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1 Introduction

Nevanlinna [4] began the study of the uniqueness problem of meromorphic functions on the
complex plane, known as the famous four-value theorem and five-value theorem. Since then,
there have been a number of papers working towards this kind of problems. In 1975, Fujimoto
[3] extended Nevanlinna’s results to meromorphic mappings of C

n into PN (C) and proved the
following theorem.

Theorem 1.1 (see [3]) Let Hi, 1 ≤ i ≤ q, be q hyperplanes in PN (C) located in the
general position, and let f and g be two nonconstant meromorphic mappings of C

n into PN (C)
with f(Cn) �⊂ Hi and g(Cn) �⊂ Hi such that ν(f,Hi)(z) = ν(g,Hi)(z) for 1 ≤ i ≤ q.

(i) If q = 3N + 1, then there is a linear transform L of PN (C) such that L(f) = g.

(ii) If q = 3N + 2, then f ≡ g.

Motivated by the accomplishment of the second main theorem of the value distribution
theory for moving targets (e.g. [8–9]), and using the idea in Fujimoto [3], Tu [11] proved the
following result related to moving targets.

Theorem 1.2 (see [11]) Let f, g : Cn → PN (C) be two nonconstant meromorphic map-
pings, and let {ai}q

i=1 be “small ” (with respect to f) meromorphic mappings of Cn into PN (C)
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in the general position such that f and g are linearly nondegenerate over R̃({ai}q
i=1). Assume

that
(i) ν(f,ai)(z) = ν(g,ai)(z) for 1 ≤ i ≤ q,

(ii) dim{z ∈ Cn; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,

(iii) f(z) = g(z) on
q⋃

j=1

{z ∈ Cn; (f(z), aj(z)) = 0}.

Then
(1) If q = 3N +1, there is a matrix L with its elements lij in R̃({ai}q

i=1) such that L(f) = g.

(2) If q = 3N + 2, then f ≡ g.

For the case of moving targets without counting multiplicity, Thai and Quang [10] proved
the result as follows.

Theorem 1.3 (see [10]) Let f, g : Cn → PN (C) be two meromorphic mappings, and let
{ai}q

i=1 be “small ” (with respect to f) meromorphic mappings of Cn into PN (C) in the general
position such that f and g are linearly nondegenerate over R({ai}q

i=1). Assume that
(i) ν1

(f,ai)
(z) = ν1

(g,ai)
(z) for 1 ≤ i ≤ q,

(ii) dim{z ∈ Cn; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,

(iii) f(z) = g(z) on
q⋃

j=1

{z ∈ Cn; (f(z), aj(z)) = 0}.

If q = 2N2 + 4N and N ≥ 2, then f ≡ g.

In 2009, Chen and Yan [1] obtained a sharp result of the uniqueness problem of meromorphic
mappings related to a family of hyperplanes as follows.

Theorem 1.4 (see [1]) Let f(z), g(z) be meromorphic mappings of Cn into PN (C) such
that ν1

(f,Hj)
(z) = ν1

(g,Hj)
(z) for 2N + 3 hyperplanes Hj located in the general position. If f and

g are linearly nondegenerate, then f ≡ g.

Recently, Dethloff, Quang and Tan [2] introduced uniqueness problems for meromorphic
mappings related to two families of hyperplanes. Inspired by these developments and using
some ideas in Chen and Yan [1], in this paper we will extend Theorems 1.2 and 1.3 to the
case of meromorphic mappings related to two families of moving hyperplanes, and our results
improve on some earlier work.

2 Preliminaries and Our Results

Let F (z) (�≡ 0) be an entire function on Cn. For a ∈ Cn, set F (z) =
∞∑

m=0
Pm(z − a),

where the term Pm(z) is either identically zero or a homogeneous polynomial of degree m. The
number νF (a) := min{m; Pm �≡ 0} is said to be the zero-multiplicity of F at a. For an integer
M > 0, define νM

F (a) = min{νF (a), M}. Set |νF | := {z ∈ Cn; νF (z) �= 0}. Let ϕ be a nonzero
meromorphic function on C

n. For each a ∈ C
n, we choose nonzero holomorphic functions F

and G on a neighborhood U of a such that ϕ = F
G on U and dim(F−1(0) ∩ G−1(0)) ≤ n − 2,

and we define νϕ = νF − νG, which is independent of the choices of F and G.
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For z = (z1, · · · , zn) ∈ Cn we set ‖z‖ = (|z1|2 + · · · + |zn|2)
1
2 . For r > 0, define

B(r) = {z ∈ C
n; ‖z‖ < r}, (r) = {z ∈ C

n; ‖z‖ = r}.

