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Abstract The degree pattern of a finite group G associated with its prime graph has been
introduced by Moghaddamfar in 2005 and it is proved that the following simple groups
are uniquely determined by their order and degree patterns: All sporadic simple groups,
the alternating groups Ap (p ≥ 5 is a twin prime) and some simple groups of the Lie type.
In this paper, the authors continue this investigation. In particular, the authors show
that the symmetric groups Sp+3, where p + 2 is a composite number and p + 4 is a prime
and 97 < p ∈ π(1000!), are 3-fold OD-characterizable. The authors also show that the
alternating groups A116 and A134 are OD-characterizable. It is worth mentioning that the
latter not only generalizes the results by Hoseini in 2010 but also gives a positive answer
to a conjecture by Moghaddamfar in 2009.
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1 Introduction

Throughout this paper, G will represent a finite group. We use πe(G) to denote the set of

orders of its elements and by π(G) the set of prime divisors of |G|. One of the well-known simple

graphs associated with G is the prime graph (or Gruenberg-Kegel graph) denoted by Γ(G) (see

[1]). This graph is constructed as follows: The vertex set of this graph is π(G), and two distinct

vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p ∼ q. The

number of connected components of Γ(G) is denoted as t(G) and the connected components of

Γ(G) as πi = πi(G) (i = 1, 2, · · · , t(G)). When |G| is even, we suppose that 2 ∈ π1(G). We also

denote by π(n) the set of all primes dividing n, where n is a positive integer.
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In this article, we also use the following symbols. For a finite group G, the socle of G is

defined as the subgroup generated by the minimal normal subgroup of G, denoted as Soc(G).

Sylp(G) denotes the set of all Sylow p-subgroups of G, where p ∈ π(G), and Pr denotes a Sylow

r-subgroup of G for r ∈ π(G). Moreover, the symmetric and alternating groups of degree n are

denoted by Sn and An, respectively. Let p be a prime, and we use Exp(m, p) to denote the

exponent of the largest power of a prime p in the factorization of a positive integer m (> 1).

All further unexplained symbols and notations are standard and can be found, for instance, in

[2].

Definition 1.1 (cf. [3]) Let G be a finite group and |G| = pα1
1 pα2

2 · · · pαk

k , where pis are

primes and αis are integers. For p ∈ π(G), let deg(p) := |{q ∈ π(G) | p ∼ q}|, which we call the

degree of p. We also define D(G) := (deg(p1), deg(p2), · · · , deg(pk)), where p1 < p2 < · · · < pk.

We call D(G) the degree pattern of G.

Definition 1.2 (cf. [3]) A group M is called k-fold OD-characterizable if there exist exactly

k non-isomorphic groups G such that (1) |G| = |M | and (2) D(G) = D(M). Moreover, a 1-fold

OD-characterizable group is simply called an OD-characterizable group.

In a series of articles (cf. [3–13]), it was shown that many finite almost simple groups are

k-fold OD-characterizable, where k ≥ 1. For convenience, we point out some of these results,

which are included in the following propositions.

Proposition 1.1 A finite group G is OD-characterizable if G is one of the following groups:

(1) The alternating groups Ap, Ap+1 and Ap+2, where p is a prime.

(2) The alternating groups Ap+3, where p is a prime and 7 �= p ∈ π(100!).

(3) All finite almost simple K3-groups except Aut(A6) and Aut(U4(2)).

(4) The symmetric groups Sp and Sp+1, where p is a prime.

(5) All finite simple K4-groups except A10.

(6) All finite simple C2,2-groups.

(7) The simple groups of the Lie type L2(q), L3(q), U3(q), 2B2(q) and 2G2(q) for a certain

prime power q.

(8) All sporadic simple groups and their automorphism groups except Aut(J2) and Aut(M cL).

(9) The almost simple groups of Aut(F4(2)), Aut(O+
10(2)) and Aut(O−

10(2)).

Proposition 1.2 A finite group G is 3-fold OD-characterizable if G is one of the following

groups:

(1) The almost simple groups of U3(5) · 3 and U6(2) · 3.
(2) The symmetric groups of S16, S22, S26, S27 and S28.

Proposition 1.3 Let G be a finite group with |G| = |S10| and D(G) = D(S10). Then G is

8-fold OD-characterizable.
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2 Main Results

According to Propositions 1.2–1.3, we see that the symmetric groups S16, S22, S26, S27 and

S28 are 3-fold OD-characterizable, and S10 is 8-fold OD-characterizable. Proposition 1.1(4)

says that the symmetric groups Sp and Sp+1, where p is a prime, are OD-characterizable. Now,

omitting the symmetric groups Sp and Sp+1, there remains the following groups:

S9, S10, S15, S16, S21, S22, S25, S26, S27, S28, · · · . (2.1)

In addition, as mentioned in Proposition 1.3, the symmetric group S10 is 8-fold OD-

characterizable, and is the first symmetric group in the series of symmetric groups found to

be not OD-characterizable. By [1], it is easy to see that all groups in (2.1) have connected

prime graphs. By these facts, we see that it is like a puzzle to investigate how many-fold OD-

characterization of symmetric groups, many special cases appear. In this paper, we will prove

that the symmetric groups Sp+3, where p + 2 is a composite number and p + 4 is a prime and

97 < p ∈ π(1000!), are 3-fold OD-characterizable. In other words, we will prove the following

theorem.

Theorem 2.1 All symmetric groups Sp+3, where p + 2 is a composite number, p + 4 is a

prime and 97 < p ∈ π(1000!), are 3-fold OD-characterizable.

