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Abstract The authors introduce a new Large Eddy Simulation model in a channel, based
on the projection on finite element spaces as filtering operation in its variational form, for
a given triangulation {Th}h>0. The eddy viscosity is expressed in terms of the friction
velocity in the boundary layer due to the wall, and is of a standard sub grid-model form
outside the boundary layer. The mixing length scale is locally equal to the grid size.
The computational domain is the channel without the linear sub-layer of the boundary
layer. The no-slip boundary condition (or BC for short) is replaced by a Navier (BC)
at the computational wall. Considering the steady state case, the authors show that the
variational finite element model they have introduced, has a solution (vh, ph)h>0 that
converges to a solution of the steady state Navier-Stokes equation with Navier BC.
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1 Introduction

Numerical simulations of incompressible turbulent flows can not be performed from the
evolutionary Navier-Stokes equations (or NSE for short),

∂tv + (v · ∇)v − νΔv + ∇p = f , (1.1)

∇ · v = 0, (1.2)

because of a great computational complexity due to the structure of the turbulence (see [30]).
This is why various mathematical models derived from the NSE are used to simulate some
features of turbulent flows, such as their statistical means or their large scales motions, this
last way being known as “large-eddy simulation” (or LES for short), which is our concern in
the present paper.

LES has attracted much attention these last two decades, especially because of the increasing
of computational ressources, enabling to enlarge the range of scales that LES models might
simulate. Basically, LES aims at computing filtered fields such as v = G�v, G being a smooth
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transfer function (see [25, 30–32]). The filtering operation also might be carried out by solving
PDEs (see [6–7, 14, 16, 23–24])

Stresses that appear by filtering the nonlinear term (v · ∇)v in the NSE, are considered to
be diffusive, therefore often modeled by a turbulent diffusion term such as −∇ · (νt∇v), where
νt is an eddy viscosity. One challenge of the LES is the determination of νt.

In this paper, we study the case of a channel flow, periodic in the x1−x2 axis for simplicity.
The first idea is that the projection on finite element spaces, based on a given triangulation
{Th}h>0, is a natural filtering operation, so that we seek for vh instead of v, where vh is
the projection of v on a suitable finite element space Wh. The second idea is that one can
specifically model the eddy viscosity on the boundary layer by means of wall laws.

Indeed, following Kolmogorov theory in [22], we consider the turbulence to be isotropic at
scales small enough inside the flow domain. This assumption yields to take the eddy viscosity
of a Kolmogorov-Prandtl-Smagorinsky form, νt = h2|Dvh| 1, h being the mixing length, which
is the standard sub-grid model (or SGM for short) (see [11]).

However, near the wall, turbulence is not isotropic and complexity is higher than far from
the wall (see [29]), so that standard SGM cannot be used there. Usual methods proceed as
follows.

First one uses the known structure of the turbulent boundary layer, as initially described
by Von Kármán [21] and fully developed by Schlichting [34]. Basically, the boundary layer may
be split into two sub-layers, the linear sub-layer where the mean velocity profile is linear, and
next, the log sub-layer where the mean velocity profile is specified by a log function. Notice
that one can consider more sophisticated models for the boundary layer (see [35]), nevertheless
always involving a log law. In all cases, those models involve an essential quantity which is the
friction velocity u� (see (2.4) below).

Next, one splits the domain into two subdomains, the boundary layer, and the computational
domain which is the domain’s part not containing the boundary layer. One then uses nonlinear
boundary conditions at boundaries of the computational domain such as wall laws (see in [26–
28]).

Based on the fact that today more computational resources are available to increase accuracy
for simulating the mean flow inside the log layer, we take as computational domain the domain’s
part without the linear sub-layer, using an eddy viscosity of the form νt = hu� inside the log
layer, deduced from standard dimensional analysis (see [11, 26]).

To conclude the modeling process, it remains to: (i) specify how u� is calculated, (ii) specify
boundary conditions (BC) at computational domain boundaries, (iii) set the choice of the
mixing length scale.

(i) We assume that log law holds inside the boundary layer. Thanks to invertibility of the
nonlinear profile, we can define u� as u�(v,x), that satisfies suitable estimates (see Subsection
2.2(iii) and (2.17)).

(ii) As the thickness of the linear sub-layer is very small compared to other scales involved in
the problem, a Taylor expansion allows to deduce from the no-slip condition at the flow domain
boundary a Navier BC at the computational walls (see (3.6) in Subsection 3.1(i)). This is as if
the linear sub-layer would exert a friction over the log sub-layer.

