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On the Diophantine Equation z? — kxy + y? + lx = 0*
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Abstract Let [ be a given nonzero integer. The authors give an explicit characterization
of the positive integer k that makes the Diophantine equation z? — kxzy +y* + lz = 0 have
infinitely many positive integer solutions (z,y).
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1 Introduction

Let Z,N be the sets of all integers and positive integers respectively. For a given nonzero
integer [, we let K (I) be the subset of N such that for any k € K (1), the Diophantine equation

2 —kaxy+1y +lx=0, z,yeN (1.1)

has infinitely many solutions (x,y). When [ is a positive integer, Marlewski and Zarzycki [3]
proved K (1) = {3}, while Yuan and Hu [5] proved K (2) = {3,4} and K(4) = {3,4,6}.

In this paper, we will give a necessary and sufficient condition for k € K(I) with a nonzero
integer .

Theorem 1.1 If [ is a positive integer, then the mecessary and sufficient condition for
ke K(l) is k > 3 and that | has a positive factor 1y such that the equation
4l
X2 - (K —4)Y? = 5 §€{1,2}, X,YeN, ged(X,Y)=1 (1.2)

has solutions (X,Y).

Corollary 1.1 Ifl is a positive integer, then k < 41+ 2 for any k € K(1).

When [ is a negative integer, Keskin [2] proved that k € K(—1) for any integer k£ > 3. In
this paper, we will completely solve this case as follows.

Theorem 1.2 If | is a negative integer, then the necessary and sufficient condition for
ke K()isk>1.

2 Some Lemmas
Let D > 0 be a non-square integer and r be a nonzero integer.

Lemma 2.1 (see [1, Theorem 11.4.2]) If the equation
X?2-DY?=r, X, YEZ, gcdX,Y)=1 (2.1)

has a solution (X,Y'), then it has infinitely many solutions.
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Lemma 2.2 (see [1, Theorem 10.8.2]) If |r| < v/D and (X,Y) is a solution of equation
(2.1), then % is a convergent of V/D.

Let % be the m-th convergent of v/D and

Sm = 2 — D (2.2)
Since D is a non-square integer, it is well-known that the Pell equation
2 2 _
u—Dv* =1, wu,veN (2.3)

has solutions (u,v). According to Lemma 2.2, & is a convergent of VD.

Lemma 2.3 (see [4, Chapter 6]) Let R(D) denote the subset of Z such that for any

r € R(D), 0 < |r| < VD and the equation (2.1) has solutions. Further, letting (ui,v1) be the
least solution of the equation (2.3) and

U eNuU{o}, (2.4)

U1 An

then, R(D) C {sq, 81, ,Sn}, where s; (i =0,1,---,n) is the same as in (2.2).
Lemma 2.4 Let k (> 3) be an integer, and then

{_171}a Zf k:?)v
—k+2,1,4}, if k>3 and 21k,

R(k? — 4) = %_3 y } Z; pes f (2.5)
{1,4}, if k>4and?2]|k.

Proof Let D = k? — 4, and then D is a positive non-square integer.

If k = 3, then D = 5 and the smallest solution to the equation (2.3) corresponds to (uy,v1) =
(9,4). Notice that i—g =1, % = 2, so the number n satisfying (2.4) is 1. From (2.2) we get
so = —1,s1 = 1, which leads to R(5) = {—1, 1} according to Lemma 2.3.

If k> 3 and 21 k, we have (uy,v;) = (’“3;23’“, @) and the number n satisfying (2.4) is 5.
Thus, we get

po k=1 p_k p P2 opy k22

qo L7 g 17 g EL 7 g ko

k2 —2k% —3k+4 k2 —3k
& = k2—§k—1 ) Zﬁ = k22—1 . (26)
a4 KEoghol g :

From (2.2) and (2.6), we get so = —2k+5,51 = 4,80 = —k+2,83 = 4,54 = —2k+5 and s5 = 1,
which leads to R(k? —4) = {—k +2,1,4} according to Lemma 2.3.
In a similar way, we can prove that Lemma 2.4 remains true when 2 | k.

