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Abstract After studying in a previous work the smoothness of the space

UΓ0 = {u ∈ W 1,p(·)(Ω); u = 0 on Γ0 ⊂ Γ = ∂Ω},

where dΓ − measΓ0 > 0, with p(·) ∈ C(Ω) and p(x) > 1 for all x ∈ Ω, the authors
study in this paper the strict and uniform convexity as well as some special properties
of duality mappings defined on the same space. The results obtained in this direction
are used for proving existence results for operator equations having the form Jϕu = Nfu,
where Jϕ is a duality mapping on UΓ0 corresponding to the gauge function ϕ, and Nf is
the Nemytskij operator generated by a Carathéodory function f satisfying an appropriate
growth condition ensuring that Nf may be viewed as acting from UΓ0 into its dual.
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1 Notations

All vector and function spaces considered in this paper are real.

The Euclidean norm in R
N is denoted by | · |, and z · y =

N∑
i=1

ziyi for z = (z1, · · · , zN) and

y = (y1, · · · , yN) ∈ R
N .

The Lebesgue measure in R
N is denoted by dx. Throughout this paper, Ω designates a

domain in R
N (N ≥ 2), i.e., a bounded and connected open subset of R

N whose boundary Γ is
Lipschitz continuous, with the set Ω being locally on the same side of Γ. A measure, denoted
by dΓ, can then be defined on Γ. For details, see, e.g., [1] or [21]. No distinction will be made
between dx-measurable (resp. dΓ-measurable), functions and their equivalence classes modulo
the relation of dx-almost everywhere (resp. dΓ-almost everywhere) equality.

Unless a specific notation is used, ‖ · ‖V denotes the norm in a normed vector space V , and
A

‖·‖V designates the closure in V of a subset A of V with respect to the norm ‖ · ‖V .
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The notation V ∗ designates the dual space of the normed vector space V . The duality
pairing between V ∗ and V is denoted by 〈·, ·〉V ∗,V . We shall often omit to indicate the spaces
in such a duality, i.e., we shall simply write 〈·, ·〉.

Given two normed vector spaces V and W , the notation V ↪→ W (resp. V � W ) means
that V ⊂ W and the canonical injection from V into W is continuous (resp. compact).

Strong and weak convergence are respectively denoted by → and ⇀.
The notation D(Ω) denotes the space of functions that are infinitely differentiable in Ω and

whose support is a compact subset of Ω.
Given a real number p ≥ 1, the notations Lp(Ω), W 1,p(Ω), and

W 1,p
0 (Ω) := D(Ω)

‖·‖W1,p(Ω) = {v ∈ W 1,p(Ω); tr v = 0 on Γ}

designate the usual Lebesgue and Sobolev spaces, where “usual” means that the exponent p ≥ 1
is a constant.

2 Some Abstract Existence Results

The main result of this section is given by the following theorem.

Theorem 2.1 Let X be a real reflexive Banach space. Given a demicontinuous operator
T : X → X∗, i.e., such that

un → u implies Tun ⇀ Tu as n → ∞,

with the following properties:
(a) For any f ∈ X∗, T−1(f) = {v ∈ X ; Tv = f} is a nonempty, closed and convex subset

in X;
(b) T satisfies the condition (S)+, i.e., as n → ∞, the following holds:

un ⇀ u and lim sup
n→∞

〈Tun, un − u〉 ≤ 0 imply un → u.

In addition, let there be given a nonempty, closed and convex set C ⊂ X and a demicontinuous
operator K : C → X∗ with the following properties:

(c) (vn) ⊂ C and (Tvn) bounded imply that (vn) is bounded;
(d) T−1(Ku) = {v ∈ X ; Tv = Ku} ⊂ C for all u ∈ C;
(e) K(C) is relatively compact.
Then the equation

Tu = Ku

has a solution in C.

Proof Define the set-valued mapping

S : C → 2C by Su = T−1(Ku) for all u ∈ C.

Then, by virtue of (d), S is unambiguously defined.
We now prove that S has the following properties:
(P1) For any u ∈ C, Su is a nonempty, closed and convex subset of C.
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This property follows by (d) and (a).
(P2) S is closed.
Let (un) ⊂ C satisfy that un → u as n → ∞, and let vn ∈ Sun be such that vn → v as

n → ∞. Since T and K are demicontinuous, one has Tvn ⇀ Tv and Kun ⇀ Ku as n → ∞.
Since Tvn = Kun, we conclude that Tv = Ku, i.e., v ∈ Su.

(P3) S(C) =
⋃

u∈C

Su is relatively compact.

Let (vn) be a sequence in S(C). We will show that (vn) contains a strongly convergent
subsequence. Let un ∈ C be such that vn ∈ Sun, or equivalently Tvn = Kun for all n. Since
K(C) is relatively compact (see (e)), we may assume, passing if necessary to a subsequence,
that Kun → f as n → ∞. Thus, Tvn = Kun → f as n → ∞. In particular, (Tvn) is
bounded. In view of (c), we conclude that (vn) is bounded. Again passing if necessary to a
subsequence, we may assume that vn ⇀ v as n → ∞. Since Tvn → f and vn ⇀ v, it follows
that 〈Tvn, vn − v〉 → 0 as n → ∞. Since T satisfies the condition (S)+, we conclude that
vn → v.

Properties (P1)–(P3) of S allow us to apply the Bohnenblust-Karlin fixed point theorem
(see, e.g., [24, Theorem 9.2.3]) and to conclude that there exists u ∈ C such that u ∈ Su.
Equivalently, there exists u ∈ C such that Tu = Ku.

Remark 2.1 It is easily seen that the assumptions that K : C → X∗ is demicontinuous
and that K(C) is relatively compact imply that, in fact, K is continuous.

Corollary 2.1 Let X be a real reflexive Banach space. Let there be given a hemicontinuous
operator T : X → X∗, i.e., such that

〈T (u + λv), w〉 → 〈Tu, w〉 as λ → 0 for all u, v, w ∈ X,

with the following properties:
(a) T is monotone:

〈Tu − Tv, u − v〉 ≥ 0 for all u, v ∈ X,

(b) T is coercive:
〈Tu, u〉
‖u‖ → ∞ as ‖u‖X → ∞,

(c) T satisfies the condition (S)+ of Theorem 2.1.
In addition, let there be given a nonempty, closed convex set C ⊂ X and a demicontinuous
operator K : C → X∗ with the following properties:

(d) T−1(Ku) = {v ∈ X ; Tv = Ku} ⊂ C for all u ∈ C;
(e) K(C) is relatively compact.
Then the equation

Tu = Ku

has a solution in C.

Proof It is sufficient to show that T is demicontinuous and that assumptions (a) and (c) of
Theorem 2.1 are fulfilled. Indeed, a classical result in the theory of monotone operators asserts
that, if X is a real reflexive Banach space and T : X → X∗ is monotone and hemicontinuous,
then T is demicontinuous (see [2, 3]). Moreover, due to a well-known surjectivity result of
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Browder (see [2, 3]), if X is reflexive and T : X → X∗ is monotone, hemicontinuous, and
coercive then, for any f ∈ X∗, the inverse image T−1(f) is nonempty, bounded, closed and
convex (see, e.g., [11] for more details). Finally, the coerciveness of T implies that, if T (A) is
bounded in X∗, then A is bounded in X . Thus Theorem 2.1 applies and the result follows.

Remark 2.2 Corollary 2.1 is nothing else but [11, Theorem 1].

The operator T appearing in Corollary 2.1 will now be specialized as being a duality mapping
on a real reflexive and smooth Banach space. To this end, we will first recall some definitions
and basic results related to duality mapping on such a space. A result (which is new to the
best of our knowledge) characterizing the strict convexity of a real reflexive and smooth Banach
space in terms of the injectivity of any duality mapping will be given (see Theorem 3.1 below).
This result will play a crucial role in proving the strict convexity of the space (UΓ0 , ‖ · ‖0,p(·),∇)
(see Corollary 4.3 below).

3 Duality Mappings on Smooth Banach Spaces

A real Banach space X is said to be smooth if, given any nonzero element x ∈ X , there
exists a unique support functional, i.e., there exists a unique element x∗(x) ∈ X∗ having the
properties that 〈x∗(x), x〉 = ‖x‖ and ‖x∗(x)‖ = 1.

A function ϕ : R+ → R+ is said to be a gauge function if it is continuous, strictly increasing,
ϕ(0) = 0 and ϕ(r) → ∞ as r → ∞.

If X is a smooth real Banach space and ϕ : R+ → R+ is a gauge function, then, by definition,
the duality mapping on X , subordinated to ϕ, is the mapping Jϕ : X → X∗ defined by

Jϕ0X := 0X∗ , (3.1)

Jϕx := ϕ(‖x‖)x∗(x) for all x ∈ X, x �= 0X , (3.2)

where x∗(x) is the unique support functional at x.
It easily follows from (3.1)–(3.2) that

‖Jϕx‖ = ϕ(‖x‖), (3.3)

〈Jϕx, x〉 = ϕ(‖x‖)‖x‖ = ‖Jϕx‖‖x‖ for all x ∈ X. (3.4)

The duality mapping subordinated to the identity gauge function defined by ϕ(t) = t, t ≥ 0,
will be called the normalized duality mapping and will be denoted by J . Thus J : X → X∗ is
defined by

J0X := 0X∗ , (3.5)

Jx := ‖x‖ x∗(x) for all x ∈ X\{0X}. (3.6)

Clearly Jϕ and J are related by

Jϕx =
ϕ(‖x‖)
‖x‖ Jx

for all nonzero x ∈ X .
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Thanks to this relation, many properties of J (which are usually easier to prove) may be
converted into corresponding properties of Jϕ. Here is a useful example.