1Dvh = ( 1
2
)(∇vh + ∇vt

h).
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(iii) The mesh yields natural numerical length scales hK , where hK is a diameter of any
K ∈ Th. Therefore, one takes νt of the form νt = h2

K |Dvh| on K ∈ Th inside the computational
domain, and νt = hKu�(v,x) on K ∈ Th in the log layer (see Subsection 3.2(ii)).

Once this modeling process is completed, we get a model expressed in its variational form
over finite element space Wh ×Mh, as described in Subsection 3.2(iv). So far as we know, this
model is totally new, and can be generalized to more complex and realistic geometries thanks
to a careful differential geometry analysis, which is a work under progress.

We consider all over this paper the steady-state case, which is in coherence with the fact
that in a permanent regime and for a developed turbulence, mean fields are steady, which is
not in contradiction with the fact that fluctuations might be time dependent.

We prove that this variational problem has a solution (vh, ph) ∈ Wh × Mh (see Theorem
4.1) which converges to a solution (v, p) of the steady-state Navier Stokes equation (NSE) with
Navier BC (see Theorem 4.2).

This paper is organized as follows. We start with general setting. Then we derive from
the NSE a description of the boundary layer, introducing the friction velocity. We specify the
computational domain and Navier BC, and next we perform the finite element setting and get
the model. Finally, we state and prove Theorems 4.1–4.2.

2 General Framework

2.1 Channel flow

(i) Geometry, equations and boundary conditions.
Let Ωf be a channel periodic in the x1 axis and x2 axis, of height 1 + 2d in the x3-axis, for

a small parameter d � 1,

Ωf = {x = (x1, x2, x3) ∈ T2 × R
3 s.t. − d < x3 < 1 + d}, (2.1)

where T2 is the two-dimensional torus defined by

T2 =
R

2

T2
, where T2 =

2π∇Z2

L
,

and L > 0 is a given length scale. Let Γf denote

Γf = {x ∈ T2 × R
3 s.t. x3 = −d or x3 = 1 + d}. (2.2)

The steady-state Navier-Stokes equations with the no-slip boundary condition are as follows:
⎧⎨
⎩

(v · ∇)v − νΔv + ∇p = f in Ωf ,
∇ · v = 0 in Ωf ,
v = 0 on Γf .

(2.3)

The source term f is a body force per mass unit, typically the gravity. Assuming f ∈ L2(Ωf )3 =
L2(Ωf ), we know that this equation has a solution (v, p) ∈ W 2, 3

2 (Ω)3 × W 1, 3
2 (Ω) (see [36]),

whose norms are bounded by constants that only depend on ν, ‖f‖0,2,Ωf
and d. Also, p is

defined up to a constant. Uniqueness is known when
‖f‖0,2,Ωf

ν2 is small enough.
(ii) Friction velocity.
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Let (v, p) be any solution of (2.3). We still denote by v the trace of v on Γf . We deduce
from trace theorems and Sobolev theorem that v ∈ W 1,3(Γf )3 = W1,3(Γf ). Therefore, it makes
sense to consider Dv · n on Γf , where n denotes the outward-pointing unit normal vector at
Γf , Dv =

(
1
2

)
(∇v + ∇vt). We split the vector Dv · n into its tangential part and its normal

part,

Dv · n = (Dv · n)τ + ((Dv · n) · n)n. (2.4)

Let v� ∈ L6(Γf ) be defined on Γf by

v� = v�(v)(x) = (ν|(Dv · n)τ (x)|) 1
2 , (2.5)

called the friction velocity associated to v at x ∈ Γf .

2.2 Boundary layer description

(i) Length scale.
Condition of uniqueness to (2.3) is not satisfied in a steady-state turbulent regime. Let S

be the set of solutions. According to [11], one can construct a probability measure μ on S. We
consider the following velocity friction w� ∈ L6(Γf ) defined by

w� =
∫
S

v�(v)dμ(v). (2.6)

We finally define the meanfriction velocity by

u� =
1
L
‖w�‖0,2,Γf

∈ R, (2.7)

to which is associated the typical length scale λ that characterises the boundary layer,

λ =
ν

u�
, (2.8)

assuming u� �= 0.
We conjecture that u� → ∞ when ‖f‖0,2,Ωf

→ ∞.
(ii) Main assumption about the boundary layer structure.
We focus on the bottom of Ωf , {x3 = −d}, assuming that the boundary layer at the top

{x3 = 1 + d} has a similar structure. According to experiments (see [34]), we assume that in
the boundary layer, the mean fluid velocity is parallel to e1 and only depends on the variable
x3, which means v(x) = v(x3)e1.

Notice that any plane P of the form P = {x3 = h} included in the boundary layer, and any
vector N orthogonal to P being given, our assumption yields in particular v · N = 0 at P .

