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Abstract After studying in a previous work the smoothness of the space
Ur, = {u e W (Q);u=0o0n Ty C T = 00},

where dI' — measT'y > 0, with p(-) € C(Q) and p(z) > 1 for all z € Q, the authors
study in this paper the strict and uniform convexity as well as some special properties
of duality mappings defined on the same space. The results obtained in this direction
are used for proving existence results for operator equations having the form J,u = Nyu,
where J, is a duality mapping on Ur, corresponding to the gauge function ¢, and Ny is
the Nemytskij operator generated by a Carathéodory function f satisfying an appropriate
growth condition ensuring that Ny may be viewed as acting from Ur, into its dual.
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1 Notations

All vector and function spaces considered in this paper are real.
N

The Euclidean norm in R is denoted by |- |, and z -y = Y z;9; for 2 = (21, ,2zy) and
i=1

y=(y1, - ,yn) ERV.

The Lebesgue measure in RY is denoted by dz. Throughout this paper, Q designates a
domain in RN (N > 2), i.e., a bounded and connected open subset of RY whose boundary T is
Lipschitz continuous, with the set Q being locally on the same side of I'. A measure, denoted
by dI', can then be defined on T'. For details, see, e.g., [1] or [21]. No distinction will be made
between da-measurable (resp. dT-measurable), functions and their equivalence classes modulo
the relation of dz-almost everywhere (resp. dI’-almost everywhere) equality.

Unless a specific notation is used, || - ||y denotes the norm in a normed vector space V', and

Al designates the closure in V' of a subset A of V' with respect to the norm | - ||y .
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The notation V* designates the dual space of the normed vector space V. The duality
pairing between V* and V is denoted by (-, )y~ . We shall often omit to indicate the spaces
in such a duality, i.e., we shall simply write (-, ).

Given two normed vector spaces V' and W, the notation V < W (resp. V € W) means
that V' C W and the canonical injection from V' into W is continuous (resp. compact).

Strong and weak convergence are respectively denoted by — and —.

The notation D(2) denotes the space of functions that are infinitely differentiable in € and
whose support is a compact subset of €.

Given a real number p > 1, the notations LP(£2), W1P(Q), and

WOLP(Q) — D(Q)”'”Wl'p(”) ={ve lep(Q);trv =0onTI}

designate the usual Lebesgue and Sobolev spaces, where “usual” means that the exponent p > 1

is a constant.

2 Some Abstract Existence Results
The main result of this section is given by the following theorem.

Theorem 2.1 Let X be a real reflexive Banach space. Given a demicontinuous operator
T:X — X*, i.e., such that

Uy — u implies Tu, — Tu asn — oo,

with the following properties:

(a) For any f € X*, T™Y(f) = {v € X;Tv = f} is a nonempty, closed and convex subset
mn X;

(b) T satisfies the condition (S)4, i.e., as n — oo, the following holds:

up — u and limsup(Tu,, u, —u) <0 imply u,, — u.

In addition, let there be given a nonempty, closed and convex set C' C X and a demicontinuous
operator K : C'— X* with the following properties:

(¢) (vy) C C and (Tvy,) bounded imply that (vy) is bounded;

(d) T7H(Ku) = {v e X;Tv=Ku} CC forallueC;

(e) K(C) is relatively compact.

Then the equation

Tu= Ku

has a solution in C.

Proof Define the set-valued mapping
S:C — 2% by Su=T""Ku) foralucC.

Then, by virtue of (d), S is unambiguously defined.
We now prove that S has the following properties:
(P1) For any u € C, Su is a nonempty, closed and convex subset of C'.
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This property follows by (d) and (a).

(Py) S is closed.

Let (u,) C C satisfy that u, — u as n — oo, and let v, € Su, be such that v, — v as
n — oo. Since T and K are demicontinuous, one has Tv, — Tv and Ku,, — Ku as n — oo.
Since Tv, = Ku,, we conclude that Tv = Ku, i.e., v € Su.

(P3) S(C) = | Swu is relatively compact.
ueC
Let (vn) be a sequence in S(C). We will show that (v,) contains a strongly convergent

subsequence. Let u, € C be such that v, € Su,, or equivalently Tv,, = Ku, for all n. Since
K(C) is relatively compact (see (e)), we may assume, passing if necessary to a subsequence,
that Ku, — f as n — oo. Thus, Tv, = Ku, — [ as n — oo. In particular, (T'v,) is
bounded. In view of (¢), we conclude that (v,) is bounded. Again passing if necessary to a
subsequence, we may assume that v, — v as n — oco. Since Twv, — f and v, — v, it follows
that (Tw,,v, —v) — 0 as n — oco. Since T satisfies the condition (S);, we conclude that
Up — .

Properties (P1)—(P3) of S allow us to apply the Bohnenblust-Karlin fized point theorem
(see, e.g., [24, Theorem 9.2.3]) and to conclude that there exists v € C such that u € Su.
Equivalently, there exists u € C such that Tu = Ku.

Remark 2.1 It is easily seen that the assumptions that K : C' — X™ is demicontinuous
and that K (C) is relatively compact imply that, in fact, K is continuous.

Corollary 2.1 Let X be a real reflexive Banach space. Let there be given a hemicontinuous
operator T : X — X*, i.e., such that

(T(u+ M),w) — (Tu,w) as A — 0 for all u,v,w € X,

with the following properties:
(a) T is monotone:
(Tu—Tv,u—v) >0 for allu,v € X,
(b) T is coercive:
(Tu, u)
[l
(¢) T satisfies the condition (S)y of Theorem 2.1.
In addition, let there be given a nonempty, closed conver set C C X and a demicontinuous

—oo s ullx — o,

operator K : C' — X™ with the following properties:
(d) T-YKu) ={ve X;Tv=Ku} CC forallue C;
(e) K(C) is relatively compact.
Then the equation
Tu=Ku

has a solution in C.

Proof It is sufficient to show that T" is demicontinuous and that assumptions (a) and (c) of
Theorem 2.1 are fulfilled. Indeed, a classical result in the theory of monotone operators asserts
that, if X is a real reflexive Banach space and T : X — X* is monotone and hemicontinuous,
then T is demicontinuous (see [2, 3]). Moreover, due to a well-known surjectivity result of
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Browder (see [2, 3]), if X is reflexive and T : X — X* is monotone, hemicontinuous, and
coercive then, for any f € X*, the inverse image T~ !(f) is nonempty, bounded, closed and
convex (see, e.g., [11] for more details). Finally, the coerciveness of T" implies that, if T'(A) is
bounded in X*, then A is bounded in X. Thus Theorem 2.1 applies and the result follows.

Remark 2.2 Corollary 2.1 is nothing else but [11, Theorem 1].

The operator T appearing in Corollary 2.1 will now be specialized as being a duality mapping
on a real reflexive and smooth Banach space. To this end, we will first recall some definitions
and basic results related to duality mapping on such a space. A result (which is new to the
best of our knowledge) characterizing the strict convexity of a real reflexive and smooth Banach
space in terms of the injectivity of any duality mapping will be given (see Theorem 3.1 below).

This result will play a crucial role in proving the strict convexity of the space (Ur,, || - [l0,p(.),v)

(see Corollary 4.3 below).

