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Abstract The authors consider the scattering phenomena of the defocusing Ḣs-critical
NLS. It is shown that if a solution of the defocusing NLS remains bounded in the critical
homogeneous Sobolev norm on its maximal interval of existence, then the solution is global
and scatters.
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1 Introduction

We consider the Cauchy problem for the semilinear defocusing Schrödinger equation inR1+d{
iut + Δu = |u|αu,

u(0, x) = u0(x),
(1.1)

where

4
d

< α <

⎧⎨⎩
4

d − 2
, if d ≥ 3,

∞, if d = 1, 2,
(1.2)

and u(t, x) is a complex-valued field in spacetime R × Rd.
A simple computation shows that the equation is invariant under the scaling

uλ = λ
2
α u(λ2t, λx), (1.3)

and the corresponding scale-invariant Sobolev norm is Ḣs(Rd) under (1.3), where s = d
2 − 2

α .
We will use both notations, s and α, throughout this paper. We restrict the initial data to the
Ḣs(Rd) class. Thus the Cauchy problem (1.1) will be critical at the Ḣs level.

The Cauchy problem for (1.1) was intensively studied (see [2–3, 21]). It is known (see, e.g.,
[2–3] and also see Theorem 3.3 below) that if the initial data u0(x) have a finite norm, then the
Cauchy problem is locally well-posed, in the sense that there exists a unique solution to (1.1)
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in C(I, Ḣs(Rd)) ∩ Lq(I, Lr(Rd)) for some time interval I, where (q, r) denotes some special
Lebesgue exponent pair which we will define later (see (1.8) below).

If the initial data are small, then the solution is known to exist globally in time, and
scatters to a solution u±(t) to the free Schrödinger equation (i∂t + Δ)u± = 0, in the sense that
‖u(t) − u±(t)‖Ḣs(Rd) → 0 as t → ±∞. For (1.1) with general initial data, the arguments in
[2–3] do not extend to yield global well-posedness, because the time of existence given by the
local theory depends on the profile of the data as well as on the normal of the initial data.
The situation is quite similar to the mass-critical and energy-critical Schrödinger equations.
The first major step toward verifying global well-posedness is Bourgain’s method of “induction
on energy” (see [1]), and he obtained the global space-time bound for the defocusing energy-
critical NLS in three and four dimensions with spherically symmetric data. Another important
breakthrough to non-spherically symmetric initial data was made in [8]. The authors developed
the argument of “induction on energy” and introduced the “minimal energy blowup solutions”
which are localized in both space and frequency (comparing with the critical solution in our
paper). And the remarkable paper [20] first adapted the concentration-compactness-rigidity
method to simplify the progress in [8] for the radial energy-critical case. Then there are many
papers focusing on these topics (see [9–11, 26, 28] for the mass-critical case, and [25, 30] for the
energy-critical case).

Our main result is the following global well-posedness result for (1.1).

Theorem 1.1 Suppose that the dimension d and the regularity exponent s satisfy

d ≥ 6 (1.4)

and

2s2 − (d + 4)s + d < 0 (1.5)

or

d = 4, 5,
2
3

< s < 1. (1.6)

Suppose that u is a solution to (1.1) with the initial value u0 ∈ Ḣs(Rd) and the maximal lifespan
I. Assume that sup

t∈I
‖u(t)‖Ḣs = A < +∞. Then I = R and u scatters forward and backward.

Remark 1.1 In [21], the authors proved that if sup
t∈I

‖u(t)‖
Ḣ

1
2 (R3)

= A < +∞, then u is

global and it scatters. The rigidity part of [21] depends on the following consequences of the
Morawetz type identity. Let u0 ∈ H1(R3) ∩ Ḣ

1
2 (R3). Then, for each 0 < T < T+(u0), we have∫ T

0

∫ |u(x)|4
|x| dxdt ≤ C0[‖u(T )‖2

Ḣ
1
2

+ ‖u(0)‖2

Ḣ
1
2
], (1.7)

where u is the solution to (1.1), and C0 is independent of T (see, for instance, [7, Proposition
2.1, Lemma 2.3] for the proof). (1.7) seems not true for 0 < s < 1 except s = 1

2 .

Remark 1.2 It is easy to see that d, s, satisfying condition (1.6), also satisfy (1.5). These
assumptions come out when we prove Theorem 4.1 (see Remark 4.3 below).
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1.1 Outline of the proof

In this paper, we adopt the concentration-compactness-rigidity argument. First we set

q =
2α(α + 2)

4 − (d − 2)α
, b =

2α(α + 2)
dα2 + (d − 2)α − 4

, r = α + 2, (1.8)

throughout this paper. Following the argument in [21, Section 3] closely, we can get a critical
solution in the following sense.

Theorem 1.2 (Reduction to Critical Solutions) Suppose that Theorem 1.1 fails. Then there
exists a solution u with the maximal lifespan I, ‖u‖Lq(I,Lr(Rd)) = ∞ and sup

t∈I
‖|∇|su(t)‖L2 <

∞, which is called a critical solution. Furthermore, there exists a frequency scale function
N(t) : I → R+ and a spacial center function x(t) : I → Rd, such that the set

{N(t)−
d−2s

2 u(t, N(t)−1(x − x(t))); t ∈ I} (1.9)

is precompact in Ḣs(Rd).

Reduction to the critical solution is by now a standard technique in the analysis of Schröding
-er equation at critical regularity. We postpone the proof of this theorem to the appendix
following the argument in [21, Section 3] with some slight changes.

Remark 1.3 Due to the precompactness of the set (1.9), for any η, there exists a time-free
constant C(η), such that∫

|x+x(t)|≥C(η)
N(t)

||∇|su(t, x)|2dx ≤ η,

∫
|ξ|≥C(η)N(t)

||ξ|sû(t, ξ)|2dξ ≤ η

for any t ∈ I.

Remark 1.4 By the precompactness of (1.9), for any η > 0, we can find a time-free constant
c(η) > 0, such that∫

|x+x(t)|≤ c(η)
N(t)

||∇|su(t, x)|2dx ≤ η,

∫
|ξ|≤c(η)N(t)

||ξ|sû(t, ξ)|2dξ ≤ η

for any t ∈ I.

Concerning the behavior of critical solutions at the endpoints of their maximal lifespan, we
can get some reduced Duhamel formulae as in the mass and energy cases. For the proof, see
[24, Proposition 5.23].

Theorem 1.3 (Duhamel’s Formula) Let u be the solution as in the above theorem with its
maximal-lifespan I. Then, for all t ∈ I,

u(t) = lim
T↗ sup I

i
∫ T

t

ei(t−t′)ΔF (u(t′))dt′

= − lim
T↘ inf I

i
∫ t

T

ei(t−t′)ΔF (u(t′))dt′, (1.10)

as weak limits in Ḣs.
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To get more information about the critical solution, we classify the frequency scale function
N(t) as in [25, Section 4] for the energy case (see also [24, Theorem 5.24] for the mass case).

Theorem 1.4 (Three Special Scenarios for Critical Solutions) Suppose that Theorem 1.1
fails. We can ensure that there exists a critical solution u as in Theorem 1.2 with the maximal
lifespan I and the frequency scale function N : I → Rd matching one of the following three
scenarios:

(I) (Finite-Time Blowup) We have that either | inf I| < ∞ or sup I < ∞.
(II) (Soliton-Like Solution) We have I = R and

N(t) = 1 for all t ∈ R.

(III) (Low-to-High Frequency Cascade) We have I = R,

inf
t∈R

N(t) ≥ 1 and lim sup
t→+∞

N(t) = ∞.

For the rigidity part, we utilize different techniques to exclude these three scenarios. The
main idea is to gain a negative regularity for the critical solutions as in the energy-critical case.
The reduced Duhamel formula (1.10) is important in the proceedings. And to exclude the
soliton-like solution, we use a localized interaction Morawetz identity (see [9, Section 6]).

The remainder of this paper is organized as follows. In Section 3, we review some classical
results and some useful lemmas which will be used throughout this paper. In Section 4, we get a
negative regularity for both the soliton-like solution and the low-to-high frequency cascade. In
Section 5, the soliton-like solution scenario is excluded by a long-time Strichartz’s estimate and
a localized interaction Morawetz identity. Sections 6 and 7 are devoted to the other scenarios
according to their frequency scale functions.

2 Basic Tools

We need some tools from the Littlewood-Paley theory. Let ϕ(ξ) ∈ S(Rd) be a radial function
supported in the ball {ξ ∈ Rd : |ξ| ≤ 2} and equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}. For each
dyadic number N > 0, we define the Fourier multipliers as follows:

P̂≤Nf(ξ) ≡ ϕ
( ξ

N

)
f̂(ξ),

P̂>Nf(ξ) ≡
(
1 − ϕ

( ξ

N

))
f̂(ξ),

P̂Nf(ξ) ≡
(
ϕ
( ξ

N

)
− ϕ

(2ξ

N

))
f̂(ξ),

PM<·≤N ≡ P≤N − P≤M .

Sometimes we use f≤M instead of P≤Nf for short and similarly for the others. By the definition,
we have

P≤Nf =
∑

M≤N

PMf ; P>Nf =
∑

M>N

PMf ; f =
∑
M

PMf.

With these notations, we obtain the extremely useful Bernstein ineqality.
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Lemma 2.1 (Bernstein’s Ineqality) Letting s ≥ 0 and 1 ≤ p ≤ q ≤ ∞, the following
inequalities hold:

‖P≥Nf‖Lp �p,s,d N−s‖|∇|sP≥Nf‖Lp ,

‖P≤N |∇|sf‖Lp �p,s,d Ns‖|∇|sP≤Nf‖Lp ,

‖PN |∇|±sf‖Lp ∼p,s,d N±s‖|∇|sPNf‖Lp ,

‖P≤Nf‖Lq �p,q,d N
d
p− d

q ‖P≤Nf‖Lp ,

‖PNf‖Lq �p,q,d N
d
p− d

q ‖PNf‖Lp.

Lemma 2.2 Given γ > 0, 0 < η < 1
2 (1 − 2−γ), and {bk} ∈ 	∞(Z+), let xk ∈ 	∞(Z+) be a

non-negative sequence obeying

xk ≤ bk + η

∞∑
l=0

2−γ|k−l|xl for all k ≥ 0. (2.1)

Then

xk �
k∑

l=0

r|k−l|bl for all k ≥ 0 (2.2)

for some r = r(η) ∈ (2−γ , 1). Moreover, r ↓ 2−γ as η ↓ 0.

For the proof, see [25, Lemma 2.14].

Lemma 2.3 (Fractional Chain Rule) Suppose G ∈ C1(C), s ∈ (0, 1] and 1 < q, q1, q2 < ∞,
such that 1

q = 1
q1

+ 1
q2

. Then,

‖|∇|sG(u)‖Lq � ‖G′(u)‖Lq1‖|∇|su‖Lq2 .

The readers can find a proof in [6].

3 The Cauchy Problem

It is well-known that, given any φ ∈ S′(Rd), the solution of linear Schrödinger equation is

u(t) = eitΔφ = Kt � φ, (3.1)

where the kernel Kt is given by

Kt(x) = (4πit)−
N
2 e

i|x|2
4t . (3.2)

It follows from (3.1)–(3.2) that if φ ∈ L1(RN ), then |t|N
2 ‖u(t)‖L∞ ≤ ‖φ‖L1 . Since eitΔ is

an isometry of L2(RN ), the previous estimate (together with the Riesz-Thorin interpolation
theorem) shows that if 2 ≤ q ≤ ∞ and φ ∈ Lq′

(RN ), then

|t|N(q−2)
2q ‖u(t)‖Lq ≤ ‖φ‖Lq′ . (3.3)

The well-known Strichartz’s estimate is another way to express the dispersive effect of the
operator eitΔ. To state the estimates, we first need the following definition.
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Definition 3.1 (Admissible Pair) For d ≥ 1, we say that a Lebesgue exponents pair (q, r)
is admissible if

2
q

+
d

r
=

d

2
, 2 ≤ q, r ≤ ∞, (d, q, r) 
= (2, 2,∞).

We are now ready to state the Strichartz’s estimate.

Theorem 3.1 (Strichartz’s Estimate) The following properties hold:
(i) For any ϕ ∈ L2(Rd), the function t �→ eitΔϕ belongs to

Lq(R, Lr(Rd)) ∪ C(R, L2(Rd))

for every admissible pair (q, r), and there exists a constant C, such that

‖ei·Δϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2 for every ϕ ∈ L2(Rd).

(ii) Let I be an interval of R, J = I, and t0 ∈ J . If (γ, ρ) is an admissible pair and
f ∈ Lγ′

(I, Lρ′
), then for every admissible pair (q, r), the function

t �→
∫ t

t0

ei(t−s)Δf(s)ds for t ∈ I

belongs to Lq(I, Lr(Rd)) ∪ C(I, L2(Rd)), and there exists a constant C independent of I, such
that ∥∥∥ ∫ t

t0

ei(t−s)Δf(s)ds
∥∥∥

Lq(I,Lr)
≤ C‖f‖Lγ′(I,Lρ′).

For a proof of the non-endpoint case, see [2, Theorem 2.3.3] and [19] for the endpoint case.
We also use an inhomogeneous Strichartz’s estimate in the sequel. As above, we need a new
definition.

Definition 3.2 (Ḣs-Admissible Pair) For d ≥ 1 and s ∈ (−1, 1), we say that a Lebesgue
exponents pair (q, r) is Ḣs-admissible if

2
q

+
d

r
=

d

2
− s,

2d

d − 2s
< r <

2d

d − 2
.

Now we state the inhomogeneous estimate.

Theorem 3.2 Let s > 0, (q1, r1) be an Ḣs-admissible pair and (q′2, r′2) be an Ḣ−s-admissible
pair. Then ∥∥∥ ∫ t

t0

ei(t−s)Δf(s)ds
∥∥∥

Lq1(I,Lr1)
≤ C‖f‖

Lq′2(I,Lr′2)
.

For the proof, see [4, Lemma 2.1] and [18].

Theorem 3.3 (see [4–5]) Assume u0 ∈ Ḣs(Rd), t0 ∈ I and ‖u0‖Ḣs(Rd) ≤ A. Then there
exists a δ = δ(A), such that if ‖ei(t−t0)Δu0‖Lq(I,Lr) < δ, we can find a unique solution u to
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(1.1) in Rd × I with u ∈ C(I; Ḣs(Rd)). Furthermore, we can also find a constant C, such that
for any admissible pair (q, r), we have

‖|∇|su‖Lq(I,Lr) + sup
t∈I

‖u(t)‖Ḣs ≤ CA, ‖u‖Lq(I,Lr) ≤ 2δ.

Moreover, if u0,k → u0 in Ḣs(Rd), then the corresponding solutions uk → u in C(I; Ḣs(Rd)).

The following bilinear estimates will also be used in this paper.