Let d = ∂ + ∂ and dc = (4π
√
−1)−1(∂ − ∂). We write

v(z) = (ddc‖z‖2)n−1, σ(z) = dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1

for z ∈ Cn \ {0}.
Let f : Cn → PN (C) be a meromorphic mapping. We take holomorphic functions f0, f1, · · · ,

fN on C
n such that If := {z ∈ C

n; f0(z) = f1(z) = · · · = fN (z) = 0} is of dimension at most
n − 2 and f(z) = (f0(z), f1(z), · · · , fN (z)) on Cn \ If in terms of homogeneous coordinates on
PN (C). We call such a representation f = (f0, f1, · · · , fN) a reduced representation of f . Since
our notation is often independent of the choice of reduced representations, we shall identify f

with its reduced representations in this paper. Set ‖f‖ = (|f0|2 + · · · + |fN |2) 1
2 . The order

function of f is given by

T (r, f) =
∫

S(r)

log ‖f‖σ −
∫

S(1)

log ‖f‖σ

for r > 1.

A meromorphic mapping a : Cn → PN (C) is “small” with respect to the meromorphic
mapping f of Cn into PN (C) if T (r, a) = o(T (r, f)) as r → +∞. Let a = (a0, a1, · · · , aN ) be a
reduced representation of a. We define

m(f,a)(r) =
∫

S(r)

log
‖f‖‖a‖
|(f, a)| σ −

∫
S(1)

log
‖f‖‖a‖
|(f, a)| σ

and
N(f,a)(r) =

∫
S(r)

log |(f, a)|σ −
∫

S(1)

log |(f, a)|σ

for r > 1, where (f, a) :=
N∑

i=0

aifi. Then

N(f,a)(r) =
∫ r

1

n(t)
t2n−1

dt,

where

n(t) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
|ν(f,a)|∩B(t)

ν(f,a)(z)v, n ≥ 2,∑
|z|≤t

ν(f,a)(z), n = 1.

For a positive integer M , define

NM
(f,a)(r) =

∫ r

1

nM (t)
t2n−1

dt,

where

nM (t) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
|ν(f,a)|∩B(t)

νM
(f,a)(z)v, n ≥ 2,∑

|z|≤t

νM
(f,a)(z), n = 1.
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If F is a meromorphic function on Cn and a ∈ C ∪ {∞}, then we adopt the standard notation
for mF (r, a), NF (r, a), etc. Thus we have

N(f,a)(r) = N(f,a)(r, 0)

for two meromorphic mappings f , a of Cn into PN(C). If (f, a) �≡ 0, then the first main theorem
for moving targets in the value distribution theory states

T (r, f) + T (r, a) = m(f,a)(r) + N(f,a)(r)

for r > 1.
For a closed subset A of an analytic subset of Cn, we define

NA(r) =
∫ r

1

n(t)
t2n−1

dt,

where

n(t) :=

⎧⎨
⎩

∫
A∩B(t)

v, n ≥ 2,

�(A ∩ B(t)), n = 1.

For any q ≥ N + 1, let a1, · · · , aq be q “small” meromorphic mappings of Cn into PN (C)
with reduced representations aj = (aj0, aj1, · · · , ajN ), j = 1, · · · , q. We say that a1, · · · , aq

are located in a general position if for any 1 ≤ j0 < j1 < · · · < jN ≤ q, det(ajkl) �≡ 0. Let
Mn be the field (over C) of all meromorphic functions on Cn. Let R({ai}q

i=1) ⊂ Mn be the
smallest subfield over C which contains C and all ajk

ajl
with ajl �≡ 0, where 1 ≤ j ≤ q and

0 ≤ k, l ≤ N . Define R̃({ai}q
i=1) ⊂ Mn by the smallest subfield over C which contains all

h ∈ Mn with hk ∈ R({ai}q
i=1) for some positive integer k. For two groups of meromorphic

mappings {aj, bj}q
j=1 of Cn into PN(C) with reduced representations aj = (aj0, aj1, · · · , ajN )

and bj = (bj0, bj1, · · · , bjN ), j = 1, · · · , q, we denote R({ai, bi}q
i=1) as the smallest subfield over

C which contains C and all ajk

ajl
,

bjk

bjl
with ajl �≡ 0 and bjl �≡ 0, where 1 ≤ j ≤ q and 0 ≤ k, l ≤ N .

Similarly, we can define R̃({ai, bi}q
i=1).

Our main results are stated as follows.

Theorem 2.1 Let f, g, ai, bi : Cn → PN (C) be meromorphic mappings (i = 1, 2, · · · , q).
Suppose that {ai}q

i=1 are “small” (with respect to f) and located in the general position, and that
{bi}q

i=1 are “small” (with respect to g) and located in the general position such that f and g are
linearly nondegenerate over R̃({ai, bi}q

i=1). For any reduced representations ai = (ai0, · · · , aiN )
and bi = (bi0, · · · , biN ) (i = 1, 2, · · · , q), we may assume ai0 �≡ 0 and bi0 �≡ 0 (i = 1, 2, · · · , q)
by changing the homogeneous coordinate system of PN (C). Let ãi = ai

ai0
and b̃i = bi

bi0
(i =

1, 2, · · · , q). Assume that
(i) ν(f,ãi)(z) = ν(g,̃bi)

(z) for 1 ≤ i ≤ q,
(ii) dim{z ∈ Cn; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,

(iii) (f,ãi)

(g,̃bi)
= (f,ãj)

(g,̃bj)
on

q⋃
k=1

k �=i,j

{z ∈ C
n; (f(z), ak(z)) = 0} for 1 ≤ i < j ≤ q.

