1 [un − (f1 − g1)(un)

+ R
ηn,1,Mn,1(·,vn)
ρ1λ1,An,1

(Ω(un, vn))] + αn,Nen,N + βn,N jn,N + rn,N ,

wn,N−1 = (1 − αn,N − βn,N )vn + αn,NSn
2 [vn − (f2 − g2)(vn)

+ R
ηn,2,Mn,2(·,un)
ρ2λ2,An,2

(Θ(un, vn))] + αn,Npn,N + βn,Nsn,N + kn,N ,

(4.7)

where for all n ∈ N and i = 1, 2, · · · , N − 1,

Ω(νn,i, wn,i) = A1(f1 − g1)(νn,i) − ρ1(N1(S1(νn,i), T1(wn,i), P1(νn,i), Q1(wn,i))

− h1(wn,i, νn,i) − θ1(νn,i) − a),

Θ(νn,i, wn,i) = A2(f2 − g2)(wn,i) − ρ2(N2(S2(wn,i), T2(νn,i), P2(wn,i), Q2(νn,i))

− h2(νn,i, wn,i) − θ2(wn,i) − b),

Ω(un, vn) = A1(f1 − g1)(un) − ρ1(N1(S1(un), T1(vn), P1(un), Q1(vn))

− h1(vn, un) − θ1(un) − a),

Θ(un, vn) = A2(f2 − g2)(vn) − ρ2(N2(S2(vn), T2(un), P2(vn), Q2(un))

− h2(un, vn) − θ2(vn) − b).

Definition 4.2 For i = 1, 2, let Xi be a real Banach space and T be a self-mapping of
X1 × X2. Suppose that (x1, y1) ∈ X1 × X2 and (xn+1, yn+1) = f(T, xn, yn) defines an iterative
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procedure which yields a sequence of points {(xn, yn)}∞n=1 in X1 × X2. Assume that

Fix(T ) = {(x, y) ∈ X1 × X2 : (x, y) = T (x, y)} �= ∅

and {(xn, yn)}∞n=1 converges to (x∗, y∗) ∈ Fix(T ). Further, let {(zn, wn)}∞n=1 be an arbitrary
sequence in X1 × X2 and εn = ‖(zn+1, wn+1) − f(T, zn, wn)‖ for each n ∈ N. If lim

n→∞ εn = 0
implies that lim

n→∞(zn, wn) = (x∗, y∗), then the iteration procedure defined by (xn+1, yn+1) =
f(T, xn, yn) is said to be T -stable or stable with respect to T .

Remark 4.1 Some stability results of the iteration procedures for variational inequalities
(inclusions) have been established by various authors, see for example [1, 3, 25, 27, 31, 46].

5 Convergence and Stability of the Resolvent Iterative Algorithm

In this section, we establish the convergence and stability of the iterative sequence generated
by the suggested perturbed N -step iterative algorithm under some suitable conditions. For this
purpose, we need the following lemma.

Lemma 5.1 Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying the
following condition: there exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0,

where tn ∈ [0, 1],
∞∑

n=1
tn = ∞, lim

n→∞ bn = 0,
∞∑

n=1
cn < ∞. Then lim

n→0
an = 0.

Proof The proof directly follows from Lemma 2 in [41].

Theorem 5.1 For i = 1, 2 and for all n ∈ N, suppose that Xi, Si, Ti, Pi, Qi, Mi, Ni,
ηi, λi, Ai, fi, gi, hi, θi, An,i, ηn,i, Mn,i, a and b are the same as in Algorithm 4.1 and let
all the conditions of Theorem 3.1 hold. Assume that S1 : X1 → X1 is a nearly uniformly
L1-Lipschitzian mapping with the sequence {c̃n}∞n=1, S2 : X2 → X2 is a nearly uniformly L2-
Lipschitzian mapping with the sequence {d̃n}∞n=1, and Q is a self-mapping of X1 × X2 defined
by (4.2) such that Fix(Q) ∩ SGNVLI �= ∅. Further, for all n ∈ N and i = 1, 2, let

