Chin. Ann. Math. .
34B(6), 2013, 801-842 Chinese Annals of

DOT: 10.1007 /s11401-013-0808-6 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2013

Global Well-Posedness and Scattering for
the Defocusing H?®-Critical NLS*
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Abstract The authors consider the scattering phenomena of the defocusing H°-critical
NLS. It is shown that if a solution of the defocusing NLS remains bounded in the critical
homogeneous Sobolev norm on its maximal interval of existence, then the solution is global
and scatters.
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1 Introduction

We consider the Cauchy problem for the semilinear defocusing Schrédinger equationin R+

(1.1)

iug + Au = |u|*u,
u(0,z) = uo(x),

where
4 — ifd>3
Sca<{da- "= (1.2)
d 0o,  ifd=1,2,
and u(t, z) is a complex-valued field in spacetime R x R9,
A simple computation shows that the equation is invariant under the scaling
uy = Aau(\t, Az), (1.3)
a_ 2

and the corresponding scale-invariant Sobolev norm is H* (RY) under (L3)), where s = g— =
We will use both notations, s and «, throughout this paper. We restrict the initial data to the
H*(R?) class. Thus the Cauchy problem (II) will be critical at the H*® level.

The Cauchy problem for (ILI)) was intensively studied (see [2-3, 21]). It is known (see, e.g.,
[2-3] and also see Theorem B3] below) that if the initial data uo(x) have a finite norm, then the

Cauchy problem is locally well-posed, in the sense that there exists a unique solution to (L))
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in C(I, H*(R%) N L4(I, L"(R%)) for some time interval I, where (g, ) denotes some special
Lebesgue exponent pair which we will define later (see (L)) below).

If the initial data are small, then the solution is known to exist globally in time, and
scatters to a solution uy (t) to the free Schrodinger equation (i0; + A)ug = 0, in the sense that
[u(t) — ut ()] e gay — 0 as t — Foo. For (L) with general initial data, the arguments in
[2-3] do not extend to yield global well-posedness, because the time of existence given by the
local theory depends on the profile of the data as well as on the normal of the initial data.
The situation is quite similar to the mass-critical and energy-critical Schrédinger equations.
The first major step toward verifying global well-posedness is Bourgain’s method of “induction
on energy” (see [I]), and he obtained the global space-time bound for the defocusing energy-
critical NLS in three and four dimensions with spherically symmetric data. Another important
breakthrough to non-spherically symmetric initial data was made in [8]. The authors developed
the argument of “induction on energy” and introduced the “minimal energy blowup solutions”
which are localized in both space and frequency (comparing with the critical solution in our
paper). And the remarkable paper [20] first adapted the concentration-compactness-rigidity
method to simplify the progress in [8] for the radial energy-critical case. Then there are many
papers focusing on these topics (see [9-11, 26, 28] for the mass-critical case, and [25, 30] for the
energy-critical case).

Our main result is the following global well-posedness result for ([ITI).

Theorem 1.1 Suppose that the dimension d and the reqularity exponent s satisfy

d>6 (1.4)
and
252 — (d+4)s+d <0 (1.5)
or
2
d=4,5, §<s<1. (1.6)

Suppose that u is a solution to (L)) with the initial value ug € H* (RY) and the mazimal lifespan
I. Assume that sup||u(t)|| s = A < +o00. Then I =R and u scatters forward and backward.
tel

Remark 1.1 In [2]], the authors proved that if supl||u ) = A < +o0, then w is
tel

global and it scatters. The rigidity part of [21] depends on the following consequences of the
Morawetz type identity. Let ug € H*(R3) N Hz (R?). Then, for each 0 < T < Ty (ug), we have

/T/%dxdt < Cofl|u(T)
o x

where u is the solution to (III), and Cj is independent of T' (see, for instance, [7, Proposition

2.1, Lemma 2.3] for the proof). ([7) seems not true for 0 < s < 1 except s = 3.

125 + ()12 ), (1.7

Remark 1.2 Tt is easy to see that d, s, satisfying condition (LG]), also satisfy (LHl). These

assumptions come out when we prove Theorem [L]] (see Remark 3] below).
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1.1 Outline of the proof

In this paper, we adopt the concentration-compactness-rigidity argument. First we set

20(a + 2) 20(a + 2)
— b: = 2 ]..
1= 1" -2’ o+ (d—2a_1 "ot (18)

throughout this paper. Following the argument in [2I] Section 3] closely, we can get a critical

solution in the following sense.

Theorem 1.2 (Reduction to Critical Solutions) Suppose that Theorem[L] fails. Then there
exists a solution u with the maximal lifespan I, ||u|pa(r,1r(re)) = 00 and sug) NVIPu(t)| L2 <
0o, which is called a critical solution. Furthermore, there exists a frequetrfcy scale function
N(t): I — R* and a spacial center function z(t) : I — R?, such that the set

d—2s

{N@)~ =

u(t, N(t) " (x —x(t))); t eI} (1.9)
s precompact in HS(]Rd).

Reduction to the critical solution is by now a standard technique in the analysis of Schroding
-er equation at critical regularity. We postpone the proof of this theorem to the appendix

following the argument in [21, Section 3] with some slight changes.

Remark 1.3 Due to the precompactness of the set (L9, for any 7, there exists a time-free
constant C'(n), such that

Q

/ IV [*u(t, 2)Pdz < n, / el at, €)2de < 1
oo ()] > S E1=CN )

for any t € 1.

Remark 1.4 By the precompactness of (L)), for any > 0, we can find a time-free constant
¢(n) > 0, such that

[ NP < [ lefae o)dg <
|tz ()| < & [€1<c(n)N(t)

N(t)

for any t € 1.

Concerning the behavior of critical solutions at the endpoints of their maximal lifespan, we
can get some reduced Duhamel formulae as in the mass and energy cases. For the proof, see
[24, Proposition 5.23].

Theorem 1.3 (Duhamel’s Formula) Let u be the solution as in the above theorem with its

mazximal-lifespan I. Then, for allt € I,

T
u(t)= lim i / A R(y(t))dt!
t

T,/ sup Il
t
— _ i . i(t—t’)AF / / 1.1
Jim i [ e (u(t))at’ (1.10)

as weak limits in H®.
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To get more information about the critical solution, we classify the frequency scale function
N(t) as in [25] Section 4] for the energy case (see also [24] Theorem 5.24] for the mass case).

Theorem 1.4 (Three Special Scenarios for Critical Solutions) Suppose that Theorem [
fails. We can ensure that there exists a critical solution u as in Theorem [L2] with the mazimal
lifespan I and the frequency scale function N : I — R matching one of the following three
scenarios:

(I) (Finite-Time Blowup) We have that either |inf I| < oo or sup I < oo.

(IT) (Soliton-Like Solution) We have I = R and

N(t)y=1 forallteR.
(IIT) (Low-to-High Frequency Cascade) We have I =R,

inf N(t) >1 and limsup N(t) = oco.
teR t——+o0o

For the rigidity part, we utilize different techniques to exclude these three scenarios. The
main idea is to gain a negative regularity for the critical solutions as in the energy-critical case.
The reduced Duhamel formula (LI0) is important in the proceedings. And to exclude the
soliton-like solution, we use a localized interaction Morawetz identity (see [ Section 6]).

The remainder of this paper is organized as follows. In Section Bl we review some classical
results and some useful lemmas which will be used throughout this paper. In Section[] we get a
negative regularity for both the soliton-like solution and the low-to-high frequency cascade. In
Section ] the soliton-like solution scenario is excluded by a long-time Strichartz’s estimate and
a localized interaction Morawetz identity. Sections [B] and [7] are devoted to the other scenarios

according to their frequency scale functions.

2 Basic Tools

We need some tools from the Littlewood-Paley theory. Let p(¢) € S(R?) be a radial function
supported in the ball {¢ € R? : |¢| < 2} and equal to 1 on the ball {¢ € R?: ¢ < 1}. For each

dyadic number N > 0, we define the Fourier multipliers as follows:

Pox () = o( ) Fle),
Pont@ = (1-¢()) 7@,

Pere = (¢(3) - o(2)) 7o),
Pye.<n = P<y — P<u.

Sometimes we use f< s instead of P< f for short and similarly for the others. By the definition,

we have

Penf= Y Pufi Psnf= > Puf; f=)Y_ Puf

M<N M>N M

With these notations, we obtain the extremely useful Bernstein ineqality.
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Lemma 2.1 (Bernstein’s Ineqality) Letting s > 0 and 1 < p < q < oo, the following

inequalities hold:

[Ponfllize Spsa NONIVIPPoN fllze,
I1P<nIVI*fllze Spos.a NoIIVIPP<n fl Lo,
1PN V52 fllzr ~psa N2V Py f oo,
I1P<nfllzs Spaa N# 4| Penfllie,
1Px fllLs Spga N>~ Py fl|r.
Lemma 2.2 Given v >0, 0 <n < £(1—277), and {by} € (>(ZT), let x, € (>(Z) be a

non-negative sequence obeying

rp < b + nz 2 k=lly, for all k > 0. (2.1)
1=0
Then
k
e S Zrlk*”bl forall k>0 (2.2)
1=0

for some r =r(n) € (277,1). Moreover, r | 277 asn | 0.
For the proof, see [25] Lemma 2.14].

Lemma 2.3 (Fractional Chain Rule) Suppose G € C1(C), s € (0,1] and 1 < q,q1, g2 < 00,

such that + = X + L. Then,
q q1 q2
IVIPGW)llze S IG (W)l e IV wl Loz
The readers can find a proof in [0].

3 The Cauchy Problem

It is well-known that, given any ¢ € S’(R?), the solution of linear Schrédinger equation is

u(t) = e = K, % ¢, (3.1)
where the kernel K; is given by
iz]2
Ki(z) = (4nit)~F et (3.2)

It follows from @I) B2) that if ¢ € LY(RN), then [¢|2 [|[u(t)||p~ < |[@]lL1. Since €2 is
an isometry of L2(RY), the previous estimate (together with the Riesz-Thorin interpolation
theorem) shows that if 2 < ¢ < oo and ¢ € LY (RN), then

N(q

—2)
1= fu(@®llze < Ml Lo (3-3)

The well-known Strichartz’s estimate is another way to express the dispersive effect of the

operator e'*®. To state the estimates, we first need the following definition.
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Definition 3.1 (Admissible Pair) For d > 1, we say that a Lebesgue exponents pair (q,r)

18 admissible if

=0 2<gr<oo (dar) #(2,2,)

REESH

2
-+
q
We are now ready to state the Strichartz’s estimate.
Theorem 3.1 (Strichartz’s Estimate) The following properties hold:
(i) For any ¢ € L%(R%), the function t — ey belongs to
LI(R, L"(R?)) U C(R, L*(RY))
for every admissible pair (q,7), and there exists a constant C, such that

e 2@l Lage,zr) < Cllpllzz  for every ¢ € L*(R?).

