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1 Introduction

The parameter identification in the partial differential equation (PDE), intensively inves-

tigated during the last few decades, is a fertile and growing area of research with many ap-

plications, such as population dynamics, synaptic transmission at a neuromuscular junction,

color negative film development, chemotaxis, epidemiology, and brain tumor growth. In eco-

logical problems, different species interact with each other and in chemical reactions, different

substances react and produce new substances. Systems of differential equations are used to

model these events. For example, the reaction diffusion systems can be derived to model the

spatial-temporal phenomena. Suppose that u(x, t) and v(x, t) are population density functions

of two species or concentration of two chemicals, and then the reaction diffusion system with

zero Dirichlet boundary conditions can be written as

ut − uxx + a(x)u + b(x)v = 0, (x, t) ∈ ΩT = I × (0, T ],
vt − vxx + c(x)v + d(x)u = 0, (x, t) ∈ ΩT ,

u(x, 0) = φ(x), v(x, 0) = ϕ(x), x ∈ I,

u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0, t ∈ (0, T ],

(1.1)
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where the interval I = (0, 1) and T > 0 is an arbitrary but fixed moment of time. The

initial conditions φ(x) and ϕ(x), only depending on x, are sufficiently regular and the unknown

coefficients a(x), c(x) and the coefficients b(x), d(x) are assumed to be sufficiently smooth and

are kept independent of time t. We assume that there is a possibility to give the additional

temperature for inverse heat problems, and for instance, the additional data u(x, t), v(x, t) are

given at some final time t = T for a finite number of points, that is,

u(xi, T ) = m(xi), v(xi, T ) = n(xi), xi ∈ I, i = 1, 2, · · · , N, (1.2)

where the given functions m(x) and n(x) satisfy the homogeneous Dirichlet boundary condi-

tions. The additional temperature measurements given continuously throughout the interval in

the following form:

u(x, T ) = m(x), v(x, T ) = n(x), x ∈ I (1.3)

have been studied in [15]. Apart from the system of parabolic equations, a single parabolic

equation from the continuous final time overspecified data has been studied by many researchers.

For instance, the inverse problem of recovering the implied volatility coefficient in the Block-

Scholes type equation has been studied by Jiang and Tao [12]. Chen and Liu [1] investigated the

numerical reconstruction of the coefficient q in the parabolic equation ut−Δu+q(x)u = 0 from

the final measurement by using the optimization method combined with the finite element

method. After these contributions to the study of inverse problems via the optimal control

framework, there has been a lot of papers appearing in the literature. For instance, Deng

et al. [3] studied an inverse problem of identifying the coefficient of a first-order term in a

Cauchy problem of the second-order parabolic equation, and an inverse problem of recovering

the nonlinear coefficient of heat conduction equations from the final time overspecified data

was studied by Deng et al. in [6]. Moreover, Deng et al. [2] established an evolutional type

inverse problem of recovering the radiative coefficient of a heat conduction equation. Yang et

al. [18] investigated the inverse problem of reconstructing a space-dependent coefficient in the

heat equation with homogeneous Neumann data using the final measurement data, and Deng

et al. [4] studied an inverse problem of the determination of the implied volatility coefficient

when all possible maturities from the current time to a chosen future time are known.

During the past few decades, various methods have been employed to study the inverse

problems for partial differential equations. For example, the fixed point technique has been

studied for identification of the diffusion coefficient and the reaction rate in a one-dimensional

reaction-diffusion model by Friedman [8]. Hoffman and Jiang [10] investigated an inverse prob-

lem of reconstructing a source term in a phase field model for solidification, and Hasanov [9]

established the simultaneous determination of source terms in a linear parabolic problem from

the final overdetermination by adopting the methods of weak solutions and quasi-solutions. The

inverse problem for the parabolic equations from the final overdetermination was investigated

by Isakov [11].
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It is interesting to note that the reconstruction from the continuous additional temperature

measurement of the form (1.3) is very good for the theoretical aspect, but in practice, it is not

very suitable because of the complexity or the cost for the continuous measurement. In order to

overcome the difficulty, we only assume that the final observations are known at limited points

xi and then (1.2) is an appropriate form. For the sake of simplicity, in this work, we assume