Then
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(1) if q = 3N + 1, there exists a matrix L with its elements lij in R̃({ai, bi}3N+1
i=1 ) such that

L(f) = g;

(2) if q = 3N +2, there exist {i1, · · · , iN+1} ⊂ {1, · · · , q} such that (f,ãi1)

(g,̃bi1 )
≡ · · · ≡ (f,ãiN+1)

(g,̃biN+1)
.

When ai(z) ≡ bi(z) (i = 1, 2, · · · , q), the above theorem yields the following corrollary (i.e.,
Theorem 2.1 implies Theorem 1.2).

Corollary 2.1 Let f, g, ai : Cn → PN (C) be meromorphic mappings (i = 1, 2, · · · , q).
Suppose that {ai}q

i=1 are “small” (with respect to f) located in general position such that f and
g are linearly nondegenerate over R̃({ai}q

i=1). Assume that

(i) ν(f,ai)(z) = ν(g,ai)(z) for 1 ≤ i ≤ q.

(ii) dim{z ∈ C
n; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q.

(iii) f(z) = g(z) on
q⋃

k=1

{z ∈ Cn; (f(z), ak(z)) = 0}.
Then

(1) if q = 3N + 1, there exists a matrix L with its elements lij in R̃({ai}3N+1
i=1 ) such that

L(f) = g;

(2) if q = 3N +2, there exist {i1, · · · , iN+1} ⊂ {1, · · · , q} such that (f,ai1)

(g,ai1 ) ≡ · · · ≡ (f,aiN+1)

(g,aiN+1) ,

which immediately gives f ≡ g.

Proof For any reduced representations of aj (j = 1, 2, · · · , q), let bj = aj . It is easy to
see that (i) implies ν(f,ãi)(z) = ν(g,̃bi)

(z) for 1 ≤ i ≤ q, and (iii) implies (f,ãi)

(g,̃bi)
= (f,ãj)

(g,̃bj)
on

q⋃
k=1

k �=i,j

{z ∈ Cn; (f(z), ak(z)) = 0} for 1 ≤ i < j ≤ q. Then, by the proof of Theorem 2.1, we

have that

(1) if q = 3N + 1, there exists a matrix L with its elements lij in R̃({ai}3N+1
i=1 ) such that

L(f) = g;

(2) if q = 3N +2, there exist {i1, · · · , iN+1} ⊂ {1, · · · , q} such that (f,ai1)

(g,ai1 ) ≡ · · · ≡ (f,aiN+1)

(g,aiN+1) .

Define h := (f,ai1)

(g,ai1 ) ≡ · · · ≡ (f,aiN+1)

(g,aiN+1) . Since {aik
}N+1

k=1 are located in a general position, we
obtain f(z) = h(z)g(z) on Cn as their reduced representations. This means f(z) ≡ g(z) as
meromorphic mappings from C

n to PN(C). The proof of Corollary 2.1 is finished.

Theorem 2.2 Let f, g, ai, bi : Cn → PN (C) be meromorphic mappings (i = 1, 2, · · · , q).
Suppose that {ai}q

i=1 are “small” (with respect to f) and located in the general position, and that
{bi}q

i=1 are “small” (with respect to g) and located in the general position such that f and g are
linearly nondegenerate over R({ai, bi}q

i=1). For any reduced representations ai = (ai0, · · · , aiN )
and bi = (bi0, · · · , biN ) (i = 1, 2, · · · , q), we may assume ai0 �≡ 0 and bi0 �≡ 0 (i = 1, 2, · · · , q)
by changing the homogeneous coordinate system of PN (C). Let ãi = ai

ai0
and b̃i = bi

bi0
(i =

1, 2, · · · , q). Assume that

(i) ν1
(f,ãi)

(z) = ν1
(g,̃bi)

(z) for 1 ≤ i ≤ q,

(ii) dim{z ∈ Cn; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,
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(iii) (f,ãi)

(g,̃bi)
= (f,ãj)

(g,̃bj)
on

q⋃
k=1

k �=i,j

{z ∈ Cn; (f(z), ak(z)) = 0} for 1 ≤ i < j ≤ q.

Then
If q = 2N2 + 2N + 3, then there exist {i1, · · · , iN+1} ⊂ {1, · · · , q} such that

(f, ãi1)

(g, b̃i1)
≡ · · · ≡

(f, ãiN+1)

(g, b̃iN+1)
,

which immediately means that there exists a matrix L with its elements lij in R({ai, bi}q
i=1)

such that L(f) = g.