(iii) Log law.
Experiments and suitable assumptions about turbulence (see [11, 34]) indicate that the

boundary layer can be decomposed into two sub layers:
(1) near the boundary where the velocity profile v is linear (linear sub-layer),
(2) the next sub-layer specified by a log profile (log layer).
To be more specific, we introduce the dimensionless variable

z+ =
x3

λ
, (2.9)
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and we consider the following continuous function defined on [0, z+
max] by

L(z+) =

⎧⎪⎨
⎪⎩

z+, if 0 ≤ z+ ≤ z+
0 ,

1
κ

log
(z+

z+
0

)
+ z+

0 , if z+
0 ≤ z+ ≤ z+

max,
(2.10)

where κ ≈ 0, 41 is the Von Kármán constant. In practical calculations, one takes z+
0 ≈ 20, and

z+
max ≈ 100, that measures the thickness of the logarithmic boundary layer, taken to be equal to

100λ. According to experiments in [34], boundary layer thickness goes to zero as the Reynolds
number goes to infinity.

The profile v in the boundary layer at the bottom of Ωf is given by the formula

v(x3) = u�L
(x3

λ

)
. (2.11)

A similar description applies to the boundary layer at the top of Ωf , {z = 1 + d}.
(iv) Friction velocity expressed as a function of the velocity.
We still focus on the bottom. Any x3 > 0 being given, let

F (β) = βL(αβ), α =
x3

ν
. (2.12)

With this notation, (2.11) may be written as

v = F (u�), (2.13)

thanks to (2.8).

Lemma 2.1 Let F : [0, +∞) → [0, +∞) be defined by (2.12). The function F is invertible,
so that (2.13) can be written as u� = F−1(v) at each given x3.

Proof We observe that the function L satisfies

lim
x→0+

L(x)
x

= C1, (2.14)

lim
x→∞

L(x)
log x

= C2, (2.15)

where C1 and C2 are non-zero constants. As L is strictly increasing and continuous in (0, +∞),
then F is strictly increasing and continuous in (0, +∞). Also, by (2.14), F is continuous at
β = 0 with F (0) = 0. Moreover, by (2.15), lim

x→∞
F (x) = +∞. Then F is bijective from [0, +∞)

onto [0, +∞), which yields the invertibility of F as claimed.

Lemma 2.2 Denote h = F−1. Then there exists a constant C = C(x3) > 0, bounded, such
that

∀ γ > 0, C(x3) (1 + γ) ≤ h(γ) ≤ C(1 + γ), C = supC(x3). (2.16)

Proof Then h : [0, +∞) �→ [0, +∞) is bijective and continuous. Also,

lim
γ→∞

h(γ)
γ

= lim
t→∞

t

F (t)
= lim

t→∞

1
L(αt)

= lim
t→∞

1
log(αt)

log(αt)
L(αt)

= 0.
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The conclusion is a consequence of the continuity of h.

We deduce from Lemma 2.1, (2.16) and because top and bottom layers have the same
structure, that the friction velocity can be calculated at each x ∈ BL from the velocity v, and
satisfies the estimate

0 < u� = u�(v,x) ≤ C(1 + |v|). (2.17)

3 Turbulence Model

3.1 Geometry and meshing

(i) Calculation domain.
Here and hereafter, we assume that the boundary layer is included in the union of two strips:

BL =
{
− d ≤ x3 ≤ D

2
− d

}
∪

{
1 + d − D

2
≤ x3 ≤ 1 + d

}
, (3.1)

where d < D � 1, with d being the order of the linear sub layer, D the thickness of the global
boundary layer. Standard numerical simulations are carried out in a sub-domain of the flow
domain that does not include the boundary layer at all, using a wall law (see [11, 27–28]) at
artificial boundaries (walls). Our model includes the log layer, using a Navier BC based on a
Taylor expansion as shown below.

The computational domain is

Ω = {x = (x1, x2, x3) ∈ T2 × R
3 s.t. 0 < x3 < 1}, (3.2)

the artificial wall being defined by

Γw = {x ∈ T2 × R
3 s.t. x3 = 0 or x3 = 1}. (3.3)

(ii) Boundary conditions.
As above, we focus on the bottom layer. By a Taylor expension, we get

0 = v|x3=−d ≈ v|x3=0 − d
∂v

∂x3

∣∣∣
x3=0

. (3.4)

From the view point of the domain Ω, v = vτ |Γw , and ∂
∂x3

= − ∂
∂n at Γw, where vτ is the

tangential part of v, defined by

v = vτ + (v · n)n, (3.5)

by still denoting v the trace of v at Γw, so far no risk of confusion occurs. Therefore, by remarks
in Subsection 2.2(ii) together with (3.4), we get

v · n|Γw = 0,
∂vτ

∂n

∣∣∣
Γw

= −1
d
vτ , (3.6)

which is a Navier boundary condition at the artificial wall, that expresses in some sense that
the linear sub-layer exerts a friction on the log layer. Hence, (2.3) becomes in Ω,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(v · ∇)v − νΔv + ∇p = f in Ω,
∇ · v = 0 in Ω,
v · n = 0 on Γw,

−∂vτ

∂n
=

1
d
vτ on Γw.