(a) ηn,i : Xi × Xi → Xi be τn,i-Lipschitz continuous;
(b) An,i : Xi → Xi be rn,i-strongly ηn,i-accretive and γn,i-Lipschitz continuous;
(c) lim

n→∞An,i(x) = Ai(x) and Mn,i(·, xj)
G−→ Mi(·, xj), for i ∈ {1, 2}, j ∈ {1, 2}�{i} and

for any xj ∈ Xj;
(d) there exist constants ρi such that for all n ∈ N and i = 1, 2, ρi ∈ (0,

rn,i

λimn,i
) and

‖Rηn,i,Mn,i(·,x)
ρiλi,An,i

(z) − R
ηn,i,Mn,i(·,y)
ρiλi,An,i

(z)‖ ≤ μn,i‖x − y‖, ∀z ∈ Xi, x, y ∈ Xj ;

(e) the sequences
( τ

qi−1
n,i

rn,i−ρiλimn,i

)∞
n=1

and
( γn,iτ

q−1
n,i

rn,i−ρiλimn,i

)∞
n=1

be bounded;
(f) τn,i → τi, rn,i → ri, γn,i → γi, mn,i → mi, μn,i → μi, as n → ∞;

(g) there exist a constant α > 0 such that
N∏

i=1

αn,i ≥ α for all n ∈ N;

(h) Liθ̃ < 1 for any θ̃ ∈ (ϑ, 1) and i = 1, 2, where ϑ is the same as in (3.15).
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Then
(1) The iterative sequence {(xn, yn)}∞n=1 generated by Algorithm 4.1, converges strongly to

the only element (x∗, y∗) of Fix(Q) ∩ SGNVLI.
(2) Moreover, lim

n→∞(un, vn) = (x∗, y∗) if and only if lim
n→∞ εn = 0, where {(un, vn)}∞n=1 is

any sequence in X1 × X2 defined by (4.7).

Proof According to Theorem 3.1, the system (3.1) has a unique solution (x∗, y∗) in X1 ×
X2. Since SGNVLI is a singleton set and Fix(Q) ∩ SGNVLI �= ∅, it follows that (x∗, y∗) ∈
Fix(Q) and so x∗ ∈ Fix(S1) and y∗ ∈ Fix(S2). Hence, in view of Lemma 3.1, for all n ∈ N, we
can write {

x∗ = Sn
1 x∗ = Sn

1 [x∗ − (f1 − g1)(x∗) + R
η1,M1(·,y∗)
ρ1λ1,A1

(Ω(x∗, y∗))],
y∗ = Sn

2 y∗ = Sn
2 [y∗ − (f2 − g2)(y∗) + R

η2,M2(·,x∗)
ρ2λ2,A2

(Θ(x∗, y∗))],
(5.1)

where Ω(x∗, y∗) and Θ(x∗, y∗) are the same as in (4.4). Letting

K = max
{

sup
n≥1

‖jn,i − x∗‖, sup
n≥1

‖sn,i − y∗‖, i = 1, 2, · · · , N
}

and applying (4.5), (5.1), Proposition 2.1 and the assumptions, it follows that

‖xn+1 − x∗‖
≤ (1 − αn,1 − βn,1)‖xn − x∗‖ + αn,1‖Sn

1 [zn,1 − (f1 − g1)(zn,1)

+ R
ηn,1,Mn,1(·,tn,1)
ρ1λ1,An,1

(Ω(zn,1, tn,1))] − Sn
1 [x∗ − (f1 − g1)(x∗)

+ R
η1,M1(·,y∗)
ρ1λ1,A1

(Ω(x∗, y∗))]‖ + βn,1‖jn,1 − x∗‖ + αn,1‖en,1‖ + ‖rn,1‖
≤ (1 − αn,1 − βn,1)‖xn − x∗‖ + αn,1L1(‖zn,1 − x∗ − [(f1 − g1)(zn,1) − (f1 − g1)(x∗)]‖

+ ‖Rηn,1,Mn,1(·,tn,1)
ρ1λ1,An,1

[A1(f1 − g1)(zn,1) − ρ1(N1(S1(zn,1), T1(tn,1), P1(zn,1), Q1(tn,1))

− h1(tn,1, zn,1) − θ1(zn,1) − a)] − R
η1,M1(·,y∗)
ρ1λ1,A1

[A1(f1 − g1)(x∗)

− ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)) − h1(y∗, x∗) − θ1(x∗) − a)]‖ + c̃n)

+ αn,1(‖e′n,1‖ + ‖e′′n,1‖) + ‖rn,1‖ + βn,1K

≤ (1 − αn,1 − βn,1)‖xn − x∗‖ + αn,1L1(‖zn,1 − x∗ − [(f1 − g1)(zn,1) − (f1 − g1)(x∗)]‖
+ ‖Rηn,1,Mn,1(·,tn,1)

ρ1λ1,An,1
[A1(f1 − g1)(zn,1) − ρ1(N1(S1(zn,1), T1(tn,1), P1(zn,1), Q1(tn,1))

− h1(tn,1, zn,1) − θ1(zn,1) − a)] − R
ηn,1,Mn,1(·,tn,1)
ρ1λ1,An,1

[A1(f1 − g1)(x∗)

− ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)) − h1(y∗, x∗) − θ1(x∗) − a)]‖
+ ‖Rηn,1,Mn,1(·,tn,1)

ρ1λ1,An,1
[A1(f1 − g1)(x∗) − ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗))

− h1(y∗, x∗) − θ1(x∗) − a)] − R
ηn,1,Mn,1(·,y∗)
ρ1λ1,An,1

[A1(f1 − g1)(x∗)

− ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)) − h1(y∗, x∗) − θ1(x∗) − a)]‖
+ ‖Rηn,1,Mn,1(·,y∗)

ρ1λ1,An,1
[A1(f1 − g1)(x∗) − ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗))

− h1(y∗, x∗) − θ1(x∗) − a)] − R
η1,M1(·,y∗)
ρ1λ1,A1

[A1(f1 − g1)(x∗)

− ρ1(N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)) − h1(y∗, x∗) − θ1(x∗) − a)]‖ + c̃n)

+ αn,1‖e′n,1‖ + ‖e′′n,1‖ + ‖rn,1‖ + βn,1K
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≤ (1 − αn,1 − βn,1)‖xn − x∗‖ + αn,1L1(‖zn,1 − x∗ − [(f1 − g1)(zn,1) − (f1 − g1)(x∗)]‖

+ μn,1‖tn,1 − y∗‖ +
τq1−1
n,1

rn,1 − ρ1λ1mn,1
{ρ1[‖N1(S1(zn,1), T1(tn,1), P1(zn,1), Q1(tn,1))

− N1(S1(zn,1), T1(tn,1), P1(zn,1), Q1(y∗))‖ + ‖N1(S1(zn,1), T1(tn,1), P1(zn,1), Q1(y∗))

− N1(S1(zn,1), T1(tn,1), P1(x∗), Q1(y∗))‖ + ‖N1(S1(zn,1), T1(tn,1), P1(x∗), Q1(y∗))

− N1(S1(zn,1), T1(y∗), P1(x∗), Q1(y∗))‖ + ‖h1(tn,1, zn,1) − h1(y∗, x∗)‖
+ ‖θ1(zn,1) − θ1(x∗)‖] + ‖A1(f1 − g1)(zn,1) − A1(f1 − g1)(x∗)

− ρ1(N1(S1(zn,1), T1(y∗), P1(x∗), Q1(y∗)) − N1(S1(x∗), T1(y∗), P1(x∗), Q1(y∗)))‖}
+ ‖Υ(n)‖ + c̃n) + αn,1‖e′n,1‖ + ‖e′′n,1‖ + ‖rn,1‖ + βn,1K

≤ (1 − αn,1 − βn,1)‖xn − x∗‖ + αn,1L1(ϕ1(n)‖zn,1 − x∗‖ + φ1(n)‖tn,1 − y∗‖)
+ αn,1(L1(‖Υ(n)‖ + c̃n) + ‖e′n,1‖) + ‖e′′n,1‖ + ‖rn,1‖ + βn,1K, (5.2)

where

ϕ1(n) = q1

√
1 − q1	1 + 2q1(cq1 + q1κ1)(ω

q1
1 + πq1

1 ) +
τq1−1
n,1 (ρ1(ι′1ς1 + o1 + ι1) + Γ1(n))

