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Abstract A class of curvature estimates of spacelike admissible hypersurfaces related to
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1 Introduction and Main Results

In this paper, we are interested in curvature estimates of spacelike admissible hypersurfaces
M in the Minkowski space R

n,1, which is the space R
n × R equipped with the metric

ds2 = dx2
1 + · · · + dx2

n − dx2
n+1. (1.1)

We assume that
M = Graph u = {(x, u(x)) | x ∈ Ω ⊂ R

n}
for a spacelike function u, i.e., sup

Ω
|Du| ≤ θ < 1. Then the upward (future directed) unit normal

of M is

ν =
(Du, 1)√
1 − |Du|2 = w(Du, 1),

where we denote w = 1√
1−|Du|2 . The Minkowski metric (1.1) restricted to M defines a Rieman-

nian metric on M, which in the standard coordinates on R
n,1 is given by

gij = δij −DiuDju, 1 ≤ i, j ≤ n. (1.2)

The inverse of the metric is

gij = δij +
DiuDju

1 − |Du|2 . (1.3)

The second fundamental form of M is given by

hij =
Diju√

1 − |Du|2 = wDiju. (1.4)
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The principal curvatures λ1, λ2, · · · , λn of M are the eigenvalues of [hij ] relative to [gij ]. Then
the k-th Weingarten curvature at x ∈ M is defined as

σk(λ1, λ2, · · · , λn) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik
.

The classical geometric problem is to find hypersurfaces with the prescribed k-th Weingarten
curvature ψ, which in turn poses a fundamental question on nonlinear partial differential equa-
tions

σk(u) = ψ. (1.5)

This subject was studied in [2–4, 7–8, 11–12, 14, 25].
Following the ideas from [5–6, 20, 23] etc, let us define the k-admissible spacelike hypersur-

faces as following.

Definition 1.1 For 1 ≤ k ≤ n, let Γk be a cone in R
n determined by

Γk = {λ ∈ R
n : σl(λ) > 0, l = 1, 2, · · · , k}.

A smooth hypersurface M is called k-admissible if M is spacelike and at every point X ∈ M,

(λ1, λ2, · · · , λn) ∈ Γk.

The corresponding problem in the Euclidean context was extensively studied by various
authors. We refer to [5–6, 14, 17, 22] and the references therein for related works.

In the Minkowski space or general Lorentzian spaces, Gerhardt [8, 11], Bartnik [2] and
Bartnik-Simon [3] at first solved the Dirichlet problem for the prescribed mean curvature, and
Delanoe [7] worked for the prescribed Gauss-Kronecker curvature equation (see also [14]). For
the scalar curvature, see [4, 12, 25]. However, the existence of an admissible solution is open
about other 3 ≤ k < n. The key point is the lack of some suitable C2 a prior estimates for
admissible solutions. Gerhardt [10, 12–13] has some important results in his curvature class,
which excludes σk for 1 < k < n. On the other hand, Guan and Spruck [15–16] have made
important progress in hypersurfaces of constant curvature in the hyperbolic space.

In this paper, we consider a special case in which ψ depends on w. Our motivation has
three parts. Firstly, this is reasonable from the Einstein equation as in Gerhardt [12] because
w = 〈ν,En+1〉. Secondly, a family of spacelike embeddings Xt = X(, t) : R

n → R
n,1 with

corresponding hypersurfaces Mt = (x, V (x, t)) satisfies the evolution equations

∂V

∂t
=

√
1 − |DV |2(σ 1

k

k − f(x, V )). (1.6)

The solutions of (1.6) which moves by vertical translation are called translating solitons. There-
fore, a translating soliton of (1.6) is characterized by V (x, t) = u(x) + t, where u : R

n → R is
an initial spacelike hypersurface satisfying

σ
1
k

k = f(X) +
1√

1 − |Du|2 . (1.7)

Lastly, we believe that our methods may provide an idea to study Bayard’s open question of
the existence of hypersurfaces with the prescribed higher mean curvature in the Minkowski space
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(see [4]), even though our problem does not contain the situation of a constant ψ. Moreover,
we shall study the flow (1.6) with some methods here in the future. In a word, we consider the
curvature estimates of a class of equations{

σk = ψ(x, u, w), x ∈ Ω,
u = ϕ, x ∈ ∂Ω.