When ai(z) ≡ bi(z) (i = 1, 2, · · · , q), the above theorem yields the following corrollary.

Corollary 2.2 Let f, g, ai : Cn → PN (C) be meromorphic mappings (i = 1, 2, · · · , q).
Suppose that {ai}q

i=1 are “small” (with respect to f) and located in the general position such
that f and g are linearly nondegenerate over R({ai}q

i=1). Assume that
(i) ν1

(f,ai)
(z) = ν1

(g,ai)
(z) for 1 ≤ i ≤ q,

(ii) dim{z ∈ Cn; (f(z), ai(z)) = (f(z), aj(z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,

(iii) f(z) = g(z) on
q⋃

k=1

{z ∈ Cn; (f(z), ak(z)) = 0}.

If q = 2N2 + 2N + 3, then there exist {i1, · · · , iN+1} ⊂ {1, · · · , q} such that

(f, ai1)
(g, ai1)

≡ · · · ≡
(f, aiN+1)
(g, aiN+1)

,

which immediately gives f ≡ g.

Remark 2.1 If N = 1, then 2N2 + 2N + 3 = 7 (cf. Corollary in p. 2702 of Ru [7]).
If N ≥ 2, then 2N2 + 2N + 3 < 2N2 + 4N. Thus Corollary 2.2 improves Theorem 1.3.

From the proof of Corollary 2.1, the proof of Corollary 2.2 is obvious.

3 Some Lemmas and Propositions

To prove our results, we need some preparations.

Proposition 3.1 (see [7]) Assume that f and {ai}q
i=1 (q ≥ N + 1) are meromorphic

mappings of Cn into PN(C) such that {ai}q
i=1 are in the general position and f is linearly

nondegenerate over R({ai}q
i=1). Then

q

N + 2
T (r, f) ≤

q∑
j=1

NN
(f,aj)

(r) + o(T (r, f)) + O
(

max
1≤i≤q

T (r, ai)
)
||,

where “||” means that the estimate holds for all large r outside a set of finite Lebesgue measures.

Lemma 3.1 (see [6]) Let a, b be meromorphic functions on Cn. Then

T
(
r,

a

b

)
≤ T (r, a) + T (r, b) + O(1).
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Lemma 3.2 Let f, g be non-zero meromorphic functions of Cn with ν1
f (z) = ν1

g (z). Then
min{νf (z), νg(z)} ≥ νN

f (z) + νN
g (z) − Nν1

g (z).

Proof Notice that νN
g (z) − Nν1

g(z) ≤ 0.

(i) If νf (z) ≥ N and νg(z) ≥ N , then min{νf(z), νg(z)} ≥ N = νN
f (z) ≥ νN

f (z) + νN
g (z) −

Nν1
g(z).

(ii) If νf (z) ≥ N and νg(z) < N , then min{νf(z), νg(z)} = νg(z) = νN
g (z) + N − N =

νN
f (z) + νN

g (z) − Nν1
g(z).

(iii) If νf (z) < N and min{νf (z), νg(z)} = νf (z), then min{νf (z), νg(z)} ≥ νN
f (z) ≥ νN

f (z)+
νN

g (z) − Nν1
g (z).

(iv) If νf (z) < N and min{νf (z), νg(z)} = νg(z), then min{νf(z), νg(z)} ≥ νN
g (z) = νN

g (z)+
N − Nν1

g(z) ≥ νN
g (z) + νN

f (z) − Nν1
g(z).

The proof of Lemma 3.2 is completed.

Lemma 3.3 (see [10]) Let f, a1, a2 be meromorphic mappings of C
n into PN (C) with

reduced representations aj = (aj0, · · · , ajN ) such that aj is small with respect to f and (f, aj) �≡
0 for j = 1, 2. Then

T
(
r,

(f, ã1)
(f, ã2)

)
≤ T (r, f) + o(T (r, f)),

where ãj = aj

ajk0
for some ajk0 �≡ 0, j = 1, 2.

Let G be a torsion free Abelian group and A = (a1, · · · , aq) be a q-tuple of elements ai in
G. Let q ≥ r > s > 1. We say that the q-tuple A has the property (Pr,s) if any r elements
al(1), · · · , al(r) in A satisfy the condition that for any given i1, · · · , is (1 ≤ i1 < · · · < is ≤ r),
there exist j1, · · · , js (1 ≤ j1 < · · · < js ≤ r) with {i1, · · · , is} �= {j1, · · · , js} such that
al(i1) · · · al(is) = al(j1) · · · al(js).

Proposition 3.2 (see [3]) Let G be a torsion free Abelian group and A = (a1, · · · , aq) be a
q-tuple of elements ai in G. If A has the property (Pr,s) for some r, s with q ≥ r > s > 1, then
there exist i1, · · · , iq−r+2 with 1 ≤ i1 < · · · < iq−r+2 ≤ q such that ai1 = ai2 = · · · = aiq−r+2 .

We also need the following two theorems that can be found in [11].

