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Abstract Let l be a given nonzero integer. The authors give an explicit characterization
of the positive integer k that makes the Diophantine equation x2 − kxy + y2 + lx = 0 have
infinitely many positive integer solutions (x, y).
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1 Introduction
Let Z, N be the sets of all integers and positive integers respectively. For a given nonzero

integer l, we let K(l) be the subset of N such that for any k ∈ K(l), the Diophantine equation

x2 − kxy + y2 + lx = 0, x, y ∈ N (1.1)

has infinitely many solutions (x, y). When l is a positive integer, Marlewski and Zarzycki [3]
proved K(1) = {3}, while Yuan and Hu [5] proved K(2) = {3, 4} and K(4) = {3, 4, 6}.

In this paper, we will give a necessary and sufficient condition for k ∈ K(l) with a nonzero
integer l.

Theorem 1.1 If l is a positive integer, then the necessary and sufficient condition for
k ∈ K(l) is k ≥ 3 and that l has a positive factor l1 such that the equation

X2 − (k2 − 4)Y 2 = −4l1
δ2

, δ ∈ {1, 2}, X, Y ∈ N, gcd(X, Y ) = 1 (1.2)

has solutions (X, Y ).

Corollary 1.1 If l is a positive integer, then k ≤ 4l + 2 for any k ∈ K(l).

When l is a negative integer, Keskin [2] proved that k ∈ K(−1) for any integer k > 3. In
this paper, we will completely solve this case as follows.

Theorem 1.2 If l is a negative integer, then the necessary and sufficient condition for
k ∈ K(l) is k > 1.

2 Some Lemmas
Let D > 0 be a non-square integer and r be a nonzero integer.

Lemma 2.1 (see [1, Theorem 11.4.2]) If the equation

X2 − DY 2 = r, X, Y ∈ Z, gcd(X, Y ) = 1 (2.1)

has a solution (X, Y ), then it has infinitely many solutions.
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Lemma 2.2 (see [1, Theorem 10.8.2]) If |r| <
√

D and (X, Y ) is a solution of equation
(2.1), then |X|

|Y | is a convergent of
√

D.

Let pm

qm
be the m-th convergent of

√
D and

sm = p2
m − Dq2

m. (2.2)

Since D is a non-square integer, it is well-known that the Pell equation

u2 − Dv2 = 1, u, v ∈ N (2.3)

has solutions (u, v). According to Lemma 2.2, u
v is a convergent of

√
D.

Lemma 2.3 (see [4, Chapter 6]) Let R(D) denote the subset of Z such that for any
r ∈ R(D), 0 < |r| <

√
D and the equation (2.1) has solutions. Further, letting (u1, v1) be the

least solution of the equation (2.3) and

u1

v1
=

pn

qn
, n ∈ N ∪ {0}, (2.4)

then, R(D) ⊆ {s0, s1, · · · , sn}, where si (i = 0, 1, · · · , n) is the same as in (2.2).

Lemma 2.4 Let k (≥ 3) be an integer, and then

R(k2 − 4) =

⎧⎪⎪⎨
⎪⎪⎩

{−1, 1}, if k = 3,
{−k + 2, 1, 4}, if k > 3 and 2 � k,
{−3, 1}, if k = 4,
{1, 4}, if k > 4 and 2 | k.

(2.5)

Proof Let D = k2 − 4, and then D is a positive non-square integer.
If k = 3, then D = 5 and the smallest solution to the equation (2.3) corresponds to (u1, v1) =

(9, 4). Notice that p0
q0

= 1
2 , p1

q1
= 9

4 , so the number n satisfying (2.4) is 1. From (2.2) we get
s0 = −1, s1 = 1, which leads to R(5) = {−1, 1} according to Lemma 2.3.

If k > 3 and 2 � k, we have (u1, v1) =
(

k3−3k
2 , k2−1

2

)
and the number n satisfying (2.4) is 5.

Thus, we get

p0

q0
=

k − 1
1

,
p1

q1
=

k

1
,

p2

q2
=

k2−k−2
2

k−1
2

,
p3

q3
=

k2 − 2
k

,

p4

q4
=

k3−2k2−3k+4
2

k2−2k−1
2

,
p5

q5
=

k3−3k
2

k2−1
2

. (2.6)

From (2.2) and (2.6), we get s0 = −2k+5, s1 = 4, s2 = −k+2, s3 = 4, s4 = −2k+5 and s5 = 1,
which leads to R(k2 − 4) = {−k + 2, 1, 4} according to Lemma 2.3.

In a similar way, we can prove that Lemma 2.4 remains true when 2 | k.