(1.8)

We have the following maximum principle for the curvature.

Theorem 1.1 Suppose that u ∈ C4(Ω)∩C2(Ω) is a spacelike, admissible solution of (1.8),
0 < ψ ∈ C∞(Ω) and that ψ

1
k (X,w) is convex in w and satisfies

∂ψ
1
k (X,w)
∂w

· w ≥ ψ
1
k (X,w) for fixed X ∈ M. (1.9)

Then the second fundamental form A of graph u satisfies

sup
Ω

|A| ≤ C
(
1 + sup

∂Ω
|A|

)
, (1.10)

where C depends only on n, ‖ϕ‖C1(Ω), ‖ψ‖C2
(
Ω×

[
inf
∂Ω

u,sup
∂Ω

u
]
×R

).
Remark 1.1 There are some examples for ψ(x, u, w):
(1) ψ(x, u, w) = wpg(x, u) for any p ≥ k;
(2) ψ(x, u, w) = epwg(x, u) for any p ≥ k.

It has been noticed that the exponential function was applied in [21].

We will also derive an interior curvature bound in the case that ϕ is affine and satisfies the
strict inequality (1.9).

Theorem 1.2 Suppose that u ∈ C4(Ω)∩C2(Ω) is a spacelike, admissible solution of (1.8),
0 < ψ ∈ C∞(Ω) and that ψ

1
k (X,w) is convex in w and satisfies

∂ψ
1
k (X,w)
∂w

· w > ψ
1
k (X,w) for fixed X ∈ M. (1.11)

In addition, suppose that Ω ⊂ R
n is C2 and uniformly convex, and that ϕ is spacelike and

affine. If u ∈ C4(Ω) is a spacelike, admissible solution of (1.5), then

sup
Ω′

|A| ≤ C(Ω′) (1.12)

for any Ω′ ⊂⊂ Ω, where C(Ω′) depends only on n, θ,Ω, dist(Ω′, ∂Ω), ‖ϕ‖C1(Ω), and

‖ψ‖
C2

(
Ω×

[
inf
∂Ω

u,sup
∂Ω

u
]
×R

).
With the above curvature estimates, the existence of the Dirichlet problem is obtained from

Bayard’s lower order and boundary C2 estimates in [4].

Theorem 1.3 Suppose that Ω is a smooth bounded domain of R
n and is strictly convex,

while ψ is a smooth positive function and is convex in w satisfying

∂ψ
1
k (x, u, w)
∂w

w ≥ ψ
1
k (x, u, w) for fixed (x, u) ∈ Ω × R. (1.13)

Then for any spacelike, affine function ϕ, there is a smooth admissible hypersurface M with the
prescribed curvature ψ and boundary data ϕ.
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2 Some Elementary Formulas

The standard basis of R
n,1 will be denoted by ε1, ε2, · · · , εn+1, and the components of the

position vector X in this basis will be denoted by X1, X2, · · · , Xn+1. We choose an orthonormal
frame such that e1, e2, · · · , en are tangent to M and ν is normal. The second fundamental form
of M is given by

hij = 〈Deiν, ej〉. (2.1)

For any equation

F (A) = f, (2.2)

some fundamental formulas are well-known for hypersurfaces in R
n,1 as [24].

Lemma 2.1 For any α = 1, · · · , n+ 1,

∇iνα = ∇i〈ν, εα〉 = hil〈el, εα〉, (2.3)

∇j∇iXα = ∇j∇i〈X, εα〉 = hijνα, (2.4)

Rijkl = −(hikhjl − hilhjk), (2.5)

F ij∇j∇iνα = ναF
ijhimhjm + 〈∇f, εn+1〉. (2.6)

Proof We only prove formula (2.6),

να = 〈ν, εα〉,
Deiνα = 〈Deiν, εα〉

= 〈Deiν, el〉〈el, εα〉
= hil〈el, εα〉, (2.7)