Proposition 3.1 Let X be a smooth real Banach space. Then Jϕ : X → X∗ is injective if
and only if J : X → X∗ is injective.

Proof Assume that Jϕ is injective. We have to show that J is injective, i.e., that Jx = Jy

implies x = y. If Jx = Jy = 0X∗ , then x = y = 0X . If Jx = Jy �= 0X∗ , then x �= 0X , y �= 0X

and ‖x‖ = ‖y‖. Consequently,

Jϕx =
ϕ(‖x‖)
‖x‖ Jx =

ϕ(‖y‖)
‖y‖ Jy = Jϕy,

and, since Jϕ is assumed to be injective, it follows that x = y.
In a similar manner we can see that, conversely, the injectivity of J implies that of Jϕ.

According to a classical result (see, e.g., [9, Theorem 1 in Chapter 2]), a real Banach space
X is smooth if and only if the norm of X is Gâteaux-differentiable at any nonzero x ∈ X , i.e.,
if and only if there exists a mapping

(grad ‖ · ‖) : X\{0X} → X∗\{0X∗},

such that, at any nonzero element x ∈ X ,

〈(grad ‖ · ‖)(x), h〉 = lim
t→0

‖x + th‖ − ‖x‖
t

for all h ∈ X.

Since, for all nonzero x ∈ X , the gradient of the norm satisfies (see [25, Lemma 2.5])

〈(grad ‖ · ‖)(x), x〉 = ‖x‖, (3.7)

‖(grad ‖ · ‖)(x)‖ = 1, (3.8)

we conclude that the unique support functional at any nonzero element x ∈ X is x∗(x) =
(grad ‖ · ‖)(x). It then follows from (3.1)–(3.2) that, on a smooth real Banach space X , the
duality mapping corresponding to a gauge function ϕ is the mapping Jϕ : X → X∗ defined by

Jϕ0X = 0X∗ ,

Jϕx = ϕ(‖x‖)(grad ‖ · ‖)(x) for all x �= 0X .
(3.9)

By the definition of Jϕ and the metric properties (3.7)–(3.8), we infer that, for all x, y ∈ X ,

〈Jϕx − Jϕy, x − y〉 ≥ (ϕ(‖x‖) − ϕ(‖y‖))(‖x‖ − ‖y‖) ≥ 0, (3.10)

which shows that Jϕ is monotone. From (3.3), we infer that Jϕ is also bounded. For other
properties of duality mappings, see [2; 6; 26, Proposition 32.22].

We now show how some geometric properties of a smooth Banach space may be expressed
in terms of some specific properties of any duality mapping defined on such a space.

Theorem 3.1 Let X be a real reflexive and smooth Banach space. Then X is strictly
convex if and only if any duality mapping Jϕ : X → X∗ is injective.
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Proof Assume that X is strictly convex. Then Jϕ is strictly monotone and thus it is
injective (see [22]).

Conversely, assume that Jϕ is injective. We will prove that Jϕ is strictly monotone.
Assume on the contrary that there exist elements x and y in X , x �= y, such that

〈Jϕx − Jϕy, x − y〉 = 0. (3.11)

If one of these elements, say y, is the zero vector, then we conclude from (3.11) that

0 = 〈Jϕx, x〉 = ϕ(‖x‖)‖x‖ > 0,

a contradiction.
Assume that x and y are both nonzero. Since

0 = 〈Jϕx − Jϕy, x − y〉 ≥ (ϕ(‖x‖) − ϕ(‖y‖))(‖x‖ − ‖y‖) ≥ 0,

we infer that
(ϕ(‖x‖) − ϕ(‖y‖))(‖x‖ − ‖y‖) = 0,

and thus that ‖x‖ = ‖y‖ since ϕ is strictly increasing.
Rewriting (3.11) as

[〈Jϕx, x〉 − 〈Jϕx, y〉] + [〈Jϕy, y〉 − 〈Jϕy, x〉] = 0, (3.12)

and observing that
〈Jϕx, x〉 − 〈Jϕx, y〉 ≥ 0

and
〈Jϕy, y〉 − 〈Jϕy, x〉 ≥ 0,

we infer from (3.12) that

〈Jϕx, x〉 − 〈Jϕx, y〉 = 0, (3.13)

〈Jϕy, y〉 − 〈Jϕy, x〉 = 0. (3.14)

From (3.14), it follows that

〈Jϕy, x〉 = 〈Jϕy, y〉 = ‖Jϕy‖‖y‖ = ‖Jϕy‖‖x‖.

Consequently, denoting by χ the canonical isomorphism between X and X∗∗ (i.e., such that
〈χ(x), x∗〉 = 〈x∗, x〉 for all x ∈ X and x∗ ∈ X∗), we have

〈 Jϕy

‖Jϕy‖ ,
x

‖x‖
〉

= 1 =
〈
χ
( x

‖x‖
)
,

Jϕy

‖Jϕy‖
〉

=
∥∥∥χ

( x

‖x‖
)∥∥∥. (3.15)

On the other hand, we derive from (3.4) that
〈 Jϕx

‖Jϕx‖ ,
x

‖x‖
〉

= 1 =
〈
χ
( x

‖x‖
)
,

Jϕx

‖Jϕx‖
〉

=
∥∥∥χ

( x

‖x‖
)∥∥∥. (3.16)

Relations (3.15)–(3.16) then show that χ
(

x
‖x‖

) ∈ X∗∗ attains its norm at two different points

of the unit ball in X∗, namely Jϕy
‖Jϕy‖ and Jϕx

‖Jϕx‖ . This means that X∗ is not strictly convex
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and, since X is supposed to be reflexive, it follows that X is not smooth (see [9, Corollary 2 in
Chapter 2]), a contradiction.

Thus Jϕ is strictly monotone. Consequently (see [22]), the space X is strictly convex.

Theorem 3.1 and Proposition 3.1 imply the next corollary.

Corollary 3.1 Let X be a real reflexive and smooth Banach space. Then X is strictly
convex if and only if the normalized duality mapping J : X → X∗ on X is injective.

Corollary 3.2 Let X be a real reflexive and smooth Banach space, and let Jϕ : X → X∗

be a duality mapping on X that satisfies the condition (S)+ of Theorem 2.1. Let C ⊂ X be
a nonempty, closed convex set, and let K : C → X∗ be a demicontinuous operator with the
following properties:

(a) J−1
ϕ (Ku) = {v ∈ X ; Jϕv = Ku} ⊂ C for all u ∈ C;

(b) K(C) is relatively compact.
Then the equation

Jϕu = Ku

has a solution in C.

Proof It is known (see, e.g., [2]) that any duality mapping on a real reflexive and smooth
Banach space is monotone, demicontinuous (or equivalently hemicontinuous) and coercive. Con-
sequently, it suffices to apply Corollary 2.1 with T = Jϕ.

Theorem 3.2 Let X be a real, smooth, and strictly convex, reflexive Banach space. Then:
(a) Any duality mapping Jϕ : X → X∗ that satisfies the condition (S)+ is bijective and has

a continuous inverse.
(b) If, in addition, the norm of X is Fréchet differentiable, then any duality mapping Jϕ :

X → X∗ that satisfies the condition (S)+ is a homeomorphism of X onto X∗.

Proof (a) Any duality mapping Jϕ : X → X∗ on a reflexive, smooth and strictly convex
real Banach space X is a bijection of X onto X∗. Moreover (see, e.g., [12, Theorem 5; 13,
Corollary 2.3; 26, Proposition 32.22(b)]),

J−1
ϕ = χ−1J∗

ϕ−1 ,

where χ stands for the canonical isomorphism between X and X∗∗, and J∗
ϕ−1 : X∗ → X∗∗ is

the duality mapping on X∗ corresponding to the gauge function ϕ−1.
In order to prove the continuity of J−1

ϕ , let x∗
n → x∗ in X∗ as n → ∞. As a duality mapping

on a smooth and reflexive Banach space, J∗
ϕ−1 is demicontinuous. Thus, Jϕ−1x∗

n ⇀ Jϕ−1x∗ in
X∗∗ as n → ∞. Consequently,

xn = J−1
ϕ x∗

n = χ−1J∗
ϕ−1x∗

n ⇀ χ−1J∗
ϕ−1x∗ = J−1

ϕ x∗ = x as n → ∞.

On the other hand,
Jϕxn = x∗

n → Jϕx = x∗ as n → ∞.