rn,1 − ρ1λ1mn,1
,

Γ1(n) = q1

√
2q1γq1

n,1(ω
q1
1 + πq1

1 ) − q1ρ1(−σ1ε
q1
1 ξq1

1 + �1) + cq1(ρ1ε1ξ1)q1 ,

φ1(n) = μn,1 +
ρ1τ

q1−1
n,1 (ν1δ1 + υ1ζ1 + ε1)

rn,1 − ρ1λ1mn,1
,

Υ(n) = R
ηn,1,Mn,1(·,y∗)
ρ1λ1,An,1

(Ω(x∗, y∗)) − R
η1,M1(·,y∗)
ρ1λ1,A1

(Ω(x∗, y∗)).

Similarly, by (4.5), Proposition 2.1 and the assumptions, we get

‖yn+1 − y∗‖ ≤ (1 − αn,1 − βn,1)‖yn − y∗‖ + αn,1L2(ϕ2(n)‖zn,1 − x∗‖
+ φ2(n)‖tn,1 − y∗‖) + αn,1(L2(‖Δ(n)‖ + d̃n) + ‖p′n,1‖)
+ ‖p′′n,1‖ + ‖kn,1‖ + βn,1K, (5.3)

where

φ2(n) = q2

√
1 − q2	2 + 2q2(cq2 + q2κ2)(ω

q2
2 + πq2

2 ) +
τq2−1
n,2 (ρ2(ι′2ς2 + o2 + ι2) + Γ2(n))

rn,2 − ρ2λ2mn,2
,

Γ2(n) = q2

√
2q2γq2

n,2(ω
q2
2 + πq2

2 ) − q2ρ2(−σ2ε
q2
2 ξq2

2 + �2) + cq2(ρ2ε2ξ2)q2 ,

ϕ2(n) = μn,2 +
ρ2τ

q2−1
n,2 (ν2δ2 + υ2ζ2 + ε2)

rn,2 − ρ2λ2mn,2
,

Δ(n) = R
ηn,2,Mn,2(·,x∗)
ρ2λ2,An,2

(Θ(x∗, y∗)) − R
η2,M2(·,x∗)
ρ2λ2,A2

(Θ(x∗, y∗)).

Letting L = max{L1, L2}, and using (5.2)–(5.3), we get

‖(xn+1, yn+1) − (x∗, y∗)‖∗
≤ (1 − αn,1 − βn,1)‖(xn, yn) − (x∗, y∗)‖∗ + αn,1Lϑ(n)‖(zn,1, tn,1) − (x∗, y∗)‖∗

+ αn,1(L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n) + ‖(e′n,1, p
′
n,1)‖∗)
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+ ‖(e′′n,1, p
′′
n,1)‖∗ + ‖(rn,1, kn,1)‖∗ + 2βn,1K, (5.4)

where
ϑ(n) = max{ϕ1(n) + ϕ2(n), φ1(n) + φ2(n)}.

In a similar way to the proof of the inequalities (5.2)–(5.4), for i = 1, 2, · · · , N −2, we can prove
that

‖(zn,i, tn,i) − (x∗, y∗)‖∗
≤ (1 − αn,i+1 − βn,i+1)‖(xn, yn) − (x∗, y∗)‖∗ + αn,i+1Lϑ(n)‖(zn,i+1, tn,i+1) − (x∗, y∗)‖∗

+ αn,i+1(L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n) + ‖(e′n,i+1, p
′
n,i+1)‖∗)

+ ‖(e′′n,i+1, p
′′
n,i+1)‖∗ + ‖(rn,i+1, kn,i+1)‖∗ + 2βn,i+1K (5.5)

and

‖(zn,N−1, tn,N−1) − (x∗, y∗)‖∗
≤ (1 − αn,N − βn,N)‖(xn, yn) − (x∗, y∗)‖∗ + αn,NLϑ(n)‖(zn,N , tn,N) − (x∗, y∗)‖∗

+ αn,N (L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n) + ‖(e′n,N , p′n,N )‖∗)
+ ‖(e′′n,N , p′′n,N)‖∗ + ‖(rn,N , kn,N )‖∗ + 2βn,NK. (5.6)