Proposition 3.3 (see [11]) Suppose that h0, h1, · · · , hm (m ≥ 2) are nowhere vanish-
ing entire functions on Cn and b0, b1, · · · , bm are nonzero meromorphic functions on Cn with
T (r, bi

bj
) = o(T (r, hrst)) + O(1)||(0 ≤ i < j ≤ m) for 0 ≤ r, s, t ≤ m with r �= s, s �= t, t �= r,

where hrst := (hr, hs, ht) is a holomorphic mapping of Cn into P 2(C). Assume that b0h0+b1h1+
· · · + bmhm = 0. Then there exists a decomposition of indices {0, 1, · · · , m} = I1 ∪ I2 ∪ · · · ∪ Il

such that

(i) every Ik contains at least two indices,

(ii) for i, j ∈ Ik, bihi

bjhj
is constant,

(iii) for i ∈ Ip and j ∈ Iq (p �= q), bihi

bjhj
is not constant,

(iv) for every Ik,
∑

j∈Ik

bjhj = 0.
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Proposition 3.4 (see [11]) Assume that f and {ai}q
i=1 (q ≥ N + 1) are meromorphic

mappings of C
n into PN (C) such that {ai}q

i=1 are in the general position and “small ” with
respect to f . If f is not linearly degenerate over R({ai}q

i=1), then, for any ε > 0, there exists
a positive integer M such that

(q − N − 1 − ε)T (r, f) ≤
q∑

j=1

NM
(f,aj)

(r) + o(T (r, f))||.

4 Proof of the Main Results

First, we have the following proposition.

Proposition 4.1 Under the same assumption as in Theorem 2.1 or Theorem 2.3, we have
that

(i) Naj0(r) = o(T (r, f)), Nbj0(r) = o(T (r, g)) for j = 1, 2, · · · , q and ND(r) = o(T (r, f)) +

o(T (r, g)), where D =
q⋃

j=1

{z ∈ Cn; aj0(z) = 0 or bj0(z) = 0},

(ii) T (r, f) = O(T (r, g))||.

Proof (i) Let H = {z = [zo : · · · : zN ]; z0 = 0} be a hyperplane in PN(C). By the first main
theorem, we have Naj0(r) = N(aj,H)(r) ≤ T (r, aj) = o(T (r, f)). Similarly, Nbj0 (r) = o(T (r, g)).

Since ND(r) ≤
q∑

j=1

(Naj0 (r) + Nbj0(r)), it is easy to get ND(r) = o(T (r, f)) + o(T (r, g)).

(ii) By Proposition 3.1, we have

q

N + 2
T (r, g) ≤

q∑
j=1

NN
(g,bj)

(r) + o(T (r, g)) + O
(

max
1≤i≤q

T (r, bi)
)
||

≤
q∑

j=1

N · N1
(g,̃bj)

(r) + ND(r) + o(T (r, g)) + o(T (r, f))||

=
q∑

j=1

N · N1
(f,ãj)

(r) + ND(r) + o(T (r, g)) + o(T (r, f))||

≤
q∑

j=1

N · N1
(f,aj)

(r) + 2ND(r) + o(T (r, g)) + o(T (r, f))||

≤ qNT (r, f) + o(T (r, f)) + o(T (r, g))||.

Hence, we have T (r, g) ≤ O(T (r, f))||. Similarly, T (r, f) ≤ O(T (r, g))||.
Proposition 4.1 in [11] in the key part in the proof of Theorem 1.2. By modifying the proof

of Proposition 4.1 in [11], we can get a generalization of Proposition 4.1 in [11] to the case of
two families of moving targets as follows.

Proposition 4.2 Under the same assumption as in Theorem 2.1, define hi := (f,ãi)

(g,̃bi)
, i =

1, · · · , q. Then there exist ik (1 ≤ k ≤ q − 2N) with 1 ≤ i1 < · · · < iq−2N ≤ q such that
hiu

hiv
∈ R̃({ai, bi}q

i=1) for 1 ≤ u < v ≤ q − 2N .
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Proof From Proposition 4.1, we have T (r, ai) = o(T (r, g))|| and T (r, bi) = o(T (r, f))||.
Take 2N + 2 moving targets {aj}2N+2

j=1 . Let ãik = aik

ai0
and b̃ik = bik

bi0
, and then we have

Nãik
(r) = o(T (r, f)) and Nb̃ik

(r) = o(T (r, g)), i = 1, 2, · · · , q, k = 0, 1, · · · , N . Since hi = (f,ãi)

(g,̃bi)

and ν(f,ãi)(z) = ν(g,̃bi)
(z), hi is a nowhere vanishing entire function of C

n. By the definition,

N∑
k=0

ãikfk − hi

N∑
k=0

b̃ikgk = 0, i = 1, · · · , 2N + 2.

Therefore
det(ãi0, · · · , ãiN , b̃i0hi, · · · , b̃iNhi; 1 ≤ i ≤ 2N + 2) = 0.