Hence
〈Jϕxn, xn − x〉 → 0 as n → ∞,
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and, since Jϕ satisfies the condition (S)+, we conclude that xn → x as n → ∞. This shows
that J−1

ϕ is continuous.
(b) Any Fréchet-differentiable norm on a normed vector space X is necessarily of class C1

on X −{0} (see [19, Lemma 2] and [23, p. 20]). Therefore, we infer from (3.9) that any duality
mapping on a Banach space having a Fréchet-differentiable norm is continuous.

4 The Space UΓ0

In view of defining (see Subsection 4.2) the space UΓ0 , we need first to review some properties
of classical function spaces.

4.1 Lebesgue and Sobolev spaces with variable exponents

This section gathers various definitions and basic properties related to Lebesgue and Sobolev
spaces with variable exponents needed through the paper. For proofs and references, see [14].

Given a function p(·) ∈ L∞(Ω) that satisfies

1 ≤ p− := ess inf
x∈Ω

p(x) ≤ p+ := ess sup
x∈Ω

p(x),

the Lebesgue space Lp(·)(Ω) with variable exponent p(·) is defined as

Lp(·)(Ω) :=
{
v : Ω → R; v is dx-measurable and ρ0,p(·),Ω(v) :=

∫
Ω

|v(x)|p(x)dx < ∞
}

,

where ρ0,p(·),Ω(v) is called the convex modular of v.
Often we shall omit to indicate the domain Ω and simply write ρ0,p(·).
Given a function q(·) ∈ L∞(Γ) that satisfies

1 ≤ ess inf
y∈Γ

q(y),

the Lebesgue space Lq(·)(Γ) with variable exponent q(·) is defined as

Lq(·)(Γ) :=
{
v : Γ → R; v is dΓ-measurable and

∫
Γ

|v(y)|q(y)dy < ∞
}
.

Theorem 4.1 Let Ω be a domain in R
N .

(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈ Lp(·)(Ω) → ‖v‖0,p(·) := inf
{

λ > 0;
∫

Ω

∣∣∣v(x)
λ

∣∣∣p(x)

dx ≤ 1
}
,

the space Lp(·)(Ω) is a separable Banach space. If p− > 1, the space Lp(·)(Ω) is uniformly
convex, hence reflexive.

(b) Let p1(·) ∈ L∞(Ω) and p2(·) ∈ L∞(Ω) be such that p−1 ≥ 1 and p−2 ≥ 1. Then

Lp2(·)(Ω) ↪→ Lp1(·)(Ω)

if and only if
p1(x) ≤ p2(x) for almost all x ∈ Ω.



Operator Equations and Duality Mappings in Sobolev Spaces with Variable Exponents 647

(c) Given p(·) ∈ L∞(Ω) such that p− > 1, let p′(·) ∈ L∞(Ω) be defined by

1
p(x)

+
1

p′(x)
= 1 for almost all x ∈ Ω.

Then, given any function u ∈ Lp′(·)(Ω), the linear functional

� : v ∈ Lp(·)(Ω) →
∫

Ω

u(x)v(x)dx ∈ R

is continuous; conversely, given any continuous-linear functional � : Lp(·)(Ω) → R, there exists
one, and only one, function u� ∈ Lp′(·)(Ω) such that

�(v) =
∫

Ω

u�(x)v(x)dx for all v ∈ Lp(·)(Ω).

(d) For any u ∈ Lp(·)(Ω) with p(·) ∈ L∞(Ω) satisfying p− > 1 and v ∈ Lp′(·)(Ω),
∫

Ω

|u(x)v(x)|dx ≤
( 1

p−
+

1
(p′)−

)
‖u‖0,p(·) · ‖v‖0,p′(·). (4.1)

The next theorem recapitulates the relations between the norm ‖ · ‖0,p(·) and the convex
modular ρ0,p(·).

Theorem 4.2 Let p(·) ∈ L∞(Ω) be such that p− ≥ 1 and let u ∈ Lp(·)(Ω). The following
properties hold:

(a) If u �= 0, then ‖u‖0,p(·) = a if and only if ρ0,p(·)(a−1u) = 1.
(b) ‖u‖0,p(·) < 1 (resp. = 1, or > 1) if and only if ρ0,p(·)(u) < 1 (resp. = 1, or > 1).

(c) ‖u‖0,p(·) > 1 implies ‖u‖p−

0,p(·) ≤ ρ0,p(·)(u) ≤ ‖u‖P+

0,p(·).

(d) ‖u‖0,p(·) < 1 implies ‖u‖p+

0,p(·) ≤ ρ0,p(·)(u) ≤ ‖u‖p−

0,p(·).
(e) Let u ∈ Lp(·)(Ω) and uk ∈ Lp(·)(Ω), k = 1, 2, · · · . Then the following properties are

equivalent:
(1) ‖u − uk‖0,p(·) → 0 as k → ∞;
(2) ρ0,p(·)(uk − u) → 0 as k → ∞;
(3) (uk) converges to u in measure and ρ0,p(·)(uk) → ρ0,p(·)(u) as k → ∞.
(f) Let v ∈ Lp(·)(Ω). If a measurable function u : Ω → R satisfies

|u(x)| ≤ |v(x)| for almost all x ∈ Ω,

then ρ0,p(·)(u) ≤ ρ0,p(·)(v). Consequently, u ∈ Lp(·)(Ω) and ‖u‖0,p(·) ≤ ‖v‖0,p(·).
(g) Given a nonzero function u ∈ Lp(·)(Ω), the function λ → ρ0,p(·)(u

λ) is continuous and
decreasing on the interval [1,∞).

For the proof of (a)–(e), see [14]; for the proof of (f)–(g), see [20].

Corollary 4.1 Let p ∈ L∞(Ω) with p− ≥ 1. A subset A ⊂ (Lp(·)(Ω), ‖ · ‖0,p(·)) is bounded
if and only if the set ρ0,p(·)(A) := {ρ0,p(·)(u); u ∈ A} is bounded in R+.

Proof From Theorem 4.2(a), (c) and (d), it follows that

ρ0,p(·)(u) ≤ max(‖u‖p−

0,p(·), ‖u‖p+

0,p(·)) for all u ∈ Lp(·)(Ω), (4.2)



648 P. G. Ciarlet, G. Dinca and P. Matei

which easily implies that, if A ⊂ Lp(·)(Ω) is bounded, then ρ0,p(·)(A) is bounded in R+.
From Theorem 4.2(a) and (d), it also follows that

‖u‖0,p(·) = 1 implies ‖u‖0,p(·) = ρ0,p(·)(u) = 1,

‖u‖0,p(·) > 1 implies ‖u‖0,p(·) < ‖u‖p−

0,p(·) ≤ ρ0,p(·)(u),

‖u‖0,p(·) < 1 implies ‖u‖0,p(·) < ρ0,p(·)(u) + 1.

Hence

‖u‖0,p(·) < ρ0,p(·)(u) + 1 for all u ∈ Lp(·)(Ω). (4.3)

Clearly, (4.3) implies that, if ρ0,p(·)(u) ≤ M , then ‖u‖0,p(·) < 1 + M .

Remark 4.1 Corollary 4.1 was first proved in [27]. We simply remark that the inequalities
(4.2)–(4.3) above are slightly stronger than the inequalities

ρ0,p(·)(u) ≤ (1 + ‖u‖0,p(·))p+
for all u ∈ Lp(·)(Ω),

and the implication

ρ0,p(·)(u) ≤ M implies ‖u‖0,p(·) ≤ max(1 + M, 2)

established in [27].

Given a function p(·) ∈ L∞(Ω) that satisfies p− ≥ 1, the Sobolev space W 1,p(·)(Ω) with
variable exponent p(·) is defined as

W 1,p(·)(Ω) := {v ∈ Lp(·)(Ω); ∂iv ∈ Lp(·)(Ω), 1 ≤ i ≤ N},

where, for each 1 ≤ i ≤ N , ∂i denotes the distributional derivative operator with respect to the
i-th variable.

Theorem 4.3 Let Ω be a domain in R
N .

(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈ W 1,p(·)(Ω) → ‖v‖1,p(·) := ‖v‖0,p(·) +
N∑

i=1

‖∂iv‖0,p(·),

the space W 1,p(·)(Ω) is a separable Banach space. If p− > 1, the space W 1,p(·)(Ω) is reflexive.
(b) Let p1(·) ∈ L∞(Ω) with p−1 ≥ 1 and p2(·) ∈ L∞(Ω) with p−2 ≥ 1 be such that

p1(x) ≤ p2(x) for almost all x ∈ Ω.

Then
W 1,p2(·)(Ω) ↪→ W 1,p1(·)(Ω).

(c) Let p(·) ∈ C(Ω) be such that p− ≥ 1. Given any x ∈ Ω, let

p∗(x) :=
Np(x)

N − p(x)
if p(x) < N and p∗(x) := ∞ if p(x) ≥ N,
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and let there be given a function q(·) ∈ C(Ω) that satisfies

1 ≤ q(x) < p∗(x) for each x ∈ Ω.

Then the following compact injection holds:

W 1,p(·)(Ω) � Lq(·)(Ω),

so that, in particular,
W 1,p(·)(Ω) � Lp(·)(Ω).

(d) The function defined by

v ∈ W 1,p(·)(Ω) → ‖v‖1,p(·),∇ := ‖v‖0,p(·) + ‖|∇v|‖0,p(·)

is a norm on W 1,p(·)(Ω), equivalent with the norm ‖ · ‖1,p(·).