Lemma 3.1 Suppose that v̂(t, ξ) is supported on |ξ| ≤ M and that û(t, ξ) is supported on
|ξ| > N , M � N . Then, for the interval I = [a, b], d ≥ 1,

‖uv‖L2(I,L2) � M
d−1
2

N
1
2

‖u‖S0∗(I)‖v‖S0∗(I), (3.4)

where

‖u‖S0∗(I) ≡ ‖u(a)‖L2 + sup
(q,r) admissible pair

q>2

‖(i∂t + Δ)u‖Lq(I,Lr). (3.5)

For a proof, we refer readers to [31, Lemma 2.5] for example.

Definition 3.3 Let v0 ∈ Ḣs, v(t) = eitΔv0 and let {tn} be a sequence with lim
n→∞ tn = t ∈

[−∞, +∞]. We say that u(x, t) is a nonlinear profile associated with (v0, {tn}) if there exists
an interval I with t ∈ I (if t = ±∞, I = [a, +∞) or I = (−∞, a]), such that u is a solution to
(1.1) in I and

lim
n→∞ ‖u(tn) − v(tn)‖Ḣs = 0.

Remark 3.1 There always exists a unique nonlinear profile associated to (v0, {tn}) (for the
proof, see the analogous one in [20, Remark 2.13]). We can hence define a maximal interval I

of the existence for the nonlinear profile associated to (v0, {tn}).

4 Negative Regularity

The main result of this section is the following theorem, and a similar proof can be found
in [25, Section 6].

Theorem 4.1 (Negative Regularity) Let u be a critical solution with the maximal lifespan
I. If I = R,

‖|∇|su‖L∞(R,L2) < ∞ (4.1)

and

inf
R

N(t) ≥ 1, (4.2)

then there exists an ε > 0 such that ‖|∇|−εu‖L∞(R,L2(Rd)) < ∞.
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Remark 4.1 Let u be the solution satisfying the assumption of this theorem, and interpo-
lation easily implies that u ∈ L∞(R, L2(Rd)), hence the solution shares the mass conservation.

Remark 4.2 It is easy to see that the soliton-like solutions and the low-to-high frequency
cascades satisfy the condition of this theorem, and hence the mass conservation.

Remark 4.3 The conditions in (1.4)–(1.6) come from the proof of this theorem. Practically,
(1.4)–(1.5) refer to the following case of 4

d−2s < 1, while (1.6) refers to 1 ≤ 4
d−2s ≤ 2.

By the precompactness of (1.9) and the assumption on the frequency function, for any η > 0
(chosen later), we can find a uniform N0 = N0(η) > 0, such that∫

|ξ|≤N0

|ξ|2s|û(t)|2dξ < η (4.3)

for any t ∈ I. We now turn to the proof. To this end, we set

A(N) = N−μ sup
t∈R

‖uN(t)‖Lρ for N ≤ 10N0, (4.4)

where d
2 − d

ρ − μ = s. We pick μ = d
d−2s − s if 4

d−2s < 1, while we will choose ρ later if
1 ≤ 4

d−2s ≤ 2.

By Bernstein’s inequality, it is easy to see that A(N) ≤ sup
t∈R

Ns‖uN‖L2 < ∞. Without loss

of generality, we calculate N−μ‖uN(0)‖Lρ for convenience.

First we consider the case of 4
d−2s < 1. By (1.10), we have

N−μ‖uN(0)‖Lρ ≤ N−μ
∥∥∥∫ ∞

0

e−itΔPNF (u(t))dt
∥∥∥

Lρ

≤ N−μ
∥∥∥∫ N−2

0

e−itΔPNF (u(t))dt
∥∥∥

Lρ

+ N−μ
∥∥∥ ∫ ∞

N−2
e−itΔPNF (u(t))dt

∥∥∥
Lρ

. (4.5)

Then (3.3) and Bernstein’s inequality imply that

N−μ‖uN(0)‖Lρ � N−μ+ d
2− d

ρ

∥∥∥ ∫ N−2

0

e−itΔPNF (u(t))dt
∥∥∥

L2

+ N−μ

∫ ∞

N−2
t−( d

2−d
ρ )dt sup

t∈R

‖PNF (u(t))‖Lρ′

� N
−μ+ d

2− d
ρ−2+ d

ρ′ − d
2 ‖PNF (u(·))‖L∞(R,Lρ′)

+ N−μ−2(1− d
2 + d

ρ )‖PNF (u(·))‖L∞(R,Lρ′)

= Ns− d−4s
d−2s ‖PNF (u(·))‖L∞(R,Lρ′). (4.6)

Notice that the power s − d−4s
d−2s is positive by (1.5). For the nonlinearity of F (u), we use the
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fundamental theorem of calculus, and decompose it as

F (u) = F (u N
10≤·≤N0

) + u< N
10

∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ

+ u< N
10

∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ

+ O(|u>N0 ||u≤N0 |α) + O(|u>N0 |α+1). (4.7)

Using (4.1), Hölder’s and Bernstein’s inequalities, we estimate the last two terms of F (u) as

Ns− d−4s
d−2s ‖PN(O(|u>N0 ||u|α))‖L∞(R,Lρ′)

≤ Ns− d−4s
d−2s ‖u>N0‖

L∞(R,L
2d(d−2s)

d2−2sd−2d+8s )
‖|u| 4

d−2s ‖
L∞(R,L

d
2 )

� Ns− d−4s
d−2s ‖|∇| d−4s

d−2s u>N0‖L∞(R,L2)

� Ns− d−4s
d−2s N

d−4s
d−2s−s

0 =
( N

N0

)s− d−4s
d−2s

. (4.8)

Next we turn to the contribution to the right-hand side of (4.5) coming from the second and
third terms in (4.7). Without loss of generality, it suffices to estimate the first term of them.

An intrinsic equivalent norm for Besov spaces shows that Fz(u) ∈ L∞(
R, Ḃ

4s
d−2s
d−2s

2 ,∞
)

(see [29,
Theorem 4.4.1]). Indeed,

‖Fz(u)‖
B

4s
d−2s
d−2s

2 ,∞

= sup
y∈Rd

1

|y| 4s
d−2s

‖|u(· − y)| 4
d−2s − |u(·)| 4

d−2s ‖
L

d−2s
2

≤ sup
y∈Rd

1

|y| 4s
d−2s

‖|u(· − y) − u(·)| 4
d−2s ‖

L
d−2s

2

=
(

sup
y∈Rd

1
|y|s ‖u(· − y) − u(·)‖L2

) 4
d−2s

= ‖u‖
4

d−2s

Ḃs
2,∞

≤ ‖u‖
4

d−2s

Ḃs
2,2

= ‖u‖
4

d−2s

Ḣs
.

Thus by the dyadic decomposition, we have

‖P> N
10

Fz(u)‖
L

d−2s
2

∼
∥∥∥( ∑

M> N
10

|PM (|u| 4
d−2s )|2

) 1
2
∥∥∥

L
d−2s

2

�
( ∑

M> N
10

‖PM (|u| 4
d−2s )‖2

L
d−2s

2

) 1
2

�
( ∑

M> N
10

‖u‖
8

d−2s

Ḣs
M− 8s

d−2s

) 1
2

� N− 4s
d−2s ‖u‖

4
d−2s

Ḣs
.

Together with (4.3), Hölder’s and Bernstein’s inequalities, we obtain

Ns− d−4s
d−2s

∥∥∥u< N
10

∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ
∥∥∥

L∞(R,Lρ′)
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≤ Ns− d−4s
d−2s ‖u< N

10
‖L∞(R,Lρ)‖P> N

10
Fz(u≤N0)‖L∞(R,L

d−2s
2 )

� Ns− d−4s
d−2s ‖u< N

10
‖L∞(R,Lρ)N

− 4s
d−2s ‖u<N0‖

4
d−2s

L∞(R,Ḣs)

� η
4

d−2s

∑
N1< N

10

Nμ
1 Ns− d−4s

d−2s− 4s
d−2s A(N1)

� η
4

d−2s

∑
N1< N

10

(N1

N

)μ

A(N1). (4.9)

We are left to estimate the contribution of F (u N
10≤·≤N0

) to the right-hand side of (4.5). We
estimate

‖F (u N
10≤·≤N0

)‖L∞(R,Lρ′)

�
∑

N
10≤N1,N2≤N0

‖uN1|uN2 |
4

d−2s ‖L∞(R,Lρ′)

�
∑

N
10≤N2≤N1≤N0

‖|uN1|
4

d−2s ‖L∞(R,Lρ1)‖|uN1|1−
4

d−2s ‖L∞(R,Lρ2)‖|uN2|
4

d−2s ‖L∞(R,Lρ3)

+
∑

N
10≤N1≤N2≤N0

‖uN1‖L∞(R,Lρ)‖|uN2 |
4

d−2s ‖
L∞(R,L

d−2s
2 )

= I + II,

where ρ1 = d−2s
2 , ρ2 = 2(d−2s)2

(d−2s−2)(d−2s−4) and ρ3 = (d−2s)2

2(d−2s−2) . For the second term, we employ
(4.3) and Bernstein’s inequality, such that

II ≤
∑

N
10≤N1≤N2≤N0

‖uN1‖L∞(R,Lρ)‖uN2‖
4

d−2s

L∞(R,L2)

�
∑

N
10≤N1≤N2≤N0

‖uN1‖L∞(R,Lρ)(N
−s
2 )

4
d−2s η

4
d−2s .

Taking the sum of N2, we obtain

II � η
4

d−2s

∑
N
10≤N1≤N0

A(N1)N
μ
1 (N−s

1 )
4

d−2s = η
4

d−2s

∑
N
10≤N1≤N0

A(N1)N
μ− 4s

d−2s

1 .

Finally, we turn to the first term. According to Berstein’s inequality and the definition of A(N),
we have

I ≤
∑

N
10≤N2≤N1≤N0

‖uN1‖
4

d−2s

L∞(R,L2)‖uN1‖
1− 4

d−2s

L∞(R,L
2(d−2s)
d−2s−2 )

‖uN2‖
4

d−2s

L∞(R,L
2(d−2s)
d−2s−2 )

≤
∑

N
10≤N2≤N1≤N0

(N−s
1 η)

4
d−2s (Nμ

1 A(N1))1−
4

d−2s (Nμ
2 A(N2))

4
d−2s .

Now we set −δ = μ − 4s
d−2s < 0, B(N) = N−δA(N) and C(N) = N ε−δA(N), for some small

ε > 0, such that s − d−4s
d−2s − ε > 0 (see (1.5)). With these notations, we rewrite the above
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inequality as

I � η
4

d−2s

∑
N
10≤N2≤N1≤N0

N
− 4s

d−2s

1 (N
4s

d−2s

1 B(N1))1−
4

d−2s (N
4s

d−2s

2 B(N2))
4

d−2s

= η
4

d−2s

∑
N
10≤N2≤N1≤N0

(N2

N1

) 16s
(d−2s)2

B(N1)1−
4

d−2s B(N2)
4

d−2s

= η
4

d−2s

∑
N
10≤N2≤N1≤N0

(N2

N1

) 16s
(d−2s)2 (N−ε

1 C(N1))1−
4

d−2s (N−ε
2 C(N2))

4
d−2s .

Taking the sum over N2 first, we have

I = η
4

d−2s

∑
N
10≤N1≤N0

N
− 16s

(d−2s)2
−ε(1− 4

d−2s )

1 C(N1)1−
4

d−2s

×
( ∑

N
10≤N2≤N1

N
16s

(d−2s)2
− 4ε

d−2s

2 C(N2)
4

d−2s

)
� η

4
d−2s

∑
N
10≤N1≤N0

N
− 16s

(d−2s)2
−ε(1− 4

d−2s )

1 C(N1)1−
4

d−2s N
16s

(d−2s)2
− 4ε

d−2s

1

×
( ∑

N
10≤N2≤N0

C(N2)
) 4

d−2s

= η
4

d−2s

∑
N
10≤N1≤N0

N−ε
1 C(N1)1−

4
d−2s

( ∑
N
10≤N2≤N0

C(N2)
) 4

d−2s

� η
4

d−2s N−ε
∑

N
10≤N1≤N0

C(N1).

Putting the above estimates together, we obtain

Ns− d−4s
d−2s ‖PNF (u N

10≤·≤N0
)‖L∞(R,Lρ′)

� η
4

d−2s Ns− d−4s
d−2s

( ∑
N
10≤N1≤N0

A(N1)N
μ− 4s

d−2s

1 + N−ε
∑

N
10≤N1≤N0

C(N1)
)
. (4.10)

Collecting (4.5) and (4.7)–(4.10), we estimate

A(N) �
( N

N0

)s− d−4s
d−2s

+ η
4

d−2s

∑
N1< N

10

(N1

N

)μ

A(N1)

+ η
4

d−2s

( ∑
N
10≤N1≤N0

A(N1)
( N

N1

)s− d−4s
d−2s

+
∑

N
10≤N1≤N0

( N

N1

)s− d−4s
d−2s−ε

A(N1)
)

�
( N

N0

)s− d−4s
d−2s

+ η
4

d−2s

( ∑
N1< N

10

(N1

N

)μ

A(N1) +
∑

N
10≤N1≤N0

( N

N1

)s− d−4s
d−2s−ε

A(N1)
)
.

With the above estimate, applying the discrete Gronwall’s inequality (2.2), we have

sup
t∈R

‖uN(t)‖Lρ � Nμ+ω−, (4.11)
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where ω = min{μ, s − d−4s
d−2s − ε} > 0.

Now we turn to the case that 1 ≤ 4
d−2s ≤ 2. We pick ρ satisfying

1
2
− 1

d
− s

2d
≤ 1

ρ
<

1
2
− 2

d
+

s

d
, (4.12)

which gives s > 2
3 as in (1.6). As the similar estimates in (4.5)–(4.7), we first calculate

N−μ−2(1− d
2 +d

ρ )‖PN (|u>N0 ||u|α)‖L∞(R, Lρ′)

≤ N−μ−2(1− d
2 +d

ρ )‖u>N0‖L∞(R, Lp1)‖|u|
4

d−2s ‖
L∞(R, L

d
2 )

≤ N−μ−2(1− d
2 +d

ρ )N−β
0 ‖|∇|βu>N0‖L∞(R, Lp1)‖u‖

4
d−2s

L∞(R, L
2d

d−2s )

� N−μ−2(1− d
2 +d

ρ )N−β
0 ‖|∇|su>N0‖L∞(R, L2)

=
( N

N0

)−μ−2(1− d
2 + d

ρ )

, (4.13)

where 0 < β = d
2 + s − 2 − d

ρ ≤ 3
2s − 1 (comparing with (4.12)) and p1 = 2d

d−2(s−β) . Next, we
consider the integrals in the decomposition (4.7). By the proposition of support, we have

N−μ−2(1− d
2 + d

ρ )
∥∥∥PN

(
u< N

10

∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ
)∥∥∥

L∞(R, Lρ′)

≤ N−μ−2(1− d
2 + d

ρ )‖u< d
10
‖L∞(R, Lρ)

∥∥∥P> N
10

( ∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ
)∥∥∥

L∞(R, L
ρ

ρ−2 )
.