(ii) Let I be an interval of R, J = I, and ty € J. If (v,p) is an admissible pair and
fe LV/(I, Lp/), then for every admissible pair (q,r), the function

t
t [ DA f(s)ds fortel
to

belongs to LI(I, L"(RY)) U C(I, L3(R%)), and there exists a constant C independent of I, such
that

t
i(t—s)Af d H <C f , ,
e s)ds PN
| [ a2 sa],, . < Ul

For a proof of the non-endpoint case, see [2, Theorem 2.3.3] and [19] for the endpoint case.
We also use an inhomogeneous Strichartz’s estimate in the sequel. As above, we need a new

definition.

Definition 3.2 (H*-Admissible Pair) For d > 1 and s € (—1,1), we say that a Lebesgue

exponents pair (q,r) is H*-admissible if

Now we state the inhomogeneous estimate.
Theorem 3.2 Lets > 0, (q1,71) be an H*-admissible pair and (¢y,5) be an H~5-admissible

pair. Then

< / I
Lav(I,Lm) CHfHL%(IvLTQ)

t
H / ei(tfs)Af(s)ds‘
to

For the proof, see [4, Lemma 2.1] and [1§].

Theorem 3.3 (see [4-5]) Assume ug € H*(R?), to € I and lwoll g (ay < A. Then there

exists a & = 0(A), such that if ||ei(t_t°)Au0HLq(1,Lw) < 4, we can find a unique solution u to
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I in R x I with u € C(I; H*(RY)). Furthermore, we can also find a constant C, such that

for any admissible pair (q,r), we have

IIVI°ull pacr,Lry + Stu? [u(®)l 7o < CA, lullpacr,Lry < 20.
c

Moreover, if ug  — ug in H*(R%), then the corresponding solutions uj, — u in C(I; H*(R%)).
The following bilinear estimates will also be used in this paper.

Lemma 3.1 Suppose that 0(t,§) is supported on |{| < M and that u(t,&) is supported on
|| > N, M < N. Then, for the interval I = [a,b], d > 1,

d—1
2
luvl[z2(r,02) S

[l

sonllvllsoys (3.4)

1
2

where

lullsecn = Nul@llz+ sup 100+ Aullagr ooy (35)
q>2

For a proof, we refer readers to [31, Lemma 2.5] for example.

Definition 3.3 Let vy € H*, v(t) = ¢®vy and let {t,} be a sequence with lim t, =% €
n—oo
[—00,4+00]. We say that u(z,t) is a nonlinear profile associated with (vo, {tn}) if there exists

an interval I witht € T (if t = +oo, I = [a,+00) or [ = (—00,al), such that u is a solution to

@) in I and
lim [Ju(ta) — o(ta)| . = 0.

n—oo

Remark 3.1 There always exists a unique nonlinear profile associated to (vg, {t,,}) (for the
proof, see the analogous one in [20, Remark 2.13]). We can hence define a maximal interval T

of the existence for the nonlinear profile associated to (v, {tn}).

4 Negative Regularity

The main result of this section is the following theorem, and a similar proof can be found

in [25], Section 6].

Theorem 4.1 (Negative Regularity) Let u be a critical solution with the mazimal lifespan
1. If I =R,

IV ul poo (r,22) < 00 (4.1)
and
inf N(t) > 1, (4.2)

then there exists an € > 0 such that |||V|™%ul| peo (r, 12(ra)) < 00.
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Remark 4.1 Let u be the solution satisfying the assumption of this theorem, and interpo-

lation easily implies that « € L (R, L?(R?)), hence the solution shares the mass conservation.

Remark 4.2 It is easy to see that the soliton-like solutions and the low-to-high frequency

cascades satisfy the condition of this theorem, and hence the mass conservation.

Remark 4.3 The conditions in (C4)—(T0) come from the proof of this theorem. Practically,
() (T3) refer to the following case of - < 1, while (6] refers to 1 < 24— < 2.

By the precompactness of (IL9]) and the assumption on the frequency function, for any n > 0
(chosen later), we can find a uniform Ny = No(n) > 0, such that

[ ePampa < (43)
[€]<No
for any ¢t € I. We now turn to the proof. To this end, we set

A(N) = N""sup ||luny(t)]|r for N < 10Ny, (4.4)
teR

SH

s - ﬁ < 1, while we will choose p later if

1< 4

where——%—u:s. Wepicku:d%—sif
— d— 25—2

By Bernstein’s inequality, it is easy to see that A(N) < sup N®||lun||z2 < oo. Without loss
teRr
of generality, we calculate N~ #||un(0)| rr for convenience.

First we consider the case of -2 < 1. By (II0), we have

N~ un(0)l|ze < N~ “H/ ¢ APy F(u

SN*MH/ ﬂtAP F(u
+ N~ MH/ e AP F(u (45)
N—2
Then (33)) and Bernstein’s inequality imply that
d_d N itA
N7 fun(0)]|pr S NT#FE75 / R
0
+N7”/ t—(%_%)dtsup||PNF(U(t))||LP’
N-— 2
<N u+5—5_2+__5||PNF( ())”LW(R,L”')
+ N #2050 Py F ()| e
s d=ds
= N a2 [Py F(u(-) || oo 1o - (46)

Notice that the power s — g:;‘z is positive by ([[CH). For the nonlinearity of F(u), we use the
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fundamental theorem of calculus, and decompose it as

+O(Jus v |lu<n|*) + O(Jus wg [*FH). (4.7)

Using (@), Holder’s and Bernstein’s inequalities, we estimate the last two terms of F'(u) as

_d—4s
NS a2

Py (O(lusnol[ul* Dl poe =, 2.

_4
U>N0” 2d(d—2s) |||u|d—2s

d—4s
< N% d—2s a
- (R,L @2 —2sd—2d+8s ) L>(R,L2)

< pps— i d—ds
< NPT a=zs d_2su>No||L°°(]R,L2)

d—4s

d—ds N\ 5~ a3
Nd 2s . (_) .
No

< NEa (4.8)

Next we turn to the contribution to the right-hand side of ([@3]) coming from the second and
third terms in [@7). Without loss of generality, it suffices to estimate the first term of them.
An intrinsic equivalent norm for Besov spaces shows that F.(u) € L>(R, ng) (see |29,
Theorem 4.4.1]). Indeed,

1 _4_
IF)]| s = sup ——[[u(- — )| ™% — [u()| 7% sz
BEE | yers |y|d :
2.
_4_
< sup ———|llu(- —y) — w7 a2
yeRd Iyld bee
4
T2
= (sup (- ) —u<->||L2)
yEJRd| |
= IIUII‘l = < I = el =
Thus by the dyadic decomposition, we have
%
il ~ (5 i)
>10
1
(S 1Pl )’
M>15
1
(X g v
M>£
< N~ d 2b u| d 25.
Together with (£3)), Holder’s and Bernstein’s inequalities, we obtain
1
s— g
N (7 1\8/0 Fz(ul_l\é<g 9U< deHLOO(]R,Lp’)
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_ d—4s
< NS da—zs

Uen || Lo r,ooy | P v Fr(u<no)l

_4
u<N0||z;2(ﬁ]R’Hs)

< g—d=4s __4s
< NS d—zs u<ﬁ||L°°(]R LP)N d—2s

<7 Z NUN®— = d2e.A(N1)
N1<5
N1\ H
< pam 2
S 0T () A, (4.9)
Ni< £

We are left to estimate the contribution of F(u%< <N,) to the right-hand side of ([ELH). We

estimate

||F( UN<.<N )HLOO(]RLP)
S Z ||UN1|UN2|m L>(R,L¢")

<N N <
< _4_ 1——4 _4_
N |||UN1|‘“25 Loo(®,Len) || [UN, |77 72 || oo (v, Lo2) [N, | T2 || Loo (R, Le3)

5 <N2

4
- Z ||uN1||Lw<R,Lp>|||uN2|d—as peqm iy = THIL
FH<N1<N2<N
2(d—2s)? (d—25)?

where p; = d*2257 P2 = o) and p3 = 253} For the second term, we employ
(#3) and Bernstein’s inequality, such that

_4
II< Z luny |poe @, 20y luns | 1R, 12
5 <N1<N3<No
4 _a
SJ Z ||UN1||L°°(]R,LP)(N275)‘1*2577L1*25,

L <N1<N<Ng

Taking the sum of Ny, we obtain

IS nﬁ Z A(Np)NY (Ny#)T2 == A(Nl)NM 5 25.
15 <N1<No 16 <N1<No

Finally, we turn to the first term. According to Berstein’s inequality and the definition of A(NV),

we have

1,#
I< Z ||uN1 ”Loo R,L2) ||uN1 ” - gd 252 ||UN2|| T 2(d £ 25 2)
N <Ny <Ny <N Le=(R,L (R, La=2:=2)

S D (NUmTE(NPAN))T T (NFAN)
N <N2<N1<No

Now we set —0 = p — (N) = N7°A(N) and C(N) = N“°A(N), for some small

e > 0, such that s — g:éz —€ > 0 (see ([[A)). With these notations, we rewrite the above
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inequality as

__4s _4s _4s
1< nﬁ Z N, d-2s (NldfzsB(Nl))lfﬁ(N;fsz(Nz))ﬁ

165
= nd,—42s Z (&> (@-29)2 B(Nl)l_ﬁB(Ng)ﬁ

4 N. %12 —e __ 4 —e _4
—gmE Y (3R) T (Vo) (N (V)

Taking the sum over Ns first, we have

a4 — s —el-%) 1—_4_
I=mnas2 Z N, C’(Nl) d—2s

f<N1<No
16s _d4<2
(% NP o)
H<N2<N,
4 T Tld—252 ( *ﬁ) 1 dles,z Lif;b
5 na-z ]\f1 (d=29) C’(Nl) —a—zs N (1729
16 <N1<No
4
% ( C(NQ)) d—2s
L <N2<Ng
4
— T N{CO(Ny) -7 ( C(Ng)) =
L <N1 <N £ <N2<No
SHTEN C(N)
16 <N1<No
Putting the above estimates together, we obtain
_d—as
Noma=2s PNF(U%g.gNO)HLx(R,LP’)
—4s | — 45
< pate N——( ANON TF N Y C(Nl)). (4.10)
16 <N1<No N <N <No
Collecting ([@H) and (L1)—@I0), we estimate
N \s—&2 4 Npy#
AN s () TTHrmE Y () A
0 Ni< £
N \s—2 N \s— =25 —¢
(3 A () T () 7 aow)
X<Ni<No ! N<Ni<No
N \s— 2 s Niy# N \s—im2i—¢
< (= = S AN (—) A(N )
N(NO) i (Z (N) (1) + N, (M)
N1<5% 16 <N1<No