Theorem 4.4 Let Ω be a domain in R
N .

(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Since W 1,p(·)(Ω) ↪→ W 1,1(Ω) (see Theorem
4.3(b)), the trace tr v on Γ of any function v ∈ W 1,p(·)(Ω) is a well-defined function in the
space L1(Γ).

(b) Let there be given a function p(·) ∈ C(Ω) such that p− > 1. Given any x ∈ Γ, let

p∂(x) :=
(N − 1)p(x)
N − p(x)

if p(x) < N and p∂(x) := ∞ if p(x) ≥ N,

and let there be given a function q(·) ∈ C(Γ) such that

1 ≤ q(x) < p∂(x) for each x ∈ Γ.

Then, tr v ∈ Lq(·)(Γ) for any function v ∈ W 1,p(·)(Ω), and the trace operator

tr :W 1,p(·)(Ω) → Lq(·)(Γ)

defined in this fashion is compact. In particular, the trace operator

tr :W 1,p(·)(Ω) → Lp(·)(Γ)

is compact.

4.2 Definition of the space UΓ0

This space is defined via the following theorem, which was the main result of [5].

Theorem 4.5 Let Ω be a domain in R
N , N ≥ 2, let Γ0 be a dΓ-measurable subset of

Γ = ∂Ω that satisfies dΓ-meas Γ0 > 0, let p(·) ∈ C(Ω) be such that p(x) > 1 for all x ∈ Ω, and
let

UΓ0 := {u ∈ (W 1,p(·)(Ω), ‖ · ‖1,p(·),∇); tru = 0 on Γ0}.
Then:

(a) The space UΓ0 is closed in (W 1,p(·)(Ω), ‖·‖1,p(·),∇); hence (UΓ0 , ‖·‖1,p(·),∇) is a separable
reflexive Banach space.
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(b) The function
u ∈ UΓ0 → ‖u‖0,p(·),∇ := ‖|∇u|‖0,p(·)

is a norm on UΓ0 , equivalent with the norm ‖ · ‖1,p(·),∇.
(c) The norm ‖u‖0,p(·),∇ is Fréchet-differentiable, and the Fréchet derivative ‖ · ‖0,p(·),∇′ of

this norm at any nonzero element u ∈ UΓ0 is given for any h ∈ UΓ0 by

〈‖ · ‖′0,p(·),∇(u), h〉 =

∫
Ω\Ω0,u

p(x)
|∇u(x)|p(x)−2 ∇u(x) · ∇h(x)

‖u‖p(x)−1
0,p(·),∇

dx

∫
Ω

p(x)
|∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx

, (4.4)

where Ω0,u := {x ∈ Ω; |∇u(x)| = 0}.
(d) If, in addition, the function p(·) ∈ C(Ω) satisfies p(x) ≥ 2 for all x ∈ Ω, then the space

(UΓ0 , ‖ · ‖0,p(·),∇) is uniformly convex.

Some comments are in order about this theorem.
We first recall that, in the classical case (i.e., when p is any real number that satisfies p > 1),

the following equalities hold:

W 1,p
0 (Ω) : = D(Ω)

‖·‖1,p,∇ = D(Ω)
‖·‖0,p(·),∇

=
0

W 1,p(Ω) := {v ∈ W 1,p(Ω); tr v = 0 on Γ = ∂Ω}.

In the case of a variable exponent p(·) ∈ C(Ω) with p− > 1, the equality W 1,p
0 (Ω) =

0

W 1,p(Ω)

is replaced by the inclusion W
1,p(·)
0 (Ω) ⊂

0

W 1,p(·)(Ω), which may be strict, unless additional
assumptions are imposed on the function p(·). Such an assumption is, for example,

|p(x) − p(y)| ≤ C

| ln ‖x − y‖|

for all x, y ∈ Ω with ‖x− y‖ < 1
2 , where ‖ · ‖ denotes the Euclidean norm in R

N (see [8, 14, 28],
for more details).

Thus, in the case of a variable exponent p(·) ∈ C(Ω) with p− > 1, one has

W
1,p(·)
0 (Ω) ⊂

0

W 1,p(·)(Ω) ⊂ UΓ0 ,

the last inclusion being strict, even if additional assumptions are imposed.
But the results of Theorem 4.5 (in particular, the Fréchet differentiability of the norm

‖ · ‖0,p(·),∇ on UΓ0) can be of interest, even if additional assumptions on the function p(·) need

to be imposed, so as to ensure that the equality W
1,p(·)
0 (Ω) =

0

W 1,p(·)(Ω) holds.

4.3 Duality mappings on the space (UΓ0 , ‖ · ‖0,p(·),∇)

The main goal of this section is to establish the following theorem.

Theorem 4.6 Let Ω be a domain in R
N , N ≥ 2, and let a function p ∈ C(Ω) be such that

p(x) > 1 for all x ∈ Ω. Then:
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(a) Any duality mapping on the space (UΓ0 , ‖ · ‖0,p(·),∇) satisfies the condition (S)+ of The-
orem 2.1.

(b) Any duality mapping on the space (UΓ0 , ‖ · ‖0,p(·),∇) is injective.

Proof The proof rests on four lemmas.

Lemma 4.1 Let X be a real Banach space, and let T : X → X∗ be monotone. If

un ⇀ u and lim sup
n→∞

〈Tun, un − u〉 ≤ 0, (4.5)

then

lim
n→∞〈Tun, un − u〉 = lim

n→∞〈Tun − Tu, un − u〉 = 0. (4.6)

Proof The monotonicity of T and the assumption (4.5) together imply that

0 ≤ lim inf
n→∞ 〈Tun − Tu, un − u〉 ≤ lim sup

n→∞
〈Tun − Tu, un − u〉

= lim sup
n→∞

〈Tun, un − u〉 ≤ 0,

and thus (4.6) follows.

Lemma 4.2 Let X be a smooth real Banach space, and let Jϕ : X → X∗ be a duality
mapping on X. Let u be a nonzero element in X, and let (un) ⊂ X be a sequence such that

un ⇀ u and lim sup
n→∞

〈Jϕun, un − u〉 ≤ 0.

Then
(a) the sequence (Jϕun) is bounded;
(b) lim

n→∞〈Jϕun, un − u〉 = lim
n→∞〈Jϕun − Jϕu, un − u〉 = 0;

(c) ‖un‖ → ‖u‖ as n → ∞;
(d) un

‖un‖ ⇀ u
‖u‖ as n → ∞

and
lim

n→∞

〈
Jϕun,

un

‖un‖ − u

‖u‖
〉

= lim
n→∞

〈
Jϕun − Jϕu,

un

‖un‖ − u

‖u‖
〉

= 0.

Proof (a) Since the sequence (un) is weakly convergent, it is bounded. Since ‖Jϕun‖ =
ϕ(‖un‖), it follows that the sequence (Jϕun) is also bounded.

(b) Since Jϕ is monotone, the result follows by Lemma 4.1.
(c) Since the sequence (‖un‖) is bounded, it suffices to show that ‖u‖ is the unique cluster

point to the sequence (‖un‖). Let l be a cluster point to the sequence (‖un‖), and let us consider
a subsequence, also denoted by (‖un‖), such that ‖un‖ → l as n → ∞. We have (see (3.10))

〈Jϕun − Jϕu, un − u〉 ≥ (ϕ(‖un‖) − ϕ(‖u‖))(‖un‖ − ‖u‖) ≥ 0.

Letting n → ∞ and taking into account the result of (b), we obtain

(ϕ(l) − ϕ(‖u‖))(l − ‖u‖) = 0.
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Since ϕ is strictly increasing, this implies that l = ‖u‖.
(d) Since un ⇀ u and ‖un‖ → ‖u‖ as n → ∞, it is easily seen that un

‖un‖ ⇀ u
‖u‖ as n → ∞.

Moreover
〈
Jϕun,

un

‖un‖ − u

‖u‖
〉

=
1

‖un‖〈Jϕun, un − u〉 +
( 1
‖un‖ − 1

‖u‖
)
〈Jϕun, u〉.

From (b) and (c), it follows that

1
‖un‖〈Jϕun, un − u〉 → 0 as n → ∞,

and from (a) and (c), it follows that
( 1
‖un‖ − 1

‖u‖
)
〈Jϕun, u〉 → 0 as n → ∞.

Consequently, 〈
Jϕun,

un

‖un‖ − u

‖u‖
〉
→ 0 as n → ∞.

Since un

‖un‖ ⇀ u
‖u‖ as n → ∞, this last relation is equivalent to

lim
n→∞

〈
Jϕun − Jϕu,

un

‖un‖ − u

‖u‖
〉

= 0.

Remark 4.2 Recall that a Banach space is said to possess the Kadeč-Klee property (see,
e.g., [7, p. 146], where this property is called the “H-property”, [9, Theorem 4 in Chapter 2], and
[18]) if

un ⇀ u and ‖un‖ → ‖u‖ imply un → u.

We derive the following corollary from Lemma 4.2(c).