Clearly, ϑ(n) → ϑ = max{ϕ1 + ϕ2, φ1 + φ2} as n → ∞, where ϕ1, ϕ2, φ1, φ2 are the same as
in (3.13)–(3.14). Then for ϑ̂ = 1

2 (ϑ + 1) ∈ (ϑ, 1), there exists n0 ≥ 1 such that ϑ(n) < ϑ̂ for all
n ≥ n0. Accordingly, it follows from (5.5)–(5.6), that for all n ≥ n0,

‖(zn,1, tn,1) − (x∗, y∗)‖∗
≤ (1 − αn,2 − βn,2)‖(xn, yn) − (x∗, y∗)‖∗ + αn,2Lϑ̂‖(zn,2, tn,2) − (x∗, y∗)‖∗

+ αn,2(L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n) + ‖(e′n,2, p
′
n,2)‖∗)

+ ‖(e′′n,2, p
′′
n,2)‖∗ + ‖(rn,2, kn,2)‖∗ + 2βn,2K

≤ (1 − αn,2 − βn,2)‖(xn, yn) − (x∗, y∗)‖∗
+ αn,2Lϑ̂[(1 − αn,3 − βn,3)‖(xn, yn) − (x∗, y∗)‖∗
+ αn,3Lϑ̂‖(zn,3, tn,3) − (x∗, y∗)‖∗ + αn,3(L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n)

+ ‖(e′n,3, p
′
n,3)‖∗) + ‖(e′′n,3, p

′′
n,3)‖∗ + ‖(rn,3, kn,3)‖∗ + 2βn,3K]

+ αn,2(L(‖(Υ(n), Δ(n))‖∗ + c̃n + d̃n) + ‖(e′n,2, p
′
n,2)‖∗)

+ ‖(e′′n,2, p
′′
n,2)‖∗ + ‖(rn,2, kn,2)‖∗ + 2βn,2K

= (1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)Lϑ̂)‖(xn, yn) − (x∗, y∗)‖∗
+ αn,2αn,3L

2ϑ̂2‖(zn,3, tn,3) − (x∗, y∗)‖∗ + (αn,2L + αn,2αn,3L
2ϑ̂)‖(Υ(n), Δ(n))‖∗

+ αn,2‖(e′n,2, p
′
n,2)‖∗ + αn,2αn,3Lϑ̂‖(e′n,3, p

′
n,3)‖∗ + ‖(e′′n,2, p

′′
n,2)‖∗

+ αn,2Lϑ̂‖(e′′n,3, p
′′
n,3)‖∗ + ‖(rn,2, kn,2)‖∗ + αn,2Lϑ̂‖(rn,3, kn,3)‖∗

+ (αn,2L + αn,2αn,3L
2ϑ̂)(c̃n + d̃n) + 2(βn,2 + αn,2βn,3Lϑ̂)K

≤ · · ·
≤ [1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)Lϑ̂ + αn,2αn,3(1 − αn,4 − βn,4)L2ϑ̂2
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+ · · · +
N−1∏
i=2

αn,i(1 − αn,N − βn,N )LN−2ϑ̂N−2]‖(xn, yn) − (x∗, y∗)‖∗

+
(
αn,2L + αn,2αn,3L

2ϑ̂ + · · · +
N∏

i=2

αn,iL
N−1ϑ̂N−2

)
‖(Υ(n), Δ(n))‖∗

+ αn,2‖(e′n,2, p
′
n,2)‖∗ + αn,2αn,3Lϑ̂‖(e′n,3, p

′
n,3)‖∗ + · · · +

N∏
i=2

αn,iL
N−2ϑ̂N−2‖(e′n,N , p′n,N)‖∗

+ ‖(e′′n,2, p
′′
n,2)‖∗ + αn,2Lϑ̂‖(e′′n,3, p

′′
n,3)‖∗ + · · · +

N−1∏
i=2

αn,iL
N−2ϑ̂N−2‖(e′′n,N , p′′n,N)‖∗

+ ‖(rn,2, kn,2)‖∗ + αn,2Lϑ̂‖(rn,3, kn,3)‖∗ + · · · +
N−1∏
i=2

αn,iL
N−2ϑ̂N−2‖(rn,N , kn,N )‖∗

+
(
αn,2L + αn,2αn,3L

2ϑ̂ + αn,2αn,3αn,4L
3ϑ̂2 + · · · +

N∏
i=2

αn,iL
N−1ϑ̂N−2

)
(c̃n + d̃n)