(3.7)
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Navier-Stokes equations with Navier boundary conditions was studied before (see [1–3, 10, 37]),
and existence of a solution of (3.7) is already ensured.

(iii) Variational formulation.
Let us define the spaces

W(Ω) = {w ∈ H1(Ω), w · n|Γw = 0},

M(Ω) =
{
q ∈ L2(Ω),

∫
Ωc

qdx = 0
}
,

by reminding that H1(Ω) = H1(Ω)3. Strictly speaking, the space M(Ω) is isomorphic to the
quotient space L2(Ω)/R, endowed with the usual quotient norm

‖ṗ‖M = inf
p∈ṗ

‖p‖0,2,Ω. (3.8)

It also may be viewed as a closed subspace of L2(Ω) endowed with the L2(Ω) norm.
The space W(Ω) is endowed with the H1 norm, denoted ‖ · ‖1,2,Ω. As a consequence of

Korn’s inequality, the following useful estimate holds:

∀v ∈ W(Ω), ‖v‖1,2,Ω ≤ C(‖Dv‖0,2,Ω + ‖v‖0,2,Γw), (3.9)

the proof of which being carried out in [10].
Let a, b and G be the forms defined by

a(v,w) = ν (Dv, Dw)Ω, (3.10)

b(z;v,w) =
1
2
[((z · ∇)v,w)Ω − ((z · ∇)w,v)Ω], (3.11)

G(v,w) =
ν

d
(vτ ,wτ )Γw (3.12)

for z,v,w ∈ H1(Ω). Recall that when z,v,w ∈ W(Ω) and ∇ · z = 0, then b(z;v,w) =
((z · ∇)v,w)Ω, and (∇z,∇w)Ω = (Dz, Dw)Ω. Also remark that when v ∈ b, then v = vτ at
Γw.

We say that a pair (v, p) ∈ W(Ω)×M(Ω) is a weak solution of the boundary value problem
(3.7) if it satisfies

{
b(v;v,w) + a(v,w) − (p,∇ · w)Ω + G(v,w) = 〈f ,w〉,
(∇ · v, q)Ω = 0 (3.13)

for any (w, q) ∈ W(Ω) × M(Ω).
(iv) A priori estimate and existence result.
Assume f ∈ W(Ω)′. Let (v, p) be any solution of (3.13), and take v = w in (3.13). From

the standard formula b(v;v,v) = 0 that holds since ∇ · v = 0 and v · n = 0 at Γw, we get

ν‖Dv‖0,2,Ω +
ν

d
‖v‖0,2,Γw = 〈f ,v〉, (3.14)

from where we deduce

‖v‖1,2,Ω ≤ Cκ−1‖f‖W(Ω)′ , κ = min
(
ν,

ν

d

)
, (3.15)

by using (3.9).
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3.2 Finite element setting

(i) Triangulation.
Let D ⊂ R

3 denote the sample box D = [0, L]2 × [0, 1]. The computational domain Ω may
be viewed as the periodic reproduction of D in the x1 − x2 axes. Let {Th}(h>0) be a regular
familly of triangulation of D, compatible with the periodicity of the domain: The restriction
of the grid to the planes x1 = 0 and x1 = D is the same, and the restriction of the grid to the
planes x2 = 0 and x2 = D is the same. Reproducing this triangulation by periodicity, we get a
regular triangulation of Ω, still denoted by {Th}(h>0).