As we have mentioned already, the symmetric groups Sp, Sp+1, where p is a prime number,

are OD-characterizable (see Proposition 1.1(4)) and the symmetric groups of S16, S22, S26, S27

and S28 are 3-fold OD-characterizable (see Proposition 1.2(2)). On the other hand, Proposi-

tion 1.3 says that the symmetric group S10 is 8-fold OD-characterizable, and S10 is the first

symmetric group which has not been considered OD-characterizable. Up to now, we have not

found a symmetric group Sn (n �= p, p+1), except S10, which is not 3-fold OD-characterizable.

Hence, we put forward the following open problem.

Open Problem Are the symmetric groups Sn (n �= p, p + 1), except S10, 3-fold OD-

characterizable?

In what follows, we will focus attention on the following alternating groups: A116 and A134.

In this article, we will show the following result.

Theorem 2.2 The alternating groups A116 and A134 are OD-characterizable.

By Proposition 1.1(1), we see that the alternating groups Ap, Ap+1 and Ap+2, where p is a

prime, are OD-characterizable. Proposition 1.1(2) says that all alternating groups Ap+3, where

p is a prime and 7 �= p ∈ π(100!), are OD-characterizable. In fact, Theorem 2.2 and Proposition

1.2(1)–(3) imply the following corollary.

Corollary 2.1 Let An be an alternating group of degree n. Assume that one of the following

conditions is fulfilled:

(1) n = p, p + 1 or p + 2, where p is a prime.
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(2) n = p + 3, where 7 �= p ∈ π(136!).

Then An is OD-characterizable.

3 Preliminaries

In this section, we consider some results which will be applied for our further investigations.

Lemma 3.1 (cf. [14]) The group Sn (or An) has an element of order m = pα1
1 ·pα2

2 · · · pαs
s ,

where p1, p2, · · · , ps are distinct primes and α1, α2, · · ·αs are natural numbers, if and only if

pα1
1 +pα2

2 + · · ·+pαs
s ≤ n (or pα1

1 +pα2
2 + · · ·+pαs

s ≤ n for m odd, and pα1
1 +pα2

2 + · · ·+pαs
s ≤ n−2

for m even).

As an immediate corollary of Lemma 3.1, we have the following lemma.

Lemma 3.2 Let An (or Sn) be an alternating group (or a symmetric group) of degree n.

Then the following assertions hold:

(1) Let p, q ∈ π(An) be odd primes. Then p ∼ q if and only if p + q ≤ n.

(2) Let p ∈ π(An) be an odd prime. Then 2 ∼ p if and only if p + 4 ≤ n.

(3) Let p, q ∈ π(Sn). Then p ∼ q if and only if p + q ≤ n.

Lemma 3.3 (cf. [15]) Let G be a finite solvable group, all of whose elements are of the

prime power order. Then |π(G)| ≤ 2.

Lemma 3.4 Let Ap+3 be an alternating group of degree p + 3, where p is a prime and

p + 2 is a composite number. Suppose that |π(Ap+3)| = d. Then the following assertions hold:

(1) deg(2) = d − 2. Particularly, 2 ∼ r for each r ∈ π(Ap+3)\{p}.
(2) deg(3) = d − 1, i.e., 3 ∼ r for each r ∈ π(Ap+3).

(3) deg(p) = 1. In other words, p ∼ r, where r ∈ π(Ap+3), if and only if r = 3.

(4) Exp(|Ap+3|, 2) =
∞∑

i=1

[
p+3
2i

] − 1. In particular, Exp(|Ap+3|, 2) < p + 3.

(5) Exp(|Ap+3|, r) =
∞∑

i=1

[
p+3
ri

]
for each r ∈ π(Ap+3)\{2}. Furthermore, Exp(|Ap+3|, r) <

p−1
2 , where 5 ≤ r ∈ π(Ap+3). Particularly, if r > [p+3

2 ], then Exp(|Ap+3|, r) = 1.

Proof By Lemma 3.2, we have 2 �∼ p. Obviously, r + 4 ≤ p + 3 for each r ∈ π(Ap+3)\{p},
so it follows that 2 ∼ r and thus deg(2) = d− 2. For the same reason, we have deg(3) = d − 1.

For r ∈ π(Ap+3)\{2, p}, by Lemma 3.2, it is easy to see that p ∼ r if and only if p + r ≤ p + 3.

Hence r = 3 and deg(p) = 1.

Till now we have proved that (1)–(3) hold. Next, we prove that (4) and (5) also hold.
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By the definition of Gaussian integer function, we have that

Exp(|Ap+3|, 2) =
∞∑

i=1

[p + 3
2i

]
− 1

=
([p + 3

2

]
+

[p + 3
22

]
+

[p + 3
23

]
+ · · ·

)
− 1

≤
(p + 3

2
+

p + 3
22

+
p + 3
23

+ · · ·
)
− 1

= (p + 3)
(1

2
+

1
22

+
1
23

+ · · ·
)
− 1 = p + 2.

Hence Exp(|Ap+3|, 2) < p + 3.

For the same reason as above, we can prove Exp(|Ap+3|, r) < p−1
2 , where 5 ≤ r ∈ π(Ap+3).

Clearly, if r >
[

p+3
2

]
, then we have Exp(|Ap+3|, r) = 1. This completes the proof of Lemma

3.4.

Similarly, we can prove the following Lemma 3.5.