3 Duality Mappings on Smooth Banach Spaces

A real Banach space X is said to be smooth if, given any nonzero element x € X, there
exists a unique support functional, i.e., there exists a unique element z*(z) € X* having the
properties that (z*(x),z) = ||z| and ||z*(z)| = 1.

A function ¢ : Ry — Ry is said to be a gauge function if it is continuous, strictly increasing,
©(0) =0 and ¢(r) — oo as r — .

If X is a smooth real Banach space and ¢ : Ry — R is a gauge function, then, by definition,
the duality mapping on X, subordinated to ¢, is the mapping J, : X — X* defined by

JngX = OX*, (31)
Jox = p(||z]|)z"(x) for all x € X,z # Ox, (3.2)

where z*(x) is the unique support functional at x.
It easily follows from (3.1)—(3.2) that

[Jpzll = e(llzl), (3.3)
(Joz,z) = @([=l))[lz]| = | Jpz|[||z]| for all z € X.

The duality mapping subordinated to the identity gauge function defined by ¢(¢t) = ¢, t > 0,
will be called the normalized duality mapping and will be denoted by J. Thus J : X — X* is
defined by

JOX = Ox*, (3.5)
Jr = ||z|| () for all z € X\{O0x}.

Clearly J, and J are related by

e([l=l)
Joxr = J
’ |z

for all nonzero z € X.
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Thanks to this relation, many properties of J (which are usually easier to prove) may be
converted into corresponding properties of J,. Here is a useful example.

Proposition 3.1 Let X be a smooth real Banach space. Then J, : X — X™ is injective if
and only if J : X — X* is injective.

Proof Assume that J, is injective. We have to show that J is injective, i.e., that Jz = Jy
implies x = y. If Jr = Jy = 0x+, then z =y =0x. If Jr = Jy # Ox~, then « # 0x, y # Ox
and ||z|| = ||ly||. Consequently,

elll) ;, _ e, _
B I

and, since J, is assumed to be injective, it follows that z = y.

Jor =

In a similar manner we can see that, conversely, the injectivity of J implies that of J,.

According to a classical result (see, e.g., [9, Theorem 1 in Chapter 2]), a real Banach space
X is smooth if and only if the norm of X is Gateaux-differentiable at any nonzero x € X, i.e.,
if and only if there exists a mapping

(grad | - [[) - X\{Ox} — X"\{0x-},
such that, at any nonzero element x € X,

o Nl thl o]
t—0 t

((grad || - [[) (), h) for all h € X.

Since, for all nonzero z € X, the gradient of the norm satisfies (see [25, Lemma 2.5])

((grad || - [))(2), z) =[], (3.7)
[(grad |- [(x)]| = 1,

we conclude that the unique support functional at any nonzero element z € X is a*(x) =
(grad || - |)(x). It then follows from (3.1)-(3.2) that, on a smooth real Banach space X, the
duality mapping corresponding to a gauge function ¢ is the mapping J, : X — X* defined by

Jo0x = 0x-,

(3.9)
Jox = o(||z|))(grad || - [[)(z)  for all x # Ox.

By the definition of J, and the metric properties (3.7)—(3.8), we infer that, for all z,y € X,

(Jox = Ty, —y) = ((llz])) = ¢yl (<] = llyl) = 0, (3.10)

which shows that J, is monotone. From (3.3), we infer that J, is also bounded. For other
properties of duality mappings, see [2; 6; 26, Proposition 32.22].

We now show how some geometric properties of a smooth Banach space may be expressed
in terms of some specific properties of any duality mapping defined on such a space.

Theorem 3.1 Let X be a real reflexive and smooth Banach space. Then X 1is strictly
convex if and only if any duality mapping J, : X — X* is injective.
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Proof Assume that X is strictly convex. Then J, is strictly monotone and thus it is
injective (see [22]).

Conversely, assume that J,, is injective. We will prove that J,, is strictly monotone.

Assume on the contrary that there exist elements z and y in X, x # y, such that

(Jox — Joy,x —y) =0. (3.11)
If one of these elements, say y, is the zero vector, then we conclude from (3.11) that
0= (Jom,z) = o(||z[))]|z] >0,

a contradiction.

Assume that = and y are both nonzero. Since

0= {Jor = Joy,x = y) = (¢(llz]}) = ¢(lyID) Izl = llyl) = 0,

we infer that
(e(llzll) = ey Uzl = llyll) = 0,

and thus that ||z| = ||y|| since ¢ is strictly increasing.
Rewriting (3.11) as

[(Joz, ) — (Joz,9)] + [(Joy,y) — (Jpy,2)] = 0, (3.12)

and observing that
<J<vax> - <J¢x,y> >0

and
<J¢y,y) - <J¢y,x> >0,

we infer from (3.12) that
<Jtpxax> - <J<,0xay> =0, (313)
(Joy,y) — (Joy,x) = 0. (3.14)

From (3.14), it follows that

(Joy, ) = (Joy,9) = [ Toyllllyll = [ Toylll|]]-

Consequently, denoting by y the canonical isomorphism between X and X** (i.e., such that
(x(x),z*) = (z*,z) for all x € X and z* € X*), we have

() == ) g - Gl 219
On the other hand, we derive from (3.4) that
J J.
(rcar e = 1= )z = I Gp) (816)

Relations (3.15)—(3.16) then show that X(H;‘:—H) € X** attains its norm at two different points

of the unit ball in X*, namely ”L‘;";Z” and ”j";ﬁ” This means that X* is not strictly convex
] ]
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and, since X is supposed to be reflexive, it follows that X is not smooth (see [9, Corollary 2 in
Chapter 2]), a contradiction.
Thus J,, is strictly monotone. Consequently (see [22]), the space X is strictly convex.

Theorem 3.1 and Proposition 3.1 imply the next corollary.

Corollary 3.1 Let X be a real reflexive and smooth Banach space. Then X is strictly
convez if and only if the normalized duality mapping J : X — X* on X is injective.

Corollary 3.2 Let X be a real reflexive and smooth Banach space, and let J, : X — X*
be a duality mapping on X that satisfies the condition (S)4 of Theorem 2.1. Let C C X be
a nonempty, closed convex set, and let K : C — X* be a demicontinuous operator with the
following properties:

(a) J; N (Ku) ={v e X;Jov=Ku} CC for allu € C;

(b) K(C) is relatively compact.

Then the equation

Jou = Ku

has a solution in C.

Proof It is known (see, e.g., [2]) that any duality mapping on a real reflexive and smooth
Banach space is monotone, demicontinuous (or equivalently hemicontinuous) and coercive. Con-
sequently, it suffices to apply Corollary 2.1 with T = J,,.

Theorem 3.2 Let X be a real, smooth, and strictly convex, reflexive Banach space. Then:

(a) Any duality mapping J, : X — X* that satisfies the condition (S)y is bijective and has
a continuous inverse.

(b) If, in addition, the norm of X is Fréchet differentiable, then any duality mapping J, :
X — X* that satisfies the condition (S)4 is a homeomorphism of X onto X*.

Proof (a) Any duality mapping J, : X — X* on a reflexive, smooth and strictly convex
real Banach space X is a bijection of X onto X*. Moreover (see, e.g., [12, Theorem 5; 13,
Corollary 2.3; 26, Proposition 32.22(b)]),

-1 _ =1 7%
J@ =X J<P717

where y stands for the canonical isomorphism between X and X**, and J;,l X — X s
the duality mapping on X* corresponding to the gauge function ¢~!.