With the above estimate, applying the discrete Gronwall’s inequality (Z2]), we have

sup [lun (t)[|e S NHF97, (4.11)
teR
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where w = min{u, e
Now we turn to the case that 1 < 5=~ < 2. We pick p satisfying
1 1 s 1 1 2 s
— = — < - < == =+ -, 4.12
2 d 2d7p 2 d * d (412)
which gives s > 2 as in ([6). As the similar estimates in {J)-(ET), we first calculate
Cp—2(1-g 44 o
NRZ2EE D) Py (Jus v | [u]*) | e , 20y
—p—2(1—2¢44 _4_
< N7 s g e, o) 1l T 4
< N~r20-545) N0 |y7| T
IV 1Pus Noll e g, 2wy [l 2
(R, LT &5 )
(1 dydy
SN THEEEDINT I |V P us v | o<, 12y
N\ —1—2(1-%+%)
=(— 4.13
(NO) : (4.13)

where 0 < 5 = % +s—2— % < 25— 1 (comparing with (@I2)) and p; = #ﬁ_ﬁ). Next, we
consider the integrals in the decomposition [7)). By the proposition of support, we have

1

Le(R, Le")

1
’P>%(/OF(U1% <-<ho + U dg)HLoo(]R,LF%)'

We use 23) and [{@3)) to give a bound to the second factor on the right-hand side by

— _2(1_£+4)
< N7H 2T, ||’U,<T%||LOO(]R7LP)

_ _4 _ _4
N7V u<ny lpoe @, Loy lllusne| ™7 oo, oy S N7,

where ¢; = m for some 0 < v =d— =2 —2 < s (compareing with (L)) and ¢2 = 4_3123.
Then we continue to consider the 1ntegrals in the above inequality as follows:
21 !
NH (ues /0 Fo(ug <.y, + 0y )d0) HLW(R "
< nﬁN—u—Q(l——+ )— 7||u< ~ ||L°°(]R L)
4 o(_didy_
S nd—QsN 1—2( 2+p) Y Z ||U>N1||LOO(R’L0)
Ni< £
N
S 30 A ()" (4.14)
N1 <45

Finally, we consider the first term of (£71). According to the Littlewood-Paley decomposition,
we deduce

o _dyd
N 12 2(1 2+P)||PNF(UT1\6S.<N0)HL°°(]R7Lpl)

dyd _4_
gN_H_2(1_2+p) Z ||UN1UN2|UN3|‘17425 1||L°°(]R,LP/)

N <Ny, Na, N3<No
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- _dyd _4_
SNTH 2084 Z ||uN1uN2|uN3|df25 1||L°°(]R,LP')
N <Ny < Ny, N5<No

0
- 444 _4
4+ NH20-4+8) Z |, s, |, | 72 1||LOO(R7LP,) =1-+1IL

Applying Holder’s and Bernstein’s inequalities to the terms of I, we estimate them by

_4
[y | o @, ooy un || Loe @, zo2) l1un |75 7| Loo , Los)

d—2s _ d d—2s d
d—2s _ d ( — 1), _4__
Sllun eIV P uny L@ 22y Ny = 72 (VP ung Lo, 22yNg 277 )@=t
. d—2s _d o _d—2s _ d
SnTEAN)NIN, © Ny PP
where L = L + L 4 L with p; = p, 2 < pp < 72 and 2 < p3(2 — 1) < 724 (due to the
o’ p1 | p2 | p3’ P1=p, 4=P2 < 7755 = P3lg—ss

definitions of p and u, such ps and ps exist). Taking the sum of Ny and N3, we obtain

I<nﬁN*H*2(1*%+%) Z A(Nl) u+2 (pl2 PIS)
A <N1<Ng

—nmm YA (- )“72(17%%), (4.15)

NN <No

where —p—2(1— 9+ %) > 0. Similarly, applying Holder’s inequality to the terms of II in space,
we obtain
I S—
||uN1uN2|uN3|d725 ||L°°(]R, Le')

_ _4
< ey [* o om0 oo lJunvy | oo | |72 7 poa

< s s 15 i | 5

—240

2 e s e | s, | 5275 (4.16)

9
5 ||uN1 ”L/’HuNll L(1-0)az
where & = -+ -+ L+ - with g1 = p, (7 — Daa = p, (1 =0)g2 > 2,2 < g3 < F2%; and
2— 24— <6 <min(l, 7((1_25@_2)) (Remark [[2] ensures the existence of these exponents). By

Holder’s and Bernstein’s inequalities, we have

||’LL =1
NluN2|uN3| ||L°°(]R, L")
d—2s da d—2s _ d

S lum Lo NIV Pum 2Ny = 72 ) VP, [ 2N,

—2s

1-6 s 24 4 _oig
X [Jungll 2" (VI ung [ L2 Ny )T

d—2s a d—2s _ d d—2s _d
0 1-0 (5 — =gy (1—0) 7 i AT D (i 2+9)
un, | olluns || 2" Ny N, Ny

< pa (4.17)

Taking the sum, we have

I <pa-= s Nh—20-4+49) Z ||UN3||1LPBN( 7= ) (gles —2+6)

N < N3<No

a2 gy 4 _ 4
x> umllgeN, ”
N3<N1<No
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< s NH2- gD

2(1-0) (14 +4)4 (952 — &) (72 —2+6)

+2 1,Q+i o _
xS0 (NI o)) o,

5 <N3<No
_dyd d=2s(39)— 24 4 _99(1-4 44
D DO 100 A
N3<N1<No
N ,
Spem Y (V)—“—Q(l—%JF%)_EA(Ng) (4.18)
N<Na<Ng ~ °

for some small enough € > 0, such that —p — 2(1 — % + %) — € > 0 (comparing with ([@I2)),
and we note that the power of N; in the second inequality is negative due to the definitions of
6 and p. Thus combining (I3)-EIH), (ZI]) and the discrete Gronwall’s inequality (Z2]), we

have
sup [|un (t)]|ze S N7, (4.19)
teR
Wherew:min{,u, —,u—2(1— % + %) —e} > 0.
Summing all the dyadic frequency-localized parts leads to the following property.

Lemma 4.1 Let u be as Theorem L1l Then

2p(s + p+ w—) 2d
u € L=(R, L*(R? 0ra€< , ), 4.20
( RD) st(p—D(p+w-) d-2s (4.20)
which furthermore implies
VI F(u) € L=(R, L*RY) for - = 24— 2 (4.21)
’ b 2 a(d—2s) '
Proof By interpolation and (I1), we have
unllpee @ za) < HUNH}:;G(R,L;))||UN||%°°(1R,L2)
< (NMerf)lfeNst
— N(u+w*)*9(s+u+w*)’
-6, 6
where % = 17 + 3, and
1_s_ 1 _
21d1p<9<7ﬂ/+w ) (4.22)
27, S+ pu+w—

which is not empty. From this and Bernstein’s inequality, we obtain

[ull Lo r, o)y < lusnollLos®,zay + [[usNo ll oo (v, L)

< D0 Nt £ 7V u e an NE T80 < oo
N<No N>No

With the fractional chain rule Lemma 23] we deduce from these that

4
IIVIPE @)l ,zvy < NV ull oo 22 [uT=2 (=320 < 00,

Lo (R,L )

To conclude Theorem [Z.I] we first obtain an inductive lemma.
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Lemma 4.2 If |V|"F(u) € L>®(R, L*(R%)), where 0 < 7 < s and b is as in the above
lemma, then there exists an sg = so(b,d) > 0, such that u € L= (R, HT_SO+),

Proof We first claim that

. . d d+4
|||V| uN||Loo(]R7L2) < N?®  with sg = E — T > 0. (423)

With this claim, we can conclude the result by
V|7 S0t < |||V~ S0t V|7 st
4 ul| Lo (r,2) < [[|V] u<i|| Lo L2y + |||V us1l|Loo (v, L2)

< YN Y N <,
N<1 N>1

Now we turn to (LZ3). Without loss of generality, we use (LI0) to deduce the claim at time
t=0,

[V un(0)]72
T 0o _
— lim <1/ e~ A Py V|7 F(u(t))dt, —1/T/ e*“APN|V|TF(u(¥))d¥>

T — oo
T! — oo

< / (B IV I F(u(®), o™ O Py V|7 F (u(D) |d2

- / / A(N, ¢, )t
0 —00

By the dispersion of Schrodinger operator and Bernstein’s inequality, we estimate the integrand

AN, 1,8) < ||Py |V F (u(®)) || lle™ D% Py | V|7 F (u())] o

< [t= 82 H IV F @) V] F @)l e,
AN, £,) < | Px| V[ F(u(t))]| 2 le D2 Py |V F (u(D)) | 2
< N2G=8)||V[7F ()| o 11V F (@)l e
Hence, we calculate elementarily
11V (0)]|72
< IVITF @)1} (a,10) /0 : / OOO min{[t — 7|, N?}# - ded?

= IVI"F ()||7 =, L)

“(/, / T[T /__mm{|t—t| N

Q* T
= N2~ S|V F ()3 g, 0

Now we show how to use Lemma to prove Theorem LIl By Lemma [ZI] we can apply
Lemma to 7 = s, and we conclude u € L (R, H5=%0%). Thus as the proof of Lemma F1]
[E20) and Lemma 23] imply |V[*~*F F(u) € L>=(R, L(R%)) for some b as in (@21). We apply
Lemma to 7 = s — so+ and obtain u € L™(R, HS_230+). If b is suitably chosen, we can
iterate this procedure finitely many times, and we derive u € L= (R, H*E) for some 0 < € < s,

which completes the proof.
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5 The Soliton-Like Solution

Pay attention that the soliton-like solution satisfies the condition of Theorem 1] and thus
we have the mass conservation by interpolation and the classical local theory. In this case, we
first prove a relationship between the length of the time interval and the Strichartz norms on
it.

