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Abstract The main purpose of the present paper is to give some properties of the Jacobson
radical, the Frattini subsystem and c-ideals of a Lie triple system. Some further results
concerning the Frattini subsystems of nilpotent and solvable Lie triple systems are obtained.
Moreover, we develop initially c-ideals for a Lie triple system and make use of them to give
some characterizations of a solvable Lie triple system.
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1 Introduction

The theory of Frattini subgroup of a group was well developed and is useful in the study of
certain types of problems in the group theory. The corresponding concept for algebras has been
widely recognized and is of independent interest (see [1–2, 4–7, 13, 15–19, 22]). It is well known
that a Lie algebra can become a Lie triple system in a natural way whereas a Lie triple system
can be imbedded into a Lie algebra. Since Lie triple systems are intimately connected with Lie
algebras, it seems desirable to investigate the possibility of establishing a parallel theory for Lie
triple systems. The Frattini subsystem of a Lie triple system was defined and some elementary
properties were investigated (see [22]).

The main purpose of this present paper is to give some properties of the Jacobson radical,
the Frattini subsystem and c-ideals of Lie triple systems. Basic definitions on Lie triple systems
are collected in Section 1. Section 2 is devoted to studying the Jacobson radical of a Lie triple
system T and showing that J(T ) = [R(T ), T, T ] ⊆ N(T ), which generalizes some results in [22].
In Section 3, some further results concerning the Frattini subsystems of nilpotent and solvable
Lie triple systems are obtained.
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A subsystem B of a Lie triple system T is called a c-ideal of T if there is an ideal C of T

such that T = B + C and B ∩ C ⊆ BT , where BT is the largest ideal of T contained in B.
This is analogous to the concept of a c-normal subgroup, which has been studied by a number
of authors (see [11–12]). Towers gave some properties of c-ideals and made use of them to give
some properties of solvable and super-solvable Lie algebras (see [20–21]). The purpose of this
paper is to study the corresponding idea for Lie triple systems. In dealing with c-ideals of Lie
triple systems, however, we can not always employ the methods used in Lie algebras. This is
because the product in a Lie triple system is ternary but not binary. By c-ideals of a Lie triple
system, we obtain some sufficient conditions for solvable Lie triple systems and some further
results concerning c-ideals in Section 4.

Some notations used in this paper are as follows: T is the category of finite-dimensional
Lie triple systems over a field F. A proper subsystem M of T (with dimT > 1) is called a
maximal subsystem of T if the only subsystem properly containing M is T itself. The Frattini
subsystem F (T ) of T is the intersection of all maximal subsystems of T . The maximal ideal of
T contained in F (T ) is denoted by φ(T ). The Jacobson radical J(T ) of T is the intersection of
all the maximal ideals of T . Our notations and terminologies are standard as may be found in
[8, 14, 22].

2 Basic Definitions

We begin by reviewing some definitions, notations and facts which can be found in [3, 14,
22–23].

Definition 2.1 A Lie triple system (LTS) T is a vector space with a ternary product [·, ·, ·]
satisfying the following identities:

(1) [x, y, z] = −[y, x, z];
(2) [x, y, z] + [y, z, x] + [z, x, y] = 0;
(3) [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]

for any x, y, z, u, v ∈ T .

Definition 2.2 For a, b, x ∈ T , define a mapping L(a, b) : T → T by L(a, b)(x) = [a, b, x].
Then Definition 2.1(3) becomes, writing D = L(a, b),

D([x, y, z]) = [D(x), y, z] + [x, D(y), z] + [x, y, D(z)], ∀x, y, z ∈ T.

Any linear endomorphism D of T satisfying the above property will be called a derivation of T .
Der(T ) denotes the set of all derivations of T . We can prove that Der(T ) is a Lie algebra. As
a special case, the derivation L(a, b) will be called an inner derivation.

Define InnDer(T ) = {D |D = ΣL(x, y)} for any x, y ∈ T , and then InnDer(T ) is a subalge-
bra of Der(T ). InnDer(T ) is called the inner derivation algebra of T .