In order to prove the continuity of J;l, let ¥ — 2* in X* as n — 0o0. As a duality mapping
on a smooth and reflexive Banach space, J;_l is demicontinuous. Thus, J 12y, — J,—12™ in

X** as n — oco. Consequently,

_oog—1_x _ =1 7% * —1 7% * —1 % _
Tp =J, =X Joan, =X Joaxt =J 2t =x asn — oo.

On the other hand,

Jotn =), — Jor =2 asn — oo.

Hence

(JoZn,zn —x) =0 asn — oo,



646 P. G. Ciarlet, G. Dinca and P. Matei

and, since J,, satisfies the condition (S)4, we conclude that x,, — = as n — oo. This shows
that J; 1is continuous.

(b) Any Fréchet-differentiable norm on a normed vector space X is necessarily of class C*
on X — {0} (see [19, Lemma 2] and [23, p. 20]). Therefore, we infer from (3.9) that any duality
mapping on a Banach space having a Fréchet-differentiable norm is continuous.

4 The Space Ur,

In view of defining (see Subsection 4.2) the space Ur,, we need first to review some properties

of classical function spaces.

4.1 Lebesgue and Sobolev spaces with variable exponents

This section gathers various definitions and basic properties related to Lebesgue and Sobolev
spaces with variable exponents needed through the paper. For proofs and references, see [14].
Given a function p(-) € L*>°(2) that satisfies

1 <p :=essinf p(z) < p' :=esssupp(x),
zeQ €0

the Lebesgue space LPC)(Q) with variable exponent p(-) is defined as
LrO(Q) == {v : Q — R;w is dz-measurable and pg )0 (v) = / lo(z)[P@dz < oo},
)

where pg ,(.y,o(v) is called the convex modular of v.
Often we shall omit to indicate the domain 2 and simply write pg (..
Given a function ¢(-) € L*°(T") that satisfies

1 < ess inf
< ess inf ¢(y),
the Lebesgue space L) (') with variable exponent q(-) is defined as

LIO(T) = {v : ' = R; v is dI'-measurable and / lo(y) |9 dy < oo}.
r

Theorem 4.1 Let Q be a domain in RV,
(a) Let p(-) € L>®(Q) be such that p~— > 1. Equipped with the norm

p(x)

the space LPC)(Q) is a separable Banach space. If p~ > 1, the space LPC)(Q) is uniformly

convez, hence reflezive.
(b) Let p1(-) € L>®(Q) and p2(-) € L>=(2) be such that p; > 1 and p5; > 1. Then

LPZ(')(Q) - Lpl(')(Q)

if and only if
pi(x) <p2(x)  for almost all v € Q.
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(c) Given p(-) € L*°(Q) such that p~ > 1, let p'(-) € L>(Q) be defined by

=1 for almost all x € Q.

Then, given any function u € Lp/(')(Q), the linear functional
(:vePO(Q) — / u(z)v(x)dr € R
Q

s continuous; conversely, given any continuous-linear functional £ : Lp(')(Q) — R, there exists
one, and only one, function uy € Lp'(')(Q) such that

l(v) = / we(x)v(z)dz  for all v e LPO(Q).
Q
(d) For any u € LPO(Q) with p(-) € L=(Q) satisfying p~ > 1 and v € LF' (1),

[ e@ldr < (= + == ) lelloses - ol (11)

The next theorem recapitulates the relations between the norm || - [[o 5.y and the convex
modular pg (.-

Theorem 4.2 Let p(-) € L>(Q) be such that p~ > 1 and let u € LP)(Q). The following
properties hold:

(a) If u # 0, then |lullo p) = a if and only if po py(a™ u) = 1.
(b) llullopcy <1 (resp. = 1, or > 1) if and only if po py(u) < 1 (resp. =1, or > 1).
o - +
(c) llullo.py > 1 implies [ullg .y < po.pe)(w) < [[ullgy-
. . + -
(d) [lullo,p(.y <1 implies ||u||§,p(.) < pop((u) < HUHS,p(.y
(e) Let u € LPO(Q) and up € LP)(Q), k =1, 2, ---. Then the following properties are
equivalent:

(1) [Ju = ullopcy — 0 as k — oo;

(2) po,p(y(ur —u) — 0 as k — oo;

(3) (ur) converges to w in measure and po p.)(Ur) — pPop()(u) as k — oo.
(f) Let v € LPO)(Q). If a measurable function u : Q — R satisfies

lu(z)| < |Jv(x)|  for almost all x € Q,

then pop(.y (1) < popy(v). Consequently, w € LPO(Q) and [[ullo p) < [[v]]o.p(.)-
(g) Given a nonzero function u € LPU)(Q), the function X — pg () (%) is continuous and
decreasing on the interval [1,00).

For the proof of (a)—(e), see [14]; for the proof of (f)—(g), see [20].

Corollary 4.1 Let p € L°(Q) with p~ > 1. A subset A C (LPO)(Q), || - |lo,p()) is bounded
if and only if the set pg p.)(A) = {pop)(w);u € A} is bounded in R .

Proof From Theorem 4.2(a), (c) and (d), it follows that

) . |
Py (w) < max(ullf ) Jlull?) ) for all u € LPO/(Q), (4.2)
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which easily implies that, if A C LP()(€) is bounded, then pg ,(.)(A) is bounded in R .
From Theorem 4.2(a) and (d), it also follows that
||u||0,p(~) =1 implies ||u||0,p() = pO,p(')(u) =1,
[ullo,p(y > 1 implies [[ullo,pc) < [ullg ) < Po,p() (),
lullo,py < 1 implies [[ullop) < po,p() () + 1.
Hence

||u||0’p(.) < poyp(.)(u) +1 foralluce Lp(')(Q). (4.3)

Clearly, (4.3) implies that, if po ) (u) < M, then [lullopc) <1+ M.

Remark 4.1 Corollary 4.1 was first proved in [27]. We simply remark that the inequalities
(4.2)—(4.3) above are slightly stronger than the inequalities

pop(y(u) < (1 + |\u|\07p(,))p+ for all u € Lp(')(Q),

and the implication
Po,p(-y(w) < M implies [[ulg .y < max(1 + M,?2)

established in [27].

Given a function p(-) € L>(Q) that satisfies p~ > 1, the Sobolev space W'P1)(Q) with

variable exponent p(-) is defined as
WhPO(Q) := {v € LD (Q); 9,0 € LPO(Q),1 <i < N},

where, for each 1 <i < N, 9; denotes the distributional derivative operator with respect to the

i-th variable.

Theorem 4.3 Let Q be a domain in RY.
(a) Let p(-) € L>®(Q2) be such that p~— > 1. Equipped with the norm

N
v e WHPO(Q) = [[o]l1,pe) = vllope) + Zlﬂaivﬂo,pc)a
1=
the space WP (Q) is a separable Banach space. If p~ > 1, the space W P()(Q) is reflexive.
(b) Let p1(-) € L>®(Q) with p; > 1 and pa(-) € L*™(Q) with p; > 1 be such that
pi(x) <p2(x)  for almost all x € Q.

Then
wirz0)(Q) — whr(q).