Proposition 5.1 If u is a soliton-like solution as in Theorem[L4], and J is a compact time

interval, then
1 1
| S llullpaqrery S 1+ (]9, (5.1)

Proof On one hand, by Remark [[L4] for any n > 0, we have

_d__
/ lu(t)| 25 d < (/ ||V|5u|2da:) TF <y forallteR. (5.2
lz—a(t)|Ze(n) lz—x(t)[2c(n)
On the other hand, we claim that

/ |u|%dx 21 forallteRR. (5.3)
|z—x(t)|<c(n)

Indeed, if (B3] fails, there exists a time sequence ¢, — +oo, such that
n—oo

/ [u(ta)| 75 dz — 0,
le—a(tn)|<e(n) R

which together with (52) shows that w(t,,z — z(ty,)) — 0 in L5 However, the precom-
pactness and the blowup property of the critical SOlutinO?lO;hOW that w(t,,x — x(t,)) —w in
H* for some w # 0, which is a contradiction. We conclude ([@3]). A simple application of
Holder’s inequality yields

d—2s

] —Sd (d—2s)(1—s) %
[ ) PHas] T < o) FHEF | [ pute)rad] "
fo—a(tn) | <c(n) i

Thus, using (53) and integrating over J, we conclude the first inequality.
Now we turn to the second inequality. Let n > 0 be a small parameter chosen soon.

Partition J into subintervals | Jk, such that |J;| < n, and let J, = [tg,tx+1]. It requires at
k

most n~1[J| + 1 intervals. On every subinterval, we use Strichartz’s, Holder’s and Bernstein’s

inequalities

||u||Lq(Jk,L")

S e B ulti) |l paga.om) + ull Facs, om)

it—tp A a+1

it A
< e P us N (8 | Lay m) + [l u<Ny (b )l Lacr,om) + lullzags, e

1 d_d__ a
< VP uz ol ooz 2y + [Tl T NG ™7 Nusny (t) o e, n2) + [ullfa s - (54)
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By Remark 1.4 and the definition of the soliton-like sulotion, we can choose Ny large enough
so that the first term is small. Then we pick n small enough, depending on Ny to make the

second term small. A simple application of the bootstrap argument deduces

lullagr,zr <€ (5.5)

for some small € > 0. Collecting all the subintervals and the control of the amount of them give
the second inequality of (GI)).

In order to defeat the soliton-like solution, we obtain a high-frequency Strichartz’s estimate
over any compact time interval as in [0, Theorem 5.1], which is used for a frequency localized

interaction Morawetz estimate shortly.

Theorem 5.1 Suppose that u is a soliton-like solution, and J is a compact time interval
with |J| = K. Then we have

K3
1Penull , ;2 <0( ) (5.6)

forall N < K.

Proof By the Duhamel principle and Strichartz’s estimate, we have

itA <
1Ponull oty S IPone™ ol ) ety 4 [ Pow (jul 72 = U o p
S luzw @l + 1Pon (Wl =Tl (5.7
For the nonlinearity, we estimate it as
_4_
1Pl == ),
4
S ||P2N(|U§nzv|d*“USnN)HLQ(J 25

_4
[(Ponnu)|(1 = x)ucc,| T2

_4
+ uznnluzc, |2 . L)

_4
+ lluzgnlxu<c, |72 (5.8)

EYI
L2(J,L7+7)
where Cj is a fixed constant chosen later, and x(¢,z) € C2°(R?) for every time ¢ with value 1

if |z — a(t)| < Cp, vanishing if | — z(t)| > 2Cy. For the first term, by Bernstein’s and Hélder’s
inequalities, the bounded H* norm and the sobolev embedding, for any 3 l<o <3z 2 +1,

_4
”PZN('uS??N' a2 uSWN)HLz(J’LdQ_J_iQ)

4
= No V7 (Jlucnn|T2 uSnN)||L2(J7L%)

1 [ d—2s 2;
S 7 IV ITugonl oy + luson | T o
M
< E -
~ (N) HUMHLz(J,L%)
M<nN

> (5) s
N U=m L2, L2y

M<nN
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For the second and the third terms,

_4 4
R )
< —
< luzanl i (10 = 0uscol, gyt +luscoll, g )
< — d—42s
Slhuzanl ot 0= 00l o+ lesel o)

S 0(Colluzanll , ) ) 2,

with 6(Cp) — 0, as Cy — oo (see Remark [[4]). Finally, we partition J into UJ as in the proof
of Proposition 0.1l and if 4 < d — 2s,

_a
||u2nN|XU/§Co| a2 L2(J,Ld27+d2)

< [Jusynusc,| T x 77 e luspy’ (ﬁ%)
S Wz 0 e e IS0 e ol
(X lusmecelaqim) " sl %,
Applying the bilinear Strichartz’s estimate (3.4)), we have
luz v Pxa<co| =2 Lot

4
I
LQ(J,LdQ—dQ)

U>nN

Co™ \? ) ,  1etm
S [zk: (W> HU'Z??NHSQ(Jk)”uSCoHSQ(Jk)}

_2
=2 -
. <Xk:1) uz] 2(3; )(nN) o Sup||u>77N||SO(Jk)

- (E) =

Here we use a claim that §.J; ~ |J|. Now we turn to the proof of the claim. By Proposition [(5.1]
and the definition of the subintervals, we have |J;| < €9, and hence |J| = > |Ji| < #J;. Choose
e

_4_ _4_
>nN|| 20 Lb2d )Sl;p||U2nN||§§(2}k)~

7 as in Remark [[4] to be small depending on €, by Strichartz estimates and the interpolation,

we can show that

luscmllza,.Lry S €

On the other hand, by Bernsteins inequality,

d—2

‘Hﬁ.

1 (C(n) =

2d
Ld-2s

lu<om @l < llucom @l S

Integrating this on Ji, we have €? < |Ji|, and thus #J; < |J], which concludes the claim. If
2 < d—2s <4, similarly, we have

_4
luznvixuscol =, )

_4__
< Nuznwluscolllzac, Loy Xl Lo, Lo a7 L, 12y,
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where % = 2 + = —I— = Wlth 2 < rg(ﬁ — 1) . The assumption and (L6l guarantee

the existence of rq and 7"2. We continue as

_4
lusnn|xu<c, |2

s ()’

k

L2(J,La+2)

- ()’

Collecting these estimates, we obtain for d — 2s > 4,

).

1Pl ) 2

S lusn(0)]| 22 + 5(C0)HUZ"NHL2(JL%)

K\ 75 1— 4
+ ( ) 2a + (—) o d=2s . sup|lu 2570 5.9
M;N luzaell ) s N ZnNHLz(J,L(f—d?) Pl >nN||so (o (5:9)

and for 2 < d —2s <4,

”PZNUHL%J,L%)

S lusn )2 +8(Co)llusanl ;2.

X () T, ()

M<nN

0(J5)- (5.10)

With (£9), we follow the induction argument as in the proof of [9l Theorem 5.1]. We start

with the basic case.

Lemma 5.1 Let J be a compact interval, and |u| pacsry = C < oo. Then Theorem B.1]
holds if N < &.

Proof Partition J into O(C) subintervals U.Jy, with ||u||za(s, 1) = €, where € is small. By
Duhamel’s principle and Strichartz’s estimate, we have |luso(s,) < 1. Summing these up, we

obtain

K
2 < 2 < 1<C -
LIRSS DI MTIE) ETES

which includes the lemma.
We need a last lemma to complete the proof of Theorem (.11

Lemma 5.2 There exists a function p(N) < C and A}im p(N) =0 with
—00

4
lusllze + llusow 155, ) < p(N).
Proof It is easy to see that Nlim |lu>n]lr2 = 0. For the second term, we estimate by using
—00

ag . : : 2d 2d 2 d _ d
(B3). For any H*-admissible pair (qi,71) with 725- < ¢1 < %5 and st =55 the
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inhomogeneous Strichartz’s estimate implies

itA

u0||9

lwll Lo (o) S lle AVl - 245, 1y S €

2d
L2(J,, LT3

Thus for any admissible pair (¢, r), we estimate

_4
lullLacr,ory S llwollpe + lwl ™= ull ao (s, Lro)

< Nluollzz + ||ul =

—u — Nullzac,r
L% (J,, L3-25)

for some suitable admissible pair (qo, 7o) and some suitable H*-admissible pair (g1, t1) (the defi-
nitions of these two pairs ensure the existence of such two pairs). Now we turn tol|usyn||go(.s,)-

By Strichartz’s estimate and the element decomposition, we have

_4_
(|’LL| d=2s U)HL%(Jk,LF())

_4
S luzanllpoe 2y + 1Ponn(lu_ oy 17 u_ ol a0 176y

g 3 |75l o+ Ju| o

qu (Jk, L" 0 ZN%HL%(JML%).

Employing Bernstein’s and Hoélder’s inequalities, we deduce

O(Jk)

N IIUanIILoo(m)

— 1-60 0 —0

SR [N RPN 1Y e Pt [ VA (o
01 1-0 0 —0

* ”“>N% 725w, L2>||“||L41<1Jk,L""l)”“” 2 (Jk,Ldi%s>||u||z%<2;fk,L"2>

1701 1 ||92

—0
+||u||Lloo(]R’L2)||u||L§1(Jk Lh)” SN3 H Ha 2

: ) " L92(Jy, L72)

2
oo (Jg, L=

0 o
>N Iz @, £2) + ||u>N% H ’

S llusgnllpe @, 22y + N 7%

2d b
(R, LT-%9)

where we choose suitable admissible pairs (o, 70), (¢1,71), an H*-admissible pair (o, 72) and
parameters 61 € (0,1) and 62 € (0,a) (according to the definition of an admissible pair, we
have such exponents). Letting N — oo, the RHS of the above inequality goes to 0 (wherein we
use the H*(R%)- and L?(R%)- compactness of the orbit of {u(t, - — z(t)) : t € R}).

4
By taking p(N) = [|usn/| e (z2) + ||“277N||§§(2;k)a we complete the proof.

Applying this lemma to (59) with the induction assumption, we get

”PZN“”Lz(J,L%) S p(N) +6(Co)o(1)
) 2 ) 0 () G o

< (5) (o) + (1) < 0(X)

We can handle the case 2 < d — 2s < 4 similarly and omit the proof. These complete the proof
of Theorem [B.11
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We prove a frequency local interaction Morawetz estimate as [9, Theorem 6.1] to defeat the
soliton-like solution scenario. First we define a frequency cut-off operator I. Let C be a large
fixed constant chosen later. Define I : L?(R%) — H'(R?) as an operator given by the Fourier
multiplier m(£) € C°(RY) as Tv(€) = m(£)D(€), where

1, if [§] < CK,
m(§) = .
0, if |¢| >2CK,

and K is large and chosen later. We state the frequency local interaction Morawetz estimate

as following.