For a Lie triple system T , set Ls(T ) to be the vector space Ls(T ) = T ⊕ InnDer(T ). The
product in Ls(T ) is

[x1 + D1, x2 + D2] = L(x1, x2) + [D1, D2] + D1(x2) − D2(x1)

for any x1, x2 ∈ T, D1, D2 ∈ InnDer(T ). It is easy to prove that Ls(T ) together with the above
bracket is a Lie algebra which is called the standard imbedding Lie algebra of T .
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Note that for the ternary composition in T and the binary bracket in Ls(T ), we have
[x, y, z] = [[x, y], z] for x, y, z ∈ T . For x ∈ L(T ), as usual, Adx ∈ EndL(T ) is defined by
Adx(y) := [x, y]. Clearly Adx ∈ DerLs(T ), the derivation algebra of Ls(T ). For x, y ∈ T , we
have Adx(y) ∈ L(T, T ), (Adx)2(y) ∈ T .

Definition 2.3 Let T be an LTS, T (1) = T and T (k+1) = [T, T (k), T (k)]. T is called solvable
if there is some positive integer k such that T (k) = {0}.

Definition 2.4 Let T be an LTS, T 1 := T and T n+1 = [T n, T, T ] for n ≥ 1. T is called
nilpotent if T n = 0 for some n.

3 The Jacobson Radical of a Lie Triple System

Lemma 3.1 (see [22]) Let T be an LTS. Then the following statements hold:
(1) If B is a subsystem of T such that

B + F (T ) = T (orB + φ(T ) = T ),

then B = T.

(2) F (T ) ⊆ T 2 and J(T ) ⊆ T 2.

(3) Let T be solvable. Then F (T ) is an ideal of T.

(4) If B is an ideal of T , then there is a proper subsystem C of T such that T = B + C if
and only if B 	⊆ F (T ).

(5) Let C be a subsystem of T and B an ideal of T . If B ⊆ F (C) (respectively, B ⊆ φ(C)),
then B ⊆ F (T ) (respectively, B ⊆ φ(T )).

We introduce a class Θ: An LTS T belongs to the class Θ if [T/N, T/N, T/N ] ⊆ T/N and
[T/N, T/N, T/N ] 	= T/N for every proper ideal N of T . Clearly, a solvable LTS belongs to the
class Θ.

Lemma 3.2 For an arbitrary ideal K of T belonging to the class Θ, T 2 ∩ K ⊆ J(T ).

Proof We may assume that K 	= {0}. Suppose that there exists a maximal ideal I

of T such that T 2 ∩ K 	⊆ I. Then T 2 	⊆ I and K 	⊆ I. Thus T = I + K. We see that
T/I = (I + K)/I ∼= K/K ∩ I. Since K ∈ Θ, we have

[K/K ∩ I, K/K ∩ I, K/K ∩ I] ⊆ K/K ∩ I

and therefore [T/I, T/I, T/I] ⊆ T/I. Then [T/I, T/I, T/I] = {0} since I is a maximal ideal of
T . Hence we have T 2 ⊆ I, which is a contradiction. The result follows.

Theorem 3.1 If T ∈ Θ or T 2 ∈ Θ, then J(T ) = T 2. In particular, if T is solvable, then
J(T ) = T 2.

Proof It follows from Lemma 3.1(2) and Lemma 3.2.

Theorem 3.2 Let T be an LTS over a field of characteristic zero. Then J(T ) = [R(T ), T, T ]
⊆ N(T ).
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Proof By Theorem 2.21 in [14], T has the Levi decomposition T = R(T ) + S, where R(T )
is the solvable radical of T and S is a semisimple subsystem of T . Then

T 2 = [T, T, T ] = [R(T ) + S, R(T ) + S, R(T ) + S]

= [S, S, S] + [R(T ), T, T ]

= S + [R(T ), T, T ].

By means of Theorem 4.4 in [22], we have J(T ) = T 2 ∩ R(T ). Since [R(T ), T, T ] ⊆ R(T ),

J(T ) = T 2 ∩ R(T ) = R(T ) ∩ S + [R(T ), T, T ] = [R(T ), T, T ].

Combine Theorem 3.1 in [8] with Corollary 3.8 in [8], we obtain that N(T ) = N(Ls(T )) ∩ T

and R(T ) = R(Ls(T )) ∩ T , where N(T ) is the nil-radical of T and N(Ls(T )) is the nil-radical
of Ls(T ). It follows from [9] that

Ls(T )2 ∩ R(Ls(T )) = [Ls(T ), R(Ls(T ))] ⊆ N(Ls(T )).