Let I be the set of all combinations I = (i1, · · · , iN+1) with 1 ≤ i1 < · · · < iN+1 ≤ 2N + 2
of indices 1, 2, · · · , 2N + 2. For any I = (i1, · · · , iN+1) ∈ I, define

{I} := {i1, · · · , iN+1}, hI := hi1 · · ·hiN+1

and

AI : = (−1)
(N+1)(N+2)

2 +i1+···+iN+1 det(ãirl; 1 ≤ r ≤ N + 1, 0 ≤ l ≤ N)

× det(̃bjpl; 1 ≤ p ≤ N + 1, 0 ≤ l ≤ N),

where J = (j1, · · · , jN+1) ∈ I such that {I} ∪ {J} = {1, 2, · · · , 2N + 2}. Then we have∑
I∈I

AIhI = 0,

where AI �≡ 0 by {ai}q
i=1 and {bi}q

i=1 are in the general position. For any I, J ∈ I, we have
AI

AJ
∈ R ({ai, bi}2N+2

i=1 ).

By (ii) and (iii), we have hp(z)
hs(z) = 1 for z ∈

2N+2⋃
j=1

j �=p,s

{z ∈ Cn; (f(z), aj(z)) = 0} outside an

analytic set of dimension ≤ n − 2. Then, for distinct I, J ∈ I, we have

N hI
hJ

(r, 1) ≥
∑

k �∈{I}Δ{J}
N1

(f,ak)(r),

where {I}Δ{J} = {I} ∪ {J} − {I} ∩ {J}. For distinct I, J, K ∈ I, set hIJK := (hI , hJ , hK) as
a holomorphic mapping of Cn into P 2(C). Then, by (5.2.29) in [5], we have

3ThIJK (r) ≥ T
(
r,

hI

hJ

)
+ T

(
r,

hJ

hK

)
+ T

(
r,

hK

hI

)
+ O(1)

≥ N hI
hJ

(r, 1) + N hJ
hK

(r, 1) + N hK
hI

(r, 1) + O(1)

≥
( ∑

k �∈{I}Δ{J}
+

∑
k �∈{J}Δ{K}

+
∑

k �∈{K}Δ{I}

)
N1

(f,ak)(r) + o(T (r, f))

≥
2N+2∑
k=1

N1
(f,ak)(r) + o(T (r, f))

≥ 1
M

2N+2∑
k=1

NM
(f,ak)(r) + o(T (r, f))
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≥ 1
M

(N + 1 − ε)T (r, f) + o(T (r, f))||

≥ N

M
T (r, f) + o(T (r, f))||,

where 0 < ε < 1
2 and M are given by Proposition 3.7. Thus T

(
r, AP

AQ

)
= o(T (r, hIJK))|| for

any P, Q, I, J, K ∈ I with P �= Q, I �= J , J �= K and K �= I. Therefore, for any I ∈ I, by
Proposition 3.6 there exists J ∈ I with I �= J such that AIhI = cAJhJ for a nonzero constant
c. So hI

hJ
= cAJ

AI
∈ R({ai, bi}2N+2

i=1 ).
Let H∗ be the Abelian multiplication group of all nowhere vanishing entire functions on Cn.

Define T ⊂ H∗ by the smallest subgroup which contains all f ∈ H∗ with fk ∈ R({ai, bi}q
i=1)

for some positive integer k. So we have H∗ ∩ R({ai, bi}q
i=1) ⊂ T ⊂ R̃({ai, bi}q

i=1). Then the
multiplication group G := H∗/T is a torsion free Abelian group, and the q-tuple of elements
in G represented by (h1, · · · , hq) has the property (P2N+2,N+1) by the above argument. Define
fi ∼ fj if fi

fj
∈ R̃({ai, bi}q

i=1) for fi, fj ∈ H∗. Then by Proposition 3.2 we finish the proof.

Proof of Theorem 2.1 Define hi := (f,ãi)

(g,̃bi)
, i = 1, · · · , q. By Proposition 4.2 and a suitable

change of the reduced representations, we may assume that h1, · · · , hq−2N ∈ R̃({ai, bi}q
i=1). Put

A := (ãij)1≤i≤N+1, 0≤j≤N , B := (̃bij)1≤i≤N+1, 0≤j≤N , and H := diag(h1, · · · , hN+1). By the
assumption of Theorem 2.1 we have |A(z)| �≡ 0, |B(z)| �≡ 0 and |H(z)| �≡ 0.

(1) If q = 3N + 1, then h1, · · · , hN+1 ∈ R̃({ai, bi}q
i=1). By the definition of hi, we have

A

⎛
⎜⎜⎜⎝

f0

f1

...
fN

⎞
⎟⎟⎟⎠ = HB

⎛
⎜⎜⎜⎝

g0

g1

...
gN

⎞
⎟⎟⎟⎠ .

Taking L = B−1H−1A, we get L(f) = g.