Theorem 5.2 Let u be a soliton-like solution. Given any K > 0, let J be a compact time
interval with |J| = K. Then

1
/J/]Rd i |7 — g |Tu(t, z) | Tu(t, y)*dzdydt < o(K). (5.11)
X

We postpone the proof of Theorem Assuming this theorem, we defeat the soliton-like

solutions. Choose K large enough. Fixing 1 > 0 small enough, we have

1
Ut €))?dé < e 251512d¢ < 1.
/£>C(g”< futt, S)°dé < (C(n)K)> /5>c<n>r< e falde < m

2

Hence
/ (1 = Du(t)Pdz < /|(1 ~ Dut)Pdz < n. (5.12)
|z—a(t)|<C(n)
Since {u(t, ~x(t));t € R} is precompact in H* and {u(t, ~z(t));t € R} is bounded in H~¢ for
some € > 0, as shown in Theorem BT] it is easy to see that {u(t, —x(t));t € R} is precompact

in L2. By Remark 22 u has a conserved mass mg, and with the help of the proposition of the

precompactness in L2, we have
/ lu(t)|?dx > m2 — 1. (5.13)
lo—=2(t)|<C(n)
(EI2)-(EI3) imply that
2
/ [Tu(t)Pde > 20 ~ 1. (5.14)
o= (t)| <C(n) 2

Taking a square of the above inequality, we obtain
i/ Tult, ) [ (Tu(t.y) Pay
|z—z(t)|<C(n) ly—z(t)|<C(n)
<[ [Tu(t,a) P Tut. ) Pdady
|z—y|<2C(n)

1
< | Tu(t, z)|?|Tu(t, y) |*dzdy. 5.15
S [ mmltutta)Plrute. ) Pdsay (515)
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Integrating (5.15]) on a compact time interval J with |J| = K forms
1
=|J| g// 73|Iu(t,x)|2|Iu(t,y)|2dxdydt. (5.16)
7 Jrixga [T — Yl

On the other hand, we have (&IT]), which implies K < o(K). This causes a contradiction if K
is large enough. Hence the soliton-like solution does not exist. The remainder of this section is
devoted to the proof of Theorem

Proof of Theorem 5.2 We define the interaction Morawetz quantity M, (t) of the solution
u at time ¢ by

M=2) /R () {Tu(a) Tu(y)ds (Tu(t, 2)Tult, ) ldedy,

where a(z,y) = |z — y|, and a; is short for dT“j if 1 <j<dand g—;j ifd+1<j <2d. We set
z = (z,y) and w(z) = Tu(z)lu(y). According to (L) and the definition of the operator I, w

satisfies

i0yw(t, z) + ALw(t, z)
= Tu(t, 2) I (Ju|*u)(t, y) + I (Ju["u)(t, 2)Tu(t, y)
= Fi(t,z) + Fa(t,z) = F(t, 2). (5.17)
The fundmental theorem of calculus shows that
T d

2d T
M (T) — M,(0) = ; aMa(t)dt = QZ/ /R% a;(x, y)0Im(wo;w)dadydt.

Inserting (B.I7) into this identity, we deduce

T T
Mo (T) — M,(0) = / /aj(?‘jkk(|w|2)dzdt - 4/ /ajReak(ajEc?‘kw)dzdt
/ /aj (t,2)0; wdzdt—l—/ / F(t, 2)0;wdzdt
—/ /ajajF(t,z)@dzdt—/ /ajﬁjﬁ(t,z)wdzdt,
0 0

where we use the Einstein summation convention and sum from 1 to 2d for every subindex.

Inserting the nonlinearity explicitly and integrating by parts, we have
T
M) = 20,00) = [ [ (~ANaw )l Tule ) T g)Pzdyar
R2d

T

)
+2 /
0
T

+2 /

0

a;i(z, y)Re(0;w0,w)dadydt
M (Jul*u)(t, 2)0; Ia(t, x)| Tu(t, y)|[*dedydt

a;(z, ) I(|u|*T)(t, ©)0; Tu(t, z) | Tu(t, y) | Pdzdydt

H
— — —
Q
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T
* /0 /R a;; (2, )1 (Jul*u)(t, 2) [t @) Tu(t, y)[* dedydt
T
b [ e Gl 0 ) Pt )P

T
[0 [ e oty - e n) )
x Tu(t, z)0;Iu(t, z)dzdydt

/ / I(jul®B)(t, 9)Tult,y) — T(julu)(t, v)Tu(t, y)
x 0jIu(t, z)Iu(t, z)dzdydt

+ 8 similar terms as the last above with x, y exchanged.

For further estimation, we transform this identity into
T
MoT) = 3,0 = [ [ (~Anate )l Tutt,a) Tu(t. ) Pdadya
]RQd

+4 Z / /}RM a;i(z, y)Re(0;w0,w)dxdydt

7,k=1

d T
4

T72 25 i Tu(t, )| 2| Tu(t, y)[*dzdydt

+d+2_zs;/0 /Ma”(x,yn u(t, )| Tut, ) Pdady

+ Z / T [ aste Tl u) e 1t ) ~ 1(ul°0) ¢ ) e )
x Zl(t )0, Ta(t, z)dzdydt
T Z / ) [ aste Il n) e ) 1ute, ) = 1(ul0) ¢ ) e )
x a Tu(t, 2)Ia(t, z)dzdydt
+22/ / I(|u|®u)(t, ) — [Tu|®(t, ) Tu(t, z)]

x |Tu(t, y) 0, Tu(t, z)dzdydt
+22/ / I(|u|®T)(t, z) — [Tu|®(t, ) Iu(t, z)]

x Tu(t, y) 0, Tu(t, 2)dzdydt
o A R e
x | Tu(t,y)|*Ta(t, )dedydt

d T

+30 [ an@lr e na) - 1o ot a)

x | Tu(t, y)|* Tu(t, )dzdydt

823

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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+ BE20) + - - - + (B206) with @, y exchanged. (5.27)

4(d—1)(d—3)
lz—y|3

A simple calculus shows that —AAa =
control the other terms in (GI8)-(E2T).
Estimates for (5.19)—(5.20) Since the matrix with elements aj; is positively defined,
2d
I9) > 0. Direct computer shows > a;; = 29=1 and therefore (20) > 0.
J

lz—y[

. Comparing this with (5I1), we need to

Estimates for (5.23)—(5.24) Since the two terms are similar, we only control (5.23]). By
the triangle inequality, we have

[ (Jul®w) = [Tul*Tul| , - 24,

—

< M ([ Ful*u) = [Tu]* Tull 2(JLd2—f2)+III(IUIau—IIUI‘”IU)II

+ [Jul*u = [Tu|*Tu] ,

L2(J,Ld12)
S Psox ([Hul*Tu)||

L2(JLd+2) + )

where the last inequality uses the definition of the operator I. Applying Bernstein’s and Holder’s

inequalities,
s < L Tul®T ’ d—2s
SN CKHv(l U’| u)||L2(JLd2_+d2)+||U>CKHL2(JLn)H HL°°(]R Ld )
d—2s 2.5 d—2s 2.5
~ CK”v ||L2(JLd+2)” H ]RLd ) * Hu>CKHLz(JLﬁ)H ul < (R, L7 ).

Since the H*-norm of the solution is bounded, by Sobolev embedding, Bernstein’s inequality
and (5.6), we continue

1
LIS S o 2o IVudll g+ lusoxll ) e

~CK M<CK Le=2)
e 5, 08 ~o(5)) 0

which is acceptable for later use. Similarly,

10573, e S D Mllusudl, s
M<2K
K 1
< 5 w((f)") <o
M<2K

Now we turn to (5.23). By Holder’s inequality,

(523) < [ 1(ul*w) = (1l Tul g, (077, aa, [Tullege o) S oK),

which is acceptable for Theorem

Estimates for (5.21)—(5.22) As above, we only prove (B2I). The following lemma will

imply acceptable estimates immediately.
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Lemma 5.3

[ ettt o) = 1uda) ) Tt ) T ) Py

T
21/0 /RM a;Im[I(|u|*u)(t, y) Iu(t, y)]| Tu(t, z)|*dzdydt

< o(1).
Proof We split [u|*™2 as

|+ = I(ju|*u)Ia + I(|ul*u) (1 - D)
+ (1= D(Jul*uw)Ia + (1 = I)(Ju|*uw)(1 — I)a.

We insert this into the equation in the lemma,
T
21/ / a;ImI (u|®u)(t, y)|Ia(t, y)|[Tu(t, z)|*dedydt
0o Jr
T
— 9 / / a;Tm(1 — I)(Jul*u)(t, ) Ta(t, )| Tu(t, 2) Pdadydt
0 R2d

T
_ 21/ / a;Iml (Ju|*w)(t, y) (1 — D)a(t, y)| Tu(t, z)|*dedydt
0 JR2d

T
B 2i/o / a;Im(1 = I)(|u|*u)(t,y) (1 = Du(t, y)|Tu(t, o) Pdedyds.

Consider (£30) first by Holder’s inequality, (5:6) and the mass conservation

G < HP>CK(|U|QU)”L2(J,Ld2—f2

S o) ([ P>ok (Jlucok | u<cr)|

uscrl e Il 2

_2d_
L2(J,Ld+2)

4
d—2s
tlsonll i, I )
1 4
< d—2s
S o) (g IVuserll g, it W77 oy +o(1)
< o(1 —M 1
So(1) ) orcllvemll ) ) +0(1)
M<CK

So(1) Y %0((%)%)+0(1)50(1).

M<CK

This is acceptable. For (5:28]),

6 = 2itm | [ [ G0 - D) Tl drdys

Vy - Vy

. T _ Dy, a
_ 21Im/0 » 8g(ajfu(t,y))[A—y(1 — I)(|ul u)(t,y)} \Tu(t, z)[2dzdydt.