In the following, for each K ∈ Th, hK = diam(K) denotes the diameter of K, and

h = max
K∈Th

hK . (3.16)

(ii) Eddy viscosities.
We assume isotropy of the turbulence inside the domain defined by Ωin = Ω \ BL, the

boundary layer BL being defined by (3.1). This yields to consider in Ωin the eddy viscosity νt,in

to be of the same form as in usual Sub-Grid-Models of Prandtl-Kolmogorov-Smagorinsky type,
where following [11], we take in each K the length scale equal to hK , leading to consider νt,in

to be of the form

νt,in(v) = C2
s

∑
K∈Th

h2
K 1K |Dv|, (3.17)

where Cs > 0 is an empirical constant, 1A denotes the characteristic function for any set A.
In the boundary layer part, Ωw = BL ∩ Ω, turbulence is no longer isotropic and depends

on the friction velocity. Taking again hK as typical length scale and by a dimensional analysis
argument in [11], we define the eddy viscosity νt,w in Ωw by

νt,w(v) = Cw

∑
K∈Th

hK 1Ku�(v,x), (3.18)

where Cw > 0 is an empirical constant and u� is expressed in Subsection 2.2(iv).
Finally, the eddy viscosity we consider is of the form

νt = νt(v) = 1Ωinνt,in(v) + 1Ωwνt,w(v). (3.19)

(iii) Finite element spaces.
The model is a mixed formulation, based upon pairs of finite element spaces (Wh, Mh) ⊂

W(Ω) × M(Ω), associated to the family of regular triangulations {Th}h>0 of Ω in the sense of
Ciarlet [12]. We assume that the family of pairs of spaces {(Wh, Mh)}h>0 satisfies the following
hypothesis:

Hypothesis 3.1 The family of spaces {Wh × Mh}h>0 is an internal approximation of
W(Ω)×M(Ω): For all (w, p) ∈ W(Ω)×M(Ω), there exists a sequence {(vh, ph)}h>0 such that
(vh, ph) ∈ Wh × Mh, and

lim
h→0

(‖v − vh‖1,2,Ω + ‖p − ph‖0,2,Ω) = 0.
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Hypothesis 3.2 The family of pairs of spaces {(Wh, Mh)}h>0 satisfies the uniform discrete
inf-sup condition : There exists a constant α > 0 such that

α‖qh‖0,2,Ω ≤ sup
wh∈Wh

(∇ · wh, qh)Ω
‖wh‖1,2,Ω

for all qh ∈ Mh. (3.20)

There is a wide literature about finite element spaces satisfying those properties (see [5, 9, 15],
for instance).

(iv) The model.
Our LES model is expressed by the following variational problem:

Find (vh, ph) ∈ Wh × Mh such that for all (wh, qh) ∈ Wh × Mh,

⎧⎨
⎩

b(vh;vh,wh) + a(vh,wh) + c(vh;wh) +
G(vh,wh) − (ph,∇ ·wh)Ω = 〈f ,wh〉,

(∇ · vh, qh)Ω = 0;
(3.21)

the form c being defined by

c(v;w)=(νt(v)Dv, Dw)Ω or c(v;w)=(νt,in(v)Dv, Dw)Ωin+ (νt,w(v) ∂3v, ∂3w)Ωw . (3.22)

The second expression neglects the tangential eddy viscosity in the boundary layer, which is
very small compared to the normal one.

4 Analysis of the Model

4.1 Technical results

We state in this subsection some technical results concerning the eddy viscosities and the
associated turbulent diffusion form c, that are needed by our analysis.

(i) L∞ eddy viscosties estimates.

Lemma 4.1 There exists a constant C > 0 depending only on the aspect ratio of the family
of triangulations {Th}h>0 such that

‖νt(vh)‖0,∞,Ω ≤ C h
1
2 ‖vh‖1,2,Ω for all vh ∈ Wh. (4.1)

Proof We start with the internal part of the eddy viscosity νt,in. Consider vh ∈ Wh. As
∇vh is piecewise continuous, there exists a K ∈ Th such that

‖νt,in(vh)‖0,∞,Ω = ‖νt,in(vh)‖0,∞,K ≤ C2
S h2

K ‖∇vh‖0,∞,K .

By a standard finite element inverse estimate (see [4]),

‖∇vh‖0,∞,K ≤ C h
− 3

2
K ‖∇vh‖0,2,K

for some constant C > 0 depending only on the aspect ratio of the family of triangulations.
Then,

‖νt,in(vh)‖0,∞,Ω ≤ CC2
S h

2− 3
2

K ‖∇vh‖0,2,K ≤ CC2
S h

1
2 ‖∇vh‖0,2,Ω. (4.2)
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Next, we analyze the wall eddy diffusion νt,w. There exists some element K ∈ Th such that

‖νt,w(vh)‖0,∞,Ω = ‖νt,w(vh)‖0,∞,K ≤ Cw hK (1 + ‖vh‖0,∞,K),

where in the last inequality we have used (2.5). Using the inverse estimate (see [4]), ‖vh‖0,∞,K ≤
C h

− 1
2

K ‖∇vh‖0,2,K , we deduce

‖νt,w(vh)‖0,∞,Ω ≤ C′ Cw h
1
2 ‖∇vh‖0,2,Ω for some constant C′ > 0.