Lemma 3.5 Let Sp+3 be an alternating group of degree p + 3, where p is a prime and

p + 2 is a composite number. Suppose that |π(Sp+3)| = k. Then the following assertions hold:

(1) deg(2) = k − 1. Particularly, 2 ∼ r for each r ∈ π(Sp+3).

(2) deg(3) = k − 1, i.e., 3 ∼ r for each r ∈ π(Sp+3).

(3) deg(p) = 2. In other words, p ∼ r, where r ∈ π(Sp+3), if and only if r = 2 or r = 3.

(4) Exp(|Sp+3|, 2) =
∞∑

i=1

[
p+3
2i

]
. In particular, Exp(|Sp+3|, 2) ≤ p + 3.

(5) Exp(|Sp+3|, r) =
∞∑

i=1

[
p+3
ri

]
. Furthermore, Exp(|Sp+3|, r) < p−1

2 , where 5 ≤ r ∈ π(Sp+3).

Particularly, if r > [p+3
2 ], then Exp(|Sp+3|, r) = 1.

Lemma 3.6 (cf. [16]) Let a be an arbitrary integer and m be a positive integer. If (a, m) =

1, then the equation ax ≡ 1 (mod m) has solutions. Moreover, if the order of a modulo m is

h(a), then h(a) | ϕ(m), where ϕ(m) is the Euler’s function of m.

Lemma 3.7 Let Ap+3 be an alternating group of degree p + 3, where p + 2 is a composite

number, p + 4 is a prime and 97 < p ∈ π(1000!). Set P ∈ Sylp(Ap+3) and Q ∈ Sylq(Ap+3),

where 5 ≤ q < p. Then the following assertions hold:

(i) qs(q) � |NG(P )|, where s(q) = Exp(|Ap+3|, q).
(ii) If p ∈ {103, 109, 163, 193, 223, 229, 277, 349, 439, 463, 499, 613, 643, 739, 769, 823, 853, 877,

907, 967}, then p � |NG(Q)|.
(iii) If p ∈ {127, 307, 313, 379, 397, 457, 487, 673, 757, 859, 883, 937}, then there exists at least

a prime number, say r, such that the order of r modulo p is less than p − 1, where 5 ≤ r < p

and r ∈ π(Ap+3).

Proof Clearly, the equation qx ≡ 1 (mod p) has solutions by Lemma 3.6. Suppose that

the order of q modulo p is h(q). If h(q) = p − 1, then q is a primitive root of modulo p. By

hypothesis, it is easy to check that there are only 32 such groups satisfying the conditions that
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p + 2 is a composite number, p + 4 is a prime number and 97 < p ∈ π(1000!). Using Maple 8.0,

we can obtain h(q). For convenience, we have tabulated p and h(q) in Table 1 of this article.

Table 1 p and h(q)

p h(q) Condition p h(q) Condition p h(q) Condition

103 2 · 3 · 17 none 109 22 · 33 none 163 2 · 34 none

127 2 · 32 · 7 q �= 19 127 3 q = 19 193 26 · 3 none

223 2 · 3 · 37 none 229 22 · 3 · 19 none 277 22 · 3 · 23 none

307 2 · 32 · 17 q �= 17 307 3 q = 17 349 22 · 3 · 29 none

313 23 · 3 · 13 q �= 5 313 8 q = 5 439 2 · 3 · 73 none

379 2 · 33 · 7 q �= 5 379 21 q = 5 397 22 · 32 · 11 q �= 31

397 11 q = 31 457 23 · 3 · 19 q �= 109 457 4 q = 109

463 2 · 3 · 7 · 11 none 487 2 · 35 q �= 5, 41 487 54 q = 5

487 9 q = 41 499 2 · 3 · 83 none 613 22 · 32 · 17 none

643 2 · 3 · 107 none 673 25 · 3 · 7 q �= 23 673 14 q = 23

739 2 · 32 · 41 none 757 22 · 33 · 7 q �= 59 757 7 q = 59

769 28 · 3 none 823 2 · 3 · 137 none 853 22 · 3 · 71 none

859 2 · 3 · 11 · 13 q �= 13 859 11 q = 13 877 2 · 32 · 73 none

883 2 · 32 · 72 q �= 71 883 7 q = 71 907 2 · 3 · 151 none

937 23 · 32 · 13 q �= 13, 23 937 18 q = 13 937 24 q = 23

967 2 · 3 · 7 · 23 none

Now, using the n− c Theorem, the factor group NG(P )/CG(P ) is isomorphic to a subgroup
of Aut(P ) ∼= Zp−1. Hence, |NG(P )/CG(P )| | (p−1). By Table 1, if there exists a prime number,
say q, where 5 ≤ q < p and q ∈ π(Ap+3), such that qs(q) | |NG(P )|, and then q | |CG(P )|. Thus
deg(p) ≥ 2, a contradiction to Lemma 3.4(3), and (i) is proved.

Next, assume that p ∈ {103, 109, 163, 193, 223, 229, 277, 349, 439, 463, 499, 613, 643, 739, 769,

823, 853, 877, 907, 967}. If p | |NG(Q)|, by Table 1 and Exp(|Ap+3|, q) < p, then p | |CG(Q)|,
which leads to a contradiction as above. Thus (ii) holds. The remaining parts of (iii) follow at
once from Table 1. This completes the proof of Lemma 3.7.

Lemma 3.8 Let M be a finite non-abelian simple group with an order having prime
divisors at most 997. Then M is isomorphic to one of the following simple groups listed in
Tables 1–3 in [17]. In particular, if |π(Out(M))| �= 1, then π(Out(M)) ⊆ {2, 3, 5, 7}.