∇i∇jνα = DeiDejνα − Γm
ijDemνα

= Deihjl〈el, εα〉 + hjl〈Deiel, εα〉 − Γm
ijDemνα

= Deihjl〈el, εα〉 + hjlΓm
il 〈em, εα〉 + ναhilhjl − Γm

ijDemνα

= ∇lhij〈el, εα〉 + ναhilhjl, (2.8)

where we have used Deiel = 〈Deiel, ep〉ep − 〈Deiel, ν〉ν in the Minkowski space. In particular,
when α = n+ 1, for w = −νn+1,

∇i∇jw = ∇lhij〈el, εn+1〉 + whilhjl. (2.9)

Using the Codazzi equations, the Gauss equations (2.5) and the standard formula for com-
muting covariant derivatives, we have the following identities.

Lemma 2.2 The σ1 and hab satisfy

F ij∇i∇jσ1 = −F ij, pq∇αhij∇αhpq + F ijhjmhimσ1

− F ijhijhαmhmα + ∇α∇αf, (2.10)

F ij∇i∇jhab = −F ij, pq∇ahij∇bhpq + F ijhjmhimhab

− F ijhijhamhmb + ∇a∇bf. (2.11)
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3 Curvature Estimates

3.1 Proof of Theorem 1.1

We are now ready to prove Theorems 1.1. We write (1.8) in the form

F (A) = σ
1
k

k (A) = ψ
1
k (X,w) = f(X,w) for any X ∈ M. (3.1)

Proof of Theorem 1.1 We now consider the function

W = σ1(A),

which achieves the maximal value at X0 ∈ M. If the maximum is assumed on ∂Ω, we are
through. We choose the frame e1, e2, · · · en, ν at X0 such that e1, e2, · · · en ∈ TX0M at X0 and
(hij) is diagonal at X0 with eigenvalues h11 ≥ h22 ≥ · · · ≥ hnn.

We have that for each i = 1, · · · , n,
∇iσ1 = 0 at X0. (3.2)

Therefore, at X0,

0 ≥ F ii∇i∇iσ1

= −F ij, pq∇lhij∇lhpq + F ijhimhmjσ1 − F ijhij |A|2 + Δf. (3.3)

Since f is convex in w, owing to (2.7)–(2.8) and Gaussian formula

∇i∇jXl = hijνl, (3.4)

we have

Δf =
∂2f

∂Xα∂Xβ
∇lXα∇lXβ + 2

∂2f

∂Xα∂w
∇lXα∇lw

+
∂2f

∂w2
|∇w|2 +

∂f

∂Xα
ΔXα +

∂f

∂w
Δw

≥ ∂f

∂w
Δw +

∂2f

∂w2
|∇w|2 − C1σ1 − C2

≥ ∂f

∂w
w|A|2 +

∂f

∂w
∇lσ1〈el, εn+1〉 − C1σ1 − C2.

Inserting this into (3.3), we have

0 ≥ F ii∇i∇iσ1

≥ −F ij, pq∇lhij∇lhpq + F ijhimhmjσ1

+
( ∂f
∂w

w − f
)
|A|2 − Cσ1

≥ F ijhimhmjσ1 − Cσ1, (3.5)

where we have used (1.9) and the concavity of F. On the other hand,

F ijhimhmj =
1
k
σ

1
k−1

k [σkσ1 − (k + 1)σk+1]

≥ 1
n
σ

1
k

k σ1, (3.6)
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where the last inequality is from the Newton inequalities for σk+1 > 0,

σk+1

Ck+1
n

σk−1

Ck−1
n

≤
( σk

Ck
n

)2

.

Then σ1 is bounded from (3.5). We have proved Theorem 1.1.

3.2 Proof of Theorem 1.2

We have thought that the proofs of Theorems 1.1–1.2 are identical, however, that is not the
case. The main difference is that the first-order derivative terms of σ1 and w appear in the
processes of the proofs. We apply the construction of a suitable auxiliary function of [22, 25]
to deal with them

F (A) = σ
1
k

k (A) = g(λ) = f(X,w) for any X ∈ M. (3.7)

Set

σ
1
k

k (λ1, · · · , λn) = g(λ1, · · · , λn), (3.8)

F ij =
∂F

∂hij
, F ij,pq =

∂2F

∂hij∂hpq
, (3.9)

trF ij =
n∑

i=1

F ii, gi =
∂g

∂λi
. (3.10)

Firstly, we list a useful lemma which is stated in a book of [13], see also [1, 22, 25].