Combining this estimate with (4.2) and ‖∇vh‖0,2,Ω ≤ ‖vh‖1,2,Ω, (4.1) follows.

(ii) Turbulent diffusion operator properties.

Lemma 4.2 The form c defined by (3.22) satisfies the following properties:
(i) c is non-negative, in the sense that

c(v;v) ≥ 0 for all v ∈ H1(Ω)3.

(ii) Assume that the family of triangulations {Th}h>0 is regular. Then, for any vh,wh ∈
Wh,

|c(vh;wh)| ≤ C h
1
2 ‖vh‖2

1,2,Ω‖wh‖1,2,Ω (4.3)

for some constant C > 0 depending only on d, Ω and the aspect ratio of the family of triangu-
lations.

(iii) Assume that the family of triangulations {Th}h>0 is regular. Let {vh}h>0 and {wh}h>0

be two sequences such that vh,wh ∈ Wh. Then, if both sequences are bounded in H1(Ω)d,

lim
h→0

c(vh;wh) = 0. (4.4)

Proof (1) Let v ∈ H1(Ω). Then

c(v;v) =
∫

Ω

νt(v) |Dv|2dx ≥ 0.

(2) By (4.1),

|c(vh;wh)| ≤ ‖νt(vh)‖0,∞,Ω ‖vh‖1,2,Ω‖wh‖1,2,Ω

≤ C h
1
2 ‖vh‖2

1,2,Ω‖wh‖1,2,Ω.

(3) (4.4) directly follows from (4.3).

4.2 Existence result

(3.21) is a set of non-linear equations in finite dimension. These non-linearities are due to
several effects: the convection operator, the eddy viscosity, and the wall-law boundary condi-
tions. The space W(Ω) is a closed sub-space of H1(Ω). Our main result is the following.

Theorem 4.1 Let {Th}h>0 be a regular family of triangulations of the domain Ω. Let
{(Wh, Mh)}h>0 be a family of pairs of finite element spaces satisfying Hypotheses 3.1–3.2.



A Variational Finite Element Model for Large-Eddy Simulations of Turbulent Flows 677

Then for any f ∈ W(Ω)′, the variational problem (3.21) admits at least a solution, that satisfies
the estimates

‖vh‖1,2,Ω ≤ Cκ−1‖f‖W(Ω)′ , κ = min
(
ν,

ν

d

)
, (4.5)

‖ph‖0,2,Ω ≤ Cκ−1‖f‖W(Ω)′
(
κ−1‖f‖W(Ω)′ [1 + h

1
2 ] + ν +

1
d

+ 1
)
, (4.6)

where C > 0 is a constant depending only on d, Ω and the aspect ratio of the family of trian-
gulations.

Proof We prove the existence of solution in two steps.
Step 1 Existence of the velocity.
Let us define the mapping Φh : Wh → W′

h as follows: Given zh ∈ Wh,

〈Φh(zh),wh〉 = b(zh; zh,wh) + a(zh,wh) + c(zh;wh) + G(zh,wh) − 〈f ,wh〉

for any wh ∈ Wh. This equation has a unique solution as its r.h.s. defines a linear bounded
functional on Wh. Moreover, the functional Φh is continuous as all functions that appear in
its definition are continuous on the finite-dimensional space Wh.

Consider the sub-space Zh of Wh defined by

Zh = {wh ∈ Wh such that (∇ · wh, qh) = 0 for all qh ∈ Mh }.

Zh is a non-empty closed sub-space of H1(Ω). Then it is a Hilbert space endowed with the
H1(Ω) norm. Let zh ∈ Zh. Then, as b(zh; zh, zh) = 0 and c is non-negative,

〈Φh(zh), zh〉 ≥ a(zh, zh) + G(zh, zh) − 〈f , zh〉

≥ ν ‖D(zh)‖2
0,2,Ω +

ν

d
‖zh‖2

0,2,Γw
− ‖f‖W(Ω)′‖zh‖1,2,Ω

≥ Cκ

2
‖zh‖2

1,2,Ω −
‖f‖2

W(Ω)′

2Cκ
,

where we have used (3.9) and Young’s inequality. We deduce

∀ zh ∈ Zh such that ‖zh‖1,2,Ω =
‖f‖W(Ω)′

Cκ
, 〈Φh(zh), zh〉H1(Ω) ≥ 0. (4.7)

Consequently, by a classical variant of Brouwer’s fixed point theorem (see [36]), the equation

b(vh;vh,wh) + a(vh,wh) + c(vh;wh) + G(vh,wh) = 〈f ,wh〉, ∀wh ∈ Zh (4.8)

admits a solution vh ∈ Zh such that ‖vh‖1,2,Ω ≤ ‖f‖W(Ω)′
Cκ , which precisely is (4.5) by changing

C in C−1.
Step 2 Existence of the pressure.
Let the operator Gh : Mh �→ W′

h be defined by

∀qh ∈ Mh, 〈Gh(qh),vh〉 = (∇ · vh, qh)Ω for all vh ∈ Wh.