+ 2
(
βn,2 + αn,2βn,3Lϑ̂ + αn,2αn,3βn,4L

2ϑ̂2 + · · · +
N−1∏
i=2

αn,iβn,NLN−2ϑ̂N−2
)
K. (5.7)

Applying (5.4), (5.7) and the fact that 0 < α ≤
N∏

i=1

αn,i, for all n ∈ N, we get

‖(xn+1, yn+1) − (x∗, y∗)‖∗
≤

[
1 − αn,1 − βn,1 + αn,1(1 − αn,2 − βn,2)Lϑ̂

+ αn,1αn,2(1 − αn,3 − βn,3)L2ϑ̂2 + αn,1αn,2αn,3(1 − αn,4 − βn,4)L3ϑ̂3

+ · · · +
N−2∏
i=1

αn,i(1 − αn,N−1 − βn,N−1)LN−2ϑ̂N−2

+
N−1∏
i=1

αn,i(1 − αn,N − βn,N )LN−1ϑ̂N−1
]
‖(xn, yn) − (x∗, y∗)‖∗

+
(
αn,1L + αn,1αn,2L

2ϑ̂ + · · · +
N∏

i=1

αn,iL
N ϑ̂N−1

)
‖(Υ(n), Δ(n))‖∗

+ αn,1‖(e′n,1, p
′
n,1)‖∗ + αn,1αn,2Lϑ̂‖(e′n,2, p

′
n,2)‖∗

+ · · · +
N∏

i=1

αn,iL
N−1ϑ̂N−1‖(e′n,N , p′n,N )‖∗

+ ‖(e′′n,1, p
′′
n,1)‖∗ + αn,1Lϑ̂‖(e′′n,2, p

′′
n,2)‖∗ + · · · +

N−1∏
i=1

αn,iL
N−1ϑ̂N−1‖(e′′n,N , p′′n,N)‖∗

+ ‖(rn,1, kn,1)‖∗ + αn,1Lϑ̂‖(rn,2, kn,2)‖∗ + · · · +
N−1∏
i=1

αn,iL
N−1ϑ̂N−1‖(rn,N , kn,N )‖∗

+
(
αn,1L + αn,1αn,2L

2ϑ̂ + · · · +
N∏

i=1

αn,iL
N ϑ̂N−1

)
(c̃n + d̃n)
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+ 2
(
βn,1 + αn,1βn,2Lϑ̂ + · · · +

N−1∏
i=1

αn,iβn,NLN−1ϑ̂N−1
)
K

≤
(
1 −

N∏
i=1

αn,iL
N−1ϑ̂N−1

)
‖(xn, yn) − (x∗, y∗)‖∗ +

N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1‖(Υ(n), Δ(n))‖∗

+
N∑

i=1

i∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′n,i, p

′
n,i)‖∗ +

N∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′′n,i, p

′′
n,i)‖∗

+ ‖(rn,1, kn,1)‖∗ + ‖(e′′n,1, p
′′
n,1)‖∗ +

N∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(rn,i, kn,i)‖∗

+
N∑

i=1

i∏
j=1

αn,jL
iϑ̂i−1(c̃n + d̃n) + 2

(
βn,1 +

N∑
i=2

i−1∏
j=1

αn,jβn,iL
i−1ϑ̂i−1

)
K

≤
(
1 −

N∏
i=1

αn,iL
N−1ϑ̂N−1

)
‖(xn, yn) − (x∗, y∗)‖∗

+
N∏

i=1

αn,iL
N−1ϑ̂N−1

( N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1‖(Υ(n), Δ(n))‖∗

αLN−1ϑ̂N−1

+

N∑
i=1

i∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′n,i, p

′
n,i)‖∗ +

N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1(c̃n + d̃n)

αLN−1ϑ̂N−1

)
+ ‖(e′′n,1, p

′′
n,1)‖∗ +

N∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′′n,i, p

′′
n,i)‖∗ + ‖(rn,1, kn,1)‖∗

+
N∑

i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(rn,i, kn,i)‖∗ + 2

(
βn,1 +

N∑
i=2

i−1∏
j=1

αn,jβn,iL
i−1ϑ̂i−1

)
K. (5.8)