We use (2.3) and (4.3) to give a bound to the second factor on the right-hand side by

N−γ‖|∇|γu≤N0‖L∞(R, Lq1)‖|u≤N0|
4

d−2s−1‖L∞(R, Lq2) � N−γη
4

d−2s ,

where q1 = 2d
d−2(s−γ) for some 0 < γ = d− 2d

ρ −2 ≤ s (compareing with (1.6)) and q2 = 2d
4−d+2s .

Then we continue to consider the integrals in the above inequality as follows:

N−μ−2(1− d
2 + d

ρ )
∥∥∥PN

(
u< N

10

∫ 1

0

Fz(u N
10≤·≤N0

+ θu< N
10

)dθ
)∥∥∥

L∞(R, Lρ′)

� η
4

d−2s N−μ−2(1− d
2 + d

ρ )−γ‖u< N
10
‖L∞(R, Lρ)

� η
4

d−2s N−μ−2(1− d
2 + d

ρ )−γ
∑

N1< N
10

‖u>N1‖L∞(R, Lρ)

� η
4

d−2s

∑
N1< N

10

A(N1)
(N1

N

)μ

. (4.14)

Finally, we consider the first term of (4.7). According to the Littlewood-Paley decomposition,
we deduce

N−μ−2(1− d
2 + d

ρ )‖PNF (u N
10≤·≤N0

)‖L∞(R, Lρ′ )

� N−μ−2(1− d
2 + d

ρ )
∑

N
10≤N1, N2, N3≤N0

‖uN1uN2 |uN3|
4

d−2s−1‖L∞(R, Lρ′)
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� N−μ−2(1− d
2 + d

ρ )
∑

N
10≤N1≤N2, N3≤N0

‖uN1uN2 |uN3|
4

d−2s−1‖L∞(R, Lρ′)

+ N−μ−2(1− d
2 + d

ρ )
∑

N
10≤N3≤N1≤N2≤N0

‖uN1uN2 |uN3 |
4

d−2s−1‖L∞(R, Lρ′ ) ≡ I + II.

Applying Hölder’s and Bernstein’s inequalities to the terms of I, we estimate them by

‖uN1‖L∞(R, Lp1)‖uN2‖L∞(R, Lp2)‖|uN3|
4

d−2s−1‖L∞(R, Lp3)

� ‖uN1‖Lρ‖|∇|suN2‖L∞(R, L2)N
d−2s

2 − d
p2

2 (‖|∇|suN3‖L∞(R, L2)N

d−2s
2 − d

p3( 4
d−2s

−1)

3 )
4

d−2s−1

� η
4

d−2s A(N1)N
μ
1 N

d−2s
2 − d

p2
2 N

2−d−2s
2 − d

p3
3 ,

where 1
ρ′ = 1

p1
+ 1

p2
+ 1

p3
, with p1 = ρ, 2 ≤ p2 < 2d

d−2s and 2 ≤ p3( 4
d−2s − 1) < 2d

d−2s (due to the
definitions of ρ and μ, such p2 and p3 exist). Taking the sum of N2 and N3, we obtain

I � η
4

d−2s N−μ−2(1− d
2 + d

ρ )
∑

N
10≤N1≤N0

A(N1)N
μ+2−d( 1

p2
+ 1

p3
)

1

= η
4

d−2s

∑
N
10≤N1≤N0

A(N1)
( N

N1

)−μ−2(1− d
2 +d

ρ )

, (4.15)

where −μ−2(1− d
2 + d

ρ ) > 0. Similarly, applying Hölder’s inequality to the terms of II in space,
we obtain

‖uN1uN2 |uN3|
4

d−2s−1‖L∞(R, Lρ′)

≤ ‖|uN1|θ‖Lq1‖|uN1|1−θ‖Lq2‖uN2‖Lq3‖|uN3|
4

d−2s−1‖Lq4

≤ ‖uN1‖θ
Lθq1 ‖uN1‖1−θ

L(1−θ)q2
‖uN2‖Lq3‖uN3‖

4
d−2s−1

L
( 4

d−2s
−1)q4

� ‖uN1‖θ
Lρ‖uN1‖1−θ

L(1−θ)q2
‖uN2‖Lq3‖uN3‖1−θ

Lρ ‖uN3‖
4

d−2s−2+θ

Lρ , (4.16)

where 1
ρ′ = 1

q1
+ 1

q2
+ 1

q3
+ 1

q4
with θq1 = ρ, ( 4

d−2s − 1)q4 = ρ, (1 − θ)q2 > 2, 2 ≤ q3 < 2d
d−2s and

2− 4
d−2s ≤ θ ≤ min

(
1, 8

(d−2s)(ρ−2)

)
(Remark 1.2 ensures the existence of these exponents). By

Hölder’s and Bernstein’s inequalities, we have

‖uN1uN2 |uN3|
4

d−2s−1‖L∞(R, Lρ′)

� ‖uN1‖θ
Lρ(‖|∇|suN1‖L2N

d−2s
2 − d

(1−θ)q2
1 )1−θ‖|∇|suN2‖L2N

d−2s
2 − d

q3
2

× ‖uN3‖1−θ
Lρ (‖|∇|suN3‖L2N

d−2s
2 − d

ρ

3 )
4

d−2s−2+θ

� η
4

d−2s ‖uN1‖θ
Lρ‖uN3‖1−θ

Lρ N
( d−2s

2 − d
(1−θ)q2

)(1−θ)

1 N
d−2s

2 − d
q3

2 N
( d−2s

2 − d
ρ )( 4

d−2s−2+θ)

3 . (4.17)

Taking the sum, we have

II � η
4

d−2s N−μ−2(1− d
2 + d

ρ )
∑

N
10≤N3≤N0

‖uN3‖1−θ
Lρ N

( d−2s
2 − d

ρ )( 4
d−2s−2+θ)

3

×
∑

N3≤N1≤N0

‖uN1‖θ
LρN

d−2s
2 (2−θ)− d

q3
− d

q2
1
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� η
4

d−2s N−μ−2(1− d
2 + d

ρ )

×
∑

N
10≤N3≤N0

(N
μ+2(1− d

2 + d
ρ )

3 A(N3))1−θN
−2(1−θ)(1−d

2 + d
ρ )+( d−2s

2 − d
ρ )( 4

d−2s−2+θ)

3

×
∑

N3≤N1≤N0

(N
μ+2(1− d

2 + d
ρ )

1 A(N1))θN
d−2s

2 (2−θ)− d
q3

− d
q2

−2θ(1−d
2 + d

ρ )

1

� η
4

d−2s

∑
N
10≤N3≤N0

(
N

N3
)−μ−2(1− d

2 + d
ρ )−εA(N3) (4.18)

for some small enough ε > 0, such that −μ − 2
(
1 − d

2 + d
ρ

) − ε > 0 (comparing with (4.12)),
and we note that the power of N1 in the second inequality is negative due to the definitions of
θ and ρ. Thus combining (4.13)–(4.15), (4.18) and the discrete Gronwall’s inequality (2.2), we
have

sup
t∈R

‖uN(t)‖Lρ � Nμ+ω−, (4.19)

where ω = min
{
μ, −μ − 2

(
1 − d

2 + d
ρ

) − ε
}

> 0.
Summing all the dyadic frequency-localized parts leads to the following property.

Lemma 4.1 Let u be as Theorem 4.1. Then

u ∈ L∞(R, La(Rd)) for a ∈
( 2ρ(s + μ + ω−)

s + (ρ − 1)(μ + ω−)
,

2d

d − 2s

)
, (4.20)

which furthermore implies

|∇|sF (u) ∈ L∞(R, Lb(Rd)) for
1
b

=
1
2

+
4

a(d − 2s)
. (4.21)

Proof By interpolation and (4.11), we have

‖uN‖L∞(R,La) ≤ ‖uN‖1−θ
L∞(R,Lρ)‖uN‖θ

L∞(R,L2)

≤ (Nμ+ω−)1−θN−sθ

= N (μ+ω−)−θ(s+μ+ω−),

where 1
a = 1−θ

ρ + θ
2 , and

1
2 − s

d − 1
ρ

1
2 − 1

ρ

< θ <
μ + ω−

s + μ + ω− , (4.22)

which is not empty. From this and Bernstein’s inequality, we obtain

‖u‖L∞(R,La) ≤ ‖u≤N0‖L∞(R,La) + ‖u>N0‖L∞(R,La)

≤
∑

N≤N0

N (μ+ω−)−θ(s+μ+ω−) +
∑

N>N0

‖|∇|suN‖L∞(R,L2)N
d
2− d

a−s < ∞.

With the fractional chain rule Lemma 2.3, we deduce from these that

‖|∇|sF (u)‖L∞(R,Lb) ≤ ‖|∇|su‖L∞(R,L2)‖u
4

d−2s ‖
L∞(R,L

(d−2s)a
4 )

< ∞.

To conclude Theorem 4.1, we first obtain an inductive lemma.
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Lemma 4.2 If |∇|τF (u) ∈ L∞(R, Lb(Rd)), where 0 ≤ τ ≤ s and b is as in the above
lemma, then there exists an s0 = s0(b, d) > 0, such that u ∈ L∞(R, Ḣτ−s0+).

Proof We first claim that

‖|∇|τuN‖L∞(R,L2) ≤ Ns0 with s0 =
d

b
− d + 4

2
> 0. (4.23)

With this claim, we can conclude the result by

‖|∇|τ−s0+u‖L∞(R,L2) ≤ ‖|∇|τ−s0+u≤1‖L∞(R,L2) + ‖|∇|τ−s0+u>1‖L∞(R,L2)

≤
∑
N≤1

N0+ +
∑
N>1

N τ−s−s0+ < ∞.

Now we turn to (4.23). Without loss of generality, we use (1.10) to deduce the claim at time
t = 0,

‖|∇|τuN(0)‖2
L2

= lim
T→∞
T ′→∞

〈
i
∫ T

0

e−itΔPN |∇|τF (u(t))dt,−i
∫ 0

T ′
e−itΔPN |∇|τF (u(t))dt

〉
≤

∫ ∞

0

∫ 0

−∞
|〈PN |∇|τF (u(t)), e−i(t−t)ΔPN |∇|τF (u(t))〉|dtdt

≡
∫ ∞

0

∫ 0

−∞
A(N, t, t)dtdt.

By the dispersion of Schrödinger operator and Bernstein’s inequality, we estimate the integrand

A(N, t, t) ≤ ‖PN |∇|τF (u(t))‖Lb‖e−i(t−t)ΔPN |∇|τF (u(t))‖Lb′

≤ |t − t| d
2− d

b ‖|∇|τF (u(t))‖Lb‖|∇|τF (u(t))‖Lb ,

A(N, t, t) ≤ ‖PN |∇|τF (u(t))‖L2‖e−i(t−t)ΔPN |∇|τF (u(t))‖L2

≤ N2( d
b − d

2 )‖|∇|τF (u(t))‖Lb‖|∇|τF (u(t))‖Lb .

Hence, we calculate elementarily

‖|∇|τuN (0)‖2
L2

≤ ‖|∇|τF (u)‖2
L∞(R,Lb)

∫ ∞

0

∫ 0

−∞
min{|t − t|−1, N2} d

b −d
2 dtdt

= ‖|∇|τF (u)‖2
L∞(R,Lb)

×
(∫ ∞

1
N2

∫ 0

−∞
+

∫ 1
N2

0

∫ t− 1
N2

−∞
+

∫ 1
N2

0

∫ 0

t− 1
N2

min{|t − t|−1, N2} d
b − d

2 dtdt
)

= N2( d
b − d+4

2 )‖|∇|τF (u)‖2
L∞(R,Lb).

Now we show how to use Lemma 4.2 to prove Theorem 4.1. By Lemma 4.1, we can apply
Lemma 4.2 to τ = s, and we conclude u ∈ L∞(R, Ḣs−s0+). Thus as the proof of Lemma 4.1,
(4.20) and Lemma 2.3 imply |∇|s−s0+F (u) ∈ L∞(R, Lb(Rd)) for some b as in (4.21). We apply
Lemma 4.2 to τ = s − s0+ and obtain u ∈ L∞(R, Ḣs−2s0+). If b is suitably chosen, we can
iterate this procedure finitely many times, and we derive u ∈ L∞(R, Ḣ−ε) for some 0 < ε < s0,
which completes the proof.
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5 The Soliton-Like Solution

Pay attention that the soliton-like solution satisfies the condition of Theorem 4.1, and thus
we have the mass conservation by interpolation and the classical local theory. In this case, we
first prove a relationship between the length of the time interval and the Strichartz norms on
it.

Proposition 5.1 If u is a soliton-like solution as in Theorem 1.4, and J is a compact time
interval, then

|J | 1
q � ‖u‖Lq(J,Lr) � 1 + |J | 1

q . (5.1)

Proof On one hand, by Remark 1.4, for any η > 0, we have∫
|x−x(t)|≥c(η)

|u(t)| 2d
d−2s dx ≤

(∫
|x−x(t)|≥c(η)

||∇|su|2dx
) d

d−2s ≤ η for all t ∈ R. (5.2)

On the other hand, we claim that∫
|x−x(t)|≤c(η)

|u| 2d
d−2s dx � 1 for all t ∈ R. (5.3)

Indeed, if (5.3) fails, there exists a time sequence tn −→
n→∞+∞, such that

∫
|x−x(tn)|≤c(η)

|u(tn)| 2d
d−2s dx −→

n→∞ 0,

which together with (5.2) shows that u(tn, x − x(tn)) −→
n→∞ 0 in L

2d
d−2s . However, the precom-

pactness and the blowup property of the critical solution show that u(tn, x − x(tn)) −→
n→∞ w in

Ḣs for some w 
= 0, which is a contradiction. We conclude (5.3). A simple application of
Hölder’s inequality yields[ ∫

|x−x(tn)|≤c(η)

|u(tn)| 2d
d−2s dx

] d−2s
2d ≤ [c(η)]

(d−2s)(1−s)
d+2(1−s)

[ ∫
Rd

|u(tn)|rdx
] 1

r

.

Thus, using (5.3) and integrating over J , we conclude the first inequality.

Now we turn to the second inequality. Let η > 0 be a small parameter chosen soon.
Partition J into subintervals

⋃
k

Jk, such that |Jk| ≤ η, and let Jk = [tk, tk+1]. It requires at

most η−1|J | + 1 intervals. On every subinterval, we use Strichartz’s, Hölder’s and Bernstein’s
inequalities

‖u‖Lq(Jk,Lr)

� ‖eit−tkΔu(tk)‖Lq(Jk,Lr) + ‖u‖α+1
Lq(Jk,Lr)

≤ ‖eit−tkΔu≥N0(tk)‖Lq(Jk,Lr) + ‖eit−tkΔu≤N0(tk)‖Lq(Jk,Lr) + ‖u‖α+1
Lq(Jk,Lr)

≤ ‖|∇|su≥N0‖L∞(R,L2) + |Jk| 1
q N

d
2− d

r −s
0 ‖u≤N0(tk)‖L∞(R,L2) + ‖u‖α+1

Lq(Jk,Lr). (5.4)
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By Remark 1.4 and the definition of the soliton-like sulotion, we can choose N0 large enough
so that the first term is small. Then we pick η small enough, depending on N0 to make the
second term small. A simple application of the bootstrap argument deduces

‖u‖Lq(Jk,Lr) ≤ ε (5.5)

for some small ε > 0. Collecting all the subintervals and the control of the amount of them give
the second inequality of (5.1).