Then Zh = Im(Gh)⊥. The discrete inf-sup condition (see Hypothesis 3.2) ensures that Im(Gh)
is closed, then Z⊥

h = Im(Gh). As vh is a solution of (4.8), then Φh(vh) ∈ Z⊥
h . Consequently,
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there exists some discrete pressure ph such that 〈Φh(vh),wh〉 = (∇·vh, ph)Ω, for all wh ∈ Wh.
Thus, the pair (vh, ph) solves (3.21). The estimate for the norm of the pressure is obtained via
the discrete inf-sup condition (3.20),

‖ph‖0,2,Ω ≤ α−1 ‖Φh‖W′
h

for some constant α > 0. By (4.3) and some standard estimates,

〈Φh(vh),wh〉 ≤ C
[
‖vh‖2

1,2,Ω(1 + Ch
1
2 ) + ν‖vh‖1,2,Ω

(
1 +

C

d

)]
‖wh‖1,2,Ω

+ ‖f‖W(Ω)′ ‖wh‖1,2,Ω.

Then, the pressure estimate (4.6) follows from the velocity estimate (4.5).

4.3 Convergence

We now prove the convergence of the solution provided by method (3.21) to a weak solution
of the Navier-Stokes boundary value problem model (2.3).

Theorem 4.2 Under the hypotheses of Theorem 4.1, the sequence {(vh, ph)}h>0 contains a
sub-sequence strongly convergent in H1(Ω)2 ×L2(Ω) to a weak solution (v, p) ∈ W(Ω)×L2

0(Ω)
of the steady Navier-Stokes equation (2.3). If this solution is unique, then the whole sequence
converges to it.

Proof The proof is divided into 7 steps.
(1) Extracting subsequences.
By (4.5)–(4.6), the sequence {(vh, ph)}h>0 is bounded in the space W(Ω)×L2

0(Ω) which is
a Hilbert space. Therefore, this sequence contains a subsequence, that we denote in the same
way, weakly convergent in W(Ω) × L2

0(Ω) to some pair (v, p). As the injection of H1(Ω) in
Lq(Ω) is compact for 1 ≤ q < 6, we may assume that the subsequence is strongly convergent in
Lq(Ω) for 1 ≤ q < 6, and so in particular in L4(Ω).

Also, the injection of H
1
2 (Γw) into L2(Γw) is compact. Then we may assume that the

sequence {vh|Γw
}h>0 is strongly convergent to v|Γw

in L2(Γw).
(2) Taking the limit in the diffusion terms.
Let (w, q) ∈ W(Ω)×L2

0(Ω). By Hypothesis 3.1, there exists a sequence {(wh, qh)}h>0 such
that (wh, qh) ∈ Wh × Mh which is strongly convergent in H1(Ω) × L2(Ω) to (w, q).

As a is bilinear and continuous,

lim
h→0

a(vh,wh) = a(v,w). (4.9)

Next, since the sequences {vh}h>0 and {wh}h>0 are bounded in H1(Ω), we deduce from Lemma
4.2,

lim
h→0

c(vh;wh) = 0. (4.10)

Finally, it is straightforward to check that

lim
h→0

G(vh;wh) = 0. (4.11)
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(3) Taking the limit in the convective term.
We have

|(vh · ∇vh,wh)Ω − (v · ∇v,w)Ω|
≤ |((vh − v) · ∇vh,wh)Ω| + |(v · ∇(vh − v),w)Ω| + |(v · ∇vh,wh − w)Ω|
≤ ‖vh − v‖0,4,Ω ‖∇vh‖0,2,Ω ‖wh‖0,4,Ω

+
3∑

i,j=1

|(∂j(vhi − vi), vjwi)Ω| + ‖v‖0,4,Ω ‖∇vh‖0,2,Ω ‖wh − w‖0,4,Ω,

where we denote vh = (vh1, vh2, vh3). All terms in the r.h.s. of the last inequality vanish in
the limit because {vh}h>0 is strongly convergent in L4(Ω), {∂ivhi}h>0 is weakly convergent in
L2(Ω) and {wh}h>0 is strongly convergent in H1(Ω). Then,

lim
h→0

((vh · ∇vh),wh)Ω = ((v∇v),w)Ω. (4.12)

Similarly, lim
h→0

((vh · ∇)wh,vh)Ω = ((v · ∇w),v)Ω, and then

lim
h→0

b(vh;vh,wh) = b(v;v,w).