It follows from Theorem 4.1 that ‖(Υ(n), Δ(n))‖∗ → 0 as n → ∞. The condition (h) implies

that Lϑ̃ < 1. Since lim
n→∞ c̃n = lim

n→∞ d̃n = 0 and for each i ∈ {1, 2, · · · , N},
∞∑

n=1

βn,i < ∞, in

view of (4.6), it is clear that the conditions of Lemma 5.1 are satisfied. Now, Lemma 5.1 and
(5.8) guarantee that (xn+1, yn+1) → (x∗, y∗) as n → ∞. So {(xn, yn)}∞n=1 converges strongly
to the only element (x∗, y∗) of Fix(Q) ∩ SGNVLI.

Now, we establish the conclusion (2). By (4.7), we obtain

‖(un+1, vn+1) − (x∗, y∗)‖∗ ≤ ‖(un+1, vn+1) − (En, Dn)‖∗ + ‖(En, Dn) − (x∗, y∗)‖∗
= εn + ‖En − x∗‖ + ‖Dn − y∗‖. (5.9)

In a similar way to the proof of inequalities (5.2)–(5.3), we can prove that

‖En − x∗‖ ≤ (1 − αn,1 − βn,1)‖un − x∗‖ + αn,1L1(ϕ1(n)‖νn,1 − x∗‖
+ φ1(n)‖wn,1 − y∗‖) + αn,1(L1(‖Υ(n)‖ + c̃n) + ‖e′n,1‖)
+ ‖e′′n,1‖ + ‖rn,1‖ + βn,1K (5.10)
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and

‖Dn − y∗‖ ≤ (1 − αn,1 − βn,1)‖vn − y∗‖ + αn,1L2(ϕ2(n)‖νn,1 − x∗‖
+ φ2(n)‖wn,1 − y∗‖) + αn,1(L2(‖Δ(n)‖ + d̃n) + ‖p′n,1‖)
+ ‖p′′n,1‖ + ‖kn,1‖ + βn,1K, (5.11)

where ϕ1(n), φ1(n), Υ(n) are the same as in (5.2) and ϕ2(n), φ2(n), Δ(n) are the same as in
(5.3).

Since 0 < α ≤
N∏

i=1

αn,i for all n ∈ N, by using (5.9)–(5.11), as the proof of inequality (5.8),

we obtain that

‖(un+1, vn+1) − (x∗, y∗)‖∗

≤
(
1 −

N∏
i=1

αn,iL
N−1ϑ̂N−1

)
‖(un, vn) − (x∗, y∗)‖∗

+
N∏

i=1

αn,iL
N−1ϑ̂N−1

( N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1‖(Υ(n), Δ(n))‖∗

αLN−1ϑ̂N−1

+

N∑
i=1

i∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′n,i, p

′
n,i)‖∗ +

N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1(c̃n + d̃n) + εn

αLN−1ϑ̂N−1

)
+ ‖(e′′n,1, p

′′
n,1)‖∗ +

N∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′′n,i, p

′′
n,i)‖∗ + ‖(rn,1, kn,1)‖∗

+
N∑

i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(rn,i, kn,i)‖∗ + 2

(
βn,1 +

N∑
i=2

i−1∏
j=1

αn,jβn,iL
i−1ϑ̂i−1

)
K. (5.12)

Suppose that lim
n→∞ εn = 0. Then it follows from

lim
n→∞ ‖(Υ(n), Δ(n))‖∗ = 0, lim

n→∞ c̃n = lim
n→∞ d̃n = 0,

∞∑
n=1

βn,i < ∞

for each i ∈ {1, 2, · · · , N}, (4.6), (5.12) and Lemma 5.1 that lim
n→∞(un, vn) = (x∗, y∗).