In order to defeat the soliton-like solution, we obtain a high-frequency Strichartz’s estimate
over any compact time interval as in [9, Theorem 5.1], which is used for a frequency localized
interaction Morawetz estimate shortly.

Theorem 5.1 Suppose that u is a soliton-like solution, and J is a compact time interval
with |J | = K. Then we have

‖P≥Nu‖
L2(J,L

2d
d−2 )

� o
(K

1
2

N
1
2

)
(5.6)

for all N ≤ K.

Proof By the Duhamel principle and Strichartz’s estimate, we have

‖P≥Nu‖
L2(J,L

2d
d−2 )

� ‖P≥NeitΔu0‖
L2(J,L

2d
d−2 )

+ ‖P≥N(|u| 4
d−2s u)‖

L2(J,L
2d

d+2 )

� ‖u≥N(0)‖L2 + ‖P≥N (|u| 4
d−2s u)‖

L2(J,L
2d

d+2 )
. (5.7)

For the nonlinearity, we estimate it as

‖P≥N (|u| 4
d−2s u)‖

L2(J,L
2d

d+2 )

� ‖P≥N (|u≤ηN | 4
d−2s u≤ηN)‖

L2(J,L
2d

d+2 )

+ ‖u≥ηN |u≥C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

+ ‖(P≥ηNu)|(1 − χ)u≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

+ ‖u≥ηN |χu≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

, (5.8)

where C0 is a fixed constant chosen later, and χ(t, x) ∈ C∞
c (Rd) for every time t with value 1

if |x− x(t)| ≤ C0, vanishing if |x− x(t)| ≥ 2C0. For the first term, by Bernstein’s and Hölder’s
inequalities, the bounded Ḣs norm and the sobolev embedding, for any 1

2 < σ < 4
d−2s + 1,

‖P≥N (|u≤ηN | 4
d−2s u≤ηN)‖

L2(J,L
2d

d+2 )

≤ 1
Nσ

‖|∇|σ(|u≤ηN | 4
d−2s u≤ηN )‖

L2(J,L
2d

d+2 )

� 1
Nσ

‖|∇|σu≤ηN‖
L2(J,L

2d
d−2 )

+ ‖u≤ηN‖
4

d−2s

L∞(R, 2d
d−2s )

�
∑

M≤ηN

(M

N

)σ

‖uM‖
L2(J,L

2d
d−2 )

≤
∑

M≤ηN

(M

N

)σ

‖u≥M‖
L2(J,L

2d
d−2 )

.
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For the second and the third terms,

‖u≥ηN |u≥C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

+ ‖(P≥ηNu)|(1 − χ)u≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

≤ ‖u≥ηN‖
L2(J,L

2d
d−2 )

(‖(1 − χ)u≤C0‖
L∞(R,L

2d
d−2s )

+ ‖u>C0‖
L∞(R,L

2d
d−2s )

)
4

d−2s

� ‖u≥ηN‖
L2(J,L

2d
d−2 )

(‖(1 − χ)u‖
L∞(R,L

2d
d−2s )

+ ‖u>C0‖
L∞(R,L

2d
d−2s )

)
4

d−2s

� δ(C0)‖u≥ηN‖
L2(J,L

2d
d−2 )

with δ(C0) → 0, as C0 → ∞ (see Remark 1.4). Finally, we partition J into ∪Jk as in the proof
of Proposition 5.1, and if 4 < d − 2s,

‖u≥ηN |χu≤C0|
4

d−2s ‖
L2(J,L

2d
d+2 )

≤ ‖|u≥ηNu≤C0|
4

d−2s χ
4

d−2s ‖
L

d−2s
2 (J,L

d(d−2s)
4(d−s−1) )

‖u≥ηN‖1− 4
d−2s

L2(J,L
2d

d−2 )

� ‖|u≥ηNu≤C0|
4

d−2s ‖
L

d−2s
2 (J,L

d−2s
2 )

‖χ 4
d−2s ‖

L∞(J,L
d(d−2s)

2(d−2s−2) )
‖u≥ηN‖1− 4

d−2s

L2(J,L
2d

d−2 )

�
(∑

k

‖u≥ηNu≤C0‖2
L2(Jk,L2)

) 2
d−2s ‖u≥ηN‖1− 4

d−2s

L2(J,L
2d

d−2 )
.

Applying the bilinear Strichartz’s estimate (3.4), we have

‖u≥ηN |χu≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

�
[ ∑

k

( C
d−1
2

0

(ηN)
1
2

)2

‖u≥ηN‖2
S0∗(Jk)‖u≤C0‖2

S0∗(Jk)

] 2
d−2s ‖u≥ηN‖1− 4

d−2s

L2(J,L
2d

d−2 )

�
(∑

k

1
) 2

d−2s ‖u≥ηN‖1− 4
d−2s

L2(J,L
2d

d−2 )
(ηN)−

2
d−2s sup

k
‖u≥ηN‖

4
d−2s

S0∗(Jk)

�
( K

ηN

) 2
d−2s ‖u≥ηN‖1− 4

d−2s

L2(J,L
2d

d−2 )
sup

k
‖u≥ηN‖

4
d−2s

S0∗(Jk).

Here we use a claim that �Jk ∼ |J |. Now we turn to the proof of the claim. By Proposition 5.1
and the definition of the subintervals, we have |Jk| � εq, and hence |J | =

∑
k

|Jk| � �Jk. Choose

η as in Remark 1.4 to be small depending on ε, by Strichartz estimates and the interpolation,
we can show that

‖u>C(η)‖Lq(Jk,Lr) � ε.

On the other hand, by Bernsteins inequality,

‖u≤C(η)(t)‖Lr ≤ ‖u≤C(η)(t)‖
L

2d
d−2s

(C(η))
d−2s

2 − d
r � 1.

Integrating this on Jk, we have εq � |Jk|, and thus �Jk � |J |, which concludes the claim. If
2 ≤ d − 2s ≤ 4, similarly, we have

‖u≥ηN |χu≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

≤ ‖u≥ηN |u≤C0 |‖L2(J, L2)‖χ‖L∞(J, Lr1)‖|u|
4

d−2s−1‖L∞(J, Lr2),



Global Well-Posedness and Scattering for the Defocusing Ḣs-Critical NLS 819

where d+2
2d = 1

2 + 1
r1

+ 1
r2

with 2 ≤ r2

(
4

d−2s − 1
) ≤ 2d

d−2s . The assumption and (1.6) guarantee
the existence of r1 and r2. We continue as

‖u≥ηN |χu≤C0 |
4

d−2s ‖
L2(J,L

2d
d+2 )

� (ηN)−
1
2

(∑
k

1
) 1

2
sup

k
‖u≥ηN‖S0∗(Jk)

=
( K

ηN

) 1
2

sup
k

‖u≥ηN‖S0∗(Jk).

Collecting these estimates, we obtain for d − 2s > 4,

‖P≥Nu‖
L2(J,L

2d
d−2 )

� ‖u≥N(0)‖L2 + δ(C0)‖u≥ηN‖
L2(J,L

2d
d−2 )

+
∑

M≤ηN

(M

N

)σ

‖u≥M‖
L2(J,L

2d
d−2 )

+
( K

ηN

) 2
d−2s ‖u≥ηN‖1− 4

d−2s

L2(J,L
2d

d−2 )
sup

k
‖u≥ηN‖

4
d−2s

S0∗(Jk), (5.9)

and for 2 ≤ d − 2s ≤ 4,

‖P≥Nu‖
L2(J,L

2d
d−2 )

� ‖u≥N(0)‖L2 + δ(C0)‖u≥ηN‖
L2(J,L

2d
d−2 )

+
∑

M≤ηN

(M

N

)σ

‖u≥M‖
L2(J,L

2d
d−2 )

+
( K

ηN

) 1
2

sup
k

‖u≥ηN‖S0∗(Jk). (5.10)

With (5.9), we follow the induction argument as in the proof of [9, Theorem 5.1]. We start
with the basic case.

Lemma 5.1 Let J be a compact interval, and ‖u‖Lq(J,Lr) = C < ∞. Then Theorem 5.1
holds if N ≤ K

C .

Proof Partition J into O(C) subintervals ∪Jk with ‖u‖Lq(Jk,Lr) = ε, where ε is small. By
Duhamel’s principle and Strichartz’s estimate, we have ‖u‖S0∗(Jk) � 1. Summing these up, we
obtain

‖u‖2

L2(J,L
2d

d−2 )
≤

∑
k

‖u‖2

L2(Jk,L
2d

d−2 )
�

∑
k

1 � C ≤ K

N
,

which includes the lemma.

We need a last lemma to complete the proof of Theorem 5.1.

Lemma 5.2 There exists a function ρ(N) ≤ C and lim
N→∞

ρ(N) = 0 with

‖u≥N‖L2 + ‖u≥ηN‖
4

d−2s

S0∗(Jk) ≤ ρ(N).

Proof It is easy to see that lim
N→∞

‖u≥N‖L2 = 0. For the second term, we estimate by using

(5.5). For any Ḣs-admissible pair (q1, r1) with 2d
d−2s < q1 < 2d

d−2 and 2
q1

+ d
r1

= d
2 − s, the
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inhomogeneous Strichartz’s estimate implies

‖u‖Lq1(Jk,Lr1) � ‖eitΔu0‖θ
L∞(Jk, Ḣs)

‖eitΔ|∇|su0‖1−θ

L2(Jk, L
2d

d−2 )
+ ‖u‖α+1

Lq(Jk,Lr) � ε.

Thus for any admissible pair (q, r), we estimate

‖u‖Lq(Jk,Lr) � ‖u0‖L2 + ‖|u| 4
d−2s u‖Lq0(Jk, Lr0)

� ‖u0‖L2 + ‖|u| 4
d−2s ‖

L

q1
4

d−2s (Jk, L

r1
4

d−2s )

‖u‖Lq(Jk,Lr)

for some suitable admissible pair (q0, r0) and some suitable Ḣs-admissible pair (q1, t1) (the defi-
nitions of these two pairs ensure the existence of such two pairs). Now we turn to‖u≥ηN‖S0∗(Jk).
By Strichartz’s estimate and the element decomposition, we have

‖u≥ηN‖S0∗(Jk) ≤ ‖u≥ηN‖L∞(L2) + ‖P≥ηN(|u| 4
d−2s u)‖

Lq̃′0(Jk, Lr̃′0)

� ‖u≥ηN‖L∞(L2) + ‖P≥ηN(|u
<N

1
2
| 4

d−2s u
<N

1
2
)‖

Lq̃′0(Jk, Lr̃′0)

+ ‖|u≥N
1
2
| 4

d−2s u‖
Lq̃′0(Jk, Lr̃′0)

+ +‖|u| 4
d−2s u≥N

1
2
‖

Lq̃′0(Jk, Lr̃′0)
.

Employing Bernstein’s and Hölder’s inequalities, we deduce

‖u≥ηN‖S0∗(Jk)

� ‖u≥ηN‖L∞(L2)

+ N−s‖|∇|su
<N

1
2
‖θ1

L∞(R, L2)‖|∇|su
<N

1
2
‖1−θ1

Lq̃1(Jk, Lr̃1)
‖u‖θ2

L∞(Jk, L
2d

d−2s )
‖u‖α−θ2

Lq̃2(Jk, Lr̃2)

+ ‖u≥N
1
2
‖θ1

L∞(R, L2)‖u‖1−θ1
Lq̃1(Jk, Lr̃1)

‖u‖θ2

L∞(Jk, L
2d

d−2s )
‖u‖α−θ2

Lq̃2(Jk, Lr̃2)

+ ‖u‖θ1
L∞(R, L2)‖u‖1−θ1

Lq̃1(Jk, Lr̃1)
‖u≥N

1
2
‖θ2

L∞(Jk, L
2d

d−2s )
‖u‖α−θ2

Lq̃2(Jk, Lr̃2)

� ‖u≥ηN‖L∞(R, L2) + N− s
2 ‖u‖θ1

L∞(R, L2) + ‖u≥N
1
2
‖θ1

L∞(R, L2) + ‖u≥N
1
2
‖θ2

L∞(R, L
2d

d−2s )
,

where we choose suitable admissible pairs (q̃0, r̃0), (q̃1, r̃1), an Ḣs-admissible pair (q̃2, r̃2) and
parameters θ1 ∈ (0, 1) and θ2 ∈ (0, α) (according to the definition of an admissible pair, we
have such exponents). Letting N → ∞, the RHS of the above inequality goes to 0 (wherein we
use the Ḣs(Rd)- and L2(Rd)- compactness of the orbit of {u(t, · − x(t)) : t ∈ R}).

By taking ρ(N) = ‖u≥N‖L∞(L2) + ‖u≥ηN‖
4

d−2s

S0∗(Jk), we complete the proof.

Applying this lemma to (5.9) with the induction assumption, we get

‖P≥Nu‖
L2(J,L

2d
d−2 )

� ρ(N) + δ(C0)o(1)

+
( K

ηN

) 1
2 ∑

M≤ηN

(M

N

)σ− 1
2
o(1) +

( K

ηN

) 2
d−2s

( K

ηN

) 1
2 (1− 4

d−2s )

ρ(ηN)

�
(K

N

) 1
2
(ρ(ηN) + o(1)) � o

(K

N

) 1
2
.

We can handle the case 2 ≤ d− 2s ≤ 4 similarly and omit the proof. These complete the proof
of Theorem 5.1.
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We prove a frequency local interaction Morawetz estimate as [9, Theorem 6.1] to defeat the
soliton-like solution scenario. First we define a frequency cut-off operator I. Let C be a large
fixed constant chosen later. Define I : L2(Rd) → H1(Rd) as an operator given by the Fourier
multiplier m(ξ) ∈ C∞

c (Rd) as Îv(ξ) = m(ξ)v̂(ξ), where

m(ξ) =

{
1, if |ξ| ≤ CK,

0, if |ξ| ≥ 2CK,

and K is large and chosen later. We state the frequency local interaction Morawetz estimate
as following.

Theorem 5.2 Let u be a soliton-like solution. Given any K > 0, let J be a compact time
interval with |J | = K. Then∫

J

∫
Rd×Rd

1
|x − y|3 |Iu(t, x)|2|Iu(t, y)|2dxdydt � o(K). (5.11)

We postpone the proof of Theorem 5.2. Assuming this theorem, we defeat the soliton-like
solutions. Choose K large enough. Fixing η > 0 small enough, we have∫

|ξ|> C(η)K
2

|û(t, ξ)|2dξ ≤ 1
(C(η)K)2s

∫
|ξ|> C(η)K

2

|ξ|2s|û|2dξ ≤ η.