that the measurement points xi are equidistant, that is,

0 < x1 < x2 < · · · < x
N

< 1, xi+1 − xi = h, i = 2, · · · , N, (1.4)

where the mesh parameter h = 1
N+1 . Even though the problem (1.1)–(1.2) is well defined, there

is a lack of uniqueness and stability on the solution of the inverse problem, that is, the inverse

problem (1.1)–(1.2) is improperly posed in the sense of Hadamard. In fact, the parameter

identification problem (1.1)–(1.2) is underdetermined in mathematics; namely, from the given

extra condition (1.2), one may not identify the unknown coefficients a(x), c(x) uniquely and

stably. In [15], we proved the uniqueness and stability of the identification of the coefficients

a(x), c(x) provided that the over-specified data are given in the form (1.3). On the basis of the

idea of [15], we find a way to reconstruct a(x), c(x) approximately by following the technique

of Deng [5].

Initially, using the linear interpolation, we obtain new continuous functions α
N

(x) and β
N

(x)

from (1.2), that is,

α
N

(x) =

⎧⎪⎨
⎪⎩

m(x1), 0 ≤ x ≤ x1,
xi+1 − x

h
m(xi) +

x − xi

h
m(xi−1), x1 ≤ x ≤ xi+1, i = 1, 2, · · · , N − 1,

m(x
N

), x
N
≤ x ≤ 1,

(1.5)

β
N

(x) =

⎧⎪⎨
⎪⎩

n(x1), 0 ≤ x ≤ x1,
xi+1 − x

h
n(xi) +

x − xi

h
n(xi−1), x1 ≤ x ≤ xi+1, i = 1, 2, · · · , N − 1.

n(x
N

), x
N
≤ x ≤ 1,

(1.6)

Then we consider the following over specified final time measurements:

u(x, T ) = α
N

(x), v(x, T ) = β
N

(x), x ∈ I. (1.7)

Approximation is a very useful technique when incomplete information prevents the use of exact

measurements. Many problems in the real world are too complex to be solved analytically.

Even when the exact measurement (1.3) is known, an approximation may yield a sufficiently

accurate solution while reducing the complexity (it is impossible to obtain all the temperatures

u(x, T ), v(x, T )) of the problem significantly. From the result obtained in [15], one can easily

prove the existence and uniqueness of the solution of the inverse problem (1.1) with the final

time over specified data of the form (1.7). The main goal of this article is to deliberate the

asymptotic behavior of the solution of the inverse problem, as h → 0.

The rest of this paper is organized as follows: In Section 2, we study the existence of the

optimal control and the optimality condition for the discrete measurement data by following the
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optimization technique (see [15]) and establish the energy estimates. In Section 3, we analyze

the asymptotic behavior of the solution of the optimal control problem.

2 Optimal Control Problem

In order to analyze the inverse problem for the differential equations, the knowledge of the

direct problem is essential. Using the well-known Schauder theory and the monotone method

for parabolic equations, one can easily obtain the following existence result (see [7, 13–14, 17]).

Theorem 2.1 Let 0 < α < 1 and the coefficients a(x), b(x), c(x), d(x) ∈ Cα(I). Then the

system (1.1) has a unique solution u(x, t), v(x, t) ∈ C2+α,1+ α
2 (ΩT ).

As defined in [15], we consider the following optimal control problem: Find (a(x), c(x)) ∈ M
satisfying

J (a, c) = min
a,c∈M

J (a, c), (2.1)

where

J (a, c) =
1
2

∫
I

(|u(x, T ; a) − m(x)|2 + |v(x, T ; c) − n(x)|2)dx +
N

2

∫
I

(|∇a|2 + |∇c|2)dx, (2.2)

M = {a(x), c(x) : 0 < a0 ≤ a ≤ a1, 0 < c0 ≤ c ≤ c1, ∇a,∇c ∈ L2(I)}, (2.3)

and (u, v) is the solution of the system (1.1) for the given coefficients a(x), c(x) ∈ M. The

constants a0, a1 and c0, c1 are given and N is the regularization parameter.