825

(5.28)
(5.29)

(5.30)
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By Holder’s and Bernstein’s inequalities,

2
LQ(JLdzgz)Ha ull oy p ey Ml Do (02)

6 < | %a —I><|u|“u>\

/ / [z I><|u|au><t,y>y|fu<t7x>|2|fu<t,y>|dxdydt

A

=o(1) + A,

and by Holder’s equality for the second term,

Tu(t,
A<H/ Tyl |50 D)
R Ifc—yl L4<JL6d>
Tu(t,
H/ Hutt, )" ‘ |1 Tul| 2
R4 |x—y| LA(J,LS4) LA(JL %)
Interpolating
K3
<
lsaell,, 2 So(5r)
with
lusarllpoe w2y S 1,
we have
Ki
<
||U>M||L4(J,L%) ~ O<M% )
With this and Bernstein’s inequality, we have
[T 2a, S [l 24
LAJ,LI5) Mgc:K LA(,L9 %)
a—1_d-%
S ) MEo Hu>MHL4(J,L%)
M<CK
d—Z K4
S Y M () = oK),
M<CK !
Iu . < M3 ||u < o(K*
I, g § 5 Ml ) S ol
Thus together with Hardy’s inequality, we have
H/ Hu(t, z)* ‘
Rd Ix—yl L4(J,L54)
S T L

o(K3).

_2d_
L2(J,Ld+2)

1
< o(k / / 91— D (ul*u)(t, y ‘|Iu (t, 2) 2| Tu(t, y)|dzdydt
R2d |J? —

(5.31)

(5.32)
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Collecting these estimates, we have

BE28) < oK Ho(K )o(KF) < o(1).

Finally we turn to (229 and as an estimate for (5.28), integrating by parts

(" o A _
6z =2 [ [ atmi(ulu) ) T - Dt lu(t.o)Pdadyd

0 i 2
< Z/ /R%z |z — I(Jul™u )(t,y)||zé(1 = Iu(t,y)|[Tu(t, z)|"dzdydt
a 8@ _ 5
+ ze:/o /R?d |a; 0 (Jul u)(t,y)z(l — (1 = Du(t,y)||[Tu(t, z)|*dzdydt.

By Hélder’s, Hardy’s and Bernstein’s inequalities and mass conservation, we continue as follows:

[Hu(t, z)*
(5.29) <ZH/ S —TE

AN - _2d_
T LTS

Ix—yl
o %
+ 210wl KO0l e Il
SENPl o sa [ (lul*w)] —2a [[(L=Dull 2
Lo (L30T L2 L) L2(,L77)
-1 « o
+ KOGy gt 0= Dl
Holder’s and Sobolev inequalities give
2 1
Tl . patte, < MulzeganlTul e STVETullie ),

I(Jul® <|IVIFI(Jul® L -
Il e SOV, )

By the triangle inequality, we have

[ (lul* )] g, SV I(ul®u — [Tu]*Tu)|

_2d_
LQ(J,LCH—g) L2(J1Ld+2)

2 @
+ 191 1(1u] Iu>||L2(JLd2_f2)

S K5 |ull® N =Dl ;2
Lo(J,L L2(J,Ld=2)

+ ”Iu”ioo(JLﬁd 3 ’LL”

2d_ .
L2(J,Ld-2)
Similarly, we have

[0 (Ju[*w)] <O (Ju|*w — [Tu|* )| 2+ (|0 I ([Tu|* Tu)|

L2(J,Ld+2)
S K|u||® 1—-1Tu
S K| ||L (JL%)H( Jull

Tul|

2d
L2(s,L ey = L2(J,Ld+2)

2d
L2(J,L7-2)

«
N ”IUJHLoo(JLc'Ed2 ) L2(2,L72)’
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By these together with (B.0]), we have

BX) S K 'K3KSo(1) + K 'Kso(1) Y. —(( ))

M<CK

+ K 'Ko(1) + K1 Z Mo((%) ) (1),
M<CK

which completes the proof.

Now ([B2I)) follows from this lemma, if we add one order partial differential operator on

Tu(t,z) in the integral which produces a K.

Estimates for (5.25)—(5.26) Similarly, by symmetry, we only show that for (5:25)). Noting

that Z a;i(z,y) = |x yl’ by Holder’s and Hardy’s inequalities,
([ 7| 2d

H/ [Lu(t, )| ’
- L4(J,L64) L4(J,Ld7% )

x III(IUI“U) = Hu|*Iull

_2d_
L2(J,Ld+2)

STl , ) e ||Iu|| 24 I(ful*u) = [Tu[*Tu]| , 20
LALY) (J,LTF2)
S ||IU||Loo L2 ||IU|| 2a_ || Tull 24
(AED LA F) LA L F)
X (ful*u) = [Tu*Tu] , )

E3T)-E32), (B6) and mass conservation show the estimate for (2.25).
Noting (I8)-(E26), we need to control M,(t) for any ¢ € [0,7]. By the definition and
Holder’s and Bernstein’s inequalities, we obtain

| Ma(t)] < 1105 Tull 2| Tull7»
S Y Mlunl

M<CK
< > Mlumllzz+ Y Mlusullze
M<K!- K'-<M<CK

SE'" 4 lusp-l2 >, M
K- <M<CK

SK'" +o(1) ). M~o(K).
Kl1-<M<CK

Now we conclude Theorem
6 The Low-to-High Frequency Cascade

In this section, we defeat the low-to-high frequency cascade solutions as in Theorem [[L4l As
Remark [£.2] we have

sup / €72, €) 2 < 1. (6.1)
teR
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Remark [[4] deduce that, for any > 0, there exists a constant ¢(n) independent of ¢, such that
/ (€ [a(t,€)Pde < . (62)
[€]<e(mN (1)
Interpolating (61)—(G2)), we have
/ i(t,€)Pde < . (6:3)
[€1<e(mN (1)

On the other hand, by the definition of the low-to-high frequency cascade solutions, we can

pick up a time sequence t,, — o0, such that N(t,) — oo. Thus
n—oo n—oo

Anv 2d Si 25/\”’ 2d _)0 64
/f>c<n>N<t> e, )"t (C(n)N(tn))28/|§| [tn, 7€ — (6.4)

Then ([G3)-(@4) show ||u(t)||rz = 0 by the mass conservation, which is a contradiction to the

definition of wu, i.e., low-to-high frequency cascade solutions can not exist.

7 The Finite-Time Blowup

Finally, we deal with the finite-time blowup scenario. Without loss of generality, let T" > 0
be the finite endpoint of the life interval of such a solution u. Choosing € = % — 8, Tg = %

and (qo,70) as the corresponding admissible pair, by (LI0), we have

T
9 “u@lze = | [ e O89 1 <(uls)ds
t

L2

1
Lo (ery.Lrey (T =00V (ju|*w)

1 1
S (@ =) lul**] o~ (T = )% ot —0.

2d.
Leo((t,T),Ld+er") Leo((t,1),L7=%) t=T

< N9<(rulw)| T

Interpolating this with sup |||V|*u(¢)|| 2, we have
tel

t 0
)]z —0,
which implies ||u(t)||2 = 0 and that there does not exist any finite-time blowup critical solution.

The main results of the last three sections show that the assumption in Theorem [[.2] causes
a contradiction, so we prove Theorem [[.11
8 Appendix

In this section, we prove the existence of the critical solution. Let A > 0, and set

B(A) = {uo € H*;if u is the solution to (IZI)) with initial data wuo,

and lifespan I(ug), sup |[|V[*u(t)||r2 < A}. (8.1)

tel(uo)
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Definition 8.1 We say that SC(A) holds if for every ug € B(A), I(ug) = R and u is
the solution with initial data g, ||ul/pemw,ry < 0o. We say that SC(A;ug) holds if ug €
B(A), I(ug) =R and u is the solution with initial data ug, |u| pa@, ) < 00.

By Theorem B3] for Ag > 0 small enough, we have that SC(A4p) holds. Our main result,
Theorem [[T] is equivalent to that SC(A) holds for all A > 0. Thus if Theorem [[T] fails, there
exists a critical Ac > Ag > 0 with the property that for any A < Ac, SC(A) holds but for
any A > Ag, SC(A) fails. The key tool in the proof of Theorem is the following profile

decomposition.

Lemma 8.1 Given a bounded sequence (von)52; C H*(R%), there exists a sequence \h
C H*(R?), a subsequence of (vo,n)321, and a sequence of triples vectors (Njn, Tjn,tjn)5e, C
Rt x R? x R, which are orthogonal in the following sense:

Nin , At [tin =il | [@im = 2yl

+ — 00 (8.2)
Aitn Ajm A2, Ajn n—oo
for j # j4', such that for each J > 1, we have
(1)
J 1 dgzb R s
vo,nfz —) V}l( )\Qj’na A,]’”)eri, (8.3)
j=1 70" Jim J;m
where V}(t) = A Vj;
(2)
limsup [[e"®w] || Lagr, 7 e 0; (8.4)
(3) for any J > 0, we have a Pythagorean-like property,
J
vo.ullFre = D IVillEe + lwpllZ. + o7 (1), (8.5)

Jj=1

where 07 (1) — 0.
n—oo

The proof is analogous to the one in [22], and we omit it.
Finally, we need a perturbation result. It is analogous to [21, Theorem 2.14] (for the energy-

critical equation).

Proposition 8.1 (Perturbation) Given any A > 0, there exist e(A) > 0 and C(A) > 0 with
the following property. If u € C([0,00), H*(R?)) is a solution to (L)), if u € C(]0, 00), H*(R%))
and e € LY ([0,00), L™ (R)) satisfy

T, + AT = |07 + e
for a.e. t >0, and if
[ullLago,00),27) < A, lell Lo ((0,00), 17y < € < €(A),
i (w(0) = (0) ) za(io ey 7)< = < £(A),

then u € Lq((07 00)7 Lr(Rd)) and HU’ - ﬂHLq([O,oo),LT) < Ce.
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Proof (sec [I3]) By the definition of Ac, there exists a sequence A,, — Ac as n — oo,
such that there exists a sequence (ug,)2%, C H® with ug,, € SC(A,) and the corresponding

solution wu,, is the blowup in its lifespan

|unllzar, Ly = oo

Using the time-translation symmetry of (1), we replace ug n, by wn(sy,) (still denoted by ug ),
such that

nlL»Hc}o ||un||LQ((inf[n7$n],Lr) = nh~>n,olo ”un”Lq([SnvSUPIn)aLT) el (87)

Appling Lemma [8] to the sequence (ug,, )%, we have

J 1 d—2s ¢ z
— 2 (- Ymn T Ljin J
uo’"_.z(,\jn) v 2 Am ) il (88)
j=1 " o )
Let s, = — ijz” , and let U; be the non-linear profile associated with (V}, (s;,,)52,) and lifespan

J.n

fj . We denote

Gin(t) = (51) 7 05+ s T522).
VR j.n Jin
We will prove that there is only one non-trivial V; in the decomposition (BF]). We proceed by
contradiction.
Step 1 There exist Jy and a constant C, such that for any j > Jy, Tj = R, the admissible

pair (g, r) satisfies
sup 105 (1)« + 1Us o,y + IIVITilace ) < CllVill e
due to small data and the Strichartz’s estimate. Thus by ([83]), we have