Hence ∫
|x−x(t)|≤C(η)

|(1 − I)u(t)|2dx ≤
∫

|(1 − I)u(t)|2dx ≤ η. (5.12)

Since {u(t, −̇x(t)); t ∈ R} is precompact in Ḣs and {u(t, −̇x(t)); t ∈ R} is bounded in Ḣ−ε for
some ε > 0, as shown in Theorem 4.1, it is easy to see that {u(t, −̇x(t)); t ∈ R} is precompact
in L2. By Remark 4.2, u has a conserved mass m0, and with the help of the proposition of the
precompactness in L2, we have∫

|x−x(t)|≤C(η)

|u(t)|2dx ≥ m2
0 − η. (5.13)

(5.12)–(5.13) imply that ∫
|x−x(t)|≤C(η)

|Iu(t)|2dx ≥ m2
0

2
∼ 1. (5.14)

Taking a square of the above inequality, we obtain

1 �
∫
|x−x(t)|≤C(η)

|Iu(t, x)|2dx

∫
|y−x(t)|≤C(η)

|Iu(t, y)|2dy

�
∫
|x−y|≤2C(η)

|Iu(t, x)|2|Iu(t, y)|2dxdy

�
∫

R2d

1
|x − y|3 |Iu(t, x)|2|Iu(t, y)|2dxdy. (5.15)
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Integrating (5.15) on a compact time interval J with |J | = K forms

K = |J | �
∫

J

∫
Rd×Rd

1
|x − y|3 |Iu(t, x)|2|Iu(t, y)|2dxdydt. (5.16)

On the other hand, we have (5.11), which implies K � o(K). This causes a contradiction if K

is large enough. Hence the soliton-like solution does not exist. The remainder of this section is
devoted to the proof of Theorem 5.2.

Proof of Theorem 5.2 We define the interaction Morawetz quantity Ma(t) of the solution
u at time t by

Ma = 2
2d∑

j=1

∫
R2d

aj(x, y)Im[Iu(x)Iu(y)∂j(Iu(t, x)Iu(t, y))]dxdy,

where a(x, y) = |x − y|, and aj is short for ∂a
∂xj

if 1 ≤ j ≤ d and ∂a
∂yj

if d + 1 ≤ j ≤ 2d. We set
z = (x, y) and w(z) = Iu(x)Iu(y). According to (1.1) and the definition of the operator I, w

satisfies

i∂tw(t, z) + Δzw(t, z)

= Iu(t, x)I(|u|αu)(t, y) + I(|u|αu)(t, x)Iu(t, y)

≡ F1(t, z) + F2(t, z) ≡ F (t, z). (5.17)

The fundmental theorem of calculus shows that

Ma(T ) − Ma(0) =
∫ T

0

d
dt

Ma(t)dt = 2
2d∑

j=1

∫ T

0

∫
R2d

aj(x, y)∂tIm(w∂jw)dxdydt.

Inserting (5.17) into this identity, we deduce

Ma(T ) − Ma(0) =
∫ T

0

∫
aj∂jkk(|w|2)dzdt − 4

∫ T

0

∫
ajRe∂k(∂jw∂kw)dzdt

+
∫ T

0

∫
ajF (t, z)∂jwdzdt +

∫ T

0

∫
ajF (t, z)∂jwdzdt

−
∫ T

0

∫
aj∂jF (t, z)wdzdt −

∫ T

0

∫
aj∂jF (t, z)wdzdt,

where we use the Einstein summation convention and sum from 1 to 2d for every subindex.
Inserting the nonlinearity explicitly and integrating by parts, we have

Ma(T ) − Ma(0) =
∫ T

0

∫
R2d

(−ΔΔa(x, y))|Iu(t, x)|2|Iu(t, y)|2dxdydt

+ 4
∫ T

0

∫
R2d

ajk(x, y)Re(∂jw∂kw)dxdydt

+ 2
∫ T

0

∫
R2d

aj(x, y)I(|u|αu)(t, x)∂jIu(t, x)|Iu(t, y)|2dxdydt

+ 2
∫ T

0

∫
R2d

aj(x, y)I(|u|αu)(t, x)∂jIu(t, x)|Iu(t, y)|2dxdydt
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+
∫ T

0

∫
R2d

ajj(x, y)I(|u|αu)(t, x)Iu(t, x)|Iu(t, y)|2dxdydt

+
∫ T

0

∫
R2d

ajj(x, y)I(|u|αu)(t, x)Iu(t, x)|Iu(t, y)|2dxdydt

+
∫ T

0

∫
R2d

aj(x, y)(I(|u|αu)(t, y)Iu(t, y) − I(|u|αu)(t, y)Iu(t, y))

× Iu(t, x)∂jIu(t, x)dxdydt

+
∫ T

0

∫
R2d

aj(x, y)(I(|u|αu)(t, y)Iu(t, y) − I(|u|αu)(t, y)Iu(t, y))

× ∂jIu(t, x)Iu(t, x)dxdydt

+ 8 similar terms as the last above with x, y exchanged.

For further estimation, we transform this identity into

Ma(T ) − Ma(0) =
∫ T

0

∫
R2d

(−ΔΔa(x, y))|Iu(t, x)|2|Iu(t, y)|2dxdydt (5.18)

+ 4
2d∑

j,k=1

∫ T

0

∫
R2d

ajk(x, y)Re(∂jw∂kw)dxdydt (5.19)

+
4

d + 2 − 2s

d∑
j=1

∫ T

0

∫
R2d

ajj(x, y)|Iu(t, x)|α+2|Iu(t, y)|2dxdydt (5.20)

+
d∑

j=1

∫ T

0

∫
R2d

aj(x, y)[I(|u|αu)(t, y)Iu(t, y) − I(|u|αu)(t, y)Iu(t, y)]

× Iu(t, x)∂jIu(t, x)dxdydt (5.21)

+
d∑

j=1

∫ T

0

∫
R2d

aj(x, y)[I(|u|αu)(t, y)Iu(t, y) − I(|u|αu)(t, y)Iu(t, y)]

× ∂jIu(t, x)Iu(t, x)dxdydt (5.22)

+ 2
d∑

j=1

∫ T

0

∫
R2d

aj(x, y)[I(|u|αu)(t, x) − |Iu|α(t, x)Iu(t, x)]

× |Iu(t, y)|2∂jIu(t, x)dxdydt (5.23)

+ 2
d∑

j=1

∫ T

0

∫
R2d

aj(x, y)[I(|u|αu)(t, x) − |Iu|α(t, x)Iu(t, x)]

× |Iu(t, y)|2∂jIu(t, x)dxdydt (5.24)

+
d∑

j=1

∫ T

0

∫
R2d

ajj(x, y)[I(|u|αu)(t, x) − |Iu|α(t, x)Iu(t, x)]

× |Iu(t, y)|2Iu(t, x)dxdydt (5.25)

+
d∑

j=1

∫ T

0

∫
R2d

ajj(x, y)[I(|u|αu)(t, x) − |Iu|α(t, x)Iu(t, x)]

× |Iu(t, y)|2Iu(t, x)dxdydt (5.26)
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+ (5.20) + · · · + (5.26) with x, y exchanged. (5.27)

A simple calculus shows that −ΔΔa = 4(d−1)(d−3)
|x−y|3 . Comparing this with (5.11), we need to

control the other terms in (5.18)–(5.27).

Estimates for (5.19)–(5.20) Since the matrix with elements ajk is positively defined,

(5.19)≥ 0. Direct computer shows
2d∑
j

ajj = 2(d−1)
|x−y| , and therefore (5.20)≥ 0.

Estimates for (5.23)–(5.24) Since the two terms are similar, we only control (5.23). By
the triangle inequality, we have

‖I(|u|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

≤ ‖I(|Iu|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

+ ‖I(|u|αu − |Iu|αIu)‖
L2(J,L

2d
d+2 )

� ‖P>CK(|Iu|αIu)‖
L2(J,L

2d
d+2 )

+ ‖|u|αu − |Iu|αIu‖
L2(J,L

2d
d+2 )

,

where the last inequality uses the definition of the operator I. Applying Bernstein’s and Hölder’s
inequalities,

LHS � 1
CK

‖∇(|Iu|αIu)‖
L2(J,L

2d
d+2 )

+ ‖u>CK‖
L2(J,L

2d
d−2 )

‖u‖
4

d−2s

L∞(R,L
2d

d−2s )

� 1
CK

‖∇Iu‖
L2(J,L

2d
d+2 )

‖Iu‖
4

d−2s

L∞(R,L
2d

d−2s )
+ ‖u>CK‖

L2(J,L
2d

d−2 )
‖u‖

4
d−2s

L∞(R,L
2d

d−2s )
.

Since the Ḣs-norm of the solution is bounded, by Sobolev embedding, Bernstein’s inequality
and (5.6), we continue

LHS � 1
CK

∑
M≤CK

‖∇uM‖
L2(J,L

2d
d+2 )

+ ‖u>CK‖
L2(J,L

2d
d−2 )

� 1
CK

∑
M≤CK

Mo
(( K

M

) 1
2
)

+ o
((K

K

) 1
2
)

= o(1),

which is acceptable for later use. Similarly,

‖∂jIu‖
L2(J,L

2d
d−2 )

�
∑

M≤2K

M‖u>M‖
L2(J,L

2d
d−2 )

�
∑

M≤2K

Mo
(( K

M

) 1
2
)
≤ o(K).

Now we turn to (5.23). By Hölder’s inequality,

(5.23) ≤ ‖I(|u|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

‖∂jIu‖
L2(J,L

2d
d−2 )

‖Iu‖L∞(R,L2) � o(K),

which is acceptable for Theorem 5.2.

Estimates for (5.21)–(5.22) As above, we only prove (5.21). The following lemma will
imply acceptable estimates immediately.
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Lemma 5.3∣∣∣ ∫ T

0

∫
R2d

aj[I(|u|αu)(t, y)Iu(t, y) − I(|u|αu)(t, y)Iu(t, y)]|Iu(t, x)|2dxdydt
∣∣∣

=
∣∣∣2i

∫ T

0

∫
R2d

ajIm[I(|u|αu)(t, y)Iu(t, y)]|Iu(t, x)|2dxdydt
∣∣∣

� o(1).

Proof We split |u|α+2 as

|u|α+2 = I(|u|αu)Iu + I(|u|αu)(1 − I)u

+ (1 − I)(|u|αu)Iu + (1 − I)(|u|αu)(1 − I)u.

We insert this into the equation in the lemma,

2i
∫ T

0

∫
R2d

ajImI(|u|αu)(t, y)|Iu(t, y)|Iu(t, x)|2dxdydt

= −2i
∫ T

0

∫
R2d

ajIm(1 − I)(|u|αu)(t, y)Iu(t, y)|Iu(t, x)|2dxdydt (5.28)

− 2i
∫ T

0

∫
R2d

ajImI(|u|αu)(t, y)(1 − I)u(t, y)|Iu(t, x)|2dxdydt (5.29)

− 2i
∫ T

0

∫
R2d

ajIm(1 − I)(|u|αu)(t, y)(1 − I)u(t, y)|Iu(t, x)|2dxdydt. (5.30)

Consider (5.30) first by Hölder’s inequality, (5.6) and the mass conservation

(5.30) ≤ ‖P>CK(|u|αu)‖
L2(J,L

2d
d+2 )

‖u>CK‖
L2(J,L

2d
d−2 )

‖Iu‖2
L∞(R,L2)

� o(1)(‖P>CK(|u≤CK |αu≤CK)‖
L2(J,L

2d
d+2 )

+ ‖u>CK‖
L2(J,L

2d
d−2 )

‖u‖
4

d−2s

L∞(R,L
2d

d−2s )
)

� o(1)
( 1

CK
‖∇u≤CK‖

L2(J,L
2d

d−2 )
‖u‖

4
d−2s

L∞(R,L
2d

d−2s )
+ o(1)

)
� o(1)

∑
M≤CK

M

CK
‖u>M‖

L2(J,L
2d

d−2 )
+ o(1)

� o(1)
∑

M≤CK

M

CK
o
(( K

M

) 1
2
)

+ o(1) � o(1).

This is acceptable. For (5.28),

(5.28) = −2iIm
∫ T

0

∫
R2d

aj

[∇y · ∇y

∇y · ∇y
(1 − I)(|u|αu)(t, y)

]
Iu(t, y)|Iu(t, x)|2dxdydt

= 2iIm
∫ T

0

∫
R2d

∂�(ajIu(t, y))
[∂y�

Δy
(1 − I)(|u|αu)(t, y)

]
|Iu(t, x)|2dxdydt.
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By Hölder’s and Bernstein’s inequalities,

(5.28) �
∥∥∥∂�

Δ
(1 − I)(|u|αu)

∥∥∥
L2(J,L

2d
d+2 )

‖∂�Iu‖
L2(J,L

2d
d−2 )

‖Iu‖2
L∞(J,L2)

+
∫ T

0

∫
R2d

1
|x − y|

∣∣∣∂�

Δ
(1 − I)(|u|αu)(t, y)

∣∣∣|Iu(t, x)|2|Iu(t, y)|dxdydt

� o(k−1)o(K) +
∫ T

0

∫
R2d

1
|x − y|

∣∣∣∂�

Δ
(1 − I)(|u|αu)(t, y)

∣∣∣|Iu(t, x)|2|Iu(t, y)|dxdydt

≡ o(1) + A,

and by Hölder’s equality for the second term,

A ≤
∥∥∥ ∫

Rd

|Iu(t, x)|2
|x − y| dx

∥∥∥
L4(J,L6d)

‖Iu‖
L4(J,L

2d
d− 7

3 )

∥∥∥∂�

Δ
(1 − I)(|u|αu)

∥∥∥
L2(J,L

2d
d+2 )

� o(K−1)
∥∥∥ ∫

Rd

|Iu(t, x)|2
|x − y| dx

∥∥∥
L4(J,L6d)

‖Iu‖
L4(J,L

2d

d− 7
3 )

.

Interpolating

‖u>M‖
L2(J,L

2d
d−2 )

� o
( K

1
2

M
1
2

)
with

‖u>M‖L∞(R,L2) � 1,

we have

‖u>M‖
L4(J,L

2d
d−1 )

� o
( K

1
4

M
1
4

)
.