(c) Let p(-) € C(Q) be such that p~ > 1. Given any x € 0, let

Np(z)

p(x) = m if p() <N and p*(z): =00 if p(x)> N,
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and let there be given a function q(-) € C(Q) that satisfies
1 <gq(z) <p*(x) for each x € Q.
Then the following compact injection holds:
WLP(')(Q) e L‘I(')(Q),

so that, in particular,
WPl (Q) € LPO(Q).

(d) The function defined by

v e WO (Q) = v

150, = [vllo.py + [1Vll0p()

is a norm on W'PO)(Q), equivalent with the norm || - |1 (.-

Theorem 4.4 Let Q be a domain in RY.

(a) Let p(-) € L=(Q) be such that p~ > 1. Since WHPO)(Q) — WHL(Q) (see Theorem
4.3(b)), the trace trv on T' of any function v € WHP()(Q) is a well-defined function in the
space L*(T).

(b) Let there be given a function p(-) € C(Q) such that p~ > 1. Given any x € T, let

(N = Dp(z)

N @) if p(x) <N and pa(x) =00 if p(x) >N,

Po(a) =
and let there be given a function q(-) € C(T') such that
1 <q(x) <p?(z) for each z €T.
Then, trv € LICN(T) for any function v € WHP()(Q), and the trace operator
tr :WLP(')(Q) N L(I(')(F)
defined in this fashion is compact. In particular, the trace operator
tr :Wl,p(-)(Q) N Lp(')(l“)
1s compact.

4.2 Definition of the space Ur,

This space is defined via the following theorem, which was the main result of [5].

Theorem 4.5 Let Q be a domain in RN, N > 2, let Ty be a d'-measurable subset of

[ = 09 that satisfies d-meas I'g > 0, let p(-) € C(Q) be such that p(z) > 1 for all x € Q, and
let

Ur, = {ue (WHO(Q), |||

1,p(),v)itru =0 on I'o}.

Then:
(a) The space Ur, is closed in (WPO(Q), ||+ |l1 p(),w); hence (Ury, || |1 p(),w) s a separable
reflexive Banach space.
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(b) The function

u € Urg = [[ullo,p),v = Vulllope
is a norm on Ur,, equivalent with the norm || - |1 () v-
(c) The norm |lullo,p(.),v is Fréchet-differentiable, and the Fréchet derivative || - [|o p(.),v" of

this norm at any nonzero element w € Ur, is given for any h € Ur, by

p(z)—2 .
/ . [Vu(z)| Vu(z) - Vh(z) d
O\ Q0.

p(z)—1
ullop), v

V()P
/Q plz)~—r—da

lullo ), v

(I

0.p(),v (u), h) =

where Qo ., = {z € Q;|Vu(z)| = 0}.
(d) If, in addition, the function p(-) € C(Q) satisfies p(z) > 2 for all x € Q, then the space
(UF07 H : |

Some comments are in order about this theorem.

0,p(-),v) 18 uniformly convez.

We first recall that, in the classical case (i.e., when p is any real number that satisfies p > 1),
the following equalities hold:

Wol’p(Q) - m”'lll,p,v _ m”'”o,p(%v

I
So

LP(Q) :={v e WHP(Q);trv =0 on I' = 9Q}.

_ 0
In the case of a variable exponent p(-) € C(Q) with p~ > 1, the equality Wy ?(Q) = W L2()

0
is replaced by the inclusion Wol’p(')(Q) c W bP0)(Q), which may be strict, unless additional
assumptions are imposed on the function p(-). Such an assumption is, for example,

C
Ip(z) —p(y)| < e

for all #,y € Q with |l —y|| < 3, where || - || denotes the Euclidean norm in RY (see [8, 14, 28],
for more details).
Thus, in the case of a variable exponent p(-) € C(Q2) with p~ > 1, one has

0
W, " (Q) ¢ W P0(Q) € Ur,,

the last inclusion being strict, even if additional assumptions are imposed.
But the results of Theorem 4.5 (in particular, the Fréchet differentiability of the norm
|l llo,p(),v on Ur,) can be of interest, even if additional assumptions on the function p(-) need

0
to be imposed, so as to ensure that the equality Wol’p(')(Q) =W r0)(Q) holds.

4.3 Duality mappings on the space (Ur,, || * |lo,p(),v)

The main goal of this section is to establish the following theorem.

Theorem 4.6 Let Q2 be a domain in RN, N > 2, and let a function p € C(Q) be such that
p(z) > 1 for all z € Q. Then:
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(a) Any duality mapping on the space (Ur,, || - [lo,p(.),v) satisfies the condition (S)4 of The-
orem 2.1.

(b) Any duality mapping on the space (Ur,, || - [lop(),v) is injective.
Proof The proof rests on four lemmas.

Lemma 4.1 Let X be a real Banach space, and let T : X — X* be monotone. If

up, = u and  limsup(Tun,, u, —u) <0, (4.5)
n—oo
then
lim (Tup, w, — uy = lim (Tu, — Tu, u, —u) = 0. (4.6)
n— 00 n—oo

Proof The monotonicity of 7" and the assumption (4.5) together imply that
0 < liminf(Tu, — Tu, uy — u) < limsup(Tu, — Tu, u, — u)
n—0o0 n— o0

= lim sup(Tun, u, — u) <0,

n—oo

and thus (4.6) follows.

Lemma 4.2 Let X be a smooth real Banach space, and let J, : X — X* be a duality
mapping on X. Let u be a nonzero element in X, and let (u,) C X be a sequence such that

U, =~ u and limsup(Jyun, u, —u) < 0.

n—oo

Then
(a) the sequence (J,uy,) is bounded;
b) hm (J Upyy Uy, — U) = lim (Jotn — Jou, uy —u) = 0;

(
(c) ||Un|| — |lu| as n — oc;
(

d) iy = up @81 — 00
and
i (gt o5 = ) = i, (ot = T 20 = o) =0
im Uny 77— = /) — Un = Jpll a N
n—oo \" T || fJull/ T nmeo N\ T | (|

Proof (a) Since the sequence (u,) is weakly convergent, it is bounded. Since ||J,u,| =
©(||un|l), it follows that the sequence (J,uy) is also bounded.

(b) Since J,, is monotone, the result follows by Lemma 4.1.

(¢) Since the sequence (||uy,||) is bounded, it suffices to show that ||u|| is the unique cluster
point to the sequence (||uy,||). Let I be a cluster point to the sequence (||u,||), and let us consider
a subsequence, also denoted by (||uy]|), such that |Ju,| — I as n — co. We have (see (3.10))

(Joun = Jou, un —u) = (@([[unl]) = @(llul))(lunl = flull) =0

Letting n — oo and taking into account the result of (b), we obtain

() = @([lul))(C = [lull) =
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Since ¢ is strictly increasing, this implies that [ = ||u]|.

(d) Since u,, — w and |Juy|| — ||u|| as n — oo, it is easily seen that Tu — Ty @ 1 — 00
Moreover
Uy, U 1 1 1
Ju,———>=—<Ju,u —u>+(———><Ju,u).
< T Nl el 7 T lunll /72

From (b) and (c), it follows that
1

m(ipun,un —u) —0 asn— oo,
n

and from (a) and (c), it follows that

1 1 )
—— — — | {Jyup,u) — 0 asn — oo.
<Hun|\ [l /7
Consequently,
<Ju &—L>—>O as n — 00
P Nl ]

Since HZ—H — ”—Z” as n — 00, this last relation is equivalent to
n

u u
lim <Ju —J u,—"——>:o
n—oo \"FT T g | |

Remark 4.2 Recall that a Banach space is said to possess the Kadec-Klee property (see,
e.g., [7, p. 146], where this property is called the “H-property”, [9, Theorem 4 in Chapter 2], and

[18]) if
up — u and ||uy| — [Ju|| imply w, — u.