Lemma 3.1 For any symmetric matrix η = [ηij ], we have

F ij,pqηijηpq =
∑
i,j

∂2g

∂λiλj
ηiiηjj +

∑
i�=j

gi − gj

λi − λj
η2

ij . (3.11)

The second term on the right-hand side is nonpositive if g is concave, and it is interpreted as
the limit if λi = λj .

Proof Let η = ϕ− u, as observed in Remark 1.2 of [22], η > 0, in Ω. We now consider the
function

W = ηβ exp(Φ(w))habξaξb,

which achieves the maximal value at X0 ∈ M, where β ≥ 1 and a function Φ are to be
determined. We may choose without loss of generality the frame e1 = ξ, e2, · · · en, ν such that
e1, e2, · · · en ∈ TX0M so that ∇eiej = 0 at X0 for all i, j = 1, · · · , n, and (hij) is diagonal at X0

with eigenvalues h11 ≥ h22 ≥ · · · ≥ hnn. We have that for each i = 1, · · · , n,

β
∇iη

η
+ Φ′∇iw +

∇ih11

h11
= 0 at X0, (3.12)

β
{∇i∇jη

η
− ∇iη∇jη

η2

}
+ Φ′′∇iw∇jw + Φ′∇i∇jw

+
∇i∇jh11

h11
− ∇ih11∇jh11

h2
11

≥ 0 at X0. (3.13)
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Therefore, using Lemma 2.2 and making contraction,

0 ≥ βF ij
{∇i∇jη

η
− ∇iη∇jη

η2

}
+ Φ′′F ij∇iw∇jw + Φ′F ij∇i∇jw

+ F ij ∇i∇jh11

h11
− F ij ∇ih11∇jh11

h2
11

= βF ij
{∇i∇jη

η
− ∇iη∇jη

η2

}
+ Φ′′F ij∇iw∇jw + Φ′F ij∇i∇jw

− fh11 + F ijhimhjm +
∇1∇1f

h11

− 1
h11

F ij,pq∇1hij∇1hpq − F ij ∇ih11∇jh11

h2
11

. (3.14)

We also find that

F ii∇i∇iw = wF iihimhmi + ∇lf〈el, εn+1〉. (3.15)

Consequently,

0 ≥ βF ij
{∇i∇jη

η
− ∇iη∇jη

η2

}
+ Φ′′F ij∇iw∇jw + Φ′∇lf〈el, εn+1〉

− fh11 + (Φ′w + 1)F ijhimhjm +
∇1∇1f

h11

− 1
h11

F ij,pq∇1hij∇1hpq − F ij ∇ih11∇jh11

h2
11

. (3.16)

Since f is convex in w, owing to (2.7) and (2.8),

∇1f =
∂f

∂Xα
∇lXα +

∂f

∂w
∇1w,

∇1∇1f =
∂2f

∂Xα∂Xβ
∇1Xα∇1Xβ + 2

∂2f

∂Xα∂w
∇1Xα∇1w

+
∂2f

∂w2
|∇1w|2 +

∂f

∂Xα
∇1∇1Xα +

∂f

∂w
∇1∇1w

≥ ∂f

∂w
∇1∇1w − C1h11 − C2

=
∂f

∂w
(wh2

11 + ∇lh11〈el, εn+1〉) − C1h11 − C2.

