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Abstract The existence of classical solutions to a stationary simplified quantum energy-
transport model for semiconductor devices in 1-dimensional space is proved. The model
consists of a nonlinear elliptic third-order equation for the electron density, including a
temperature derivative, an elliptic nonlinear heat equation for the electron temperature,
and the Poisson equation for the electric potential. The proof is based on an exponential
variable transformation and the Leray-Schauder fixed-point theorem.
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1 Introduction and Main Results

The quantum energy-transport model reads as (see [1])

nt + div
[ε2

6
n∇

(�√
n√
n

)
−∇(nT ) + n∇V

]
= 0, (1.1)

− div(k(n, T )∇T ) =
n

τ
(TL(x) − T ), (1.2)

λ2�V = n− C(x), (1.3)

where the electron density n, the electron temperature T and the self-consistent electric po-
tential V are unknown variables, the doping profile C(x) models fixed background charges in
the semiconductor crystal, the lattice temperature TL(x) is a given function, the scaled Planck
constant ε > 0, the energy relaxation time τ > 0 and the Debye length λ > 0 are physical
parameters, and the heat conductivity k(n, T ) is often taken as k(n, T ) = nT (see [2–3]). The
model (1.1)–(1.3) can be derived from the quantum hydrodynamic equations after a diffusive
rescaling and a relaxation-time limit (see [1]). In [1], Jüngel and Milĭsić proved the global ex-
istence of weak solutions to (1.1)–(1.3) with k(n, T ) = n under periodic boundary conditions.
Recently, the semiclassical limit of solutions to (1.1)–(1.3) with k(n, T ) = n has been performed
in [4].
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In this paper, we will study the classical solutions to the stationary model of (1.1)–(1.3)
with k(n, T ) = n in 1-dimensional space

ε2

6
n
( (

√
n)xx√
n

)
x
− (nT )x + nVx = J0, (1.4)

− (nTx)x =
n

τ
(TL(x) − T ), (1.5)

λ2Vxx = n− C(x), in (0, 1), (1.6)

where J0 is the current density. We choose the following conditions:

n(0) = n(1) = 1, nx(0) = nx(1) = 0, T (0) = T0, Tx(0) = Tx(1) = 0, (1.7)

V (0) = V0 = −ε
2

6
(
√
n)xx(0) + T0. (1.8)

The boundary condition (1.8) can be interpreted as a Dirichlet condition for the Bohm potential
(
√

n)xx√
n

at x = 0.
Our main results are stated as follows.

Theorem 1.1 Let C(x), TL(x) ∈ L∞(0, 1) with C(x) > 0, 0 < mL ≤ TL(x) ≤ML for x ∈
(0, 1). Then there exists a classical solution (n, T, V ) to (1.4)–(1.8), such that n(x) ≥ e−M > 0
for x ∈ (0, 1), where M is the solution to

M =

√
e2M

τm2
L

(ML −mL)ML +
2(e−1 + ‖C(x) logC(x)‖L∞(0,1))

λ2mL
. (1.9)

2 Proof of the Results

The main idea of this paper is to reformulate (1.4) and (1.6) as an elliptic fourth-order
equation and use the exponential variable n = eu. This method was used to prove the existence
of classical solutions to the stationary quantum Navier-Stokes equations (see [5]). But to the
authors’ knowledge, it is the first time for us to use this method to deal with the quantum
energy-transport model.

As in [5], dividing (1.4) by n, differentiating the resulting equation with respect to x, and
using the Poisson equation (1.6), we obtain

ε2

6

((
√
n)xx√
n

)
xx

− Txx − [(log n)xT ]x +
n− C(x)

λ2
= J0

( 1
n

)
x
. (2.1)

The electrostatic potential can be recovered from (1.4), after division by n and integration
(noticing that the integration constant vanishes due to the boundary conditions (1.7)–(1.8)):

V (x) = −ε
2

6
(
√
n)xx√
n

(x) + T (x) +
∫ x

0

(log n)x(s)T (s)ds+ J0

∫ x

0

ds
n(s)

. (2.2)

Introducing the exponential variable n = eu and observing that

(
√
n)xx√
n

=
(e

u
2 )xx

e
u
2

=
1
2

(
uxx +

u2
x

2

)
,
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we can write (2.1), (1.5), (2.2) and (1.7)–(1.8) as following respectively:

ε2

12

(
uxx +

u2
x

2

)
xx

− Txx − (uxT )x +
eu − C(x)

λ2
= J0(e−u)x, (2.3)

− (euTx)x =
eu

τ
(TL(x) − T ), (2.4)

V (x) = − ε2

12

(
uxx +

u2
x

2

)
(x) + T (x) +

∫ x

0

ux(s)T (s)ds+ J0

∫ x

0

e−u(s)ds, (2.5)

u(0) = u(1) = 0, ux(0) = ux(1) = 0, T (0) = T0, Tx(0) = Tx(1) = 0, (2.6)

V (0) = V0 = − ε2

12
uxx(0) + T0. (2.7)

It is easy to prove that problems (1.4)–(1.8) and (2.3)–(2.7) are equivalent for classical
solutions if n > 0 in (0, 1). We solve problem (2.3)–(2.7) as follows.