Corollary 4.2 Any duality mapping on a smooth real Banach space having the Kadeč-Klee
property satisfies the condition (S)+.

Remark 4.3 Locally uniformly convex Banach spaces possess the Kadeč-Klee property (see
[9, Theorem 4(iii) in Chapter 2]). In virtue of Theorem 4.5(d), if p ∈ C(Ω) satisfies p(x) ≥ 2
for all x ∈ Ω, then the space (UΓ0 , ‖ · ‖0,p(·),∇) is uniformly convex. In particular, (UΓ0 ,

‖ · ‖0,p(·),∇) possesses the Kadeč-Klee property and, by Corollary 4.2, any duality mapping on
(UΓ0 , ‖ · ‖0,p(·),∇) satisfies the condition (S)+. The significance of Theorem 4.6 is now clear: It
allows to extend the preceding result to the more general case, where

p ∈ C(Ω) and p(x) > 1 for all x ∈ Ω.

The following technical preliminary will be useful for proving Theorem 4.6.

Lemma 4.3 (see [17]) (a) If p ∈ (1, 2), then for any z, y ∈ R
N ,

(|z| + |y|)2−p(|z|p−2z − |y|p−2y) · (z − y) ≥ |z − y|2.

(b) If p ∈ [2,∞), then for any z, y ∈ R
N ,

(|z|p−2z − |y|p−2y) · (z − y) ≥ k(p)|z − y|p,
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where k(p) = min{2−1−p, 52−p}.
We are now in a position to give the proof of Theorem 4.6(a). Let Jϕ : UΓ0 → U∗

Γ0
be a

duality mapping. We need to prove that

un ⇀ u in (UΓ0 , ‖ · ‖0,p(·),∇) and lim sup
n→∞

〈Jϕun, un − u〉 ≤ 0

imply that

un → u in (UΓ0 , ‖ · ‖0,p(·),∇).

If u = 0UΓ0
, then the relations un ⇀ 0UΓ0

and lim sup
n→∞

〈Jϕun, un〉 ≤ 0 and Lemma 4.2(c)

together imply that ‖un‖0,p(·),∇ → ‖u‖0,p(·),∇ = 0; hence un → 0UΓ0
. Assume next that

u �= 0UΓ0
. It then suffices to prove that

un ⇀ u and lim sup
n→∞

〈Jϕun, un − u〉 ≤ 0

imply

ρ0,p(·)
(∣∣∣∇

( un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

)∣∣∣
)
→ 0 as n → ∞. (4.7)

Indeed, assuming that (4.7) holds, we infer from Theorem 4.2(e) that
∥∥∥
∣∣∣∇

( un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

)∣∣∣
∥∥∥

0,p(·)
=

∥∥∥ un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

∥∥∥
0,p(·),∇

→ 0

as n → ∞.
On the other hand, it follows from the relations un ⇀ u and lim sup

n→∞
〈Jϕun, un −u〉 ≤ 0, and

from Lemma 4.2(c), that ‖un‖0,p(·),∇ → ‖u‖0,p(·),∇.
Since

‖un − u‖0,p(·),∇ = ‖un‖0,p(·),∇
∥∥∥ un

‖un‖0,p(·),∇
− u

‖un‖0,p(·),∇

∥∥∥
0,p(·),∇

≤ ‖un‖0,p(·),∇
[(∥∥∥ un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

∥∥∥
0,p(·),∇

)

+
∣∣∣ 1
‖u‖0,p(·),∇

− 1
‖un‖0,p(·),∇

∣∣∣‖u‖0,p(·),∇
]

and since the sequence (un) is bounded, it follows that

‖un − u‖0,p(·),∇ → 0 as n → ∞.

Thus proving (a) reduces to showing that (4.7) holds, as we now show. For any nonzero v

and w in UΓ0 , let

B(v, w) :=
∫

Ω\Ω0,v

p(x)
|∇v(x)|p(x)−2 ∇v(x) ·

( ∇v(x)
‖v‖0,p(·),∇

− ∇w(x)
‖w‖0,p(·),∇

)

‖v‖p(x)−1
0,p(·),∇

dx,
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or equivalently (see (3.9) and (4.4)),

B(v, w) =
(∫

Ω

p(x)
|∇v(x)|p(x)

‖v‖p(x)
0,p(·),∇

dx
)

× 1
ϕ(‖v‖0,p(·),∇)

〈
Jϕv,

v

‖v‖0,p(·),∇
− w

‖w‖0,p(·),∇

〉
. (4.8)

Since

p− ≤
∫

Ω

p(x)
|∇un(x)|p(x)

‖un‖p(x)
0,p(·),∇

dx ≤ p+,

ϕ(‖un‖0,p(·),∇) → ϕ(‖u‖0,p(·),∇)

and (see Lemma 4.2(d))〈
Jϕun,

un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

〉
→ 0 as n → ∞,

it is clear that

B(un, u) =
(∫

Ω

p(x)
|∇un(x)|p(x)

‖un‖p(x)
0,p(·),∇

dx
) 1

ϕ(‖un‖0,p(·),∇)

×
〈
Jϕun,

un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

〉
→ 0 as n → ∞.

By Lemma 4.2(d) again, we also infer that

B(u, un) = −
(∫

Ω

p(x)
|∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx
) 1

ϕ(‖u‖0,p(·),∇)

×
〈
Jϕu,

un

‖un‖0,p(·),∇
− u

‖u‖0,p(·),∇

〉
→ 0 as n → ∞.

Consequently,

lim
n→∞ |B(un, u) + B(u, un)| = 0. (4.9)

The definition of B (see (4.8)) shows that the relation (4.9) can be rewritten as

lim
n→∞

∫
Ω

[wn(x) − vn(x)]dx = 0,

where

wn(x) := p(x)
|∇un(x)|p(x)−2 ∇un(x) ·

( ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

)

‖un‖p(x)−1
0,p(·),∇

, if x ∈ Ω\Ω0,un ,

wn(x) := 0, if x ∈ Ω0,un

and

vn(x) := p(x)
|∇u(x)|p(x)−2 ∇u(x) ·

( ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

)

‖u‖p(x)−1
0,p(·),∇

, if Ω\Ω0,u,

vn(x) := 0, if x ∈ Ω0,u.
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We now show that

wn(x) − vn(x) ≥ 0 for almost all x ∈ Ω. (4.10)

Indeed, for x ∈ Ω\(Ω0,un ∪ Ω0,u),

wn(x) − vn(x)

= p(x)
(∣∣∣ |∇un(x)|

‖un‖0,p(·),∇

∣∣∣p(x)−2 ∇un(x)
‖un‖0,p(·),∇

−
∣∣∣ |∇u(x)|
‖u‖0,p(·),∇

∣∣∣p(x)−2 ∇u(x)
‖u‖0,p(·),∇

)

·
( ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

)
,

and the inequality (4.10) follows by Lemma 4.3 applied with

z :=
∇un(x)

‖un‖0,p(·),∇
and y :=

∇u(x)
‖u‖0,p(·),∇

.

Let x ∈ Ω0,un ∪Ω0,u = (Ω0,un\Ω0,u)∪ (Ω0,u\Ω0,un)∪ (Ω0,un ∩Ω0,u). If x ∈ Ω0,un\Ω0,u, then

wn(x) − vn(x) = p(x)
|∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

≥ 0;

if x ∈ Ω0,u\Ω0,un , then

wn(x) − vn(x) = p(x)
|∇un(x)|p(x)

‖un‖p(x)
0,p(·),∇

≥ 0;

if x ∈ Ω0,un ∩ Ω0,u, then

wn(x) − vn(x) = 0.

We are now in a position to show that (4.7) holds. To this end, let

Ω1 := {x ∈ Ω; 1 < p(x) < 2} and Ω2 = {x ∈ Ω; 2 ≤ p(x)}.

It then suffices to show that

lim
n→∞

∫
Ω1

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

dx = 0, (4.11)

and that

lim
n→∞

∫
Ω2

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

dx = 0.

Applying Lemma 4.3(a) with z := ∇un(x)
‖un‖0,p(·),∇

and y := ∇u(x)
‖u‖0,p(·),∇

, we obtain

(wn(x) − vn(x))
( |∇un(x)|
‖un‖0,p(·),∇

+
|∇u(x)|

‖u‖0,p(·),∇

)2−p(x)

≥ p−
∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣2 for x ∈ Ω1.
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Hence it follows that∫
Ω1

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

dx

=
∫

Ω1

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣2
p(x)

2
dx

≤
∫

Ω1

( 1
p−

) p(x)
2

( |∇un(x)|
‖un‖0,p(·),∇

+
|∇u(x)|

‖u‖0,p(·),∇

)(2−p(x)) p(x)
2

(wn(x) − vn(x))
p(x)

2 dx

≤
( 1

p−
) p−

2
∫

Ω1

( |∇un(x)|
‖un‖0,p(·),∇

+
|∇u(x)|

‖u‖0,p(·),∇

)(2−p(x)) p(x)
2

(wn(x) − vn(x))
p(x)

2 dx.