Inserting this into (3.16),

0 ≥ βF ij
{∇i∇jη

η
− ∇iη∇jη

η2

}
+ Φ′′F ij∇iw∇jw + Φ′∇lf〈el, εn+1〉

+
( ∂f
∂w

w − f
)
h11 + (Φ′w + 1)F ijhimhjm +

∂f

∂w

∇lh11〈el, εn+1〉
h11

− 1
h11

F ij,pq∇1hij∇1hpq − F ij ∇ih11∇jh11

h2
11

− C, (3.17)

where we assume that h11 is sufficiently large, otherwise, theorem 1.2 holds.
Next, we assume that the affine function ϕ has been extended to be constant in the εn+1

direction. It is easy to calculate by using Gaussian formula

F ij∇i∇jη =
( n∑

α=1

∂ϕ

∂Xα
να − νn+1

)
F ijhij ≥ −C. (3.18)
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With (3.17) and (3.18), we have that, at X0

0 ≥ −Cβ
η

− βF ij ∇iη∇jη

η2
+ Φ′′F ij∇iw∇jw + Φ′∇lf〈el, εn+1〉

+
( ∂f
∂w

w − f
)
h11 + (Φ′w + 1)F ijhimhjm +

∂f

∂w

∇lh11〈el, εn+1〉
h11

− 1
h11

F ij,pq∇1hij∇1hpq − F ij ∇ih11∇jh11

h2
11

− C. (3.19)

We now estimate the remaining terms in (3.19), and consider two cases.
Case 1 There is a positive constant ζ to be determined such that

hnn ≤ −ζh11. (3.20)

Using the critical point condition (3.12),

F ij ∇ih11∇jh11

h2
11

= F ij
(
β
∇iη

η
+ Φ′∇iw

)(
β
∇jη

η
+ Φ′∇jw

)

≤ (1 + δ−1)β2F ij ∇iη∇jη

η2
+ (1 + δ)Φ′2F ij∇iw∇jw (3.21)

for any δ > 0. Since |∇η| ≤ C,

F ij ∇iη∇jη

η2
≤ C

trF ij

η2
. (3.22)

Therefore, at X0 we have

0 ≥ −Cβ
η

− C[β + (1 + δ−1)β2]
trF ij

η2

+ [Φ′′ − (1 + δ)Φ′2]F ij∇iw∇jw

+
( ∂f
∂w

w − f
)
h11 + (Φ′w + 1)F ijhimhjm

+
∂f

∂w

∇lh11〈el, εn+1〉
h11

+ Φ′∇lf〈el, εn+1〉 − C, (3.23)

where we also have used the concavity of F (A). On the other hand, from (3.12), the last two
terms are bounded from below

∂f

∂w

∇lh11〈el, εn+1〉
h11

+ Φ′∇lf〈el, εn+1〉

=
(
Φ′∇lf − β

∂f

∂w

∇iη

η
− ∂f

∂w
Φ′∇iw

)
〈el, εn+1〉

=
(
Φ′ ∂f
∂Xα

∇lXα − β
∂f

∂w

∇iη

η

)
〈el, εn+1〉

≥ −Cβ
η

− C, (3.24)

and therefore

0 ≥ −Cβ
η

− C[β + (1 + δ−1)β2]
trF ij

η2

+ [Φ′′ − (1 + δ)Φ′2]F ij∇iw∇jw

+
( ∂f
∂w

w − f
)
h11 + (Φ′w + 1)F ijhimhjm − C. (3.25)
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We note that from (2.7),

F ij∇iw∇jw = F ijhilhjm〈el, εn+1〉〈em, εn+1〉 ≤ F ijhilhjm,

and then we would like to take a function Φ allowing

Φ′′ − (1 + δ)Φ′2 ≤ 0. (3.26)

We know that there is a positive constant a > 2 depending only on sup
Ω

|Du| such that

a

2
≥ w =

1√
1 − |D2u| > 1.

Let us take
Φ(t) = − log(a− t),

so we have (3.26) and

Φ′w + 1 + Φ′′ − (1 + δ)Φ′2 ≥ 1
2

for δ ≤ 3a2

8
.

From (3.25), together with

F ijhimhjm = F iih2
ii ≥

ζ2

n
h2

11trF
ij ,

which follows from (3.20) and the fact Fnn ≥ 1
n trF ij , we have that, at X0,

0 ≥ −Cβ
η

− C[β + (1 + δ−1)β2]
trF ij

η2

+
( ∂f
∂w

w − f
)
h11 +

ζ2

2n
h2

11trF
ij − C, (3.27)

which implies an upper bound

ηh11 ≤ C(β)
ζ

at X0,

since

trF ij =
(n− k − 1)σk−1

kfk−1
≥ n− k + 1

k
> 0.