As usual, we call (u, T ) ∈ H2
0 (0, 1)×H1(0, 1) a weak solution to (2.3)–(2.4) and (2.6) if for

all (ψ, ϕ) ∈ H2
0 (0, 1) ×H1(0, 1) there holds

ε2

12

∫ 1

0

(
uxx +

u2
x

2

)
ψxxdx+

∫ 1

0

Txψxdx+
∫ 1

0

uxTψxdx

= − 1
λ2

∫ 1

0

(eu − C(x))ψdx − J0

∫ 1

0

e−uψxdx (2.8)

and ∫ 1

0

euTxϕxdx =
1
τ

∫ 1

0

eu(TL(x) − T )ϕdx. (2.9)

We consider (2.8) and the following truncated problem:∫ 1

0

euMTxϕxdx =
1
τ

∫ 1

0

euM (TL(x) − T )ϕdx, (2.10)

where M > 0 is the constant defined in (1.9) and uM = min{M, max{−M,u}}. The following
lemma is the key a priori estimate of this paper.

Lemma 2.1 Let (u, T ) ∈ H2
0 (0, 1)×H1(0, 1) be a solution to (2.8) and (2.10). Under the

assumptions of Theorem 1.1, there holds

ε2

12
‖uxx‖2

L2(0,1) +
mL

2
‖ux‖2

L2(0,1)

≤ e2M

2τmL
(ML −mL)ML + λ−2(e−1 + ‖C(x) logC(x)‖L∞(0,1)). (2.11)

In particular, there follows

‖u‖L∞(0,1) ≤M, ‖Tx‖L2(0,1) ≤ eM

√
(ML −mL)ML

τ
, (2.12)

where M > 0 is the constant defined in (1.9).

Proof First, with the test function ϕ = (T −ML)+ = max{0, T −ML} ∈ H1(0, 1) in
(2.10), we infer that∫ 1

0

euM (T −ML)+2
x dx =

1
τ

∫ 1

0

euM (TL(x) − T )(T −ML)+dx ≤ 0,
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where we have used the assumption TL(x) ≤ML for x ∈ (0, 1). This implies that (T−ML)+ = 0
and hence T ≤ ML in (0, 1). Similarly, with the test function ϕ = (T −mL)− = min{0, T −
mL} ∈ H1(0, 1) in (2.10), we obtain T ≥ mL > 0 in (0, 1).

Next, we employ the test function ϕ = T in (2.10) as follows:∫ 1

0

euMT 2
xdx =

1
τ

∫ 1

0

euM (TL(x) − T )Tdx ≤ eM

τ
(ML −mL)ML.

This inequality and

e−M

∫ 1

0

T 2
xdx ≤

∫ 1

0

euMT 2
xdx

imply ∫ 1

0

T 2
xdx ≤ e2M

τ
(ML −mL)ML. (2.13)

Then, using the test function ψ = u ∈ H2
0 (0, 1) in (2.8), we have

ε2

12

∫ 1

0

u2
xxdx+

ε2

24

∫ 1

0

u2
xuxxdx+

∫ 1

0

Tu2
xdx

= −
∫ 1

0

Txuxdx− 1
λ2

∫ 1

0

u(eu − C(x))dx − J0

∫ 1

0

e−uuxdx. (2.14)

Due to the boundary conditions (2.6), the second integral on the left-hand side and the third
integral on the right-hand side of (2.14) vanish∫ 1

0

u2
xuxxdx =

1
3
[u3

x(1) − u3
x(0)] = 0,

∫ 1

0

e−uuxdx = e−u(0) − e−u(1) = 0.

Since T ≥ mL > 0 in (0, 1), ∫ 1

0

Tu2
xdx ≥ mL

∫ 1

0

u2
xdx.

It is not difficult to see that e−1 + ‖C(x) logC(x)‖L∞(0,1) is an upper bound for the function
u 	→ −u(eu − C(x)), u ∈ R, for any x ∈ (0, 1). Here we use the assumption that C(x) is
positive. Therefore,

− 1
λ2

∫ 1

0

u(eu − C(x))dx ≤ λ−2(e−1 + ‖C(x) logC(x)‖L∞(0,1)).

By the Young inequality and (2.13),

−
∫ 1

0

Txuxdx ≤ mL

2

∫ 1

0

u2
xdx+

1
2mL

∫ 1

0

T 2
xdx ≤ mL

2

∫ 1

0

u2
xdx+

e2M

2τmL
(ML −mL)ML.