(4) Taking the limit in the pressure terms.
Since {∇·vh}h>0 is weakly convergent in L2(Ω) to ∇·vh and {qh}h>0 is strongly convergent

in L2(Ω) to q,
lim
h→0

(∇ · vh, qh)Ω = (∇ · v, q)Ω.

Finally, we obviously have
lim
h→0

(ph,∇ ·wh)Ω = (p,∇ · w)Ω.

Consequently, the pair (v, q) is a weak solution of Navier-Stokes equations (3.13).

(5) Strong convergence of the velocities.
Set wh = vh in (3.21). Then

ν ‖Dvh‖2
0,2,Ω +

ν

d
‖vh‖0,2,Γw = 〈f ,vh〉 − c(vh;vh).

By Lemma 4.2(3), lim
h→0

c(vh;vh) = 0. Therefore,

lim
h→0

(
ν ‖Dvh‖2

0,2,Ω +
ν

d
‖vh‖0,2,Γw

)
= 〈f ,v〉 = ν ‖Dv‖2

0,2,Ω +
ν

d
‖v‖2

0,2,Γw
,

where the last equality occurs because (v, q) is a weak solution of Navier-Stokes equations
(3.13). As W(Ω) is a Hilbert space and {vh}h>0 is weakly convergent to v, this proves the
strong convergence, since

w →
(
ν ‖Dw‖2

0,2,Ω +
ν

d
‖w‖2

0,2,Γw

) 1
2

(4.13)

is a norm equivalent to the H1(Ω) norm by (3.9).
(6) Strong convergence of the pressures.
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We use the discrete inf-sup condition to estimate ‖ph − p‖0,2,Ω. There exists a sequence
{Ph}h>0 such that Ph ∈ Mh for all h > 0 which is strongly convergent in L2

0(Ω) to p. We shall
show that lim

h→0
‖ph − Ph‖0,2,Ω = 0. Let wh ∈ Wh. We have

(ph − Ph,∇ · wh) = b(vh;vh,wh) − b(v;v,wh) + a(vh − v,wh) + c(vh;wh)

+ G(vh − v,wh) + (p − Ph,∇ ·wh).

As

b(vh;vh,wh) − b(v;v,wh) = b(vh;vh − v,wh) + b(vh − v;v,wh)

≤ C ‖vh − v‖1,2,Ω (‖vh‖1,2,Ω + ‖v‖1,2,Ω),

using (4.3) and the continuity of a we deduce

(ph − Ph,∇ ·wh) ≤ C [‖vh − v‖1,2,Ω (‖vh‖1,2,Ω + ‖v‖1,2,Ω) + ν‖D(vh − v)‖0,2,Ω

+ h
1
2 ‖vh‖2

1,2,Ω +
ν

d
‖vh − v‖0,2,Γw + ‖p − Ph‖0,2,Ω]‖wh‖1,2,Ω.

As lim
h→0

‖vh − v‖1,2,Ω = 0, then by Hypothesis 3.2, lim
h→0

‖ph − Ph‖0,2,Ω = 0. Then ph strongly

converges to p in L2(Ω).

(7) Uniqueness.
It remains to prove that if the Navier-Stokes equations (2.3) admit a unique solution (v, p),

then the whole sequence {(vh, p)}h>0 converges to it. This is a standard result that holds when
compactness arguments are used, which is proved by reduction to absurdity: Assume that the
whole sequence does not converge to (v, ph). Then there exists a sub-sequence of {(vh, ph)}h>0

that lies outside some ball of W(Ω)×L2
0(Ω) with center (v, p). Then the preceding compactness

argument proves that a sub-sequence of this sub-sequence would converge to the unique solution
(v, p), what is absurd.
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tiques, Mathématiques and Applications, 45, Springer-Verlag, Berlin, 2004.



A Variational Finite Element Model for Large-Eddy Simulations of Turbulent Flows 681

[5] Bernardi C. and Raugel, G., Analysis of some finite elements for the Stokes problem, Math. Comp.,
44(169), 1985, 71–79.

[6] Berselli, L. and Lewandowski, R., Convergence of approximate deconvolution models to the mean Navier-
Stokes Equations, Annales de l’Institut Henri Poincare (C), Nonlinear Analysis, 29, 2012, 171–198.

[7] Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows,
Springer-Verlag, Berlin, 2006.
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