We derive the following corollary from Lemma 4.2(c).

Corollary 4.2 Any duality mapping on a smooth real Banach space having the Kadec-Klee
property satisfies the condition (S)+.

Remark 4.3 Locally uniformly convex Banach spaces possess the Kadeé-Klee property (see
[9, Theorem 4(iii) in Chapter 2]). In virtue of Theorem 4.5(d), if p € C(Q) satisfies p(z) > 2
for all z € Q, then the space (Ur,, || - [lop(),v) is uniformly convex. In particular, (Ur,,
I llo,p(-),w) possesses the Kadec-Klee property and, by Corollary 4.2, any duality mapping on
(UFm H ’ |
allows to extend the preceding result to the more general case, where

0,p(-),v) satisfies the condition (S). The significance of Theorem 4.6 is now clear: It

peC(Q) and p(x)>1 foralxeq.
The following technical preliminary will be useful for proving Theorem 4.6.
Lemma 4.3 (see [17]) (a) If p € (1,2), then for any z,y € RY,
(Il + D> P ([P 22 = [ylP~2y) - (2 = y) > |2 =yl
(b) If p € [2,00), then for any z,y € RY,

(I12[P722 = [y’ "%y) - (2 —y) > k(p)|z — yI?,
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where k(p) = min{2717P 5277},

We are now in a position to give the proof of Theorem 4.6(a). Let J, : Ur, — Uy, be a
duality mapping. We need to prove that

0p(y,v) and  limsup(Jytn, u, —u) <0
n—oo

Up, = u in (Upy, || - |

imply that

Up — U in (UF07 H : ||O,p(')7V)'

If u = Opy,, then the relations u, — Oy and limsup(Jyu,,u,) < 0 and Lemma 4.2(c)

— 00

n
0p(),v — llullopc),v = 0; hence u, — Opy, . Assume next that

together imply that ||u,|
u # Opy, - It then suffices to prove that

u, =~ u and  limsup(Jotn,, u, —u) <0

n—oo

imply

U, u
p7 ' ‘V _ ‘ _>0 as N — 0o0. (4'7)
0”()( (||un||o,p(~),v HUJHO,p(-);V) )

Indeed, assuming that (4.7) holds, we infer from Theorem 4.2(e) that

— 0
Oxp(')rv

Up, U ‘

U, U
It - My = | -
lunllopey,w  lullope), v/ Mopc) lunllope),y — Nullope),v

as n — 00.
On the other hand, it follows from the relations w,, — v and lim sup(Jyuy, u, —u) < 0, and

n—oo
from Lemma 4.2(c), that ||un|op),v — [[ullope),v-
Since
Jun = letnllo 9 | |
Uy — U v = |lu . —
n 0,17( );V n 0717( )7V ||un||07p(.)7v HunHop()V 0,p(~),v
< enllopio.o | (| i)
S ||Un (), V -
CPOT N unllop,v — Mellope, v low) v
e —— Il seo.5]
— u 0,p(),V
lalloperv — Tallope, "0

and since the sequence (u,) is bounded, it follows that
lun —ullopcy,v — 0 asn— ooc.

Thus proving (a) reduces to showing that (4.7) holds, as we now show. For any nonzero v

and w in Ur,, let

Vo(z)[P@) =2 Vo(z) - —
Vel @) (s ~ Tol

0,p(-),
B(v,w) := / p(z) o@ 1 p() dex,
2\ Q0,0 ||UHO,p(~),V

Vo(z) Vw(x)
;)
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or equivalently (see (3.9) and (4.4)),
\V/ p(z)
B(v,w) = (/ p(m)7| UEJQJ da:)
o vllope),w

1 < v w
x J, - > (4.8)
<P(|\U||0,p(~),v) v [|v] 0,p(-),V [|w] 0,p(-),V

Since

p(x)
p < /M@de <p*,
Q

(2)
Hunl|g7p(.)7v
50(||Un| 0,p(-),V) — SO(HUHO,;D(%V)
and (see Lemma 4.2(d))
<J<pun, o - “ > —0 asn— oo,
lunlloperw llullope),w

it is clear that

B IV (2) @) 1
B(uy,u) = (/Qp(x) z dx) o(lunllo,pe),v)

lunll5')) <
X <J¢un, Un - Y > — 0 asn— oo.
HunHO,p(~),V ||U||0,p(~),v

By Lemma 4.2(d) again, we also infer that

(e [TE@P 1
Bluu) = ([ plo) ) o)

0,p(-),V
Up, u
X ( Jou, — —0 asn— oco.
< 7 unllopey,y  llul o,p<->,v>
Consequently,
lim |B(un,u) + B(u,uy,)| = 0. (4.9)

The definition of B (see (4.8)) shows that the relation (4.9) can be rewritten as

Jim Q[wn(x) — vp(z)]dz =0,
where
IVt (2) P2 Vi (2) - (|1Z|u:(f)) —- ||J:<f)> -
wp () = p(x) " Hg“’” P P ifr e A\,
n ,p('),v

wp(x) =0, ifzeQou,

and
Vg, () Vu(z)

[unllo.pe).v  lullope).w . i O\ Qo .y,

V()P Vu(a) - (

[[ul

p(z)—1
0,p(-),V
vp(x) =0, ifzeQoy.
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We now show that
Wy () —vp(x) >0 for almost all z € Q. (4.10)
Indeed, for z € Q\(Q0,u,, U Qo.4),

wp,(z) — v, (2)

—p(x)< |V ()] ‘P(x)—Q Vu,(z) ‘ [Vu(z ‘ p(z)=2  Vu(x) )
[unllop),w Hun”o,p( oo Hullope),v lullo,p(, v
( Vu,(z) B Vu(x) )
lunllope)y  lullope),v/”
and the inequality (4.10) follows by Lemma 4.3 applied with
_ Vg (x) and  yi— Vu(z) .
[unllop),w lullop(),w

Let x € QO,un UQ()’U‘ = (QO,UW,\QO,u) U (QO,U\QO,un) U (QO,un ﬂQQ71L). Ifx e QO,UW,\QO,T,H then

()
Vu@p
‘P(I) -

,V

wy () — va(z) = p(x)

Y
[[ul

if x € Q9,4 \Q0,u, , then
p(z)
[Vun @)

p()

)
lunllo p), v

wy () — vp(z) = p(x)

if x € Qo u, NQoy, then

wp () — vy () = 0.
We are now in a position to show that (4.7) holds. To this end, let
Q={rel<plx)<2} and Q={zec2<p)}

It then suffices to show that

Vg ( \V p(x)

lim / ‘ Y _ _Vul@) ‘ do =0, (4.11)

n—oc Jo Hunllo 0,p(),V ||U||O,p(~),V

and that

Vg (x) Vu(z) p)

lim i — ‘ dx = 0.