So
Ls(T )2 ∩ R(Ls(T )) ∩ T = [Ls(T ), R(Ls(T ))] ∩ T ⊆ N(Ls(T )) ∩ T,

i.e.,
T 2 ∩ R(T ) ⊆ Ls(T )2 ∩ R(T ) ⊆ N(T ).

Hence
J(T ) = [R(T ), T, T ] ⊆ N(T ).

4 The Frattini Subsystem of a Lie Triple System

In this section, all Lie triple systems considered will be finite dimensional over a field F of
characteristic zero.

Theorem 4.1 Suppose that A is an ideal of T and B is an ideal of A such that B ⊆
A ∩ F (T ). If A/B is nilpotent, then A is nilpotent.

Proof Take any element a of A. Let D = (Ada)2. Then, by Fitting’s Lemma in [10, p.
113], T = T0 + T1 is the Fitting decomposition relative to D, where D|T0 is nilpotent and D|T1

is an isomorphism of T1. So T1 ⊆ A since A is an ideal of T . Since A/B is nilpotent, there
exists an integer n such that T1 = Dn(T1) ⊆ B. Then T = T0 + F (T ) by Lemma 3.1(1) implies
that T = T0. Hence D|A is nilpotent. Therefore A is nilpotent by Engle’s Theorem in [8].

Corollary 4.1 If A is an ideal of T such that A ⊆ F (T ), then

N(T/A) = N(T )/A,

where N(T ) is the nil-radical of T .

Proof It is a straightforward result of Theorem 4.1.

Theorem 4.2 Let T be an LTS. The following statements are equivalent:
(1) T is nilpotent.
(2) If A is an ideal of T such that A ⊆ φ(T ), then T/A is nilpotent.
(3) All maximal subsystems are ideals.
(4) F (T ) = φ(T ) = J(T ) = T 2.
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Proof (1) ⇔ (2). It is clear by Theorem 4.1.
(1) ⇔ (3) and (4) ⇒ (1). They are clear by Theorem 3.8 in [22].
(1) ⇒ (4). Let T be nilpotent. Combine Theorem 4.2 in [22] with Theorem 4.4 in [22], we

obtain F (T ) = φ(T ) = J(T ) = T 2.

Theorem 4.3 Let A be an ideal of T . If U/A is a maximal nilpotent subsystem of T/A,

then U = C + A, where C is a maximal nilpotent subsystem of T .

Proof If A ⊆ φ(U), then it follows that U/φ(U) is nilpotent, whence U is nilpotent by
Theorem 4.2 and the result is clear. So suppose that A 	⊆ φ(U). Then U = A + M for some
maximal subsystem M of U . If we choose B to be minimal with respect to U = A + B, then
A∩B ⊆ φ(B) by Lemma 5.1 in [22]. Also U/A ∼= B/(A∩B) is nilpotent, which yields that B is
nilpotent. If we now choose C to be the biggest nilpotent subsystem of U such that U = A+C,
it is easy to see that C is a maximal nilpotent subsystem of T .

In the following, we will give some necessary and sufficient conditions for solvable Lie triple
systems. First, we give a lemma.

Lemma 4.1 Let T be an LTS. If F (T ) contains every proper ideal of T , and T/φ(T ) is not
abelian, then φ(T ) = N(T ).

Proof If T is nilpotent, then F (T ) = φ(T ) by means of Lemma 3.1(3). Since F (T ) contains
all ideals of T , φ(T ) is the largest ideal of T . Then T/φ(T ) has no proper ideals. If T/φ(T ) is
not abelian, then there exists k ∈ N such that (T/φ(T ))(k) 	= {0} is an abelian ideal of T/φ(T )
since T/φ(T ) is nilpotent. So we have a contradiction and T can not be nilpotent. Then N(T )
is a proper ideal of T . Hence φ(T ) ⊇ N(T ) since φ(T ) is the largest ideal of T . The result
follows by means of Theorem 4.1.

Theorem 4.4 Let T be an LTS. If φ(S) 	= N(S) for any subsystem S of T , then the
following statements are equivalent:

(1) T is solvable.
(2) T/φ(T ) is solvable.
(3) If S is a nonzero subsystem of T and F (S) contains all ideals of S, then S/φ(S) is

abelian.

Proof (1) ⇔ (2). By means of Theorem 4.1, φ(T ) is nilpotent. So T is solvable. The
converse is clear.

(1) ⇒ (3). Let S be a nonzero subsystem of T and let F (S) contain all ideals of S. Suppose
that S/φ(S) is not abelian, then φ(S) = N(S) by Lemma 4.1. This is a contradiction by the
assumption. So S/φ(S) is abelian.