Suppose that (p, q) is the solution of the adjoint system associated with (1.1) of the form

−pt − pxx + ap + dq = 0, (x, t) ∈ ΩT ,
−qt − qxx + cq + bp = 0, (x, t) ∈ ΩT ,
p(x, T ) = u(x, T ) − m(x), x ∈ I,
q(x, T ) = v(x, T ) − n(x), x ∈ I,
p(0, t) = p(1, t) = q(0, t) = q(1, t) = 0, t ∈ [0, T ),

(2.4)

where m, n are the values of the solutions of the system (1.1) as defined in (1.3). Then we have

the necessary optimality condition which has to be satisfied by each optimal control (a, c).

Theorem 2.2 Let (a, c) be the solution of the optimal control problem (2.1). Then there

exists a pair of functions (u, v, p, q; a, c) satisfying∫
ΩT

(pu(a − k) + qv(c − l))dtdx + N

∫
I

[∇a · ∇(k − a) + ∇c · ∇(l − c)]dx ≥ 0 (2.5)

for any k, l ∈ M.

Now we consider the following optimal control problem along with (1.7): Find (a
N

(x), c
N

(x))

∈ M satisfying
J (aN , cN ) = min

a,c∈M
J (a, c), (2.6)
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where

J (a, c) =
1
2

∫
I

(|u(x, T ; a) − α
N

(x)|2 + |v(x, T ; c) − β
N

(x)|2)dx

+
N

2

∫
I

(|∇a|2 + |∇c|2)dx. (2.7)

Similarly one can establish the following necessary optimality condition.

Theorem 2.3 Let (a
N

, c
N

) be the solution of the optimal control problem (2.6). Then there

exists a set of functions (u
N

, v
N

, p
N

, q
N

; a
N

, c
N

) satisfying∫
ΩT

(p
N

u
N

(a
N
− k) + q

N
v

N
(c

N
− l))dtdx

+ N

∫
I

[∇aN · ∇(k − aN ) + ∇cN · ∇(l − cN )]dx ≥ 0 (2.8)

for any k, l ∈ M. Here the pair (u
N

, v
N

) satisfies the following system:

∂u
N

∂t
− ∂2u

N

∂x2
+ a

N
(x)u

N
+ b(x)v

N
= 0, (x, t) ∈ ΩT ,

∂vN

∂t
− ∂2vN

∂x2
+ c

N
(x)v

N
+ d(x)u

N
= 0, (x, t) ∈ ΩT ,

uN (x, 0) = φ(x), vN (x, 0) = ϕ(x), x ∈ I,

u
N

(0, t) = u
N

(1, t) = v
N

(0, t) = v
N

(1, t) = 0, t ∈ (0, T ],

(2.9)

and (pN , qN ) is the solution of the following system:

−∂p
N

∂t
− ∂2p

N

∂x2
+ aN (x)pN + d(x)qN = 0, (x, t) ∈ ΩT ,

−∂q
N

∂t
− ∂2q

N

∂x2
+ c

N
(x)q

N
+ b(x)p

N
= 0, (x, t) ∈ ΩT ,

p
N

(x, T ) = u
N

(x, T ) − α
N

(x), x ∈ I,

q
N

(x, T ) = v
N

(x, T ) − β
N

(x), x ∈ I,

p
N

(0, t) = p
N

(1, t) = q
N

(0, t) = q
N

(1, t) = 0, t ∈ [0, T ).

(2.10)

Lemma 2.1 For the system (1.1) and its adjoint system (2.4), we have the estimates

max
0≤t≤T

∫
I

(|u|2 + |v|2)dx ≤ exp(MT )(‖φ‖2
L2(I) + ‖ϕ‖2

L2(I)), (2.11)

max
0≤t≤T

∫
I

(|p|2 + |q|2)dx

≤ exp(MT )(‖u(x, T )− m(x)‖2
L2(I) + ‖v(x, T ) − n(x)‖2

L2(I)), (2.12)

where the constant

M =
(
2 + max

x∈I
|b|2 + max

x∈I
|d|2

)
.

Proof Proof of (2.11) is available in [15] and the proof of (2.12) is similar to that of (2.11).