(2) If q = 3N + 2, then hN+2 ∈ R̃({ai, bi}q
i=1), and

(ã(N+2)0, · · · , ã(N+2)N )

⎛
⎜⎜⎜⎝

f0

f1

...
fN

⎞
⎟⎟⎟⎠ = hN+2(̃b(N+2)0, · · · , b̃(N+2)N)

⎛
⎜⎜⎜⎝

g0

g1

...
gN

⎞
⎟⎟⎟⎠ .

Therefore,

(ã(N+2)0, · · · , ã(N+2)N )

⎛
⎜⎜⎜⎝

f0

f1

...
fN

⎞
⎟⎟⎟⎠ = hN+2(̃b(N+2)0, · · · , b̃(N+2)N)B−1H−1A

⎛
⎜⎜⎜⎝

f0

f1

...
fN

⎞
⎟⎟⎟⎠ .

Since f is not linearly degenerate over R̃({ai, bi}3N+2
i=1 ), we have

(ã(N+2)0, · · · , ã(N+2)N) = hN+2(̃b(N+2)0, · · · , b̃(N+2)N)B−1H−1A.

Let c = (c1, · · · , cN+1) := ãN+2A
−1 and d = (d1, · · · , dN+1) := b̃N+2B

−1. Then ãN+2 = cA

and b̃N+2 = dB. The above equation becomes cA = hN+2dBB−1H−1A, and hence cH =
hN+2d, which means cihi = dihN+2, i = 1, · · · , N + 1.
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We know that hi(z)
hN+2(z) = 1 on

q⋃
k=1

k �=i,N+2

{z ∈ Cn; (f(z), ak(z)) = 0}. If hi(z)
hN+2(z) �≡ 1, we have

T
(
r,

hi

hN+2

)
≥ N hi

hN+2

(r, 1) ≥
q∑

k=1
k �=i,N+1

N1
(f,ak)(r)

≥ 1
N

q∑
k=1

k �=i,N+1

NN
(f,ak)(r) ≥

q − 2
N(N + 2)

T (r, f) + o(T (r, f))||.

From the definitions of c and d, we have T (r, ci) = o(T (r, f)) and T (r, di) = o(T (r, g)). Thus
by Lemma 3.2,

3
N + 2

T (r, f) + o(T (r, f)) ≤ T
(
r,

hi

hN+2

)
= T

(
r,

di

ci

)
≤ T (r, di) + T (r, ci) + O(1) = o(T (r, f))||,

which is a contradiction.
So, hi(z)

hN+2(z) ≡ 1, and hence, hi(z) ≡ hN+2(z) for i = 1, · · · , N + 1. Then Af = hN+2Bg,
which implies

(f, ã1)

(g, b̃1)
≡ · · · ≡ (f, ãN+1)

(g, b̃N+1)
.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2 Let T (r) = T (r, f) + T (r, g). Define

D =
q⋃

i=1

{z ∈ C
n; ai0(z) = 0 or bi0(z) = 0}

and by Proposition 4.2 we have ND(r) = o(T (r, f)). By changing indices if necessary, we
assume that

(f, ã1)

(g, b̃1)
≡ (f, ã2)

(g, b̃2)
≡ · · · ≡ (f, ãk1)

(g, b̃k1)
�≡ (f, ãk1+1)

(g, b̃k1+1)
≡ · · · ≡ (f, ãk2)

(g, b̃k2)
�≡ · · ·

�≡
(f, ãks−1+1)

(g, b̃ks−1+1)
≡ · · · ≡ (f, ãks)

(g, b̃ks)
,

where ks = q. Suppose that the theorem is not true and the number of each group is at most N .
We define a map σ : {1, · · · , q} → {1, · · · , q} by σ(i) = i+N if i ≤ q−N and σ(i) = i+N − q

if i > q − N. Obviously, σ is bijective, and |σ(i) − i| ≥ N. Thus (f,ãi)

(g,̃bi)
and (f,ãσ(i))

(g,̃bσ(i))
belong to

different groups, and so

Φi =
(f, ãi)

(f, ãσ(i))
− (g, b̃i)

(g, b̃σ(i))
=

aσ(i)0(f, ai)
ai0(f, aσ(i))

−
bσ(i)0(g, bi)
bi0(g, bσ(i))

�≡ 0

for 1 ≤ i ≤ q.
For any z0 in {z ∈ Cn; (f(z), ai(z)) = 0}\D, (f(z0), ai(z0)) = 0 , ai0(z0) �= 0 and bi0(z0) �= 0.

Then (f(z0), ãi(z0)) = 0 and by (i) (g(z0), b̃i(z0)) = 0, which gives (g(z0), bi(z0)) = 0. Hence,
z0 is a zero of Φi. By Lemma 3.3, we have

νΦi(z0) ≥ min{ν(f,ai)(z0), ν(g,bi)(z0)} ≥ νN
(f,ai)

(z0) + νN
(g,bi)

(z0) − Nν1
(g,bi)

(z0).