n=oo Jo, unllope) v lullope),v

. . . Vu,(x) _ _ Vu(x) ;
Applying Lemma 4.3(a) with z := TonTero~ and y := Talono: Ve obtain

vz |V, ()| |Vu(z)| \2-r@)
(n (@) = o0 @) (o= =+ e =)
Vg, () Vu(z) ‘2

HunHO,p(.),V ||U||0,p(~),v

for z € Q.
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Hence it follows that

/‘ Vo, (z Vu(zx)
Q HunHOp()V ||U||0,p(~),v

/‘ Vup(z)  Vu(z)
o, Hunl 0p() v lullope).w

p(z)

dx

211(293)

dx

p ||un||o,p<~>,v lullope).v
- (i>%/ ( |V, (z)] N |Vu(z)| Y%p(x))@(w (&) — v () "L de
ToA\pT o Munllopey,vy  ullope),w " " '
Since
( ™ |Vl >(2fp(~))¥ e L5 (y)
=0 (),
||Un|\0,p(~),v ||U||0,p(~),v
(wp, —vn)# € L%(Ql)
and since

(f%@fu(ﬁﬂA‘L

it follows from Theorem 4.1(d) that

/ Vg (x) Vu(x) ‘P(x)d
— x
o lunllopy.v Nullope).v
Vu Vu| \@-p()2 o)
<o (il L YEEE = 0)
HunHO,p(.),V ||U||0,p(~),v 0,525, ()
with -
1\%= 1 1
Cri= (=) (5t 5 )
b (2—10('))91 (m)ﬂl
To conclude that (4.11) holds, we now show that
Il (w,, — vn)% ||07%791 —0 asn— oo, (4.12)
and that there exists a constant Cy such that
Vu, v (2-p() 22
I( Vol IVl ) | C (4.13)
[|wn| 0,p(),V ||u||07p(~)7V 0,352
Indeed,
20
fo.ga (= 0) ) = [ (wno) ~ vnl@)d
P o

and, since

0< /Q (wn(z) — vp(x))de < /Q(wn(x) —vp(z))de -0  asn — oo,

it follows that
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Equivalently, (4.12) holds. On the other hand,

Po, 2 _
02 \\unllopyw  Nulloperw

s (ATl Tl )
PN Nunllope,y  Nullope),y
< po, Q( * )
PO uallopery  ulloperv
- V| il :
<2 (poporn () g0 ( LT )) <2
P20\ om0\ [ulfoniyw

Hence we infer from Corollary 4.1 that (4.13) holds with Cy := 27" 4 1.

By Lemma 4.3(b) applied with z := m and y := m, we infer that
p(z)
@) — va(a) 2 e S Py g,
lunllopey,w  lullo,pe),v
where k; := min(27177", 527" ). We thus conclude that
lim Vun(z)  Vu(z) P(I)dx
=00 Jo, Hunllope), v llope,v

< (p k)7 lim [ (wn(2) = vn(2))de

<(p k1)t lim [ (wn(2) — va(x))de = 0.

n—oo Q

Thus, relation (4.7) is proved and, as already observed, it follows from (4.7) that u, — u as
n — oo.

We now prove Theorem 4.6(b). To this end, we need the following preliminary result.

Lemma 4.4 Let u,v € Ur, be such that
lullo.pc).v = llvllopc).v =1 (4.14)
and
(grad || - flo,p(),v)(u) = (grad || - [lo,p(),v)(©)- (4.15)

Then u = v.

Proof From (3.7)-(3.8) and (4.14)—(4.15), we infer that
((&rad | o) (w)s ) = ((erad | - o) (@) 0) = [Wloperw = 1. (4.16)

Taking into account the formula (4.4), we can rewrite (4.16) as

/ p(@)[[Vu(@) P2 Vu(e) - (Vu(e) - Vo(x))de = 0, (4.17)
Q\Qoyu
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and, exchanging v with v, we also get
/ p(x)[|[Vo(z)|P@=2Vo(z) - (Vu(z) — Vo(z))]dz = 0, (4.18)
Q\Q0,0

Substracting (4.18) from (4.17), we get

@@ - gtz =0, (4.19)
where
f(z) = |Vu(z)|P@2Vu(z) - (Vu(z) — Vo(z)), if z € Q\Qou,
flx):=0, ifzeQ,
and
g(z) := |[Vou(z) P 2Vo(z) - (Vu(z) — Vo(z)), if z € Q\Qo.,
g(x) =0, ifxeQo,.
Similarly, we can show that
f(x)—g(x) >0 for almost all z € €, (4.20)

by means of a proof analogous to that of inequality (4.10) (the details are left to the reader).
Combining (4.19)—(4.20), we then get

0= [ palfie) glde = p~ [ () = glalde >0,
which implies that
[ - gtz =o.
Q
We next show that

Popiy([Vu — Vo]) = / Vu(z) — Vo(z)P@dz = 0. (4.21)
Q

Let
D ={reQ; 1<p(z) <2} and Qy:={ze; 2<p(x)}.

It is sufficient to show that
/ \Vu(z) — Vo(z)[P®dz = 0, (4.22)
Q

and that

\Vu(z) — Vo(z)[P@dz = 0. (4.23)
Qo

By applying Lemma 4.3(a) with z := Vu(z) and y := Vu(z), we obtain

[/ (@) = g(@)](|Vu(@)| + [Vo(@))* P > |Vu(z) - Vo(@)?  for z € Q.
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Hence it follows that

|Vu(z) — Vo(z) [P dx
|95

= [ |Vu(z) - Vv(x)|2@dx
|95

p(x)

—p(z)) 22 @)
S/Q (IVu(z)| + [Vo(z) ) EPE ST [ f(2) — g(2)] > da
Since the functions
€ O (|Vu()| + Vo) )P,
p(x)

z ey [f(z) —g(a)] 2

belong to the spaces L7350 (€4) and L0 (€1), respectively, and since

-1 -1
(%M) - (;%) -h

|Vu(z) — Vo(z) [P dz
|95

it follows that

-)

—p()) 2L ()
< Cull(Vul + [Vo)ETOH o (-9 o, 2 g,
with -

1\ 1 1

Cl::(_*>2( 2 - Tz *)'
P (=)a Go)a,

To conclude that (4.22) holds, we now show that
2O

I(f =9)% llo,.2. .0, = 0. (4.24)

'p()°
Indeed, one has

and, since

it follows that

or equivalently, (4.24) holds.
Lemma 4.3(b) applied with z := Vu(z) and y := Vou(z) shows that

f(x) —g(x) > k1 |Vu(z) — Vo(z)P@,  if 2 € Qy,
where k; := min(2*1’p+, 52’p+). Consequently,

|Vu(z) — Vo(z) [P dz
Qo

<kt /Q (f(2) — g(@))dz
<kt /Q (f(x) — gla))dz = 0.
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Thus, relation (4.23) is proved.
Clearly, (4.21) is a direct consequence of (4.22)-(4.23). On the other hand, (4.21) is equiv-
alent to
[ = vllo.p(y. v = 0,

which means that « = v. This completes the proof.

We are now in a position to give the proof of Theorem 4.6(b). By Proposition 3.1, it is
sufficient to prove that the normalized duality mapping is injective on Ur,.