Proof Let p be a prime and Fp denotes the set of non-abelian finite simple groups M such
that p ∈ π(G) ⊆ {2, 3, 5, · · · , p}. By [17], the members of Fp are ordered according to the size of
their prime spectrum (listed in Tables 1–3). The number of groups in each set Fp is given after
the symbol “�”. For each group, we also know the prime decomposition of the order. However,
since the members of Fp are too many and the order decompositions occupy too much space,
the detailed Tables 1–3 are omitted. In the latter case, i.e., if |π(Out(M))| �= 1, using [2], it is
easy to check that the statement of the lemma is correct by checking each choice of p. Since
the method is not very complicated by checking computations, the detailed process is omitted,
too.

Note that, the full list of all non-abelian simple groups in F131 has been determined in [17].
In fact, there are 407 such groups, and for convenience we list them in Table 2 of this article.
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Table 2 Finite non-abelian simple groups with π(M) ⊆ {2, 3, 5, 7, · · · , 131}

S |Out(S)| S |Out(S)| |S| |Out(S)| S |Out(S)| S |Out(S)|
A5 2 U3(5) 6 L2(7) 2 S4(7) 2 A6 4

L2(8) 3 O+
8 (2) 6 L2(17) 2 L2(11) 3 L2(16) 2

A9 2 U5(2) 2 S4(4) 4 A7 2 U6(2) 6
A11 2 U3(3) 2 J2 2 He 2 A10 2

O−
8 (2) 2 A12 2 L4(4) 4 U4(3) 8 A8 2
M11 1 L3(4) 12 M12 2 U4(2) 2 S8(2) 2

L2(49) 4 McL 2 L2(13) 2 L2(52) 4 S6(2) 1
L3(33) 6 L2(26) 6 L3(3) 2 L3(32) 4 L4(3) 4

HS 2 M22 2 L5(3) 2 L6(3) 4 U3(22) 4
U4(5) 4 A18 2 L2(19) 2 S4(5) 2 S4(23) 6

S6(3) 2 O7(3) 2 O+
8 (3) 24 G2(3) 2 3D4(2) 3

G2(22) 2 A13 2 A14 2 A15 2 A16 2
Sz(23) 3 2F4(2)′ 2 Suz 2 Fi22 2 L2(132) 4
L3(24) 24 U3(17) 6 U4(22) 4 S4(13) 2 S6(22) 2