(3) ⇒ (1). Suppose that T is not solvable. Let S be a minimal subsystem of T such
that S is not solvable. So every proper subsystem of S is solvable. Assume that there exists
a proper ideal A of S and A is not contained in F (S). Clearly, A is solvable. Let T1 be a
maximal subsystem of S which does not contain A. T1 exists since A 	⊆ F (S). T1 is solvable
and S = A + T1. But

S/A = (A + T1)/A ∼= T1/T1 ∩ A

is solvable. Hence S is solvable. This is a contradiction and every proper ideal of S must
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be contained in F (S). Since F (S) contains all ideals of S, φ(S) is the largest ideal of S.
Then S/φ(S) has no proper ideals. If S/φ(S) is not abelian, then there exists k ∈ N such that
(S/φ(S))(k) 	= {0} is an abelian ideal of S/φ(S) since S/φ(S) is solvable, a contradiction. Hence
we have that S/φ(S) is abelian. By means of Theorem 4.1, φ(S) is nilpotent, so S is solvable
since S/φ(S) is abelian, again a contradiction. Therefore, T must be solvable.

5 The c-ideals of a Lie Triple System

Lemma 5.1 Let T be an LTS over any field.
(1) If B is a c-ideal of T and B ⊆ K ⊆ T , then B is a c-ideal of K.
(2) If I is an ideal of T and I ⊆ B, then B is a c-ideal of T if and only if B/I is c-ideal

of T/I.

Proof Their proofs are similar to [21].

Theorem 5.1 Let T be an LTS over a field of characteristic zero. Then all maximal
subsystems of T are c-ideals of T if and only if T is solvable.

Proof Let T be a non-solvable LTS of the smallest dimension in which maximal subsystems
are c-ideals of T . Then all proper factor algebras of T are solvable by Lemma 5.1(2). Suppose
first that T is simple. Let M be a maximal subsystem of T . Then M is a c-ideal, so there exists
an ideal C of T such that T = M + C and M ∩ C ⊆ MT = {0} since T is simple. This yields
that C is a non-trivial proper ideal of T , a contradiction. If T has two minimal ideals B1 and
B2, then T/B1 and T/B2 are solvable. So there is k such that

(T/B1)(k) = (T/B2)(k) = {0},

i.e.,
T (k) ⊆ B1 ∩ B2 = {0},

and so T is solvable. Hence T has a unique minimal ideal B and T/B is solvable.
Suppose that there exists an element b ∈ B such that (Adb)2 is not nilpotent. Let T = T0⊕T1

be the Fitting decomposition in [10] relative to (Adb)2, where (Adb)2|T0 is nilpotent in T0 and
(Adb)2|T1 is an isomorphism of T1. Then T 	= T0, so let M be a maximal subsystem of
T containing T0. As M is a c-ideal, there is an ideal C of T such that T = M + C and
M ∩ C ⊆ MT . Now T1 ⊆ B, so B 	⊆ MT . It follows that MT = {0}, whence M = T0 and
B = C = T1. But b ∈ M ∩ B = {0}. Hence (Adb)2 is nilpotent for every b ∈ B, yielding that
B is nilpotent by the Engle’s Theorem in [8] and so T is solvable, a contradiction.

Now suppose that T is solvable and let M be a maximal subsystem of T . Then there is an
integer k ≥ 2 such that T (k) ⊆ M , but T (k−1) 	⊆ M . We have that T (k−1) is an ideal of T ,
T = M + T (k−1) and M ∩ T (k−1) ⊆ MT , so M is a c-ideal of T .

The following two theorems contain analogous results to the corresponding ones for Lie
algebras (see [21]), and their proofs are similar.

Theorem 5.2 Let T be an LTS over a field of characteristic zero. Then T has a solvable
maximal subsystem that is a c-ideal of T if and only if T is solvable.
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Theorem 5.3 Let T be an LTS over any field, such that all maximal nilpotent subsystems
of T are c-ideals of T . Then T is solvable.

Proposition 5.1 Let T be an LTS over any field F and let B, C be subsystems of T with
B ⊆ φ(C). If B is a c-ideal in T , then B is an ideal of T and B ⊆ φ(T ).