With this and Bernstein’s inequality, we have

‖Iu‖
L4(J,L

2d
d− 7

3 )

�
∑

M≤CK

‖u>M‖
L4(J,L

2d
d− 7

3 )

�
∑

M≤CK

M
d−1
2 − d− 7

3
2 ‖u>M‖

L4(J,L
2d

d−1 )

�
∑

M≤CK

M
d−1
2 − d− 7

3
2 o

( K
1
4

M
1
4

)
= o(K

2
3 ), (5.31)

‖Iu‖
L4(J,L

2d
d− 5

3 )

�
∑

M≤CK

M
1
3 ‖u>M‖

L4(J,L
2d

d−1 )
� o(K

1
3 ). (5.32)

Thus together with Hardy’s inequality, we have∥∥∥ ∫
Rd

|Iu(t, x)|2
|x − y| dx

∥∥∥
L4(J,L6d)

� ‖|Iu|2‖
L4(J,L

6d
6d−5 )

� ‖Iu‖L∞(R,L2)‖Iu‖
L4(J,L

2d
d− 5

3 )

� o(K
1
3 ).
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Collecting these estimates, we have

(5.28) � o(K−1)o(K
2
3 )o(K

1
3 ) � o(1).

Finally we turn to (5.29) and as an estimate for (5.28), integrating by parts

(5.29) = −2i
∫ T

0

∫
R2d

ajImI(|u|αu)(t, y)
Δ
Δ

(1 − I)u(t, y)|Iu(t, x)|2dxdydt

�
∑

�

∫ T

0

∫
R2d

1
|x − y| |I(|u|αu)(t, y)||∂�

Δ
(1 − I)u(t, y)||Iu(t, x)|2dxdydt

+
∑

�

∫ T

0

∫
R2d

|aj∂�I(|u|αu)(t, y)
∂�

Δ
(1 − I)(1 − I)u(t, y)||Iu(t, x)|2dxdydt.

By Hölder’s, Hardy’s and Bernstein’s inequalities and mass conservation, we continue as follows:

(5.29) �
∑

�

∥∥∥ ∫ |Iu(t, x)|2
|x − y| dx

∥∥∥
L∞(J,L

3d
2 )

‖I(|u|α)u‖
L2(J,L

2d

d+2
3 )

∥∥∥ 	

Δ
(1 − I)u

∥∥∥
L2(J,L

2d
d−2 )

+
∑

�

‖∂�I(|u|αu)‖
L2(J,L

2d
d+2 )

∥∥∥∂�

Δ
(1 − I)u

∥∥∥
L2(J,L

2d
d−2 )

‖Iu‖2
L∞(J,L2)

� K−1‖|Iu|2‖
L∞(J,L

3d
3d−1 )

‖I(|u|αu)‖
L2(J,L

2d

d+2
3 )

‖(1 − I)u‖
L2(J,L

2d
d−2 )

+
∑

�

K−1‖∂�I(|u|αu)‖
L2(J,L

2d
d+2 )

‖(1 − I)u‖
L2(J,L

2d
d−2 )

.

Hölder’s and Sobolev inequalities give

‖|Iu|2‖
L∞(J,L

3d
3d−1 )

≤ ‖Iu‖L∞(J,L2)‖Iu‖
L∞(J,L

3d
3d−1 )

� ‖|∇| 13 Iu‖L∞(J,L2),

‖I(|u|αu)‖
L2(J,L

2d

d+ 2
3 )

� ‖|∇| 23 I(|u|αu)‖
L2(J,L

2d
d+2 )

.

By the triangle inequality, we have

‖I(|u|αu)‖
L2(J,L

2d
d+ 2

3 )

� ‖|∇| 23 I(|u|αu − |Iu|αIu)‖
L2(J,L

2d
d+2 )

+ ‖|∇| 23 I(|Iu|αIu)‖
L2(J,L

2d
d+2 )

� K
2
3 ‖u‖α

L∞(J,L
2d

d−2s )
‖(1 − I)u‖

L2(J,L
2d

d−2 )

+ ‖Iu‖α

L∞(J,L
2d

d−2s )
‖|∇| 23 Iu‖

L2(J,L
2d

d−2 )
.

Similarly, we have

‖∂�I(|u|αu)‖
L2(J,L

2d
d+2 )

≤ ‖∂�I(|u|αu − |Iu|αIu)‖
L2(J,L

2d
d+2 )

+ ‖∂�I(|Iu|αIu)‖
L2(J,L

2d
d+2 )

� K‖u‖α

L∞(J,L
2d

d−2s )
‖(1 − I)u‖

L2(J,L
2d

d−2 )

+ ‖Iu‖α

L∞(J,L
2d

d−2s )
‖∂�Iu‖

L2(J,L
2d

d−2 )
.
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By these together with (5.6), we have

(5.29) � K−1K
1
3 K

2
3 o(1) + K−1K

1
3 o(1)

∑
M≤CK

M
2
3 o

(( K

M

) 1
2
)

+ K−1Ko(1) + K−1
∑

M≤CK

Mo
(( K

M

) 1
2
)
∼ o(1),

which completes the proof.

Now (5.21) follows from this lemma, if we add one order partial differential operator on
Iu(t, x) in the integral which produces a K.

Estimates for (5.25)–(5.26) Similarly, by symmetry, we only show that for (5.25). Noting

that
d∑

j=1

ajj(x, y) = d−1
|x−y| , by Hölder’s and Hardy’s inequalities,

(5.25) ≤
∥∥∥ ∫ |Iu(t, x)|2

|x − y| dx
∥∥∥

L4(J,L6d)
‖Iu‖

L4(J,L

2d

d− 7
3 )

× ‖I(|u|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

� ‖|Iu|2‖
L4(J,L

6d
6d−5 )

‖Iu‖
L4(J,L

2d

d− 7
3 )

‖I(|u|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

� ‖Iu‖L∞(J,L2)‖Iu‖
L4(J,L

2d
d− 5

3 )

‖Iu‖
L4(J,L

2d
d− 7

3 )

× ‖I(|u|αu) − |Iu|αIu‖
L2(J,L

2d
d+2 )

.

(5.31)–(5.32), (5.6) and mass conservation show the estimate for (5.25).
Noting (5.18)–(5.26), we need to control Ma(t) for any t ∈ [0, T ]. By the definition and

Hölder’s and Bernstein’s inequalities, we obtain

|Ma(t)| ≤ ‖∂jIu‖L2‖Iu‖3
L2

�
∑

M≤CK

M‖uM‖L2

≤
∑

M≤K1−
M‖uM‖L2 +

∑
K1−<M≤CK

M‖u>M‖L2

≤ K1− + ‖u>k1−‖L2

∑
K1−<M≤CK

M

� K1− + o(1)
∑

K1−<M≤CK

M ∼ o(K).

Now we conclude Theorem 5.2.

6 The Low-to-High Frequency Cascade

In this section, we defeat the low-to-high frequency cascade solutions as in Theorem 1.4. As
Remark 4.2, we have

sup
t∈R

∫
|ξ|−2ε|û(t, ξ)|2dξ � 1. (6.1)
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Remark 1.4 deduce that, for any η > 0, there exists a constant c(η) independent of t, such that∫
|ξ|≤c(η)N(t)

|ξ|2s|û(t, ξ)|2dξ ≤ η. (6.2)

Interpolating (6.1)–(6.2), we have∫
|ξ|≤c(η)N(t)

|û(t, ξ)|2dξ � η
ε

ε+s . (6.3)

On the other hand, by the definition of the low-to-high frequency cascade solutions, we can
pick up a time sequence tn −→

n→∞∞, such that N(tn) −→
n→∞∞. Thus

∫
|ξ|≥c(η)N(t)

|û(tn, ξ)|2dξ � 1
(c(η)N(tn))2s

∫
|ξ|2s|û(tn, ξ)|2dξ −→

n→∞ 0. (6.4)

Then (6.3)–(6.4) show ‖u(t)‖L2 ≡ 0 by the mass conservation, which is a contradiction to the
definition of u, i.e., low-to-high frequency cascade solutions can not exist.

7 The Finite-Time Blowup

Finally, we deal with the finite-time blowup scenario. Without loss of generality, let T > 0
be the finite endpoint of the life interval of such a solution u. Choosing ε = 3

2 − s, r0 = 2d
d−1

and (q0, r0) as the corresponding admissible pair, by (1.10), we have

‖|∇|−εu(t)‖L2 =
∥∥∥ ∫ T

t

ei(t−s)Δ|∇|−ε(|u|αu)(s)ds
∥∥∥

L2

≤ ‖|∇|−ε(|u|αu)‖
Lq′0((t,T ),Lr′0)

� (T − t)
1

q′0 ‖|∇|−ε(|u|αu)‖
L∞((t,T ),Lr′0)

� (T − t)
1

q′0 ‖|u|α+1‖
L∞((t,T ),L

r′d
d+εr′ )

∼ (T − t)
1

q′0 ‖u‖α+1

L∞((t,T ),L
2d

d−2s )
−→
t→T

0.

Interpolating this with sup
t∈I

‖|∇|su(t)‖L2, we have

‖u(t)‖L2 −→
t→T

0,

which implies ‖u(t)‖L2 ≡ 0 and that there does not exist any finite-time blowup critical solution.

The main results of the last three sections show that the assumption in Theorem 1.2 causes
a contradiction, so we prove Theorem 1.1.

8 Appendix

In this section, we prove the existence of the critical solution. Let A > 0, and set

B(A) =
{

u0 ∈ Ḣs; if u is the solution to (1.1) with initial data u0,

and lifespan I(u0), sup
t∈I(u0)

‖|∇|su(t)‖L2 ≤ A
}

. (8.1)
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Definition 8.1 We say that SC(A) holds if for every u0 ∈ B(A), I(u0) = R and u is
the solution with initial data u0, ‖u‖Lq(R,Lr) < ∞. We say that SC(A; u0) holds if u0 ∈
B(A), I(u0) = R and u is the solution with initial data u0, ‖u‖Lq(R,Lr) < ∞.

By Theorem 3.3, for A0 > 0 small enough, we have that SC(A0) holds. Our main result,
Theorem 1.1, is equivalent to that SC(A) holds for all A > 0. Thus if Theorem 1.1 fails, there
exists a critical AC > A0 > 0 with the property that for any A < AC , SC(A) holds but for
any A > AC , SC(A) fails. The key tool in the proof of Theorem 1.2 is the following profile
decomposition.

Lemma 8.1 Given a bounded sequence (v0,n)∞j=1 ⊂ Ḣs(Rd), there exists a sequence (Vj)∞j=1

⊂ Ḣs(Rd), a subsequence of (v0,n)∞j=1, and a sequence of triples vectors (λj,n, xj,n, tj,n)∞j=1 ⊂
R+ × Rd × R, which are orthogonal in the following sense:

λj,n

λj′,n
+

λj′,n

λj,n
+

|tj,n − tj′,n|
λ2

j,n

+
|xj,n − xj′,n|

λj,n
−→

n→∞∞ (8.2)

for j 
= j′, such that for each J ≥ 1, we have
(1)

v0,n =
J∑

j=1

( 1
λj,n

) d−2s
2

V l
j

( · − tj,n
λ2

j,n

,
· − xj,n

λj,n

)
+ wJ

n , (8.3)

where V l
j (t) = eitΔVj ;

(2)

lim sup
n→∞

‖eitΔwJ
n‖Lq(R,Lr) −→

J→∞
0; (8.4)

(3) for any J > 0, we have a Pythagorean-like property,

‖v0,n‖2
Ḣs =

J∑
j=1

‖Vj‖2
Ḣs + ‖wJ

n‖2
Ḣs + oJ (1), (8.5)

where oJ (1) −→
n→∞ 0.

The proof is analogous to the one in [22], and we omit it.
Finally, we need a perturbation result. It is analogous to [21, Theorem 2.14] (for the energy-

critical equation).

Proposition 8.1 (Perturbation) Given any A ≥ 0, there exist ε(A) > 0 and C(A) > 0 with
the following property. If u ∈ C([0,∞), Hs(Rd)) is a solution to (1.1), if ũ ∈ C([0,∞), Hs(Rd))
and e ∈ Lb′

([0,∞), Lr′
(Rd)) satisfy

iũt + Δũ = |ũ|αũ + e

for a.e. t > 0, and if

‖ũ‖Lq([0,∞),Lr) ≤ A, ‖e‖Lb′ ([0,∞),Lr′) ≤ ε ≤ ε(A),

‖eiΔ
(
u(0) − ũ(0)

)
‖Lq([0,∞),Lr) ≤ ε ≤ ε(A),

(8.6)

then u ∈ Lq((0,∞), Lr(Rd)) and ‖u − ũ‖Lq([0,∞),Lr) ≤ Cε.
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Proof (see [13]) By the definition of AC , there exists a sequence An → AC as n → ∞,
such that there exists a sequence (u0,n)∞n=1 ⊂ Ḣs with u0,n ∈ SC(An) and the corresponding
solution un is the blowup in its lifespan

‖un‖Lq(In,Lr) = ∞.

Using the time-translation symmetry of (1.1), we replace u0,n by un(sn) (still denoted by u0,n),
such that

lim
n→∞ ‖un‖Lq((inf In,sn],Lr) = lim

n→∞ ‖un‖Lq([sn,sup In),Lr) = ∞. (8.7)

Appling Lemma 8.1 to the sequence (u0,n)∞n=1, we have

u0,n =
J∑

j=1

( 1
λj,n

) d−2s
2

V l
j

( · − tj,n
λ2

j,n

,
· − xj,n

λj,n

)
+ wJ

n . (8.8)

Let sj,n = − tj,n

λ2
j,n

, and let Uj be the non-linear profile associated with (Vj , (sj,n)∞n=1) and lifespan

Ĩj . We denote

Ũj,n(t, x) =
( 1

λj,n

) d−2s
2

Uj

( t

λ2
j,n

+ sj,n,
x − xj,n

λj,n

)
.

We will prove that there is only one non-trivial Vj in the decomposition (8.8). We proceed by
contradiction.

Step 1 There exist J0 and a constant C, such that for any j > J0, Ĩj = R, the admissible
pair (q, r) satisfies

sup
R

‖Uj(t)‖Ḣs + ‖Uj‖Lq(R,Lr) + ‖|∇|sUj‖Lq(R,Lr) ≤ C‖Vj‖Ḣs ,

due to small data and the Strichartz’s estimate. Thus by (8.5), we have∑
j>J0

sup
R

‖Uj(t)‖2
Ḣs + ‖Uj‖2

Lq(R,Lr) + ‖|∇|sUj‖2
Lq(R,Lr) ≤ C

∑
j>J0

‖Vj‖2
Ḣs .

Step 2 It can not happen that for all 1 ≤ j ≤ J0 and n large enough, we have

‖Uj‖Lq([sj,n,sup Ĩj),Lr) < ∞.

If it is not true, sup Ĩj = ∞ for all j ≥ 1 and

∞∑
j=1

sup
[sj,n,+∞)

‖Uj(t)‖2
Ḣs + ‖Uj‖2

Lq([sj,n,sup Ĩj),Lr)
< ∞.