O7(22) 2 O+
8 (22) 2 O−

10(2) 2 F4(2) 2 A17 6
L3(7) 6 U3(8) 18 U3(19) 2 L4(7) 4 J3 2

J1 1 L3(11) 2 HN 2 U4(8) 4 A19 2
A20 2 A21 2 A22 2 2E6(2) 6 L2(23) 2

U3(23) 4 M23 1 Co3 1 M24 1 Co2 1
Co1 1 A23 2 A24 2 A25 2 A26 2
A27 2 L2(27) 6 A28 2 L2(29) 2 L2(172) 4

S4(17) 2 Ru 1 F i′24 8 A29 2 A30 2
L2(31) 2 L3(5) 2 L2(32) 5 L2(53) 12 G2(5) 1
L5(2) 2 L6(2) 2 L4(5) 8 L3(25) 12 O7(5) 2

S6(5) 2 O+
8 (5) 24 O+

10(2) 2 U3(31) 2 L5(4) 4

S10(2) 1 O+
12(2) 2 ON 2 Th 1 O−

12(2) 2

L6(4) 12 S12(2) 1 L2(37) 2
A31, · · · ,
A36

2 U3(11) 6

L2(312) 4 S4(31) 2 2G27 3 U3(37) 6 L2(113) 6

G2(11) 1 U4(31) 4 L3(34) 8
A37, · · · ,
A40

2 S4(9) 4

Sz(32) 5 L2(41) 2 O−
8 (3) 4 L4(9) 16 S8(3) 2

O9(3) 2 L2(412) 4 S4(41) 2 L2(210) 10 S4(32) 10

U5(4) 20 O+
10(3) 4 U6(4) 4 A41 2 A42 2

U3(7) 2 U4(7) 8 L2(43) 2 L2(73) 6 G2(7) 2

U7(2) 2 L3(49) 12 S6(7) 2 O7(7) 2 O+
8 (7) 24

U3(37) 2 U8(2) 2 L2(432) 4 S4(43) 2 U9(2) 6

O−
14(2) 2 U10(2) 2 J4 1

A43, · · · ,
A46

2 L2(47) 2

L2(472) 4 S4(47) 2 B 1
A47, · · · ,
A52

2 L2(53) 2

L2(232) 4 S4(23) 2 U4(23) 4
A53, · · · ,
A59

2 L2(59) 2

A60 2 L2(35) 10 U5(3) 2 L2(112) 4 S4(11) 2
L2(61) 2 L3(13) 6 U6(3) 4 U4(11) 8 L3(47) 2

L4(11) 4 L4(13) 8 O−
10(3) 8 L5(9) 4 S10(3) 2

O11(3) 2 O+
12(3) 8 L3(112) 12 S6(11) 2 O7(11) 2

O+
8 (11) 24 L4(47) 4 L2(67) 2

A61, · · · ,
A66

2 L3(37) 6

L3(29) 2 L3(67) 2 Ly 1 L2(373) 6 G2(37) 2

L2(71) 2 L5(5) 2 L6(5) 4
A67, · · · ,
A70

2 M 1

A71, A72 2 U3(9) 4 L3(8) 6 L2(73) 24 U4(9) 8
3D4(3) 3 L2(29) 9 G2(8) 3 L2(36) 12 S4(27) 6

G2(9) 2 L4(8) 6 L3(64) 36 S6(8) 3 O+
8 (8) 18

L3(34) 8 S6(9) 4 O7(9) 4 F4(3) 1 O+
8 (9) 48

L4(23) 4 L3(232) 12 S6(23) 2
A79, · · · ,
A82

2 O7(23) 2
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Table 2 (Continued)

S |Out(S)| S |Out(S)| |S| |Out(S)| S |Out(S)| S |Out(S)|

O+
8 (23) 24 L2(83) 2 L2(832) 4

A83, · · · ,
A88

2 S4(83) 2

L2(89) 2 L2(97) 2 L3(61) 6
A89, · · · ,
A96

2 L2(101) 2

A101,
A102

2 U3(101) 6 U5(17) 2
A97, · · · ,
A100

2 L2(103) 2

U3(47) 6 U3(103) 6 L2(473) 6
A103, · · · ,
A106

2 G2(47) 2

L3(472) 12 S6(47) 2 O7(47) 2
A103, · · · ,
A106

2 O+
8 (47) 24

L2(131) 2 L2(107) 2 L2(109) 2
A107, · · · ,
A112

2 U3(64) 12

3D4(8) 9 Sz(29) 9 2F4(8) 3 L2(218) 18 G2(64) 12

S4(29) 9 L2(113) 2 U7(4) 2
A113, · · · ,
A126

2 L2(127) 2

L2(27) 7 L3(19) 6 Sz(27) 7 L2(193) 6 G2(19) 2
L7(2) 2 L8(2) 6 L2(214) 14 S4(27) 7 L3(107) 2

L9(2) 2 O+
14(2) 2 L10(2) 2 L7(4) 4 S14(2) 1

O+
16(2) 2 L11(2) 2 E7(2) 1

A127, · · · ,
A136

2 L12(2) 2

Lemma 3.9 (cf. [18]) Let S = P1 × P2 × · · · × Pr, where Pis are isomorphic non-abelian
simple groups. Then Aut(S) = (Aut(P1) × Aut(P2) × · · · × Aut(Pr)) � Sr.

4 OD-Characterization of the Symmetric Groups Sp+3

In this section, we are going to give an affirmative answer to the open problem of this article
for the symmetric groups Sp+3 satisfying the conditions that p+2 is a composite number, p+4
is a prime and 97 < p ∈ π(1000!). In other words, we will prove Theorem 2.1.

Proof of Theorem 2.1 Let G be a finite group satisfying the conditions that (1) |G| =
|Sp+3| and (2) D(G) = D(Sp+3), where p + 2 is a composite number, p + 4 is a prime and
97 < p ∈ π(1000!). By these hypotheses, we obtain that {r} ∪ {rs | r + s ≤ p + 3} ⊆ πe(G)
and {rs | r + s > p + 3} ∩ πe(G) = ∅, where r, s ∈ π(G). By Lemma 3.4, the prime graph of
G is connected since deg(3) = d − 1, where d = |π(G)|. Moreover, by the structure of D(G), it
is easy to check that Γ(G) = Γ(Sp+3). In the following, we will write the proof in a number of
separate lemmas.

Lemma 4.1 Let K be the maximal normal solvable subgroup of G. Then K is a {2, 3}-
group. Particularly, G is nonsolvable.

Proof We first show that K is a p′-group. If not, let p divide the order of K. Set
P ∈ Sylp(G). By Lemma 3.7(i), we have qs(q) � |NG(P )| for each prime q ∈ π(G) and 5 ≤ q < p.
If q | |NG(P )|, then either q | |CG(P )| or q ∈ π(K). For the former, by Lemma 3.4(3), this
leads to an obvious contradiction since q ∼ p. In the latter case, i.e., q ∈ π(K), by Table 1, it is
easy to check that there necessarily exists such a prime r such that r �∼ q, where 5 ≤ r < p and
r ∈ π(K). In fact, by Lemma 3.2(1), it is sufficient to find such a prime r such that r + q > p,
and then r �∼ q. Since K is solvable, it possesses a Hall {p, q, r}-subgroup T . It follows that T
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is solvable. Since there exists no edge between p, q and r in Γ(G), all elements in T are of the
prime power order. Hence |π(T )| ≤ 2 by Lemma 3.3, a contradiction. Thus K is a p′-group.

We shall argue next that K is a q′-group for each q ∈ π(G)\{2, 3, p}. Set Q ∈ Sylq(K),
where q ∈ π(K). Suppose that the order of q modulo p is h(q). By the Frattini argument,
G = KNG(Q), and hence p divides the order of NG(Q). By Lemma 3.7(ii) and (iii), it is easy to
see that p is equal to one of the following possible primes: 127, 307, 313, 379, 397, 457, 487, 673,

757, 859, 883 and 937. In this case, there necessarily exists at least a prime, say q, such that
h(q) < p − 1. We prove the lemma up to the choice of p one by one. The proof is written in 3
cases.

Case 1 To prove that the lemma follows if p = 127.

By Table 1, if there exists a prime q such that p | |NG(Q)|, where Q ∈ Sylq(G), then
q = 19. Now, by the n-c theorem, the factor group NG(Q)/CG(Q) is isomorphic to a subgroup

of Aut(Q). By Lemma 3.5(5), we have Exp(|G|, 19) = 6, and thus |NG(Q)/CG(Q)| |
6∏

i=1

1915 ·

(19i−1). It is easy to check that 113 �
6∏

i=1

1915 ·(19i−1). If 113 | |NG(Q)|, then 113 ∈ π(CG(Q)).