> sup lU; 0%, + Uil @ om) + IIVIPUi I a@rm < C Y IVl
j>Jdo R 7>

Step 2 It can not happen that for all 1 < j < Jy and n large enough, we have

”Uj||Lq([Sj,n,,supfj)7L") < 00

If it is not true, supfj = oo for all j > 1 and

oo

Z Sup )||Uj(t)||2' s ||Uj||iq([SJ’1n,Supfj),LT) < 0.

j=1 [Sj,7Ly+OO

For any eg > 0, by [84), there exist J(ey) and n large enough, such that

4w, | Lar,Lm) < €o- (8.9)
Let
J(e0) J (o) N ; o
Hocot:0) = 3 Uralts) = 3 (=) 7 Ui5z + i 2.
Jj=1 j=1 25 J,n Jsm
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We claim that, for some Cy > 0,

[ Hneoll La((0,400),7) < Co-

We use Sobolev embedding and interpolation, such that

| Ha.collLa(0,4+00),7) < NIV Hcoll La(o,400),7)

< NVF Hneoll 04000 o IV Hnco 122 0 o) e

(8.10)

(8.11)

for some suitable s € (0,s), 7, p and 6. Using the argument as in [20, p. 663] to the two terms

in (8I0)), we can give a bound for ||Hp ¢l £a([0,400),27)- We omit the details. Now, we consider

the equation

J(eo
10y Hp o + AHy o = Z Ujnl*Ujons

J(€o)
Hypeo UJ,n
J=1
We can rewrite the nonlinearity as
J(eo) N Jleo) _
Z |Uj,n|anm = |Hn,eo|aHn,eo + Z |Uj,n|an,n - |Hn,eo|aHn,eo

Jj=1
— [e%
= [Hneo|" H,eo + €neo-

By B3)—({&3), we have

‘ N ( z:: )

_ ||eitAw,{(€0)||Lq([0,+oo),LT) < €.

L4([0,400),L™)

To get a contradiction, we use Proposition 81l Hence, we need to estimate e, -

that for every P > 1 and ¢ > 2, there exists a constant Cp ¢, such that

¢ p
[ =D 117| < Cre Y lasl ol
=1 =1 7k
for all (z;)1<j<¢ C C* (see [14} (1.10)]). This implies

HemEo”Lb’([O,—i-oo),LT/) S Z H|Ujan|an'7"”Lb’([O,—i-oo),LT/)

J#3’
-
—%n U., (=.n '*””j’,n)
. 2
Jn n ) o J( )\J N ) )\j/,n
~ d 2; d—2s
2
i#3’ Jﬁn /\j’,n

We will prove that

— 0.
n—oo

llen,eoll L ([0,4-00),L™")

(8.12)

(8.13)

We recall

(8.14)

LY ([0,4-00),L7")

(8.15)
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For every j, we can find —oo < a; < 400 such that

HUjHLq((aj,supfj),Lr) < CHUj”Lq([sjmsupfj),Lr) < oo

for n large and s;, € (a;,+00). Picking any j # j’ in the above sum, by a change of variables,

we have

Uj(~—tj,n ~—xj,n) Uj/(_tj',n"—’cj/,n)

H‘ iy v SUS S At v ‘
d—2s d—2s
Az =3 LY ([0,400), L™)
J,n J'n
d—2s 2 . 4.
_ ) F g (M Hin =t A @y = T [ (8.16)
= bV J )\2 ) . AR v P . .
I Jin Jn ([s57,nsF00),L™)

For every s € [sjs n,+00) (though we use the same notation as the one in regularity, whose

meaning is clear and will not cause a delusion),

A2,
J'n
s+

By B2), if )i\fll =200, then (8I0]) tends to 0 asn — oo. If A, = Ajr p, but %77“‘ — 00,

i’ n R n— oo
tir o —ti Lt —Ljn e
or Njn = \jrn, % < C but % — 00, the same result holds. By Proposition[R.1],

Jm n—o00

this together with (m and (BI3) implies that u, is bounded in L9([0,+00), L"(R?)) for n
large enough, which contradicts (8.
According to steps 1 and 2, we can arrange the order of V; and find J;, such that 1 < J; < Jy
and for all 1 < j < J; with
||Uj||Lq([3jm,supfj),L") = 00,

while j > J;, we have

||Uj||Lq([5j,n,supfj),L7') < 00.

As a consequence of steps 1 and 2, we have

D MU s, o po0), 1y < 00
7>J1

for n large enough. Now for k € N, 1 < j < Jy, we set

~ 1 ~
_— suij—E, if supI; < oo,
Jik ~
k, if sup I; = oo,
and set 7 by s;jn + ;QL’“ = T;‘k and 7 = 1£ni<nj t7 . With these definitions, (NIj,n is defined on
b j,"L b 7]7 1 b

[0,t7] for all j, and there exists a Cf, such that for n large enough,

(o]
Z ||Uj||%q([o,t',g],u) + zug] ||Uj,n||qu < C. (8.17)

j=1 0,7
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Step 3 We claim as follows. Fixed J > 1, there exists an n(J,€), such that for any
1< J, <J, we have

Vs 522) 12 Vi 5E2) 12
H‘ Z d 2 HH - Z HXjHH S e (8.18)
] n j=J2 jn
In order to prove ([BIX), we need to show that, for any Jo < j # j' < J,
(V1) (350 52 ") (V) (g0 522 ) )
lim s L1, (8.19)
n—oo A2 Az

3,ngn

We will use the following formula frequently:

(eitoAv)(x;—OxO> _ (ei/\StOA (U(%))@). (8.20)

By the definition of le, (B20) and a change of variance, we have

(P (s5m 5522 ), 91V (s 575))

,n

N
< ity —tjn)A ((|V| V)( _x”””))(x)a (|V|SVJ')(QECJ;)>L3
) Ain)\; : . (8.21)

We consider different cases inspired by (B2]).
Case (1) . (). We make a change of the variable, y = Z4%% "and then (821]) equals

M —00 )‘j’

(/\]—n>< ((IVI W(T))(y) 4 Vj,(y)>L§. (8.22)

i'n

Subcase (ia) M < C. In this subcase, we can find a subsequence of n (still denoted

J!L

by n) such that )\7% — t;,;+ for some ¢; ;» € R, and therefore we only need to consider
n—oo

i’n

Titn—Tin

() e (g2 ),

which implies (8I9) in the subcase.

) m)\it" 2 00, Without loss of generality, denote ¢; j nft”;\% — +o00.

7 n n— \n n— o0

We need a lemma in this subcase and in the sequel.

subcase (ib

Lemma 8.2 Assume that ||hy| 7. < A and that |[e"® Ry || a0, 4+00),L7) — 0. Then |V|*hy,

— 0 in L*(RY) as n — oo.

For the proof, see 21, Lemma 3.6].
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Take
P Tjn—I;r
Ajn \ 4 12000 YT
) = () e e T ((91V) (—222—) ) @).
Ajtn Py

As in the lemma, we act it by e*® and calculus as (820), so we obtain

d oy timtn Tjin =Tt
. . 5 t+7")A -+ -
itA o )\]7n 2 1( 22 n s )‘Jm
Moy (a) = () e (V[ V3) (—=22—) ) (@)
5/ iln
Ajon
tjn =t n
.t+ ] A? :; A x x
SRl jin =Tl
N\ Olny @+ =R
_ ) e Xjn (|V|SV") g, )
)\ i"n J Aj/,n
3’ v
We check the assumption in the lemma,
tjn "t n
RN
i (>‘7" n’ S A
itA N s
€l Lao Lr) = He an IV Vl)‘
| lLa(0,400).L7) VIV aotoey.2m)

A ()
= ||el7' (|V|g‘/jj)HLq([t]‘,j’,n’+oo)7Lr) — 07
since t; j/., — +00. Thus Lemma B2 includes the result in this subcase.
n—oo

Case (ii) \j, = \j;, and % — o0. In this case, (R22) takes the form

i'n n— oo

(& (T ),

This case is similar to the subcase (ib) and we omit the proof.

ese tir y—tin Tir o, —Tjn
Case (iii) A\jn = Ajr 0, lJT”‘ < C and % — oo. we can find a subsequence

' i’ n n— oo
. tiry—tin Tir o —Tjn
of n (still denoted by n) such that ~—== — t; ;» for some ¢; j € R and ~——"=
i'm M0

and therefore we only need to consider

— OQ,
i’n n— 00

(UVPV) (y+ 5 —), a9V W)

. X ;1 —Xj . .
Since ~5—== — 00, it is easy to conclude the result.

J’n n— o0
Step 4 For fixed J, we set

J

e = FUs) =Y F(U;0),
Jj=1

P = F(Usn +w?) = F(Usn),

~ Jo~ .
where Uy, = > Ujn, f(2) = |2|%2 and wh7 (t) = e*®w;. Then
j=1

(1) For anyiJ > 1,k €N, e>0, there exists an n(J, k, €), such that

1
|\6§,L|\Lb/([o,t;>,u/) <e (8.23)
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for all n > n(J, k,e);
(2) For all k € N, e > 0, there exists a J(k,¢), so that for any J > J(k,¢€), there exists an
n(J, k,€), such that

2
||e§],21||Lb'([O,tg),L’”/) <e (8.24)

We complete the proof.
Fixed 1 < j < Ji, if we set s;, — s; along some subsequence, then s; < 4-00. Indeed, if

5; = 400, by the definition of the non-linear profile, we have
(s: ) — olSinAY| -
|Uj(sj,n) —e Vill g e 0.
By the triangle inequality and the linear Strichartz’s estimate, we have

€72 AU; (85.0) | La([s.m,+00),L7)
< e mB U (s5.0) = €AVl a(ls; 0 to0),Lm) + 1AVl a(ls; 0 400y, 27)

S lle™m2U;(s5.0) = Vill g + 12 Vill La(is; 400, L7)5

which is small for n large enough, and by Theorem B3, [|Ujllza((s, ., +00),zm) < 00, which
contradicts the result in step 2. Thus for fixed £ € N and 1 < 5 < Jy, there exists —oo < a; <
+00, such that (Sj,n,ijk) C (aj,Tj'fk) and

||Uj||Lq((aj,TIk),L") < C”Uj||Lq((sj’mTIk),Lr) < 0.
Then by the argument as in step 2, we conclude [823). To get ([824), by Holder’s inequality,