3 Proof of the Main Results

Proof of Theorem 1.1 When [ >0 and k € K(I), if k < 2, we have 2% — kay +y? + oz =
(x —y)? + lx > 0 for any positive integers z and y, which enables us to conclude that k > 3.
Let (z,y) be a solution to equation (1.1) and dy = ged(z,y), and then

r=dir1, y=dy, x1,y1 €N, ged(r,y) =1 (3.1)
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By substituting (3.1) into (1.1), we get

l
2 — kxyy + oyl + dill =0. (3.2)

It follows from (3.2) that
dy | lay. (3.3)
Let do = ged(dy, 1), and then
dy = dods, w1 =dawa, dz,x2 €N, ged(ds,a2)=1. (3.4)
We infer from (3.3)—(3.4) that d3 | [. Let
| =dsly, €N, (3.5)
By substituting (3.4)—(3.5) into (3.2), we get
(dawa)? — k(dax2)ys + y3 + lize = 0. (3.6)

It follows from (3.6) that o | 2. From (3.1) and (3.4) we know that (z1,y1) = ged(dawa,y1) =
1, and thus xzo = 1. It follows from (3.6) that

d3 — kdayy + yi = —lu, (3.7)
which leads to
(2dy — ky1)? — (K — 4)y? = —41,. (3.8)
Since ged(dz,y1) = 1, we have
1, it 24y,
ng(2d2 - kylvyl) - {27 if 2 | e (39)

From (3.8)—(3.9), we infer that for [ > 0, the necessary condition for k € K () is k > 3 and that
[ has a positive factor [; such that the equation (1.2) has solutions (X,Y).
Conversely, if k > 3 and the equation (1.2) has the solution (X,Y), we let

x =ab, y=ac, (3.10)

where

l 0
a= l—b, b= §(|X|+k|Y|), c=10lY]. (3.11)
1
From (1.2) and (3.11) we know that (z,y) is a solution of the equation (1.1). Noticing that
k% — 4 is a non-square positive integer, it is clear by Lemma 2.1 that if the equation (1.2) has a

solution (X,Y’), then the equation (1.1) has infinite many solutions. Thus, we get the sufficient
condition for k € K(I).

Proof of Corollary 1.1 Supposing that k& € K (), we have that & > 3 and the equation
(1.2) has solutions according to Theorem 1.1. If | — %} < Vk? — 4, the definition of R(k? —4)
implies that —%1 € R(k®>—4). By applying Lemma 2.4, we get —%} € {-1,-3,—k+2}, which
leads to 41 > %1 >k—-2 If ‘ —%‘ > Vk2 — 4, we can also get 4] > ‘—%‘ >VEk2—4> k-2
Thus k < 41+ 2.
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Proof of Theorem 1.2 Now, we first discuss the set K(—1). If the equation

2?2 —azy+y?—2=0, zyeN (3.12)

has a solution (z,y), then
(x—y)*+a(y—1)=0. (3.13)
Thus, we get = y = 1, which implies that the equation (3.12) has only the solution (x,y) =
(1,1) and so 1 &€ K(—1).
Since the equation

2 —2zy+y*—x=0, z,yeN (3.14)

has infinitely many solutions (z,y) = (a?,a® + a) with a € N, we have 2 € K(—1).
Let (U,V) be a solution to the equation

U?>-5V?=4, UVEN, 21UV (3.15)

and let

1
r=a% y=adV, a:§(U+3V). (3.16)
It is not hard to see from (3.15) and (3.16) that (x,y) is a solution of the equation
2?2 —3zy+19y>—x=0, z,y€eN, (3.17)

and it is known that the equation (3.15) has infinitely many solutions (U, V) (see [1, Theorem
11.4.4]), so equation (3.17) has infinitely many solutions (x,y) too. Thus 3 € K(—1). Using
k € K(—1) with k > 3, which is the result of Keskin [2], we get that the necessary and sufficient
condition for k € K(—1)is k > 1.

For a general negative integer [, let (z,y) be a solution of the equation

22 —kezy+y?—2=0, z,yeN (3.18)
and let
=z, y =—ly. (3.19)

Obviously o’ and y’ are positive integers. From (3.18)—(3.19) we can easily get 2 — ka'y +
y'® + 12z’ = 0. Thus (/,3') is a solution of the equation

2 —ka'y +y 41’ =0, 2,y €N (3.20)

From the above argument, we get K(l) = K(—1) for any negative integer [.
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