Thus 19 ∼ 113, a contradiction. Hence 113 ∈ π(K). Since K is solvable, it possesses a Hall
{19, 113}-subgroup H of order 196 · 113. Obviously, H is abelian, so 19 ∼ 113, which leads to
a contradiction as above.

Case 2 To prove that the lemma follows if p = 307.

It is easy to see that there exists a prime, say q, such that p | |NG(Q)|, where Q ∈ Sylq(G).
Then q = 17 by Table 1. On the other hand, the factor group NG(Q)/CG(Q) is isomor-
phic to a subgroup of Aut(Q) by the n-c theorem and Exp(|G|, 17) = 19 by Lemma 3.4, so

|NG(Q)/CG(Q)| |
19∏

i=1

17171 · (17i − 1). It is easy to check that 31 �
19∏

i=1

17171 · (17i − 1). If

31 | |NG(Q)|, then 31 ∈ π(CG(Q)). Set N = NG(Q), C = CG(Q) and K31 ∈ Syl31(CG(Q)).
By Lemma 3.5, we have Exp(|G|, 31) = 9. Again, by the Frattini argument N = CNN (K31)
and hence p � |NN(K31)|. Thus p | |CG(Q)|, and so deg(p) ≥ 3, a contradiction. Therefore
31 � |NG(Q)| and 31 ∈ π(K). Set P31 ∈ Syl31(K). Since G = KNG(P31), then p | |NG(P31)|. It
is easy to see that this is impossible by Table 1.

Case 3 Till now we have proved that K is a q′-group while p = 127 or 307. Assume that
p is one of the remaining possible primes. Now, we have to discuss 10 cases. If K is a q-group
for each q ∈ π(G)\{2, 3, p}, it is easy to show that this is impossible by checking each choice of
p. Since the method used below is the same as in Case 2, the detailed processes are omitted.
Therefore K is a {2, 3}-group. Since K �= G, it follows at once that G is a nonsolvable group.
This completes the proof of Lemma 4.1.

Lemma 4.2 The quotient group G/K is an almost simple group. In fact, S � G/K �
Aut(S), where S is a non-abelian simple group.

Proof Let G := G/K and S := Soc(G). Then S = B1 × B2 × · · · × Bm, where Bi (i =
1, 2, · · · , m) are non-abelian simple groups and S � G � Aut(S). We assert that m = 1.

Suppose that m ≥ 2. We assert that p does not divide the order of S. Otherwise, there
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exists a prime, say r, such that r ∼ p, where 5 ≤ r < p and r ∈ π(G), which is impossible by
Lemma 3.4(3). Hence, for every i we have Bi ∈ Fp. On the other hand, by Lemma 3.7, we
observe that p ∈ π(G) ⊆ π(Aut(S)). Thus p divides the order of Out(S). But

Out(S) = Out(S1) × Out(S2) × · · · × Out(Sr),

where the groups Sj are direct products of all isomorphic B′
is such that

S = S1 × S2 × · · · × Sr.

Therefore for some j, p divides the order of an outer automorphism group of a direct product Sj

of t isomorphic simple groups Bi for some 1 ≤ i ≤ m. Since Bi ∈ Fp, it follows that |Out(Bi)|
is not divided by p by Lemma 3.8. Now, by Lemma 3.9, we obtain |Aut(Sj)| = |Aut(Bi)|t · t!.
Therefore t ≥ p and so 22p must divide the order of G. However, Exp(|Sp+3|, 2) ≤ p + 3 < 2p

by Lemma 3.5(4), which is a contradiction. Thus m = 1 and S = B1. This completes the proof
of Lemma 4.2.

Lemma 4.3 S ∼= Ap+3 and G is isomorphic to one of the following groups: Sp+3, Z2 ·Ap+3

or Z2 × Ap+3. In other words, Sp+3 is 3-fold OD-characterizable.

Proof By Lemmas 3.8 and 4.1, we may assume that |S| = 2α1 · 3α2 · 5α3 · · · pαs , where
2 ≤ α1 ≤ |G|2 = Exp(|Sp+3|, 2) and 1 ≤ α2 ≤ |G|3 = Exp(|Sp+3|, 3). Let p1, p2, p3, · · · , ps be
distinct consecutive prime numbers and 2 = p1 < 3 = p2 < 5 = p3 < · · · < p = ps, and then
αj = |G|pj = Exp(|Sp+3|, pj) for each j ≥ 3. Using Tables 1–3 in [17], we see that S can only
be isomorphic to one of the simple groups: Ap, Ap+1, Ap+2 and Ap+3.

If S ∼= Ap, then K is a 2-group. In this case, it is easy to see that 3p ∈ πe(G)\πe(Sp), a
contradiction.

Similarly, S cannot be isomorphic to the groups Ap+1 and Ap+2. Therefore, S ∼= Ap+3.
According to Lemma 4.2, we have Ap+3 � G/K � Aut(Ap+3) ∼= Sp+3.