Proof Suppose that T = B + K and B ∩ K ⊆ BT . Then

C = C ∩ T = C ∩ (B + K) = B + C ∩ K ⊆ φ(C) + C ∩ K ⊆ C

since B ⊆ φ(C). So
C = φ(C) + K ∩ C.

It follows from Lemma 3.1(1) that C = K ∩ C. Hence B ⊆ C ⊆ K, given B = B ∩ K ⊆ BT

and B is an ideal of T . So B ⊆ φ(T ) by Lemma 3.1(5).

The Lie triple system T is called elementary if φ(B) = {0} for every subsystem B of T ;
T is called an E-LTS if φ(B) ⊆ φ(T ) for all subsystems B of T . Then we have the following
theorem.

Theorem 5.4 If every subsystem B of T is a c-ideal in T , then T is an E-LTS.

Proof Simply put B = φ(C) in Proposition 5.1.
A subsystem B of T is c-supplemented in T if there exists a subsystem C of T with T = B+C

and B ∩ C ⊆ BT , where BT is the largest ideal of T contained in B. We say that T is c-
supplemented if every subsystem of T is c-supplemented in T . An LTS T is called completely
factorisable if for every subsystem B of T there exists a subsystem C such that T = B +C and
B ∩ C = {0}; T is called φ-free if φ(T ) = {0}; T is called elementary if φ(B) = {0} for every
subsystem B of T ; T is called completely factorisable if for every subsystem B of T there exists
a subsystem C such that T = B + C and B ∩ C = {0}.

Theorem 5.5 Let T be an LTS. Then the following are equivalent:
(1) Every subsystem B of T is a c-ideal in T .
(2) T/φ(T ) is completely factorisable and every subsystem of φ(T ) is an ideal of T .

Proof (1) ⇒ (2). Suppose first that T is φ-free and c-ideal, and let B be a subsystem of
T . Then there exists a subsystem C of T such that T = B + C. Choose D to be a subsystem
of T which is minimal with respect to T = B + D. It follows from Lemma 5.1 in [22] that
B ∩ D ⊆ φ(D). Since T is elementary by Theorem 5.2, B ∩ D = {0}. Hence T is completely
factorisable, and (2) follows from Lemma 5.1(2) and Proposition 5.1.

(2) ⇒ (1). Suppose that (2) holds and let B be a subsystem of T . Then there exists a
subsystem C/φ(T ) of T/φ(T ) such that

T/φ(T ) = ((B + φ(T ))/φ(T )) + (C/φ(T ))

and
{0} = ((B + φ(T ))/φ(T )) ∩ (C/φ(T )) = (B ∩ C + φ(T ))/φ(T ).

Hence T = B + C and B ∩C ⊆ φ(T ). Thus B ∩C is an ideal of T and B ∩C ⊆ BT ; that is, T

is c-supplemented.
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By Theorem 5.4, if T is c-ideal, then T is an E-LTS. Clearly, every elementary LTS is an
E-LTS. In the following, we will give some properties of an E-LTS.

Lemma 5.2 Let T, G be two LTSs over F. If f is a surjective homomorphism from T to
G, then f(F (T )) ⊆ F (G).

Proof Let N be a maximal subsystem of G. Then M = f−1(N) is a maximal subsystem
of T , i.e., f(M) = N . If M is a subsystem of T , then N is a subsystem of G. Hence f(x) ∈
f(M) = N for every x ∈ F (T ). Since this is valid for all maximal subsystems of G, we have
f(F (T )) ⊆ F (G).

Lemma 5.3 Let A be an ideal of T and B a subsystem of T which is minimal with respect
to T = A + B. Then

φ(T/A) ∼= (A + φ(B))/A.

Proof In the light of Lemma 5.1 in [22], we obtain A ∩ B ⊆ φ(B) and A ∩ B ⊇ φ(B) ∩ A.
So A ∩ B = φ(B) ∩ A. Clearly, A ∩ B is an ideal of B. Since T/A = (A + B)/A ∼= B/(A ∩ B),
we have

φ(T/A) ∼= φ(B/(A ∩ B)).

And since A ∩ B ⊆ φ(B), it follows from Lemma 3.1(5) that

φ(B/(A ∩ B)) ∼= φ(B)/(A ∩ B) = φ(B)/(A ∩ φ(B)) ∼= (A + φ(B))/A.

Hence φ(T/A) ∼= (A + φ(B))/A.

Theorem 5.6 Let T be an LTS over F. If T is a solvable E-LTS such that f : T → T/Kerf
is a surjective homomorphism, then f(φ(T )) = φ(f(T )).