Conversely, if lim
n→∞(un, vn) = (x∗, y∗), then we get

εn = ‖(un+1, vn+1) − (En, Dn)‖∗
≤ ‖(un+1, vn+1) − (x∗, y∗)‖ + ‖(En, Dn) − (x∗, y∗)‖

≤ ‖(un+1, vn+1) − (x∗, y∗)‖ +
(
1 −

N∏
i=1

αn,iL
N−1ϑ̂N−1

)
‖(un, vn) − (x∗, y∗)‖∗

+
N∏

i=1

αn,iL
N−1ϑ̂N−1

( N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1‖(Υ(n), Δ(n))‖∗

αLN−1ϑ̂N−1

+

N∑
i=1

i∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′n,i, p

′
n,i)‖∗ +

N∑
i=1

i∏
j=1

αn,jL
iϑ̂i−1(c̃n + d̃n)

αLN−1ϑ̂N−1

)
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+ ‖(e′′n,1, p
′′
n,1)‖∗ +

N∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(e′′n,i, p

′′
n,i)‖∗

+ ‖(rn,1, kn,1)‖∗ +
N∑

i=2

i−1∏
j=1

αn,jL
i−1ϑ̂i−1‖(rn,i, kn,i)‖∗

+ 2
(
βn,1 +

N∑
i=2

i−1∏
j=1

αn,jβn,iL
i−1ϑ̂i−1

)
K. (5.13)

From (4.6) and
∞∑

n=1
βn,i < ∞ for each i ∈ {1, 2, · · · , N}, we deduce that lim

n→∞(e′′n,i, p
′′
n,i) =

lim
n→∞(rn,i, kn,i) = 0 and lim

n→∞βn,i = 0 for each i ∈ {1, 2, · · · , N}. Now, it follows from

lim
n→∞ ‖(Υ(n), Δ(n))‖∗ = 0, lim

n→∞ ‖(e′n,i, p
′
n,i)‖∗ = 0 and lim

n→∞ c̃n = lim
n→∞ d̃n = 0 that the right

side of the inequality (5.13) tends to zero as n → ∞. This completes the proof.

Remark 5.1 It should be pointed that

(1) Theorem 3.1 is an extension of Theorem 3.1 in [44] in Hilbert spaces. Moreover, Theorem
3.1 improves and extends Theorems 3.2–3.4 in [45].

(2) Theorem 5.1 generalizes and improves Theorem 4.1 in [44] and Theorems 3.5–3.8 in [43].

Remark 5.2 If Mn,i and Mi, n ∈ N, i = 1, 2, are A-accretive mappings, A-monotone
operators, (H, η)-accretive mappings, (H, η)-monotone operators or H-monotone operators,
respectively, then from Theorems 3.1 and 5.1, we can obtain the existence and convergence
results of the solutions to the system (3.1). In brief, for a suitable and appropriate choices of
the mappings Si, Ti, Pi, Qi, Mi, Ni, ηi, Ai, fi, gi, hi, θi, An,i, ηn,i, Mn,i, Si, Q (n ∈ N), i =
1, 2, the sequences {αn,i}∞n=1, {βn,i}∞n=1, {en,i}∞n=1, {pn,i}∞n=1, {jn,i}∞n=1, {sn,i}∞n=1, {rn,i}∞n=1,
{kn,i}∞n=1, n ∈ N, i = 1, 2, · · · , N , the constants a, b, λi i = 1, 2, and the spaces X1, X2,
Theorems 3.1 and 5.1 include many known results of variational (variational-like) inclusions as
special cases, see [15, 18, 23–24, 32, 43–45, 54] and the references therein.

6 Conclusion

In this paper, we have introduced and considered a new system of generalized nonlinear
variational-like inclusions (SGNVLI) with A-maximal m-relaxed η-accretive (so-called (A, η)-
accretive) mappings in Banach spaces. By using the resolvent operator technique associated
with A-maximal m-relaxed η-accretive mappings due to Lan et al., we have established the
equivalence between SGNVLI and the fixed point problem, and then, by this equivalent formu-
lation, we have discussed the existence and uniqueness of solution of SGNVLI. This equivalence
and two nearly uniformly Lipschitzian mappings Si (i = 1, 2) are used to suggest and analyze a
new perturbed N -step iterative algorithm with mixed errors for finding an element of the set of
the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1,S2) which is the unique
solution of SGNVLI. It is expected that the results proved in this paper may stimulate further
research regarding the numerical methods and their applications in various fields of pure and
applied sciences.
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