Since

( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)(2−p(·)) p(·)
2 ∈ L

2
2−p(·) (Ω1),

(wn − vn)
p(·)
2 ∈ L

2
p(·) (Ω1)

and since ( 2
2 − p(x)

)−1

+
( 2

p(x)

)−1

= 1,

it follows from Theorem 4.1(d) that
∫

Ω1

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

dx

≤ C1

∥∥∥
( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)(2−p(·)) p(·)
2

∥∥∥
0, 2

2−p(·) ,Ω1

‖(wn − vn)
p(·)
2 ‖0, 2

p(·) ,Ω1
,

with

C1 :=
( 1

p−

) p−
2

( 1(
2

2−p(·)
)−
Ω1

+
1(

2
p(·)

)−
Ω1

)
.

To conclude that (4.11) holds, we now show that

‖(wn − vn)
p(·)
2 ‖0, 2

p(·) ,Ω1
→ 0 as n → ∞, (4.12)

and that there exists a constant C2 such that

∥∥∥
( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)(2−p(·)) p(·)
2

∥∥∥
0, 2

2−p(·) ,Ω1

≤ C2. (4.13)

Indeed,

ρ0, 2
p(·) ,Ω1

((wn − vn)
p(·)
2 ) =

∫
Ω1

(wn(x) − vn(x))dx,

and, since

0 ≤
∫

Ω1

(wn(x) − vn(x))dx ≤
∫

Ω

(wn(x) − vn(x))dx → 0 as n → ∞,

it follows that
ρ0, 2

p(·) ,Ω1
((wn − vn)

p(·)
2 ) → 0 as n → ∞.
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Equivalently, (4.12) holds. On the other hand,

ρ0, 2
2−p(·) ,Ω1

(( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)(2−p(·)) p(·)
2

)

= ρ0,p(·),Ω1

( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)

≤ ρ0,p(·),Ω
( |∇un|
‖un‖0,p(·),∇

+
|∇u|

‖u‖0,p(·),∇

)

≤ 2p+−1
(
ρ0,p(·),Ω

( |∇un|
‖un‖0,p(·),∇

)
+ ρ0,p(·),Ω

( |∇u|
‖u‖0,p(·),∇

))
= 2p+

.

Hence we infer from Corollary 4.1 that (4.13) holds with C2 := 2p+
+ 1.

By Lemma 4.3(b) applied with z := ∇un(x)
‖un‖0,p(·),∇

and y := ∇u(x)
‖u‖0,p(·),∇

, we infer that

wn(x) − vn(x) ≥ p−k1

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

, if x ∈ Ω2,

where k1 := min(2−1−p+
, 52−p+

). We thus conclude that

lim
n→∞

∫
Ω2

∣∣∣ ∇un(x)
‖un‖0,p(·),∇

− ∇u(x)
‖u‖0,p(·),∇

∣∣∣p(x)

dx

≤ (p−k1)−1 lim
n→∞

∫
Ω2

(wn(x) − vn(x))dx

≤ (p−k1)−1 lim
n→∞

∫
Ω

(wn(x) − vn(x))dx = 0.

Thus, relation (4.7) is proved and, as already observed, it follows from (4.7) that un → u as
n → ∞.

We now prove Theorem 4.6(b). To this end, we need the following preliminary result.

Lemma 4.4 Let u, v ∈ UΓ0 be such that

‖u‖0,p(·),∇ = ‖v‖0,p(·),∇ = 1 (4.14)

and

(grad‖ · ‖0,p(·),∇)(u) = (grad ‖ · ‖0,p(·),∇)(v). (4.15)

Then u = v.

Proof From (3.7)–(3.8) and (4.14)–(4.15), we infer that

〈(grad ‖ · ‖0,p(·),∇)(u), v〉 = 〈(grad ‖ · ‖0,p(·),∇)(v), v〉 = ‖v‖0,p(·),∇ = 1. (4.16)

Taking into account the formula (4.4), we can rewrite (4.16) as
∫

Ω\Ω0,u

p(x)[|∇u(x)|p(x)−2 ∇u(x) · (∇u(x) −∇v(x))]dx = 0, (4.17)
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and, exchanging u with v, we also get
∫

Ω\Ω0,v

p(x)[|∇v(x)|p(x)−2∇v(x) · (∇u(x) −∇v(x))]dx = 0, (4.18)

Substracting (4.18) from (4.17), we get
∫

Ω

p(x)[f(x) − g(x)]dx = 0, (4.19)

where

f(x) := |∇u(x)|p(x)−2∇u(x) · (∇u(x) −∇v(x)), if x ∈ Ω\Ω0,u,

f(x) := 0, if x ∈ Ω0,u

and

g(x) := |∇v(x)|p(x)−2∇v(x) · (∇u(x) −∇v(x)), if x ∈ Ω\Ω0,v,

g(x) := 0, if x ∈ Ω0,v.

Similarly, we can show that

f(x) − g(x) ≥ 0 for almost all x ∈ Ω, (4.20)

by means of a proof analogous to that of inequality (4.10) (the details are left to the reader).
Combining (4.19)–(4.20), we then get

0 =
∫

Ω

p(x)[f(x) − g(x)]dx ≥ p−
∫

Ω

[f(x) − g(x)]dx ≥ 0,

which implies that ∫
Ω

[f(x) − g(x)]dx = 0.

We next show that

ρ0,p(·)(|∇u −∇v|) =
∫

Ω

|∇u(x) −∇v(x)|p(x)dx = 0. (4.21)

Let
Ω1 := {x ∈ Ω; 1 < p(x) < 2} and Ω2 := {x ∈ Ω; 2 ≤ p(x)}.

It is sufficient to show that ∫
Ω1

|∇u(x) −∇v(x)|p(x)dx = 0, (4.22)

and that ∫
Ω2

|∇u(x) −∇v(x)|p(x)dx = 0. (4.23)

By applying Lemma 4.3(a) with z := ∇u(x) and y := ∇v(x), we obtain

[f(x) − g(x)](|∇u(x)| + |∇v(x)|)2−p(x) ≥ |∇u(x) −∇v(x)|2 for x ∈ Ω1.
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Hence it follows that ∫
Ω1

|∇u(x) −∇v(x)|p(x)dx

=
∫

Ω1

|∇u(x) −∇v(x)|2 p(x)
2 dx

≤
∫

Ω1

(|∇u(x)| + |∇v(x)|)(2−p(x)) p(x)
2 [f(x) − g(x)]

p(x)
2 dx.

Since the functions

x ∈ Ω1 �→ (|∇u(x)| + |∇v(x)|)(2−p(x)) p(x)
2 ,

x ∈ Ω2 �→ [f(x) − g(x)]
p(x)

2

belong to the spaces L
2

2−p(·) (Ω1) and L
2

p(·) (Ω1), respectively, and since
( 2

2 − p(x)

)−1

+
( 2

p(x)

)−1

= 1,

it follows that ∫
Ω1

|∇u(x) −∇v(x)|p(x)dx

≤ C1‖(|∇u| + |∇v|)(2−p(·)) p(·)
2 ‖0, 2

2−p(·) ,Ω1
‖(f − g)

p(·)
2 ‖0, 2

p(·) ,Ω1

with

C1 :=
( 1

p−
) p−

2
( 1(

2
2−p(·)

)−
Ω1

+
1(

2
p(·)

)−
Ω1

)
.

To conclude that (4.22) holds, we now show that

‖(f − g)
p(·)
2 ‖0, 2

p(·) ,Ω1
= 0. (4.24)

Indeed, one has

ρ0, 2
p(·) ,Ω1

((f − g)
p(·)
2 ) =

∫
Ω1

(f(x) − g(x))dx,

and, since

0 ≤
∫

Ω1

(f(x) − g(x))dx ≤
∫

Ω

(f(x) − g(x))dx = 0,

it follows that
ρ0, 2

p(·) ,Ω1
((f − g)

p(·)
2 ) = 0,

or equivalently, (4.24) holds.
Lemma 4.3(b) applied with z := ∇u(x) and y := ∇v(x) shows that

f(x) − g(x) ≥ k1|∇u(x) −∇v(x)|p(x), if x ∈ Ω2,

where k1 := min(2−1−p+
, 52−p+

). Consequently,∫
Ω2

|∇u(x) −∇v(x)|p(x)dx

≤ k−1
1

∫
Ω2

(f(x) − g(x))dx

≤ k−1
1

∫
Ω

(f(x) − g(x))dx = 0.
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Thus, relation (4.23) is proved.
Clearly, (4.21) is a direct consequence of (4.22)–(4.23). On the other hand, (4.21) is equiv-

alent to
‖u − v‖0,p(·),∇ = 0,

which means that u = v. This completes the proof.

We are now in a position to give the proof of Theorem 4.6(b). By Proposition 3.1, it is
sufficient to prove that the normalized duality mapping is injective on UΓ0 .

So, let u, v ∈ UΓ0 be such that Ju = Jv. If Ju = Jv = 0, it is easily seen that u = v = 0.
Assume that Ju = Jv �= 0. Hence u �= 0, v �= 0, ‖u‖0,p(·),∇ = ‖v‖0,p(·),∇, and

(grad‖ · ‖0,p(·),∇)(u) = (grad ‖ · ‖0,p(·),∇)(v). (4.25)

Since (see [25, Lemma 2.5])

(grad ‖ · ‖)(αw) = sign α(grad ‖ · ‖)(w), α �= 0, w �= 0,

it follows from (4.25) that

(grad ‖ · ‖0,p(·),∇)
( u

‖u‖0,p(·),∇

)
= (grad ‖ · ‖0,p(·),∇)

( v

‖v‖0,p(·),∇

)
.