If G/K ∼= Sp+3, then by comparing orders we deduce that G ∼= Sp+3.
If G/K ∼= Ap+3, then |K| = 2. Therefore G is a central extension of Z2 by Ap+3. If G is

a non-split extension of Z2 by Ap+3, then G ∼= Z2 · Ap+3. If G is a split extension of Z2 by
Ap+3, then G ∼= Z2 × Ap+3. Moreover, whether G is isomorphic to Z2 · Ap+3 or Z2 × Ap+3, it
is easy to see that the groups Z2 · Ap+3 and Z2 × Ap+3 satisfy the conditions (1) |G| = |Sp+3|
and (2) D(G) = D(Sp+3). Hence, Sp+3 is 3-fold OD-characterizable. This completes the proof
of Lemma 4.3 and also the proof of Theorem 2.1.

5 OD-Characterization of Alternating Groups A116 and A134

We again recall that all the alternating groups Ap, Ap+1 and Ap+2 (p is a prime) are OD-
characterizable (see Proposition 1.1(1)). Proposition 1.1(2) says that all the alternating groups
Ap+3, where p is a prime and 7 �= p ∈ π(100!), are OD-characterizable. On the other hand, in
[13], we also proved that the alternating groups Ap+3, where p+2 is a composite number, p+4
is a prime and 7 �= p ∈ π(1000!), are OD-characterizable. So far no alternating group, which
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is not OD-characterizable, has been found. Hence, the authors in [5] put forward the following
conjecture.

Conjecture 5.1 All alternating groups Ap+3 with p �= 7 are OD-characterizable.

In this section, we continue this investigation in [5]. In particular, we are going to give
an affirmative answer to the conjecture for another two alternating groups A116 and A134 and
prove that the alternating groups A116 and A134 are OD-characterizable.

Theorem 5.1 The alternating group A116 is OD-characterizable.

Proof Let G be a finite group satisfying

(1) |G| = |A116| = 2111 · 355 · 527 · 718 · 1110 · 138 · 176 · 196 · 235 · 294 · 313 · 373 · 412 · 432 · 472

· 532 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113;

(2) D(G) = D(A116) = (28, 29, 28, 28, 26, 26, 24, 24, 23, 22, 22, 21, 20, 20, 18, 17, 16, 16, 5, 14,
14, 12, 11, 9, 8, 6, 6, 4, 4, 1).

We have to show that G ∼= A116. By these hypotheses, we conclude that {2, p}∪{pq | p+q ≤
116} ∪ {2p | p + 4 ≤ 116} ⊆ πe(G) and ({2p | p + 4 > 116} ∪ {pq | p + q > 116}) ∩ πe(G) = ∅,
where 2 �= p, q ∈ π(G). Obviously, the prime graph of G is connected since deg(3) = 29 and
|π(G)| = 30. Moreover, it is easy to check that Γ(G) = Γ(A116) by the structure of D(G). For
convenience, we break up the proof into a sequence of lemmas.

Lemma 5.1 Let K be the maximal normal solvable subgroup of G. Then K is a {2, 3}-
group. In particular, G is nonsolvable.

Proof We first prove that K is a 113′-group. Indeed, if not, then K would contain an
element x of order 113. Set C = CG(x) and N = NG(〈x〉). By the structure of D(G), it
follows that C is a {3, 113}-group. Using the n-c theorem, the factor group N/C is isomorphic
to a subgroup of Aut(〈x〉) ∼= Z16 × Z7. Hence, NG(〈x〉) is a {2, 3, 7, 113}-group. By the
Frattini argument, we have that G = KNG(〈x〉). This implies that r ∈ π(K) for each r ∈
π(G)\{2, 3, 7, 113}, and for example, 107 divides the order of K. Since K is solvable, it possesses
a Hall {107, 113}-subgroup H , which is a nilpotent subgroup of order 107·113. Hence 107 ∼ 113
and deg(113) ≥ 2, a contradiction.

Next, we prove that K is a q′-group for each q ∈ π(G)\{2, 3, 113}. Let q ∈ π(K), Q ∈
Sylq(K) and N = NG(Q). Again, by the Frattini argument, G = KNG(Q), and hence 113
divides the order of N . Let T be a subgroup of N of order 113. Since T normalizes Q, by the
n-c theorem, we have that NG(Q)/CG(Q) � Aut(Q). It is easy to check that 113 divides the
order of Aut(Q) if and only if q = 7. Thus, if 113 � |Aut(Q)|, then T ≤ CG(Q). In this case,
113q ∈ πe(G), so deg(113) ≥ 2, a contradiction. On the other hand, q = 7 and 113 | |Aut(Q)|,
where Q ∈ Syl7(K). Since Exp(|G|, 7) = 18, hence |NG(Q)/CG(Q)| |

18∏
i=1

7153 · (7i − 1). It is

easy to check that 67 �
18∏

i=1

7153 · (7i − 1). If 67 | |NG(Q)|, then 67 ∈ π(CG(Q)). Set C = CG(Q)

and K67 ∈ Syl67(CG(Q)). By hypothesis, we have Exp(|G|, 67) = 1. Again, by the Frattini
argument, N = CNN (K67). This implies that p � |NN (K67)|. Thus 113 | |CG(Q)|, and so
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deg(113) ≥ 2, a contradiction. Therefore 67 � |NG(Q)| and 67 ∈ π(K). Set P67 ∈ Syl67(K).
Since G = KNG(P67), then 113 | |NG(P67)|, a contradiction. Hence, K is a {2, 3}-group. Since
K �= G, it follows at once that G is nonsolvable. This completes the proof of Lemma 5.1.

Lemma 5.2 The quotient group G/K is an almost simple group. In fact, S � G/K �
Aut(S), where S is a non-abelian simple group.

Proof Let G := G/K and S := Soc(G). Then S = B1 × B2 × · · · × Bm, where Bi

(1 ≤ i ≤ m) are non-abelian simple groups and S � G � Aut(S). In what follows, we will show
that m = 1.