2
lePol 2o o.emy vy S I1wh [l zaqro.izy.zm)

- 17
X (WWsnllZago,eg),em) + 1w 1Zaqo,e1,0m)) =2, 0-

This follows from ([84]). We complete the proof of step 4.
According to step 4 and ([84), for any fixed k,m € N, we can find a J(m, k), so that for any
J > J(m, k), there exists an nq(J, m, k), such that for any n > nq(J,m, k), we have

i 1 ) 1

e lzageiny < — €F o) o) < 5 (8.25)

Now we choose J = J(m,k) for m, k. For this J (and corresponding m, k), we can find an
n(m, k) > ni(J,m, k), such that

(1)

o’ (mk) (1) < (8.26)

1
m
as in B3] for any n > n(m, k);

(2)

1) 1
||eJ(m,k),n||Lb’([o,t;;),u’) < m (8.27)
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as in (B823) for any n > n(m, k);
(3)

H’J(g:k Vl(Sjn, )\jﬂnn)H J(i:k H Sj ns )\JvL’L)HQ - 1
: = V5 asl = (2m)?’
j=J2 Jn j=J2 ]n
as in (BI8) for any n > n(m, k) and any 1 < Jo < J(m, k);
(4)
J(m,k)
~ 1 T — Xin 1
3 [[Fantr0) = Vi (s =) <
j=1 Ajn Jmn

for any n > n(m, k), which is a simple result by the definition of the nonlinear profile.
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(8.28)

(8.29)

We can also assume that J(m, k) < J(m+1, k) and n(m, k) < n(m+1, k) without influencing

any result listed above.

(8.30)

Step 5 For 0 <t < tn(m ") and m large enough, we have t n(m,k) < sup Ly (m, k) and
=~ 1,J (m,k
Un(m,k) (1) = Usm k) n(m. k) (8) + wn(,%) () + i (1)
with
7ol gm0y 0
We set U, k) = (NIJ(m7k)7n(m7k)(t) + wi{ﬁz)k) (t), and thus [j'm,k will satisfy the following
equation on [0, tn(m k)]
J(m,k)
10 Um i+ AUnk = > U ntm) | “ U,y
j=1

Unn i (0,2) = Uy by, k) (0) + wi{,ﬁﬁf) (0).

With the notation f(z) = |z|*z, we can rewrite the nonlinearity of ([830) into

J(m,k) (m,k)
Z f(Uj,n(m,k)) Z f j,n(m k) f(U )
j=1
— (TT (1) 2
= f([{m,k) T CT(m k) n(m.k) — CI(m.k),n(m,k)
= f(Um,k) + em,k'

We note that, by (829)),

||e 2 (Wt 19 (0) = o)l o) oy
m,k)

Vi L = Zjn(m,k) 2 H
nim 77 _Unm 70 . S
XZ: H (Sj TN k) ) i) (2,0,

Js n(m k)

1
p—

By this together with (825) and ([827), the assumption of Proposition B] is satisfied, so we

conclude the result of step 5.
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Step 6 There exists a jo, 1 < jo < .J; and a subsequence {k,}, k, — = 00, 50 that for each

fixed k,, we can find a subsequence m,, (k,) - ~+00, such that n(ml, (k'L) k,) i~ +oo with
V—100 V—+00

tn(n]zu(k Dkl n(mu(kb),kb)
Jo,ke L

for each ¢, v.
The proof is a simple application of the pigeonhole principle as in [21], and we omit it.

Recall that for fixed k € N and all large m, ||Uj, ) = oo asinstep 2, and

HLG( [Sjg.n(m,k)s SUPTJO) Lr
Sio = nlim 5jo,n < 400 as in the beginning of step 4. Then we can find a —co < bj, < sup I]ov

such that s, ,(m.k) < by, for all large m and ||U]0||Lq([b = 0. By the definition of

jovSUPIjo)aLT) -
Ac, we have

A= sup  ||U;,(0)]1F. = A2 (8.31)

[bjo»sup Ijo)

We also set A7 = sup ||Uj, (t)||§{, and thus klim A = A.

[bjoyTJO k]
Now, we set T}, 1 € [bjo,Tng ) by A2 = ||Uj, (Tj, 1)||%. . Define Tn(m ") by the formula
n(m,k)
o
Sjo.n(mk) + 15 = Tjo k-
jOvn(mvk)

Note that for fixed k and large m, Tn(;n k) > 0, since T}, < T K We obtain that T;:)(ZL k) <
t;bo("; ) Since t"(m”(k k) = "(m”(k i) , for all ¢, v, we note that U n(m (k) k) (T jo(,m”(k )ik ))
is well-defined for all 1< < J1 by the deﬁmtlon of tkfm”(kL) ), and j > J; by the definition
of Jl.

Step 7 For fixed k,, and v large enough, we have

( J(mu(kL),kL) ( k, )
”un(mu,h)(Tjo,k o )”2 = Z ”U, n(my,k, )( jo,k v )”2 s
j=1
L J(my (k) k., vik.
[l R (O y 2 e (), (8.32)

where €, (v) — 0.
V—00
In order to simplify the notation, in this step, we set J = J(m,(k,),k,), n = n(m,, k,) and
Tiok = T;(?”’k ) for short.
We first claim that, given any € > 0, we can find Jo = J2(€) and a v(e), such that for any

v > v(e), we have

J
sup H Z l_'ijn(t)HH <e. (8.33)
=

[O»tzL]

To prove this claim, for any e; > 0, by (1)), we can find Jy = Ja(e1), such that

> Vil < 6 (8.34)

j=J2
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Thus by step 1, for any admissible pair (g, r), we have

ZSUPHU ||2<+||U||L9(RL")+”|V| U”Lq R,L") < Cei.
j=J2

For 0 <t < 400, we have

J _ ) J _
Z Uj,n(t):enm(z Uj,n Z/ = t)Af Jn)( )

j:J2 j:Jz Jj= Jo

By Strichartz’s estimates, for some admissible (¢1,71) we obtain

J
sup | Z Gin®)] . 5| Z T, + 3 13l 91Tl

[0,t7 ] j=Ja
By ([8249), Strichartz’s estimates ([828) and (834]), we have
T — T 1
su < H Vl(s 7”1)“ +— +Ce
t}? H Z H - Z PN s my, !

JJ2 ]n

S_“‘CGlSea
my

by choosing v large enough and ¢; small enough, which gives the claim. By step 5, (833]) and
®I1), in order to prove (832), it suffices to prove

UVIT, wmted T IV T, omy e (T ™)) = 0 for 1< j# 5 < Ja,  (8.35)

Jo,k. Jo,k.
VT, o (9w @GR ) — 0 for 1 << T (8.36)

To prove (830, we set

n n
7o Tk _tin o p Tk Lite
J,n 2 2 75 T 2 2
Aj Aj Afn Ajrn

As before, we discuss various cases.
(i) [ty ml < Cjr.

We take a subsequence, so that tj ,, — t;,. Since 0 < Tk < t;lo(m"’ D = 3, we have
V—00 7 3

n
tirn o Tjok _ tirm

S = — —
Jn 2 — 2 2
A~ Nirn Ain
n
. tirm tin _ tin _ oo
> 12 2 >33 2 = Lk,
A A A A o

Thus Uy (t) is continuous in H* in a neighborhood of t; ,,. By the definition of ﬁj, we consider

(VI Uj) Ens 22), (IV 12Uy ) (5 ATJ»
(A\jmAjrm) 2 '

(i1) $Lm — oo.

i'n v—oo
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We proceed in two subcases.
(i.1.1) t;,, < O, for some C; > 0.

Passing along a subsequence, we suppose tNJn — th We make a change of the variable
V—00

r—I;r .
y = ——==, and we conclude this subcase.
im

(1.1.2) ;. is not bounded.

Passing to a subsequence, tj,n — +o00. Since for j < Jy, ?jn < Tjx < +o00,s0j > Ji.
V—00

If t; , — 400, U; scatters at +o00. If t;, — —o0, since t;, > s;, and 55, — —o0, U;
V—0Q0 V—00 V—00

scatters at —oo. In either case, there exists an h; € H* (R9), such that
U3 (Em) = €5 2l o — 0.

Thus we consider

(o () v i 52))

(N Ajron)
. T—T,r . . .
We make a change of the variable y = ——~=" again, and this turns into
3’ m
. iJ!L
1)\27'A

b Tjn =T

. ((IVIShj)(%))(y)
< %*j’m VU (e ,y)>

Aj.n
Ajlyn

. Xin L .. .
Since 2% — oo, which is an application of Lemma 8.2, we conclude this subcase.
7 sm V—0Q0

(1:2) Ajn = Ajrp and Ln el 4o,
Jj.m V—00
Since t] n— t~j n = i% and t] n is bounded, we have fj,n, and thus with the argument

as above applied again, we complete this case.

tjn n n n
(i.3) Ajn = Aj o, “/\JiJl < Cj,jv for some Cj ;> 0, and %V:o—koo.
For the same reason, we note that tj,n is bounded. We make a change of the variable
y="= )\x/ n and we obtain the result of this subcase easily.
i’ \n

By the symmetry, we reduce to the following case.

(i) t;»., — +ooand t;, — +oo. Thus U; and U; scatter at +o0o. Thus we only consider
V—0Q0 V—00

(oo (52 v, (52

(NjmAjr.n)?

(e (V1) (52 ) ) @) € N (9 1) (552 ) ) @)

(NjnAjrn) 2

((VIhy) (En ) et (R ) (5222 ) ) (2) )

(NjnAjrn)®

which is similar to (82I]), and we omit the details.




Global Well-Posedness and Scattering for the Defocusing H*-Critical NLS 841

Now we turn to ([836). Consider the case that ¢;,, is bounded, and (830) follows from
Lemma and (&4). If %}n e -+o00 passes to a subsequence, then U; scatters at +00. Thus
the proof is analogous, using Lemma [R2] and (84]). These complete the proof of step 7.

Now we arrive at the point to complete the proof of Theorem [[21 By step 7, we have

A*(n) > A7 + e, (v).

Letting v — +oo, we note that AZ > Apz. Then, letting © — +o0, we have AZ > Apz.
With (B31), we have that Ac = A and U, is the required solution as in Theorem The
compactness is proved as in [20, Proposition 4.2] or [13].

Remark 8.1 As [2Il Remark 3.8] shows, jo is the only one, such that V; is non-trivial and
w) — 0in H*(R?). That means V; = 0 if j # jo.

n—-—+00
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