The above estimates yield (2.11).
Finally, from the Pincaré-Sobolev estimate and (2.11),

‖u‖L∞(0,1) ≤ ‖ux‖L2(0,1)

≤M =

√
e2M

τm2
L

(ML −mL)ML +
2(e−1 + ‖C(x) logC(x)‖L∞(0,1))

λ2mL
.
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This inequality and (2.13) yield (2.12).

Now we use the Leray-Schauder fixed-point theorem to prove the existence of a solution to
problem (2.8)–(2.9).

Lemma 2.2 Under the assumptions of Theorem 1.1, there exists a solution (u, T ) ∈
H2

0 (0, 1) ×H1(0, 1) to (2.8)–(2.9).

Proof For given w ∈ H1
0 (0, 1), let T ∈ H1(0, 1) be the unique solution to

∫ 1

0

ewMTxϕxdx =
1
τ

∫ 1

0

(ewM − C(x))ϕdx

with test functions ϕ ∈ H1(0, 1). As in Lemma 2.1, we can get 0 < mL ≤ T ≤ ML. Then we
consider the following linear problem with test functions ψ ∈ H2

0 (0, 1):

ε2

12

∫ 1

0

uxxψxxdx+
σε2

24

∫ 1

0

w2
xψxxdx+ σ

∫ 1

0

Txψxdx+
∫ 1

0

Tuxψxdx

= − σ

λ2

∫ 1

0

(ew − C(x))ψdx − σJ0

∫ 1

0

e−wψxdx, (2.15)

where σ ∈ [0, 1]. We define the bilinear form

a(u, ψ) =
ε2

12

∫ 1

0

uxxψxxdx +
∫ 1

0

Tuxψxdx (2.16)

and the linear functional

F (ψ) = −σε
2

24

∫ 1

0

w2
xψxxdx− σ

∫ 1

0

Txψxdx

− σ

λ2

∫ 1

0

(ew − C(x))ψdx − σJ0

∫ 1

0

e−wψxdx. (2.17)

Since the bilinear form a(u, ψ) is continuous and coercive on H2
0 (0, 1)×H2

0 (0, 1) for 0 < mL ≤
T ≤ ML, and the linear functional F (ψ) is continuous on H2

0 (0, 1), we can apply the Lax-
Milgram theorem to obtain the existence of a solution u ∈ H2

0 (0, 1) to (2.15). Thus, the
operator

S : H1
0 (0, 1) × [0, 1] → H1

0 (0, 1), (w, σ) 	→ u

is well-defined. Moreover, it is continuous and compact, since the embedding H2
0 (0, 1) ↪→

H1
0 (0, 1) is compact. Furthermore, S(w, 0) = 0. Following the steps of the proof of Lemma 2.1,

we can show that ‖u‖H2
0(0,1) ≤ const., satisfying S(u, σ) = u for all (u, σ) ∈ H1

0 (0, 1) × [0, 1].
Therefore, the existence of a fixed point u with S(u, 1) = u follows from the Leray-Schauder
fixed-point theorem. This gives a solution (u, T ) to (2.8) and (2.10), and, in fact, also to
(2.8)–(2.9), since ‖u‖L∞(0,1) ≤M .

With Lemma 2.2, we can obtain the existence of a solution to (2.3)–(2.7).

Theorem 2.1 Under the assumptions of Theorem 1.1, there exists a solution (u, T, V ) ∈
H4(0, 1) ×H2(0, 1) ×H2(0, 1) to (2.3)–(2.7).
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Proof Let (u, T ) be a weak solution to (2.8)–(2.9) or (2.3)–(2.4) and (2.6). Since u ∈
H2

0 (0, 1), there hold ux ∈ L∞(0, 1) and u2
x ∈ H1

0 (0, 1). The equation (2.4) is equivalent to

−Txx = uxTx +
1
τ
(TL(x) − T ) (2.18)

for classical solutions, since eu ≥ e−M > 0 for ‖u‖L∞ ≤ M , and this yields Txx ∈ L2(0, 1) by
using ux ∈ L∞(0, 1) and Tx ∈ L2(0, 1). Then, from (2.3), u2

x ∈ H1
0 (0, 1) and Txx ∈ L2(0, 1), we

infer uxxxx ∈ H−1(0, 1). Hence, there exists a w ∈ L2(0, 1), such that wx = uxxxx. This implies
uxxx = w + const. ∈ L2(0, 1), and by (2.3) and Txx ∈ L2(0, 1), we have uxxxx ∈ L2(0, 1). This
implies u ∈ H4(0, 1), and from (2.5) and the regularity of u, T , there follows the regularity of
V .

Proof of Theorem 1.1 Since u ∈ H4(0, 1), ‖u‖L∞(0,1) ≤ M and n = eu, we have
n ∈ H4(0, 1) and n(x) ≥ e−M > 0 for x ∈ (0, 1). The equivalence of problems (1.4)–(1.8) and
(2.3)–(2.7) provides the existence of a classical solution (n, T, V ) to (1.4)–(1.8) by Theorem 2.1.
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