Suppose that m ≥ 2. We assert that 113 does not divide the order of S. Otherwise 2 ∼ 113,
which is impossible for Γ(G) = Γ(A116). Hence, for every i we have Bi ∈ Fp, where p is a prime
and p < 113. On the other hand, by Lemma 3.8, we observe that 113 ∈ π(G) ⊆ π(Aut(S)).
Thus 113 divides the order of Out(S). But

Out(S) = Out(S1) × Out(S2) × · · · × Out(Sr),

where the groups Sj (j = 1, 2, · · · , r) are direct products of all isomorphic B′
is such that

S = S1 × S2 × · · · × Sr.

Therefore for some j, 113 divides the order of an outer automorphism group of a direct product
Sj of t isomorphic simple groups Bi for some 1 ≤ i ≤ m. Since Bi ∈ Fp, it follows that
|Out(Bi)| is not divided by 113 from Table 2. Now, by Lemma 3.9, we obtain that |Aut(Sj)| =
|Aut(Bi)|t · t!. Therefore t ≥ 113 and so 2226 divides the order of G. However, Exp(|A116|, 2) =
Exp(|G|, 2) = 111 < 226 by Lemma 3.4 (4), a contradiction. Thus m = 1 and S = B1. This
completes the proof of Lemma 5.2.

Lemma 5.3 G is isomorphic to the alternating group A116.

Proof By Lemmas 3.7 and 5.1, we may assume that

|S| = 2a · 3b · 527 · 718 · 1110 · 138 · 176 · 196 · 235 · 294 · 313 · 373 · 412 · 432 · 472

· 532 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113,

where 2 ≤ a ≤ 111, 1 ≤ b ≤ 55. Using Tables 1–3 in [17], S can only be isomorphic to one of
the simple groups: A113, A114, A115, A116, A117, A118, A119, A120, A121, A122, A123, A124, A125

and A126.
If S ∼= A113, then A113 � G/K � Aut(A113) ∼= S113, and so it follows that G/K ∼= S113 or

A113. In the case G/K ∼= S113, it is easy to see that 3 · 113 ∈ πe(G)\πe(S113), a contradiction.
In the latter case, G/K ∼= A113 by comparing orders, we deduce that 5 | |K|, a contradiction
to Lemma 5.1.

Similarly, we see that S can not be isomorphic to the alternating groups A114 and A115. On
the other hand, since Exp(|Ai|, 13) = 9, where i = 117, 118, · · · , 126, but Exp(|A116|, 13) =
8, S can not be isomorphic to one of the alternating groups: A117, A118, A119, A120, A121,
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A122, A123, A124, A125 and A126. Therefore, S ∼= A116. According to Lemma 5.2, we have
that A116 � G/K � Aut(A116) ∼= S116. By comparing orders we see that G/K can only be
isomorphic to A116. Hence, we obtain that K = 1 and G ∼= A116, This completes the proof of
the lemma, which concludes the theorem.

Theorem 5.2 The alternating group A134 is OD-characterizable.

Proof Let G be a finite group satisfying

|G| = |A134| = 2130 · 363 · 532 · 721 · 1112 · 1310 · 177 · 197 · 235 · 294

· 314 · 373 · 413 · 433 · 472 · 532 · 592 · 612 · 672 · 71 · 73

· 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113 · 127 · 131

and

D(G) = D(A134) = (30, 31, 30, 30, 29, 29, 29, 29, 28, 26, 26, 24, 23, 23, 22,

21, 20, 20, 18, 18, 18, 16, 15, 14, 10, 10, 10, 9, 9, 8, 4, 1).

Clearly, the prime graph of G is connected since deg(3) = 28 and |π(G)| = 29. Furthermore,
it is easy to check that Γ(G) = Γ(A134) by the structure of D(G).

Let K denote the maximal normal solvable subgroup of G. For the same reason as in the
proof of Theorem 5.1, K is a {2, 3}-group and A134 � G/K � Aut(A134) ∼= S134. Hence
G/K ∼= A134 or S134. In the case that G/K ∼= A134, by considering orders, we deduce that
K = 1 and G ∼= A134, and the desired conclusion follows in this case. In the latter case, we
see that 2131 | |G|, a contradiction. We omit the detailed processes for A134, since the method
used is quite similar to that for A116. Hence, A134 is OD-characterizable and the proof of the
theorem and also the proof of Theorem 2.2 are complete.

In 1989, Shi [19] put forward the following conjecture.

Conjecture 5.2 (cf. [19]) Let G be a group and M a finite simple group. Then G ∼= M if
and only if (1) |G| = |M | and (2) πe(G) = πe(M).

The above Conjecture 5.2 was proved by joint works of many mathematicians, and the last
part of the proof was given by Mazurov etc. in [20]. That is, the following theorem holds.

Theorem 5.3 (cf. [20]) Let G be a group and M a finite simple group. Then G ∼= M if
and only if (1) |G| = |M | and (2) πe(G) = πe(M).

About the relation of Conjecture 5.2 and OD-characterizable groups, we have the following
facts: For two finite groups G and M , if πe(G) = πe(M), then G and M must have the same
prime graph. Hence they have the same degree pattern. Therefore, we can have the following
Corollary 5.1 by Theorem 2.2.

Corollary 5.1 If G is a finite group such that (1) |G| = |Ap+3| and (2) πe(G) = πe(Ap+3),
where 7 �= p ∈ π(136!), then G ∼= Ap+3.
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