For any ε0 > 0, by (8.4), there exist J(ε0) and n large enough, such that

‖eitΔwJ(ε0)
n ‖Lq(R,Lr) ≤ ε0. (8.9)

Let

Hn,ε0(t, x) =
J(ε0)∑
j=1

Ũj,n(t, x) =
J(ε0)∑
j=1

( 1
λj,n

) d−2s
2

Uj

( t

λ2
j,n

+ sj,n,
x − xj,n

λj,n

)
.
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We claim that, for some C0 > 0,

‖Hn,ε0‖Lq([0,+∞),Lr) ≤ C0. (8.10)

We use Sobolev embedding and interpolation, such that

‖Hn,ε0‖Lq([0,+∞),Lr) ≤ ‖|∇|s̃Hn,ε0‖Lq([0,+∞),Lr̃)

� ‖|∇|s̃Hn,ε0‖θ
Lρ([0,+∞),Lρ)‖|∇|s̃Hn,ε0‖1−θ

L∞([0,+∞),Ḣs−s̃)
(8.11)

for some suitable s̃ ∈ (0, s), r̃, ρ and θ. Using the argument as in [20, p. 663] to the two terms
in (8.11), we can give a bound for ‖Hn,ε0‖Lq([0,+∞),Lr). We omit the details. Now, we consider
the equation ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i∂tHn,ε0 + ΔHn,ε0 =
J(ε0)∑
j=1

|Ũj,n|αŨj,n,

Hn,ε0(0) =
J(ε0)∑
j=1

Ũj,n(0).

(8.12)

We can rewrite the nonlinearity as

J(ε0)∑
j=1

|Ũj,n|αŨj,n = |Hn,ε0 |αHn,ε0 +
J(ε0)∑
j=1

|Ũj,n|αŨj,n − |Hn,ε0 |αHn,ε0

≡ |Hn,ε0 |αHn,ε0 + en,ε0.

By (8.8)–(8.9), we have

∥∥∥eitΔ
(
u0,n −

J(ε0)∑
j=1

Ũj,n

)∥∥∥
Lq([0,+∞),Lr)

= ‖eitΔwJ(ε0)
n ‖Lq([0,+∞),Lr) ≤ ε0. (8.13)

To get a contradiction, we use Proposition 8.1. Hence, we need to estimate en,ε0 . We recall
that for every P > 1 and 	 ≥ 2, there exists a constant CP,�, such that

∣∣∣ ∣∣∣ �∑
j=1

zj

∣∣∣P −
�∑

j=1

|zj |P
∣∣∣ ≤ CP,�

∑
j 
=k

|zj | |zk|P−1 (8.14)

for all (zj)1≤j≤� ⊂ C� (see [14, (1.10)]). This implies

‖en,ε0‖Lb′ ([0,+∞),Lr′ ) �
∑
j 
=j′

‖|Ũj,n|αŨj′,n‖Lb′ ([0,+∞),Lr′)

∼
∑
j 
=j′

∥∥∥∣∣∣Uj(
·−tj,n

λ2
j,n

,
·−xj,n

λj,n
)

λ
d−2s

2
j,n

∣∣∣α Uj′( ·−tj′,n
λ2

j′,n

,
·−xj′,n

λj′,n
)

λ
d−2s

2
j′,n

∥∥∥
Lb′ ([0,+∞),Lr′ )

.

We will prove that

‖en,ε0‖Lb′([0,+∞),Lr′ ) −→
n→∞ 0. (8.15)
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For every j, we can find −∞ ≤ aj < +∞ such that

‖Uj‖Lq((aj,sup Ĩj),Lr) ≤ C‖Uj‖Lq([sj,n,sup Ĩj),Lr) < ∞

for n large and sj,n ∈ (aj , +∞). Picking any j 
= j′ in the above sum, by a change of variables,
we have

∥∥∥∣∣∣Uj(
·−tj,n

λ2
j,n

,
·−xj,n

λj,n
)

λ
d−2s

2
j,n

∣∣∣α Uj′( ·−tj′,n
λ2

j′,n

,
·−xj′,n
λj′,n

)

λ
d−2s

2
j′,n

∥∥∥
Lb′ ([0,+∞),Lr′)

=
(λj′,n

λj,n

) d−2s
2

∥∥∥∣∣∣Uj

(λ2
j′,n · +tj,n − tj′,n

λ2
j,n

,
λj′,n · +xj′,n − xj,n

λj,n

)∣∣∣αUj′(·, ·)
∥∥∥

Lb′ ([sj′,n,+∞),Lr′ )
. (8.16)

For every s ∈ [sj′,n, +∞) (though we use the same notation as the one in regularity, whose
meaning is clear and will not cause a delusion),

λ2
j′,n

λ2
j,n

s +
tj,n − tj′,n

λ2
j,n

∈ [sj,n,∞) ⊂ (aj , +∞).

By (8.2), if λj,n

λj′,n
−→

n→∞∞, then (8.16) tends to 0 as n → ∞. If λj,n = λj′,n, but |tj′,n−tj,n|
λ2

j,n
−→

n→∞∞,

or λj,n = λj′,n
|tj′,n−tj,n|

λ2
j,n

≤ C but |xj′,n−xj,n|
λj,n

−→
n→∞∞, the same result holds. By Proposition 8.1,

this together with (8.10) and (8.13) implies that un is bounded in Lq([0, +∞), Lr(Rd)) for n

large enough, which contradicts (8.7).
According to steps 1 and 2, we can arrange the order of Vj and find J1, such that 1 ≤ J1 ≤ J0

and for all 1 ≤ j ≤ J1 with

‖Uj‖Lq([sj,n,sup Ĩj),Lr) = ∞,

while j > J1, we have

‖Uj‖Lq([sj,n,sup Ĩj),Lr) < ∞.

As a consequence of steps 1 and 2, we have∑
j>J1

‖Uj‖2
Lq([sj,n,+∞),Lr) < ∞

for n large enough. Now for k ∈ N, 1 ≤ j ≤ J1, we set

T +
j,k =

⎧⎪⎨⎪⎩
sup Ĩj − 1

k
, if sup Ĩj < ∞,

k, if sup Ĩj = ∞,

and set tnj,k by sj,n + tn
j,k

λ2
j,n

= T +
j,k and tnk = min

1≤j≤J1
tnj,k. With these definitions, Ũj,n is defined on

[0, tnk ] for all j, and there exists a Ck, such that for n large enough,

∞∑
j=1

‖Ũj‖2
Lq([0,tn

k ],Lr) + sup
[0,tn

k ]

‖Ũj,n‖2
Ḣs ≤ Ck. (8.17)
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Step 3 We claim as follows. Fixed J ≥ 1, there exists an n(J, ε), such that for any
1 ≤ J2 ≤ J , we have

∣∣∣∥∥∥ J∑
j=J2

V l
j (sj,n,

·−xj,n

λj,n
)

λ
d−2s

2
j,n

∥∥∥2

Ḣs
−

J∑
j=J2

∥∥∥V l
j (sj,n,

·−xj,n

λj,n
)

λ
d−2s

2
j,n

∥∥∥2

Ḣs

∣∣∣ ≤ ε. (8.18)

In order to prove (8.18), we need to show that, for any J2 ≤ j 
= j′ ≤ J ,

lim
n→∞

〈(
|∇|sV l

j

)(
sj,n,

·−xj,n

λj,n

)
, (|∇|sV l

j′ )
(
sj′,n,

·−xj′,n
λj′,n

)〉
λ

d
2
j,nλ

d
2
j′,n

= 0. (8.19)

We will use the following formula frequently:

(eit0Δv)
(x − x0

λ0

)
=

(
eiλ2

0t0Δ
(
v
( · − x0

λ0

))
(x). (8.20)

By the definition of V l
j , (8.20) and a change of variance, we have〈

(|∇|sV l
j )

(
sj,n,

x−xj,n

λj,n

)
, (|∇|sV l

j′ )
(
sj′,n,

x−xj′,n
λj′,n

)〉
L2

x

λ
d
2
j,nλ

d
2
j′,n

=

〈
ei(tj′,n−tj,n)Δ

(
(|∇|sVj)

( ·−xj,n

λj,n

))
(x), (|∇|sVj′)

(
x−xj′,n

λj′,n

)〉
L2

x

λ
d
2
j,nλ

d
2
j′,n

. (8.21)

We consider different cases inspired by (8.2).

Case (i) λj′,n

λj,n
−→

n→∞ 0. We make a change of the variable, y = x−xj′,n

λj′,n
, and then (8.21) equals

(λj′,n

λj,n

) d
2
〈
e
i

t
j′,n

−tj,n

λ2
j′,n

Δ(
(|∇|sVj)

( · + xj′,n−xj,n

λj′,n

λj,n

λj′,n

))
(y), |∇|sVj′ (y)

〉
L2

y

. (8.22)

Subcase (ia) |tj′n−tj,n|
λ2

j′,n

≤ C. In this subcase, we can find a subsequence of n (still denoted

by n) such that tj′n−tj,n

λ2
j′,n

−→
n→∞ tj,j′ for some tj,j′ ∈ R, and therefore we only need to consider

(λj′,n

λj,n

) d
2
〈
(|∇|sVj)

( · + xj′,n−xj,n

λj′,n

λj,n

λj′,n

)
(y), e−itj,j′Δ(|∇|sVj′ )(y)

〉
L2

y

−→
n→∞ 0,

which implies (8.19) in the subcase.

subcase (ib) |tj′,n−tj,n|
λ2

j′,n

−→
n→∞∞. Without loss of generality, denote tj,j′,n=tj,n−tj′,n

λ2
j′,n

−→
n→∞+∞.

We need a lemma in this subcase and in the sequel.

Lemma 8.2 Assume that ‖hn‖Ḣs ≤ A and that ||eitΔhn||Lq([0,+∞),Lr) −→
n→∞ 0. Then |∇|shn

⇀ 0 in L2(Rd) as n → ∞.

For the proof, see [21, Lemma 3.6].
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Take

hn(x) =
( λj,n

λj′,n

) d
2
e
i

tj,n−t
j′,n

λ2
j,n

Δ(
(|∇|sVj′ )

( · + xj,n−xj′,n

λj,n

λj′,n

λj,n

))
(x).

As in the lemma, we act it by eitΔ and calculus as (8.20), so we obtain

eitΔhn(x) =
( λj,n

λj′,n

) d
2
e
i(t+

tj,n−t
j′,n

λ2
j,n

)Δ(
(|∇|sVj′ )

( · + xj,n−xj′,n

λj,n

λj′,n

λj,n

))
(x)

=
( λj,n

λj′,n

) d
2
(
e
i

t+
tj,n−t

j′,n

λ2
j,n

(
λ

j′,n
λj,n

)2
Δ

(|∇|sVj′ )
)(x + xj,n−xj′,n

λj,n

λj′,n

λj,n

)
.

We check the assumption in the lemma,

‖eitΔhn‖Lq([0,+∞),Lr) =
∥∥∥e

i

t+
tj,n−t

j′,n

λ2
j,n

(
λ

j′,n
λj,n

)2
Δ

(|∇|sVj)
∥∥∥

Lq([0,+∞),Lr)

= ‖eiτΔ(|∇|sVj)‖Lq([tj,j′,n,+∞),Lr) → 0,

since tj,j′,n −→
n→∞ +∞. Thus Lemma 8.2 includes the result in this subcase.

Case (ii) λj,n = λj′,n and |tj′,n−tj,n|
λ2

j′,n

−→
n→∞∞. In this case, (8.22) takes the form

〈
e
i

t
j′,n

−tj,n

λ2
j′,n

Δ(
(|∇|sVj)

(
· +xj′,n − xj,n

λj′,n

))
(y), |∇|sVj′ (y)

〉
L2

y

.

This case is similar to the subcase (ib) and we omit the proof.
Case (iii) λj,n = λj′,n, |tj′,n−tj,n|

λ2
j′,n

≤ C and |xj′,n−xj,n|
λj′,n

−→
n→∞∞. we can find a subsequence

of n (still denoted by n) such that tj′n−tj,n

λ2
j′,n

−→
n→∞ tj,j′ for some tj,j′ ∈ R and xj′,n−xj,n

λj′,n
−→

n→∞∞,
and therefore we only need to consider〈

(|∇|sVj)
(
y +

xj′,n − xj,n

λj′,n

)
, eitj,j′Δ(|∇|sVj′)(y)

〉
L2

y

.

Since xj′,n−xj,n

λj′,n
−→

n→∞∞, it is easy to conclude the result.
Step 4 For fixed J , we set

e
(1)
J,n = f(ŨJ,n) −

J∑
j=1

f(Ũj,n),

e
(2)
J,n = f(ŨJ,n + wl,J

n ) − f(ŨJ,n),

where ŨJ,n =
J∑

j=1

Ũj,n, f(z) = |z|αz and wl,J
n (t) = eitΔwJ

n . Then

(1) For any J ≥ 1, k ∈ N, ε > 0, there exists an n(J, k, ε), such that

‖e(1)
J,n‖Lb′ ([0,tn

k ),Lr′) ≤ ε (8.23)
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for all n ≥ n(J, k, ε);
(2) For all k ∈ N, ε > 0, there exists a J(k, ε), so that for any J ≥ J(k, ε), there exists an

n(J, k, ε), such that

‖e(2)
J,n‖Lb′([0,tn

k ),Lr′ ) ≤ ε. (8.24)

We complete the proof.
Fixed 1 ≤ j ≤ J1, if we set sj,n → sj along some subsequence, then sj < +∞. Indeed, if

sj = +∞, by the definition of the non-linear profile, we have

‖Uj(sj,n) − eisj,nΔVj‖Ḣs −→
n→∞ 0.

By the triangle inequality and the linear Strichartz’s estimate, we have

‖ei(t−sj,n)ΔUj(sj,n)‖Lq([sj,n,+∞),Lr)

≤ ‖ei(t−sj,n)ΔUj(sj,n) − eitΔVj‖Lq([sj,n,+∞),Lr) + ‖eitΔVj‖Lq([sj,n,+∞),Lr)

� ‖e−isj,nΔUj(sj,n) − Vj‖Ḣs + ‖eitΔVj‖Lq([sj,n,+∞),Lr),

which is small for n large enough, and by Theorem 3.3, ‖Uj‖Lq([sj,n,+∞),Lr) < ∞, which
contradicts the result in step 2. Thus for fixed k ∈ N and 1 ≤ j ≤ J1, there exists −∞ ≤ aj <

+∞, such that (sj,n,T+
j,k

) ⊂ (aj , T
+
j,k) and

‖Uj‖Lq((aj ,T+
j,k),Lr) ≤ C‖Uj‖Lq((s

j,n,T
+
j,k

),Lr) < ∞.

Then by the argument as in step 2, we conclude (8.23). To get (8.24), by Hölder’s inequality,

‖e(2)
J,n‖Lb′ ([0,tn

k ),Lr′) � ‖wl,J
n ‖Lq([0,tn

k ],Lr)

× (‖ŨJ,n‖α
Lq([0,tn

k ],Lr) + ‖wl,J
n ‖α

Lq([0,tn
k ],Lr)) −→

n→∞ 0.