3 Proof of the Main Results
Proof of Theorem 1.1 When l > 0 and k ∈ K(l), if k ≤ 2, we have x2 − kxy + y2 + lx =

(x − y)2 + lx > 0 for any positive integers x and y, which enables us to conclude that k ≥ 3.
Let (x, y) be a solution to equation (1.1) and d1 = gcd(x, y), and then

x = d1x1, y = d1y1, x1, y1 ∈ N, gcd(x1, y1) = 1. (3.1)
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By substituting (3.1) into (1.1), we get

x2
1 − kx1y1 + y2

1 +
lx1

d1
= 0. (3.2)

It follows from (3.2) that

d1 | lx1. (3.3)

Let d2 = gcd(d1, x1), and then

d1 = d2d3, x1 = d2x2, d3, x2 ∈ N, gcd(d3, x2) = 1. (3.4)

We infer from (3.3)–(3.4) that d3 | l. Let

l = d3l1, l1 ∈ N. (3.5)

By substituting (3.4)–(3.5) into (3.2), we get

(d2x2)2 − k(d2x2)y1 + y2
1 + l1x2 = 0. (3.6)

It follows from (3.6) that x2 | y2
1 . From (3.1) and (3.4) we know that (x1, y1) = gcd(d2x2, y1) =

1, and thus x2 = 1. It follows from (3.6) that

d2
2 − kd2y1 + y2

1 = −l1, (3.7)

which leads to

(2d2 − ky1)2 − (k2 − 4)y2
1 = −4l1. (3.8)

Since gcd(d2, y1) = 1, we have

gcd(2d2 − ky1, y1) =
{

1, if 2 � y1,
2, if 2 | y1.

(3.9)

From (3.8)–(3.9), we infer that for l > 0, the necessary condition for k ∈ K(l) is k ≥ 3 and that
l has a positive factor l1 such that the equation (1.2) has solutions (X, Y ).

Conversely, if k ≥ 3 and the equation (1.2) has the solution (X, Y ), we let

x = ab, y = ac, (3.10)

where

a =
l

l1
b, b =

δ

2
(|X | + k|Y |), c = δ|Y |. (3.11)

From (1.2) and (3.11) we know that (x, y) is a solution of the equation (1.1). Noticing that
k2 − 4 is a non-square positive integer, it is clear by Lemma 2.1 that if the equation (1.2) has a
solution (X, Y ), then the equation (1.1) has infinite many solutions. Thus, we get the sufficient
condition for k ∈ K(l).

Proof of Corollary 1.1 Supposing that k ∈ K(l), we have that k ≥ 3 and the equation
(1.2) has solutions according to Theorem 1.1. If

∣∣− 4l1
δ2

∣∣ <
√

k2 − 4, the definition of R(k2 − 4)
implies that − 4l1

δ2 ∈ R(k2−4). By applying Lemma 2.4, we get − 4l1
δ2 ∈ {−1,−3,−k+2}, which

leads to 4l ≥ 4l1
δ2 ≥ k−2. If

∣∣− 4l1
δ2

∣∣ >
√

k2 − 4, we can also get 4l ≥ ∣∣− 4l1
δ2

∣∣ >
√

k2 − 4 ≥ k−2.
Thus k ≤ 4l + 2.
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Proof of Theorem 1.2 Now, we first discuss the set K(−1). If the equation

x2 − xy + y2 − x = 0, x, y ∈ N (3.12)

has a solution (x, y), then

(x − y)2 + x(y − 1) = 0. (3.13)

Thus, we get x = y = 1, which implies that the equation (3.12) has only the solution (x, y) =
(1, 1) and so 1 �∈ K(−1).

Since the equation

x2 − 2xy + y2 − x = 0, x, y ∈ N (3.14)

has infinitely many solutions (x, y) = (a2, a2 + a) with a ∈ N, we have 2 ∈ K(−1).
Let (U, V ) be a solution to the equation

U2 − 5V 2 = 4, U, V ∈ N, 2 � UV (3.15)

and let

x = a2, y = aV, a =
1
2
(U + 3V ). (3.16)

It is not hard to see from (3.15) and (3.16) that (x, y) is a solution of the equation

x2 − 3xy + y2 − x = 0, x, y ∈ N, (3.17)

and it is known that the equation (3.15) has infinitely many solutions (U, V ) (see [1, Theorem
11.4.4]), so equation (3.17) has infinitely many solutions (x, y) too. Thus 3 ∈ K(−1). Using
k ∈ K(−1) with k > 3, which is the result of Keskin [2], we get that the necessary and sufficient
condition for k ∈ K(−1) is k > 1.

For a general negative integer l, let (x, y) be a solution of the equation

x2 − kxy + y2 − x = 0, x, y ∈ N (3.18)

and let

x′ = −lx, y′ = −ly. (3.19)

Obviously x′ and y′ are positive integers. From (3.18)–(3.19) we can easily get x′2 − kx′y′ +
y′2 + lx′ = 0. Thus (x′, y′) is a solution of the equation

x′2 − kx′y′ + y′2 + lx′ = 0, x′, y′ ∈ N. (3.20)

From the above argument, we get K(l) = K(−1) for any negative integer l.
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