By Lemma 4.4, we then conclude that u = v.

Corollary 4.3 Let Ω be a domain in R
N , N ≥ 2, and let p ∈ C(Ω).

(a) If p(x) > 1 for all x ∈ Ω, then (UΓ0 , ‖ · ‖0,p(·),∇) is strictly convex.
(b) If p(x) ≥ 2 for all x ∈ Ω, then (UΓ0 , ‖ · ‖0,p(·),∇) is uniformly convex.

Proof (a) Since (UΓ0 , ‖ · ‖0,p(·),∇) is reflexive and smooth (see Theorem 4.5(a)–(c)) and
since any duality mapping on (UΓ0 , ‖ · ‖0,p(·),∇) is injective (see Theorem 4.6(b)), the result
follows by Theorem 3.1.

(b) This is nothing but Theorem 4.5(d).

Corollary 4.4 Let Ω be a domain in R
N , N ≥ 2, and let p ∈ C(Ω) be such that p(x) > 1

for all x ∈ Ω. Then any duality mapping on UΓ0 is a homeomorphism.

Proof Since the space (UΓ0 , ‖·‖0,p(·),∇) is reflexive (see Theorem 4.5(a)) and strictly convex
(see Corollary 4.3(a)), since the norm ‖ · ‖0,p(·),∇ is Fréchet differentiable (see Theorem 4.5(c)),
and since any duality mapping on UΓ0 satisfies the condition (S)+ (see Theorem 4.6(a)), the
assertion follows by Theorem 3.2(b).

5 Existence Results for Operators Equations Involving Duality Map-
pings and Nemytskij Operators on the Space UΓ0

5.1 An estimate concerning the Nemytskij operators between Lebesgue spaces
with variable exponents

Theorem 5.1 Let Ω ⊂ R
N be a domain, let f : Ω × R → R be a Carathéodory function

satisfying the growth condition

|f(x, s)| ≤ C1|s|
q(x)
q′(x) + a(x) for almost all x ∈ Ω and all s ∈ R, (5.1)
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where C1 > 0 is a constant, q ∈ L∞(Ω) with q− > 1,

1
q(x)

+
1

q′(x)
= 1 for almost all x ∈ Ω,

and a ∈ Lq′(·)(Ω) with a(x) ≥ 0 for almost all x ∈ Ω, and let Nf : Lq(·)(Ω) → Lq′(·)(Ω) be the
Nemytskij operator generated by f , i.e.,

(Nfv)(x) = f(x, v(x)) for all v ∈ Lq(·)(Ω) and almost all x ∈ Ω. (5.2)

Then the following estimate holds:

‖Nfv‖0,q′(·) ≤ C1 max{‖v‖q−−1
0,q(·) , ‖v‖q+−1

0,q(·)} + ‖a‖0,q′(·) (5.3)

for all v ∈ Lq(·)(Ω).

The proof rests essentially on the following lemma.

Lemma 5.1 Let p ∈ L∞(Ω) be such that p− ≥ 1, and let r ∈ L∞(Ω) be such that
(rp)− ≥ 1. Then for any dx-measurable function u on Ω satisfying |u(·)|r(·) ∈ Lp(·)(Ω), the
following inequality holds:

‖|u(·)|r(·)‖0,p(·) ≤ max{‖u‖r−
0,r(·)p(·), ‖u‖r+

0,r(·)p(·)}. (5.4)

Proof We first remark that r(·)p(·) ∈ L∞(Ω) and that the assumptions that u is dx-
measurable on Ω and that |u(·)|r(·) ∈ Lp(·)(Ω) together imply that u ∈ Lr(·)p(·)(Ω). We now
prove that

‖u‖0,r(·)p(·) ≥ 1 implies ‖|u(·)|r(·)‖0,p(·) ≤ ‖u‖r+

0,r(·)p(·), (5.5)

which is equivalent (see Theorem 4.2) to proving that

ρ0,p(·)
( |u(·)|r(·)

‖u‖r+

0,r(·)p(·)

)
≤ 1. (5.6)

In order to prove that (5.6) holds, we will use the simple technique already used for proving
inequality (3.16) in [10]. Since r+ − r(x) ≥ 0 and ‖u‖0,r(·)p(·) ≥ 1, it easily follows that

|u(x)|r(x)

‖u‖r+

0,r(·)p(·)
=

( |u(x)|r(x)

‖u‖r(x)
0,r(·)p(·)

) 1

‖u‖r+−r(x)
0,r(·)p(·)

≤ |u(x)|r(x)

‖u‖r(x)
0,r(·)p(·)

,

which in turn implies that

ρ0,p(·)
( |u(·)|r(·)

‖u‖r+

0,r(·)p(·)

)
≤ ρ0,p(·)

( |u(·)|r(·)

‖u‖r(·)
0,r(·)p(·)

)
= ρ0,r(·)p(·)

( |u(·)|
‖u‖0,r(·)p(·)

)
= 1.

Thus, the inequality (5.6) holds. Consequently, the inequality (5.5) holds too.
By using a similar technique, one can prove that

‖u‖0,r(·)p(·) ≤ 1 implies ‖|u(·)|r(·)‖0,p(·) ≤ ‖u‖r−
0,r(·)p(·). (5.7)
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Clearly, (5.5) and (5.7) together imply that the inequality (5.4) holds.

Remark 5.1 Under the more restrictive assumptions that p ∈ C(Ω) with p− > 1 and
r ∈ L∞(Ω) with r− > 1, the result of Lemma 5.1 was also obtained in [4, Lemma 1.4] (the
continuity of p(·) was needed for using the mean value theorem in proving Lemma 1.4 in [4]).

Proof of Theorem 5.1 We can now prove Theorem 5.1. First, we note that, by virtue
of [14, Theorem 1.16], Nf is well-defined as a Nemytskij operator from Lq(·)(Ω) into Lq′(·)(Ω),
which is continuous and bounded. From (5.1)–(5.2), we infer that

‖Nfv‖0,q′(·) ≤ C1‖|v(·)|
q(·)
q′(·) ‖0,q′(·) + ‖a‖0,q′(·).

Applying (5.4) with u(·) = v(·), r(·) = q(·)
q′(·) = q(·) − 1 and p(·) = q′(·), we obtain

‖|v(·)|
q(·)
q′(·) ‖0,q′(·) ≤ max{‖v‖q−−1

0,q(·) , ‖v‖q+−1
0,q(·)},

from which the estimate (5.3) follows.

Remark 5.2 If q(·) is a constant function, then q− = q+ = q, and so the estimate (5.3)
becomes

‖Nfv‖Lq′ (Ω) ≤ C1‖v‖q−1
Lq(Ω) + ‖a‖Lq′(Ω),

a well-known property of Nemytskij operators acting between classical Lebesgue spaces Lq(Ω)
and Lq′

(Ω) (see [16]).

6 The Main Existence Result

Theorem 6.1 Let Ω be a domain in R
N (N ≥ 2), let p ∈ C(Ω) and q ∈ C(Ω) be two

functions such that p− > 1, q− > 1, and

q(x) < p∗(x) :=
Np(x)

N − p(x)
if p(x) < N and p∗(x) := ∞ if p(x) ≥ N,

and let there be given a Carathéodory function f : Ω×R → R that satisfies the growth condition:

|f(x, s)| ≤ C1|s|
q(x)
q′(x) + a(x) for almost all x ∈ Ω and all s ∈ R,

with 1
q(x) + 1

q′(x) = 1, a ∈ Lq′(·)(Ω), a(x) ≥ 0 for almost all x ∈ Ω, for some constant C1 > 0.
Let

Nf : Lq(·)(Ω) → Lq′(·)(Ω), (Nfu)(x) = f(x, u(x)) for almost all x ∈ Ω

denote the Nemytskij operator generated by f .
Then, for any gauge function ϕ which possesses the property that ϕ(t)

tq+−1 → ∞ as t → ∞,
the solution set of the equation

Jϕu = Nfu (6.1)

is a nonempty and compact subset of UΓ0 .

Proof First we need to explain what is meant by a solution of equation (6.1). By Theorem
4.3(c) and Theorem 4.5(a)–(b), the compact inclusion (UΓ0 , ‖ · ‖1,p(·),∇) � (Lq(·)(Ω), ‖ · ‖0,q(·))
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holds. Let ι be the compact injection of UΓ0 into Lq(·)(Ω), and let ι∗ : Lq′(·)(Ω) → (UΓ0)∗ be
its adjoint, in the sense that ι∗v = v ◦ ι for all v ∈ Lq′(·)(Ω). Therefore, ι∗ is also compact and
‖ι‖ = ‖ι∗‖.

A solution of equation (6.1) is an element u ∈ UΓ0 that satisfies

Jϕu = (ι∗Nf ι)u in (UΓ0)
∗. (6.2)

In the sequel, three methods for proving the existence of such a solution of equation (6.1)
will be described.