This follows from (8.4). We complete the proof of step 4.
According to step 4 and (8.4), for any fixed k, m ∈ N, we can find a J(m, k), so that for any

J ≥ J(m, k), there exists an n1(J, m, k), such that for any n ≥ n1(J, m, k), we have

‖eiΔwJ
n‖Lq(R,Lr) ≤ 1

m
, ‖e(2)

J,n‖Lb′ ([0,tn
k ),Lr′) ≤

1
2m

. (8.25)

Now we choose J = J(m, k) for m, k. For this J (and corresponding m, k), we can find an
n(m, k) ≥ n1(J, m, k), such that

(1)

oJ(m,k)(1) ≤ 1
m

(8.26)

as in (8.5) for any n ≥ n(m, k);
(2)

‖e(1)
J(m,k),n‖Lb′ ([0,tn

k ),Lr′) ≤
1

2m
(8.27)
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as in (8.23) for any n ≥ n(m, k);
(3)

∣∣∣∥∥∥ J(m,k)∑
j=J2

V l
j (sj,n,

·−xj,n

λj,n
)

λ
d−2s

2
j,n

∥∥∥2

Ḣs
−

J(m,k)∑
j=J2

∥∥∥V l
j (sj,n,

·−xj,n

λj,n
)

λ
d−2s

2
j,n

∥∥∥2

Ḣs

∣∣∣ ≤ 1
(2m)2

, (8.28)

as in (8.18) for any n ≥ n(m, k) and any 1 ≤ J2 ≤ J(m, k);
(4)

J(m,k)∑
j=1

∥∥∥Ũj,n(x, 0) − 1

λ
d−2s

2
j,n

V l
j

(
sj,n,

x − xj,n

λj,n

)∥∥∥
Ḣs

≤ 1
m

(8.29)

for any n ≥ n(m, k), which is a simple result by the definition of the nonlinear profile.
We can also assume that J(m, k) < J(m+1, k) and n(m, k) < n(m+1, k) without influencing

any result listed above.
Step 5 For 0 ≤ t ≤ t

n(m,k)
k and m large enough, we have t

n(m,k)
k ≤ sup In(m,k) and

un(m,k)(t) = ŨJ(m,k),n(m,k)(t) + w
l,J(m,k)
n(m,k) (t) + rm,k(t)

with

‖rm,k‖Lq([0,t
n(m,k)
k ),Lr)

−→
m→∞ 0.

We set Ũm,k(t) = ŨJ(m,k),n(m,k)(t) + w
l,J(m,k)
n(m,k) (t), and thus Ũm,k will satisfy the following

equation on [0, t
n(m,k)
k ]:⎧⎪⎪⎨⎪⎪⎩

i∂tŨm,k + ΔŨm,k =
J(m,k)∑

j=1

|Ũj,n(m,k)|αŨj,n(m,k),

Ũm,k(0, x) = ŨJ(m,k),n(m,k)(0) + w
l,J(m,k)
n(m,k) (0).

(8.30)

With the notation f(z) = |z|αz, we can rewrite the nonlinearity of (8.30) into

J(m,k)∑
j=1

f(Ũj,n(m,k)) = f(Ũm,k) +
J(m,k)∑

j=1

f(Ũj,n(m,k)) − f(Ũm,k)

= f(Ũm,k) − e
(1)
J(m,k),n(m,k) − e

(2)
J(m,k),n(m,k)

≡ f(Ũm,k) + em,k.

We note that, by (8.29),

‖eiΔ(un(m,k)(0) − Ũm,k)‖
Lq([0,t

n(m,k)
k ),Lr)

≤
J(m,k)∑

j=1

∥∥∥ 1

λ
d−2s

2
j,n(m,k)

V l
j

(
sj,n(m,k),

x − xj,n(m,k)

λj,n(m,k)

)
− Ũj,n(m,k)(x, 0)

∥∥∥
Ḣs

≤ 1
m

.

By this together with (8.25) and (8.27), the assumption of Proposition 8.1 is satisfied, so we
conclude the result of step 5.
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Step 6 There exists a j0, 1 ≤ j0 ≤ J1 and a subsequence {kι}, kι −→
ι→∞∞, so that for each

fixed kι, we can find a subsequence mν(kι) −→
ν→+∞ +∞, such that n(mν(kι), kι) −→

ν→+∞+∞ with

t
n(mν(kι),kι)
j0,kι

= t
n(mν(kι),kι)
kι

for each ι, ν.
The proof is a simple application of the pigeonhole principle as in [21], and we omit it.
Recall that for fixed k ∈ N and all large m, ‖Uj0‖Lq([sj0,n(m,k),sup Ĩj0 ),Lr) = ∞ as in step 2, and

sj0 = lim
n→∞ sj0,n < +∞ as in the beginning of step 4. Then we can find a −∞ < bj0 < sup Ĩj0 ,

such that sj0,n(m,k) ≤ bj0 for all large m and ‖Uj0‖Lq([bj0 ,sup Ĩj0 ),Lr) = ∞. By the definition of
AC , we have

A2 = sup
[bj0 ,sup Ĩj0 )

‖Uj0(t)‖2
Ḣs ≥ A2

C . (8.31)

We also set A2
k = sup

[bj0 ,T+
j0,k]

‖Uj0(t)‖2
Ḣs , and thus lim

k→∞
Ak = A.

Now, we set Tj0,k ∈ [bj0 , T
+
j0,k] by A2

k = ‖Uj0(Tj0,k)‖2
Ḣs . Define τ

n(m,k)
j0,k by the formula

sj0,n(m,k) +
τ

n(m,k)
j0,k

λ2
j0,n(m,k)

= Tj0,k.

Note that for fixed k and large m, τ
n(m,k)
j0,k ≥ 0, since Tj0,k ≤ T +

j,k, we obtain that τ
n(m,k)
j0,k ≤

t
n(m,k)
j0,k . Since t

n(mν(kι),kι)
j0,kι

= t
n(mν(kι),kι)
kι

, for all ι, ν, we note that Ũj,n(mν(kι),kι)(τ
n(mν (kι),kι)
j0,kι

)
is well-defined for all 1 ≤ j ≤ J1 by the definition of t

n(mν(kι),kι)
kι

, and j ≥ J1 by the definition
of J1.

Step 7 For fixed kι, and ν large enough, we have

‖un(mν ,kι)(τ
n(mν ,kι)
j0,kι

)‖2
Ḣs =

J(mν(kι),kι)∑
j=1

‖Ũj, n(mν ,kι)(τ
n(mν ,kι)
j0,kι

)‖2
Ḣs

+ ‖wl,J(mν(kι),kι)
n(mν ,kι)

(τn(mν ,kι)
j0,kι

)‖2
Ḣs + εkι(ν), (8.32)

where εkι(ν) −→
ν→∞ 0.

In order to simplify the notation, in this step, we set J = J(mν(kι), kι), n = n(mν , kι) and
τn
j0,k = τ

n(mν ,kι)
j0,kι

for short.
We first claim that, given any ε > 0, we can find J2 = J2(ε) and a ν(ε), such that for any

ν ≥ ν(ε), we have

sup
[0,tn

kι
]

∥∥∥ J∑
j=J2

Ũj,n(t)
∥∥∥

Ḣs
≤ ε. (8.33)

To prove this claim, for any ε1 > 0, by (8.5), we can find J2 = J2(ε1), such that

∞∑
j=J2

‖Vj‖2
Ḣs ≤ ε21. (8.34)
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Thus by step 1, for any admissible pair (q, r), we have

∞∑
j=J2

sup
R

‖Uj(t)‖2
Ḣs + ‖Uj‖2

Lq(R,Lr) + ‖|∇|sUj‖2
Lq(R,Lr) ≤ Cε21.

For 0 ≤ t < +∞, we have

J∑
j=J2

Ũj,n(t) = eitΔ
( J∑

j=J2

Ũj,n(0)
)

+
J∑

j=J2

∫ t

0

ei(t−t′)Δf(Ũj,n)(t′)dt′.

By Strichartz’s estimates, for some admissible (q1, r1) we obtain

sup
[0,tn

kι
]

∥∥∥ J∑
j=J2

Ũj,n(t)
∥∥∥

Ḣs
�

∥∥∥ J∑
j=J2

Ũj,n(0)
∥∥∥

Ḣs
+

J∑
j=J2

‖Ũj,n‖α
Lq(R,Lr)‖|∇|sŨj,n‖Lq1(R,Lr1).

By (8.29), Strichartz’s estimates (8.28) and (8.34), we have

sup
[0,tn

kι
]

∥∥∥ J∑
j=J2

Ũj,n(t)
∥∥∥

Ḣs
≤

∥∥∥ J∑
j=J2

1

λ
d−2s

2
j,n

V l
j

(
sj,n,

x − xj,n

λj,n

)∥∥∥
Ḣs

+
1

mν
+ Cε1

≤ 1
mν

+ Cε1 ≤ ε,

by choosing ν large enough and ε1 small enough, which gives the claim. By step 5, (8.33) and
(8.17), in order to prove (8.32), it suffices to prove

〈|∇|sŨj, n(mν ,kι)(τ
n(mν ,kι)
j0,kι

), |∇|sŨj′, n(mν ,kι)(τ
n(mν ,kι)
j0,kι

)〉 −→
ν→∞ 0 for 1 ≤ j 
= j′ ≤ J2, (8.35)

〈|∇|sŨj, n(mν ,kι)(τ
n(mν ,kι)
j0,kι

), |∇|swl,J(mν(kι),kι)
n(mν ,kι)

(τn(mν ,kι)
j0,kι

)〉 −→
ν→∞ 0 for 1 ≤ j ≤ J2. (8.36)

To prove (8.35), we set

t̃j,n =
τn
j0,k

λ2
j,n

− tj,n
λ2

j,n

, t̃j′,n =
τn
j0,k

λ2
j′,n

− tj′,n
λ2

j′,n
.

As before, we discuss various cases.
(i) |t̃j′,n| ≤ Cj′ .
We take a subsequence, so that t̃j′,n −→

ν→∞ t̃j′ . Since 0 ≤ τn
j0,k ≤ t

n(mν ,kι)
j0,kι

= tnkι
, we have

sj′,n = − tj′,n
λ2

j′,n
≤ τn

j0,k

λ2
j′,n

− tj′,n
λ2

j′,n

≤ tnkι

λ2
j′,n

− tj′,n
λ2

j′,n
≤ tj′,n

λ2
j′,n

− tj′,n
λ2

j′,n
= T +

j′,kι
.

Thus Uj′ (t) is continuous in Ḣs in a neighborhood of t̃j′,n. By the definition of Ũj , we consider

〈(|∇|sUj)(t̃j,n,
·−xj,n

λj,n
), (|∇|sUj′)(t̃j′ ,

·−xj′,n
λj′,n

)〉
(λj,nλj′,n)

d
2

.

(i.1) λj,n

λj′,n
−→
ν→∞∞.
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We proceed in two subcases.
(i.1.1) t̃j,n ≤ Cj , for some Cj > 0.
Passing along a subsequence, we suppose t̃j,n −→

ν→∞ t̃j . We make a change of the variable

y = x−xj′,n

λj′,n
, and we conclude this subcase.

(i.1.2) t̃j,n is not bounded.
Passing to a subsequence, t̃j,n −→

ν→∞±∞. Since for j ≤ J1, t̃j,n ≤ Tj,kι < +∞, so j > J1.

If t̃j,n −→
ν→∞ +∞, Uj scatters at +∞. If t̃j,n −→

ν→∞−∞, since t̃j,n ≥ sj,n and sj,n −→
ν→∞−∞, Uj

scatters at −∞. In either case, there exists an hj ∈ Ḣs(Rd), such that

‖Uj(t̃j,n) − eit̃j,nΔhj‖Ḣs −→
ν→∞ 0.

Thus we consider 〈
|∇|seit̃j,nΔhj

( ·−xj,n

λj,n

)
, (|∇|sUj′)

(
t̃j′ ,

·−xj′,n
λj′,n

)〉
(λj,nλj′,n)

d
2

.

We make a change of the variable y = x−xj′,n
λj′,n

again, and this turns into

〈e

i
t̃j,n

λ2
j′,n

λ2
j,n

Δ(
(|∇|shj)

( ·− xj,n−x
j′,n

λ
j′,n

λj,n
λ

j′,n

))
(y)

(
λj,n

λj′,n

) d
2

, |∇|sUj′(t̃j′ , y)
〉
.

Since λj,n

λj′,n
−→
ν→∞∞, which is an application of Lemma 8.2, we conclude this subcase.

(i.2) λj,n = λj′,n and |tj,n−tj′,n|
λ2

j,n
−→
ν→∞ +∞.

Since t̃j,n − t̃j′,n = tj′,n−tj,n

λ2
j,n

and t̃j′,n is bounded, we have t̃j,n, and thus with the argument
as above applied again, we complete this case.

(i.3) λj,n = λj′,n, |tj,n−tj′,n|
λ2

j,n
≤ Cj,j′ for some Cj,j′ > 0, and |xj,n−xj′,n|

λj,n
−→
ν→∞+∞.

For the same reason, we note that t̃j,n is bounded. We make a change of the variable
y = x−xj′,n

λj′,n
and we obtain the result of this subcase easily.

By the symmetry, we reduce to the following case.
(ii) t̃j′,n −→

ν→∞+∞ and t̃j,n −→
ν→∞+∞. Thus Uj and Uj′ scatter at +∞. Thus we only consider〈

|∇|seit̃j,nΔhj

( ·−xj,n

λj,n

)
, |∇|seit̃j′,nΔhj′

( ·−xj′,n

λj′,n

)〉
(λj,nλj′,n)

d
2

=

〈
eit̃j,nλ2

j,nΔ
(
(|∇|shj)

( ·−xj,n

λj,n

))
(x), eit̃j′,nλ2

j′,n
Δ

(
(|∇|shj′)

( ·−xj′,n
λj′,n

))
(x)

〉
(λj,nλj′,n)

d
2

=

〈
(|∇|shj)

(
x−xj,n

λj,n

)
, eitj′,n−tj′,nΔ

(
(|∇|shj′)

( ·−xj′,n
λj′,n

))
(x)

〉
(λj,nλj′,n)

d
2

,

which is similar to (8.21), and we omit the details.
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Now we turn to (8.36). Consider the case that t̃j,n is bounded, and (8.36) follows from
Lemma 8.2 and (8.4). If t̃j,n −→

ν→∞ +∞ passes to a subsequence, then Uj scatters at +∞. Thus
the proof is analogous, using Lemma 8.2 and (8.4). These complete the proof of step 7.

Now we arrive at the point to complete the proof of Theorem 1.2. By step 7, we have

A2(n) ≥ A2
kι

+ εkι(ν).

Letting ν → +∞, we note that A2
C ≥ Ak2

ι
. Then, letting ι → +∞, we have A2

C ≥ Ak2
ι
.

With (8.31), we have that AC = A and Uj is the required solution as in Theorem 1.2. The
compactness is proved as in [20, Proposition 4.2] or [13].

Remark 8.1 As [21, Remark 3.8] shows, j0 is the only one, such that Vj is non-trivial and
wJ

n −→
n→+∞ 0 in Ḣs(Rd). That means Vj = 0 if j 
= j0.
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