So, let u,v € Up, be such that Ju = Jv. If Ju = Jv = 0, it is easily seen that u = v = 0.
Assume that Ju = Jv # 0. Hence u # 0, v # 0, ||ullo (), v = [|v]

0,p(+),Vs and

(grad || - [lop(),v)(u) = (grad [ - [lo,p(),w) (v)- (4.25)

Since (see [25, Lemma 2.5])

(grad || - [[)(aw) = sign a(grad || - [)(w), a#0, w#0,

it follows from (4.25) that
u v
d|l - . —) = djl - . —_— .
(gra H ”07;0( )’V)(||U||0,p(~),v) (gra || ||0,p( )’V)(HUHO,])(J,V)

By Lemma 4.4, we then conclude that u = v.

Corollary 4.3 Let Q be a domain in RN, N > 2, and let p € C(Q).
(a) If p(x) > 1 for all x € Q, then (Ur,, || - lop(.),v) is strictly convez.
(b) If p(z) > 2 for all x € Q, then (Ury, || - lo,p(),v) is uniformly convez.

Proof (a) Since (Ury, || - |lo,p(),v) is reflexive and smooth (see Theorem 4.5(a)—(c)) and
since any duality mapping on (Ur,, || - [lo,p.),v) is injective (see Theorem 4.6(b)), the result
follows by Theorem 3.1.

(b) This is nothing but Theorem 4.5(d).

Corollary 4.4 Let  be a domain in RN, N > 2, and let p € C(Q) be such that p(z) > 1
for all z € Q. Then any duality mapping on Ur, is a homeomorphism.

Proof Since the space (Ury, ||-|lo,p(.),v) is reflexive (see Theorem 4.5(a)) and strictly convex
(see Corollary 4.3(a)), since the norm || - [|o p(.),v is Fréchet differentiable (see Theorem 4.5(c)),
and since any duality mapping on Ur, satisfies the condition (S); (see Theorem 4.6(a)), the
assertion follows by Theorem 3.2(b).

5 Existence Results for Operators Equations Involving Duality Map-
pings and Nemytskij Operators on the Space Ur,

5.1 An estimate concerning the Nemytskij operators between Lebesgue spaces
with variable exponents

Theorem 5.1 Let Q C RN be a domain, let f : @ x R — R be a Carathéodory function
satisfying the growth condition

a(z)
|f(z,s)] < Ci|s|"® +a(x) for almost all x € Q and all s € R, (5.1)
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where C1 > 0 is a constant, ¢ € L () with ¢~ > 1,
1 + 1
a(z)  d'(x)

and a € LY O)(Q) with a(x) > 0 for almost all x € Q, and let Ny : LIO(Q) — LI C)(Q) be the
Nemytskij operator generated by f, i.e.,

=1 for almost all x € Q,

(Nsv)(z) = f(z,v(x)) for all v e LID(Q) and almost all x € Q. (5.2)

Then the following estimate holds:

-1 -1
[INsllo,q () < Crmax{|[v]I§ .y, IVII§ oy F + llal

0,4'() (5.3)
for all v € L10) ().
The proof rests essentially on the following lemma.

Lemma 5.1 Let p € L>®(Q) be such that p~ > 1, and let r € L*>°(Q2) be such that
(rp)= > 1. Then for any dz-measurable function u on Q satisfying |u(-)|"") € LPO)(Q), the
following inequality holds:

. - +
O Mopey < max{llully ypys 15} (5.4)

Proof We first remark that »(-)p(-) € L*°(f2) and that the assumptions that u is da-
measurable on  and that |u(-)|"¢) € LP()(Q) together imply that v € L")P()(Q). We now
prove that

. . r(- rt
[ullo,r(yp(y = 1 implies [[[u(-)]" o pey < Nullf 0 (5.5)
which is equivalent (see Theorem 4.2) to proving that

ju()

el o)

Po,po)( <1l (5.6)

In order to prove that (5.6) holds, we will use the simple technique already used for proving
inequality (3.16) in [10]. Since v —r(z) > 0 and |[ullo,»()p() = 1, it easily follows that

Ju ()| Ju(a)|" ™) 1 Ju(@)|"™)
||u||7"+ = ( r(x) r+—r(zx) = r(x) ’
0r(p)  llogriypey” 1llorypey  Iellogymcy

which in turn implies that

P0,p(+) (M) < Po,z%)(%) = P07r(~)p(~)<&|(_)) =1

5
||u||6,r(-)p(-) [ 0,7 (p() llwllo,r()p

Thus, the inequality (5.6) holds. Consequently, the inequality (5.5) holds too.
By using a similar technique, one can prove that

[llo,r(ypy < 1 implies [|u(-)|"lo .y < 16, (. yp(-y- (5.7)
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Clearly, (5.5) and (5.7) together imply that the inequality (5.4) holds.

Remark 5.1 Under the more restrictive assumptions that p € C(Q) with p~ > 1 and
r € L>®(Q) with = > 1, the result of Lemma 5.1 was also obtained in [4, Lemma 1.4] (the
continuity of p(-) was needed for using the mean value theorem in proving Lemma 1.4 in [4]).

Proof of Theorem 5.1 We can now prove Theorem 5.1. First, we note that, by virtue
of [14, Theorem 1.16], N; is well-defined as a Nemytskij operator from L)() into Lq/(')(Q),
which is continuous and bounded. From (5.1)—(5.2), we infer that

q

INsvllo.g ¢y < Crlllo()

)
lo,gr¢y + llallo,q -

Applying (5.4) with u(-) = v(:), r(-) = g,(('_)) =¢(-) — 1 and p(-) = ¢(+), we obtain

aq

ICOIK

from which the estimate (5.3) follows.

¢ -1 qt-1

()
Mo,y < maX{Hv||07q(.) ) HU||07Q(.)},

Remark 5.2 If ¢(-) is a constant function, then ¢~ = ¢* = ¢, and so the estimate (5.3)
becomes

-1
INgoll Lo () < CallvllTa gy + lall Lo oy
a well-known property of Nemytskij operators acting between classical Lebesgue spaces L7(2)
and L7 () (see [16]).
6 The Main Existence Result

Theorem 6.1 Let Q be a domain in RN (N > 2), let p € C(Q) and ¢ € C(Q) be two
functions such that p~ > 1, ¢~ > 1, and

Np(x)
N —p(z)

and let there be given a Carathéodory function f : QxR — R that satisfies the growth condition:

q(z) < p*(x) := if p(x) <N and p*(x):=o00 if p(z) > N,

q(x)
|f(z,s)] < Ci|s|e’@ +a(x) for almost all x € Q and all s € R,

with ﬁ + q/(lz) =1,ac¢ Lq/(')(Q), a(x) > 0 for almost all x € Q, for some constant C; > 0.
Let

Ny : L1OQ) — LIO(Q), (Nyu)(z) = f(z,u(z)) for almost all x € Q

denote the Nemytskij operator generated by f.

Then, for any gauge function ¢ which possesses the property that tfftjl — 00 ast — oo,

the solution set of the equation
Jou= Nyu (6.1)
is a nonempty and compact subset of Ur,.

Proof First we need to explain what is meant by a solution of equation (6.1). By Theorem
4.3(c) and Theorem 4.5(a)~(b), the compact inclusion (Ur,, || - [[1,p().v) € (LIO(Q), || llo,4¢))
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holds. Let ¢ be the compact injection of Ur, into L4()(Q), and let o* : LY )(Q) — (Ur,)* be
its adjoint, in the sense that (*v = v o for all v € Lq'(')(Q). Therefore, ¢* is also compact and
el = {1l

A solution of equation (6.1) is an element u € U, that satisfies
Jou = ("Ny)u in (Up,)". (6.2)

In the sequel, three methods for proving the existence of such a solution of equation (6.1)
will be described.