730 Z. H. Wang and Z. H. Tu

For any z0 in {z ∈ Cn; (f(z), aj(z)) = 0} \ D (j �= i, σ(i)), by the condition (iii), z0 is also
a zero of Φi. Since ND(r) = o(T (r, f)),

q∑
j=1

j �=i,σ(i)

N1
(f,aj)

(r) + NN
(f,ai)

(r) + NN
(g,bi)

(r) − NN1
(g,bi)

(r) − o(T (r, f)) ≤ NΦi(r).

On the other hand, with Lemma 3.4,

NΦi(r) ≤ T (r, Φi)

= N(r, ν∞
Φi

) + m(r, Φi) + O(1)

≤ N(r, ν∞
Φi

) + m
(
r,

(f, ãi)
(f, ãσ(i))

)
+ m

(
r,

(g, b̃i)

(g, b̃σ(i))

)
+ O(1)

≤ N(r, ν∞
Φi

) + T
(
r,

(f, ãi)
(f, ãσ(i))

)
+ T

(
r,

(g, b̃i)

(g, b̃σ(i))

)
− Nai0(f,aσ(i))(r) − Nbi0(g,bσ(i))(r) + o(T (r, f))

≤ T (r) + N(r, ν∞
Φi

) − N(f,aσ(i))(r) − N(g,bσ(i))(r) + o(T (r, f)).

For any z0 in {z ∈ Cn; (f(z), aσ(i)(z)) = 0} \ D, we also have (g(z0), bσ(i)(z0)) = 0 as
above. So z0 is also a pole of Φi and by Lemma 3.3, we have

ν(f,aσ(i))(z0) + ν(g,bσ(i))(z0) − ν∞
Φi

(zo)

≥ ν(f,aσ(i))(z0) + ν(g,bσ(i))(z0) − max{ν(f,aσ(i))(z0), ν(g,bσ(i))(z0)}
= min{ν(f,aσ(i))(z0), ν(g,bσ(i))(z0)}

≥ νN
(f,aσ(i))

(z0) + νN
(g,bσ(i))

(z0) − Nν1
(g,bσ(i))

(z0),

which implies

N(f,aσ(i))(r) + N(g,bσ(i))(r) − N∞
Φi

(r) − o(T (r, f)) ≥ NN
(f,aσ(i))

(r) + NN
(g,bσ(i))

(r) − NN1
(g,bσ(i))

(r).

Therefore,

NΦi(r) ≤ T (r) − NN
(f,aσ(i))

(r) − NN
(g,bσ(i))

(r) + NN1
(g,bσ(i))

(r) + o(T (r, f)).

Together with both sides of NΦi(r), we have

q∑
j=1

j �=i,σ(i)

N1
(f,aj)

(r) + NN
(f,ai)

(r) + NN
(g,bi)

(r) − NN1
(g,bi)

(r)

≤ T (r) − NN
(f,aσ(i))

(r) − NN
(g,bσ(i))

(r) + NN1
(g,bσ(i))

(r) + o(T (r, f)).

Then
q∑

j=1
j �=i,σ(i)

N1
(f,aj)

(r) + (NN
(f,ai)

(r) + NN
(f,aσ(i))

(r)) + (NN
(g,bi)

(r) + NN
(g,bσ(i))

(r))

≤ T (r) + N(N1
(g,bi)

(r) + N1
(g,bσ(i))

(r)) + o(T (r, f)).
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Summing up over 1 ≤ i ≤ q, we have

(q − 2)
q∑

j=1

N1
(f,aj)

(r) + 2
( q∑

j=1

NN
(f,aj)

(r) +
q∑

j=1

NN
(g,bj)

(r)
)

≤ qT (r) + 2N

q∑
j=1

N1
(g,bj)

(r) + o(T (r, f)).

Similarly, we have

(q − 2)
q∑

j=1

N1
(g,bj)

(r) + 2
( q∑

j=1

NN
(f,aj)

(r) +
q∑

j=1

NN
(g,bj)

(r)
)

≤ qT (r) + 2N

q∑
j=1

N1
(f,aj)

(r) + o(T (r, g)).

Hence, we get

(q − 2 − 2N)
( q∑

j=1

N1
(f,aj)

(r) +
q∑

j=1

N1
(g,bj)

(r)
)

+ 4
( q∑

j=1

NN
(f,aj)

(r) +
q∑

j=1

NN
(g,bj)

(r)
)

≤ 2qT (r) + o(T (r)),

which implies

(q − 2 − 2N

N
+ 4

)( q∑
j=1

NN
(f,aj)

(r) +
q∑

j=1

NN
(g,bj)

(r)
)
≤ 2qT (r) + o(T (r)).

Therefore, (q − 2 − 2N

N
+ 4

) q

N + 2
T (r) + o(T (r)) ≤ 2qT (r)||,

which contradicts q = 2N2 + 2N + 3. The proof of Theorem 2.2 is completed.
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