Proof It follows from Lemma 3.1(3) that F (T ) = φ(T ) since T is solvable. By virtue of
Lemma 5.2, f(φ(T )) is always contained in φ(f(T )). It is clear that Kerf is an ideal of T . If
Kerf ⊆ φ(T ), then

φ(f(T )) = φ(T/Kerf) = φ(T )/Kerf = f(φ(T )).

If Kerf 	⊆ φ(T ), then there is a system K which is minimal with respect to T = K + Kerf . It
then follows from Lemma 5.3 that

φ(f(T )) = φ(T/Kerf) ∼= (Kerf + φ(K))/Kerf = f(Kerf + φ(K)) = f(φ(K)).

Since T is an E-LTS, we have φ(K) ⊆ φ(T ). Then f(φ(K)) ⊆ f(φ(T )). Thus

f(φ(T )) = φ(f(T )).

Theorem 5.7 Let T be an LTS over F. Then T is an E-LTS if and only if T/φ(T ) is
elementary.

Proof (⇒) Suppose that T is an E-LTS, and let S/φ(T ) be a subsystem of T/φ(T ).
Choose a subsystem U of T which is minimal with respect to φ(T ) + U = S (U could be
equal to S). Let N be an ideal of S such that N/φ(T ) = φ(S/φ(T )). If N ⊂ φ(T ), then
φ(S/φ(T )) = {0}. So T/φ(T ) is elementary. If N = φ(T ), then it is clear that T/φ(T ) is
elementary.
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We claim that N = φ(T ). Suppose that N ⊃ φ(T ).

Since N ⊇ φ(T ) + N ∩ U and dim(φ(T ) + N ∩ U) ≥ dimN, we have N = φ(T ) + N ∩ U .
Then

N = N ∩ S = N ∩ (φ(T ) + U) = φ(T ) + N ∩ U.

If N ∩ U ⊆ φ(T ), then

N = φ(T ) + N ∩ U = φ(T ),

a contradiction. So N ∩ U 	⊆ φ(T ). It follows that N ∩ U 	⊆ φ(U), since T is an E-LTS. But
N ∩ U is an ideal of U , so N ∩ U 	⊆ F (U). Hence there is a maximal subsystem M of U such
that N ∩ U 	⊆ M and U = M + N ∩ U.

By the minimality of U we must have φ(T )+M 	= S. We claim that φ(T )+M is a maximal
subsystem of S. Suppose that φ(T ) + M ⊂ J ⊂ S. Then M ⊆ J ∩ U ⊆ U and so, by the
maximality of M , either J ∩ U = M or J ∩ U = U .

Since J ⊇ φ(T ) + J ∩ U and dim(φ(T ) + J ∩ U) ≥ dimJ, we have J = φ(T ) + J ∩ U .

Furthermore, since J ⊇ J ∩ (φ(T ) + U) and dim(J ∩ (φ(T ) + U)) = dimJ, we have J =
J ∩ (φ(T ) + U). So

J = J ∩ (φ(T ) + U) = φ(T ) + J ∩ U.

Then J ∩ U = M implies that

φ(T ) + M = φ(T ) + J ∩ U = J ∩ (φ(T ) + U) = J ∩ S = J,

a contradiction. J ∩ U = U gives U ⊆ J and hence J ⊇ φ(T ) + U = S, also a contradiction.
Hence φ(T ) + M is a maximal subsystem of S. Thus

(φ(T ) + M)/φ(T ) ⊇ φ(S/φ(T )) = N/φ(T ),

and so N ⊆ φ(T ) + M . But now N ∩ U ⊆ N ⊆ φ(T ) + M and so

S = φ(T ) + U = φ(T ) + M + N ∩ U = φ(T ) + M

since M is a maximal subsystem of U such that U = M + N ∩U , contradicting the minimality
of U . We conclude that N = φ(T ), and hence φ(S/φ(T )) = {0} and T/φ(T ) is an elementary
LTS.

(⇐) Suppose that T/φ(T ) is an elementary LTS and let S be a subsystem of T . It follows
from Lemma 3.1(5) that

(φ(S) + φ(T ))/φ(T ) ⊆ φ((S + φ(T ))/φ(T )) = {0}.

So φ(S) ⊆ φ(T ) for any subsystem S of T , i.e., T is an E-LTS.
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