The first method is based on Corollary 3.2. Since UΓ0 is reflexive and smooth (see Theorem
4.5), any duality mapping on UΓ0 satisfies the condition (S)+ (see Theorem 4.6), and K =
(ι∗Nf ι) : UΓ0 → U∗

Γ0
is compact. So, it is sufficient to prove the existence of a closed convex

set C ⊂ UΓ0 such that the assumptions (a)–(b) of Corollary 3.2 are satisfied.
Let v and u in UΓ0 be such that

Jϕv = (ι∗Nf ι)u. (6.3)

Taking the norm in both sides of this equality and taking into account the estimate (5.3), we
get

ϕ(‖v‖) ≤ ‖ι‖‖Nf(ιu)‖
≤ ‖ι‖[C1 max{‖ιu‖q−−1

0,q(·) , ‖ιu‖q+−1
0,q(·)} + ‖a‖0,q′(·)]

≤ ‖ι‖[C1{‖ι‖q−−1‖u‖q−−1
0,q(·) + ‖ι‖q+−1‖u‖q+−1

0,q(·)} + ‖a‖0,q′(·)]

= C1‖ι‖q+‖u‖q+−1
0,q(·) + C1‖ι‖q−‖u‖q−−1

0,q(·) + ‖a‖0,q′(·)‖ι‖. (6.4)

Since ϕ(t)

tq+−1 → ∞ as t → ∞, there exists a constant R > 0 such that

ϕ(t) − (C1‖ι‖q+
tq

+−1 + C1‖ι‖q−
tq

−−1 + ‖a‖0,q′(·)‖ι‖) > 0 for all t ≥ R. (6.5)

Taking into account (6.5), we deduce that, if v and u in UΓ0 satisfy (6.3) with ‖u‖ ≤ R,
then

ϕ(‖v‖) ≤ C1‖ι‖q+
Rq+−1 + C1‖ι‖q−

Rq−−1 + ‖a‖0,q′(·)‖ι‖ < ϕ(R),

which implies that ‖v‖ < R. Thus, the assumption (a) in Corollary 3.2 is satisfied by letting
C := BUΓ0

(0, R) = {u ∈ UΓ0 ; ‖u‖0,p(·),∇ ≤ R}. Moreover, since K = ι∗Nf ι is compact, the set
K(BUΓ0

(0, R)) is relatively compact. Thus the assumption (b) in Corollary 3.2 is also satisfied.
We conclude that Corollary 3.2 applies with C := BUΓ0

(0, R) and K := ι∗Nf ι. Consequently,
there exists u ∈ BUΓ0

(0, R) satisfying (6.2).
It remains to prove that the solution set of equation (6.2), viz.,

S(Jϕ, K) := {u ∈ UΓ0 ; Jϕu = Ku, K = ι∗Nf ι},

which is not empty, is compact.
To this end, we first observe that S(Jϕ, K) ⊂ BUΓ0

(0, R). Indeed, if some u ∈ UΓ0 satisfies
(6.2), then (6.4) implies that

ϕ(‖u‖) ≤ C1‖ι‖q+‖u‖q+−1
0,q(·) + C1‖ι‖q−‖u‖q−−1

0,q(·) + ‖a‖0,q′(·)‖ι‖,
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which, by virtue of (6.5), implies that ‖u‖ < R.
Second,

S(Jϕ, K) = {u ∈ BUΓ0
(0, R); u = Tu, T = J−1

ϕ K}, (6.6)

i.e., S(Jϕ, K) is the set of fixed points of T . Indeed, since any duality mapping on UΓ0 is a
homeomorphism (see Corollary 4.4), the equality (6.6) clearly holds. Also notice that, since K

is compact and J−1
ϕ is continuous, T is compact and the inclusion T (BUΓ0

(0, R)) ⊂ BUΓ0
(0, R)

holds. Indeed, let u ∈ BUΓ0
(0, R) and let v = Tu, or equivalently, Jϕv = Ku. From the above,

it thus follows that ‖v‖ < R. Now a standard argument shows that S(Jϕ, K) is a compact set.
The second method is based on the Schauder fixed point theorem: As we have already

seen, the solution set in UΓ0 of the equation (6.2) coincides with the fixed point set Fix(T )
of the operator T = J−1

ϕ K with K = ι∗Nf ι, so that Fix(T ) ⊂ BUΓ0
(0, R) with R defined by

(6.5). Moreover, the operator T : UΓ0 → UΓ0 is compact and T (BUΓ0
(0, R)) ⊂ BUΓ0

(0, R).
Using Schauder’s fixed point theorem, we thus conclude that Fix(T ) is nonempty, compact and
contained in BUΓ0

(0, R).
The third method is based on some fundamental properties of the Leray-Schauder degree:

The notations are as above, and we begin by showing that

B := {u ∈ UΓ0 ; there exists t ∈ [0, 1] such that u = tTu} ⊂ BUΓ0
(0, R). (6.7)

Since for t = 0 the only solution of the equation u = tTu is u = 0, the problem reduces to
that of establishing the inclusion

{u ∈ UΓ0 ; there exists t ∈ (0, 1] such that u = tTu} ⊂ BUΓ0
(0, R).

So, let u ∈ UΓ0 satisfy

u = tTu = tJ−1
ϕ (ι∗Nf ι)u for some t ∈ (0, 1],

or equivalently,
Jϕ

(u

t

)
= (ι∗Nf ι)u.

From the estimates (6.4), we then get

ϕ(‖u‖0,p(·),∇) ≤ ϕ
(‖u‖0,p(·),∇

t

)
=

∥∥∥Jϕ(
u

t
)
∥∥∥ = ‖(ι∗Nf ι)u‖

≤ C1‖ι‖q+‖u‖q+−1
0,q(·) + C1‖ι‖q−‖u‖q−−1

0,q(·) + ‖a‖0,q′(·)‖ι‖,

and thus, using the definition of R (see (6.5)), we conclude that ‖u‖ < R.
The a priori estimate (6.7), which is uniform with respect to t ∈ [0, 1], and the homotopy

invariance property of the Leray-Schauder degree together give

dLS(I − (tT ), BUΓ0
(0, R), 0) = dLS(I, BUΓ0

(0, R), 0) = 1 for all t ∈ [0, 1],

where I stands for the identity over UΓ0 .
We then deduce that, for any t ∈ [0, 1], Fix(tT ) is nonempty, compact and contained in

BUΓ0
(0, R). In particular, this is thus true for t = 1.
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Remark 6.1 It is known (see [12]) that, in the usual Sobolev spaces (W 1,p
0 (Ω), ‖ · ‖0,p,∇),

p > 1, where ‖u‖0,p,∇ = ‖|∇u|‖0,p, the p-Laplacian operator

Δp : W 1,p
0 (Ω) → (W 1,p

0 (Ω))∗, Δpu :=
∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)

may be equivalently defined as

−Δpu := J(p−1)u for all u ∈ W 1,p
0 (Ω),

where J(p−1) stands for the duality mapping on W 1,p
0 (Ω) corresponding to the gauge function

ϕ defined by ϕ(t) = tp−1, t ≥ 0. This property allows us to define a natural extension of Δp

from (W 1,p
0 (Ω), ‖ · ‖0,p,∇) into (W 1,p(·)

0 (Ω), ‖ · ‖0,p(·),∇), where p(·) ∈ C(Ω) satisfies p(x) > 1
for all x ∈ Ω, namely, if ϕ is a gauge function, we define the (ϕ, p(·))-Laplacian operator on
(W 1,p(·)

0 (Ω), ‖ · ‖0,p(·),∇) as the operator

Δ(ϕ,p(·)) : W
1,p(·)
0 (Ω) → (W 1,p(·)

0 (Ω))∗

defined by −Δ(ϕ,p(·))u := Jϕu for all u ∈ W
1,p(·)
0 (Ω), where Jϕ stands for the duality mapping

on (W 1,p(·)
0 (Ω), ‖ · ‖0,p(·),∇) corresponding to the gauge function ϕ.

It is obvious that, under the assumptions allowing to define the space (UΓ0 , ‖ · ‖0,p(·),∇),
this last definition makes sense on the larger space (UΓ0 , ‖ · ‖0,p(·),∇) ⊃ (W 1,p(·)

0 (Ω), ‖ · ‖0,p(·),∇).
Thus, we will call (ϕ, p(·))-Laplacian operator the operator

Δ(ϕ,p(·)) : (UΓ0 , ‖ · ‖0,p(·),∇) → (UΓ0)
∗

defined by
−Δ(ϕ,p(·))u := Jϕu for all u ∈ UΓ0 ,

where Jϕ stands for the duality mapping on (UΓ0 , ‖ · ‖0,p(·),∇) corresponding to the gauge
function ϕ.

In the light of this last definition, the existence result of Theorem 6.1 reads as follows: Under
the assumptions of Theorem 6.1, the solution set of the boundary value problem

− Δ(ϕ,p(·))u = f(x, u) in Ω,

u |Γ0= 0, Γ0 ⊂ ∂Ω = Γ, dΓ − measΓ0 > 0

is a nonempty and compact subset of UΓ0 .
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