Case 2 We now assume that

hnn ≥ −ζh11. (3.28)

Since h11 ≥ h22 ≥ · · · ≥ hnn, we have

hii ≥ −ζh11 for all i = 1, · · · , n. (3.29)

For a positive constant τ, assume to be 4, we partition {1, · · · , n} into

I = {j : gjj ≤ 4g11}, J = {j : gjj > 4g11},
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where gjj is evaluated at λ(X0). Then for each j ∈ I, by (3.12), we have,

gj
|∇ih11|2
h2

11

= gj

(
β
∇iη

η
+ Φ′∇iw

)2

≤ (1 + δ−1)β2gj
|∇iη|2
η2

+ (1 + δ)Φ′2gj|∇iw|2 (3.30)

for any δ > 0. For each j ∈ J , we have

βgj
|∇iη|2
η2

= β−1gj

(∇ih11

h2
11

+ Φ′∇iw
)2

≤ 1 + δ

β
Φ′2gj |∇iw|2 +

1 + δ−1

β
gj

|∇ih11|2
h2

11

(3.31)

for any δ > 0. Consequently,

β

n∑
j=1

gj
|∇iη|2
η2

+
n∑

j=1

gj
|∇ih11|2
h2

11

≤ [β + (1 + δ−1)β2]
∑
j∈I

gj
|∇iη|2
η2

+ (1 + δ)Φ′2 ∑
j∈I

gj |∇iw|2

+
1 + δ

β
Φ′2 ∑

j∈J

gj |∇iw|2 + [1 + (1 + δ−1)β−1]
∑
j∈J

gj
|∇ih11|2
h2

11

≤ 4n[β + (1 + δ−1)β2]g1
|∇iη|2
η2

+ (1 + δ)(1 + β−1)Φ′2
n∑

j=1

gj |∇iw|2

+ [1 + (1 + δ−1)β−1]
∑
j∈J

gj
|∇ih11|2
h2

11

. (3.32)

With this estimate and (3.19), the following inequality holds at X0:

0 ≥ −Cβ
η

− 4n[β + (1 + δ−1)β2]gj
|∇iη|2
η2

+ [Φ′′ − (1 + δ)(1 + β−1)Φ′2]gj|∇jw|2 + Φ′∇lf〈el, εn+1〉

+
( ∂f
∂w

w − f
)
h11 + (Φ′w + 1)F ijhimhjm +

∂f

∂w

∇lh11〈el, εn+1〉
h11

− 1
h11

F ij,pq∇1hij∇1hpq − [1 + (1 + δ−1)β−1]
∑
j∈J

gj
|∇ih11|2
h2

11

− C. (3.33)

Then as Case 1, we have that for an appropriate selection of Φ,

0 ≥ −Cβ
η

− C(β + β2)
g1
η2

+
1
2n
g1h

2
11 +

( ∂f
∂w

w − f
)
h11 − C

− 1
h11

F ij,pq∇1hij∇1hpq − [1 + Cβ−1]
∑
j∈J

gj
|∇ih11|2
h2

11

. (3.34)

We claim that

− 1
h11

F ij,pq∇1hij∇1hpq − [1 + Cβ−1]
∑
j∈J

gj
|∇ih11|2
h2

11

≥ 0. (3.35)
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If the claim (3.35) holds, then from (3.34) we have

( ∂f
∂w

w − f
)
h11 +

1
2n
g1h

2
11 ≤ C

(
1 +

1
η

+
g1
η2

)
,

from which we again conclude a bound for ηh11 at X0 due to condition (1.11).
We now prove the claim. Using the concavity of g, Lemma 3.1 and the Codazzi equations,

we see that
− 1
h11

F ij,pq∇1hij∇1hpq ≥ − 2
h11

∑
j∈J

g1 − gj

λ1 − λj
|∇jh11|2.

We then need to show that

− 2(g1 − gj)
h11(λ1 − λj)

≥ (1 + Cβ−1)
gj

h2
11

for each j ∈ J,

provided that β is sufficiently large. This was indicated on p. 247 in [22] for ζ = 1
5 in (3.20).

So Theorem 1.2 is proved.
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