The first method is based on Corollary 3.2. Since U, is reflexive and smooth (see Theorem
4.5), any duality mapping on Up, satisfies the condition (S)4 (see Theorem 4.6), and K =
(¢*Nyi) = Up, — Uy, is compact. So, it is sufficient to prove the existence of a closed convex
set C' C Ur, such that the assumptions (a)—(b) of Corollary 3.2 are satisfied.

Let v and w in Ur, be such that

Jov = (" Nyi)u. (6.3)

Taking the norm in both sides of this equality and taking into account the estimate (5.3), we
get

el < 1N ()]
- _ +_
< el ma{flaull& L leull oty + llallo.g o)

- -1 +_ +_1
< lelllCr{llell® ~Hlwlld ooy + Hell® =M lellg oy 3+ Nallogr))]

0,q() 0,q()
= Cy e a8 4 Cylel| ) 6.4
= Cullel| [lullg gy + Crllell® llullg oy + llallo.ge)llell (6.4)
Since t;ﬁ(tjl — 00 as t — 00, there exists a constant R > 0 such that
p(t) = (Colle|® 1 " 4 o)t + allogyllel) >0 forallt >R, (6.5)

Taking into account (6.5), we deduce that, if v and w in Urp, satisfy (6.3) with ||u]] < R,
then
- -
e(lvll) < Cullel|* BT =1+ Cale]® BT =1+ [lallo,grollell < @(R),

which implies that ||v|| < R. Thus, the assumption (a) in Corollary 3.2 is satisfied by letting
C = EUFO (0,R) = {u € Ury;||ullo,pc),v < R}. Moreover, since K = 1*Ny. is compact, the set
K(Bur, (0, R)) is relatively compact. Thus the assumption (b) in Corollary 3.2 is also satisfied.
We conclude that Corollary 3.2 applies with C' := By, (0, R) and K := :*Ny.. Consequently,
there exists u € Byy, (0, R) satisfying (6.2).

It remains to prove that the solution set of equation (6.2), viz.,

S(Jy, K) :={u € Ur,y; Jou=Ku, K = "Ny},

which is not empty, is compact.
To this end, we first observe that S(J,, K) C EUFO (0, R). Indeed, if some u € Ur, satisfies
(6.2), then (6.4) implies that

+ +_1 - -1
e(llull) < Cullell? [lwll§ oy + Collell® Null§ .oy + llalloqellell,
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which, by virtue of (6.5), implies that |lu]| < R.
Second,

S(Jp, K) ={u € By (0,R);u=Tu,T = J; 'K}, (6.6)

ie., S(J,, K) is the set of fixed points of T'. Indeed, since any duality mapping on Ur, is a
homeomorphism (see Corollary 4.4), the equality (6.6) clearly holds. Also notice that, since K
is compact and J Lig continuous, T is compact and the inclusion T(EUFO (0,R)) C EUFO (0, R)
holds. Indeed, let u € By, (0, R) and let v = T'u, or equivalently, J,v = Ku. From the above,
it thus follows that ||v|| < R. Now a standard argument shows that S(J,,, K') is a compact set.

The second method is based on the Schauder fixed point theorem: As we have already
seen, the solution set in Ur, of the equation (6.2) coincides with the fixed point set Fix(T)
of the operator T" = J;lK with K = *Ny¢, so that Fix(T) C By, (0, R) with R defined by
(6.5). Moreover, the operator 17" : Ur, — Ur, is compact and T'(Byy, (0, R)) C Buy, (0, R).
Using Schauder’s fixed point theorem, we thus conclude that Fix(7') is nonempty, compact and
contained in EUFO (0, R).

The third method is based on some fundamental properties of the Leray-Schauder degree:
The notations are as above, and we begin by showing that

B := {u € Ur,; there exists t € [0, 1] such that u = tTu} C By, (0, R). (6.7)

Since for ¢t = 0 the only solution of the equation u = tT'u is u = 0, the problem reduces to
that of establishing the inclusion

{u € Ur,; there exists ¢ € (0, 1] such that u = tT'u} C By, (0, R).
So, let u € Ur, satisfy
u=tTu= tJ;l(L*NfL)u for some t € (0, 1],

or equivalently,
u

Jo (?) = ("Nyi)u.

From the estimates (6.4), we then get

ullop(),w u *
ellullopor, ) < o (2T = 7,5 = e Nyl

+ -1 - -1
< Cullll? Nullg gy + Collell® Nlullg gy + llalloqellell;

and thus, using the definition of R (see (6.5)), we conclude that ||u]] < R.
The a priori estimate (6.7), which is uniform with respect to ¢t € [0, 1], and the homotopy
invariance property of the Leray-Schauder degree together give

dps(I = (IT), Bug, (0, R),0) = dps(I, Buy, (0, R),0) =1 for all ¢ € [0, 1],

where I stands for the identity over Ur,.
We then deduce that, for any t € [0,1], Fix(¢tT') is nonempty, compact and contained in
Buy, (0, R). In particular, this is thus true for ¢ = 1.
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Remark 6.1 It is known (see [12]) that, in the usual Sobolev spaces (W, (), || - lo.p.v),
p > 1, where [Jullop,v = [|[[Vul|

0,p, the p-Laplacian operator

X 0 _, 0u
Ay Wolvp(Q) - (Wol’p(Q)) L Apu = 5 (|vu|p 28_x>

may be equivalently defined as
—Apu = Jy,_pyu for all u € WyP(Q),

where J(,_1) stands for the duality mapping on WO1 P(Q) corresponding to the gauge function
¢ defined by ¢(t) = tP~!, ¢ > 0. This property allows us to define a natural extension of A,
from (W3 ?(Q), ]| - llopw) into (Wo P (Q), || - [lop().v), where p(-) € C(Q) satisfies p(z) > 1
for all z € Q, namely, if ¢ is a gauge function, we define the (¢, p(-))-Laplacian operator on
(Wol’p(')(Q), |l - [lo,p(-),v) as the operator

Aoyt Wo P (Q) — Wy P ()"

defined by —A(, p()yu = Jyu for all u € Wol’p(')(Q), where J,, stands for the duality mapping
on (Wol’p(')(Q), Il - lo,p(-),w) corresponding to the gauge function .

It is obvious that, under the assumptions allowing to define the space (Ur,, || - [lo,p(.),v);
05(2.9) 2 W™ (@), - lo . 9)-

this last definition makes sense on the larger space (Ur,, || - |
Thus, we will call (¢, p(+))-Laplacian operator the operator

Atopy) * Urgs I lopey,w) — (Ury)*

defined by

—A(ppnu = Jou for all u € Up,,
where J, stands for the duality mapping on (Ury, || - [lo,p(),v) corresponding to the gauge
function ¢.

In the light of this last definition, the existence result of Theorem 6.1 reads as follows: Under
the assumptions of Theorem 6.1, the solution set of the boundary value problem

— A(%p(.))u = f(l‘, u) in Q,
ulp,=0, ToCIN=T, dI'—measl’y >0

is a nonempty and compact subset of Ur,.
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