One can obtain the following similar results for the systems (2.9)–(2.10).
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Lemma 2.2 For the system (2.9) and the corresponding adjoint system (2.10), we have the

estimates

max
0≤t≤T

∫
I

(|u
N
|2 + |v

N
|2)dx ≤ exp(MT )(‖φ‖2

L2(I) + ‖ϕ‖2
L2(I)), (2.13)

max
0≤t≤T

∫
I

(|p
N
|2 + |q

N
|2)dx

≤ exp(MT )(‖u
N

(x, T ) − α
N

(x)‖2
L2(I) + ‖v

N
(x, T ) − β

N
(x)‖2

L2(I)). (2.14)

3 Convergence Results

In this section, we discuss the asymptotic behavior of the discrete reconstruction (a
N

, c
N

) as

h → 0, for the system (1.1). In order to analyze the asymptotic behavior of the reconstruction,

we require that the discrete measurements m(x), n(x) in (1.2) satisfy

m(x), n(x) ∈ C1(0, 1), max
x∈I

|m′(x)| ≤ M̂, max
x∈I

|n′(x)| ≤ M̂. (3.1)

Lemma 3.1 For α
N

, β
N

defined in (1.5) and (1.6), respectively, we have the following

estimates:

|α
N

(x) − m(x)| ≤ 2M̂h,

|βN (x) − n(x)| ≤ 2M̂h,
x ∈ [0, 1]. (3.2)

Proof Let R
N

(x) = α
N

(x)−m(x), x ∈ [x1, xN
]. By using Taylor’s approximation, we have

the following reminder:

R
N

(x) = m′(ξ)(x − xi), where x, ξ ∈ [xi, xi+1], i = 1, 2, · · · , N − 1. (3.3)

Estimation of the reminder terms along with the assumption (3.1) gives

|R
N

(x)| ≤ max
x∈(0,1)

|m′(x)| max
x∈(0,1)

|(x − xi)| ≤ M̂h. (3.4)

For x ∈ [0, x1], we have

α
N

(x) = α
N

(x1) = m(x1) = m(0) + m′(ξ1)h

= m′(ξ1)h, ξ1 ∈ [0, x1], (3.5)

m(x) = m(0) + xm′(ξ2), ξ2 ∈ [0, x] ⊂ [0, x1]. (3.6)

From (3.5)–(3.6) along with the assumption (3.1), we have

|α
N

(x) − m(x)| = |hm′(ξ1) − xm′(ξ2)| ≤ 2M̂h, x ∈ [0, x1]. (3.7)

For x ∈ [x
N

, 1], we also have
|α

N
(x) − m(x)| ≤ 2M̂h. (3.8)
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Combining (3.7) and (3.8), one can conclude that

|α
N

(x) − m(x)| ≤ 2M̂h.

Similarly one can prove

|β
N

(x) − n(x)| ≤ 2M̂h

by considering the reminder as

S
N

(x) = β
N

(x) − n(x).

Setting U = u
N
− u, V = v

N
− v, A = a

N
− a and C = c

N
− c, the subtraction of (2.9) from

(1.1) yields

Ut − Uxx + a
N

U + bV = −Au, (x, t) ∈ ΩT ,
Vt − Vxx + c

N
V + dU = −Cv, (x, t) ∈ ΩT ,

U(x, 0) = 0, V (x, 0) = 0, x ∈ I,
U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ∈ (0, T ].

(3.9)

Lemma 3.2 Let (U, V ) be the solution of the system (3.9). Then we have the following

estimate:

max
0≤t≤T

∫
I

(|U |2 + |V |2)dx

≤ exp(MT )
(

max
x∈I

|A|2
∫

ΩT

|u|2dtdx + max
x∈I

|C|2
∫

ΩT

|v|2dtdx
)
. (3.10)

Proof The proof of this lemma is similar to that in [15].

Now by setting P = pN − p and Q = qN − q, the subtraction of the adjoint systems (2.4)

from (2.10) yields

−Pt − Pxx + a
N

P + dQ = −Ap, (x, t) ∈ ΩT ,

−Qt − Qxx + cN Q + bP = −Cq, (x, t) ∈ ΩT ,

P (x, T ) = U(x, T ) − [α
N

(x) − m(x)], x ∈ I,

Q(x, T ) = V (x, T ) − [β
N

(x) − n(x)], x ∈ I,

P (0, t) = P (1, t) = Q(0, t) = Q(1, t) = 0, t ∈ [0, T ).

(3.11)

Lemma 3.3 Let (P, Q) be the solution of the system (3.11). Then there exists a constant

C > 0 independent of a0, c0 such that

max
0≤t≤T

∫
I

(|P |2 + |Q|2)dx

≤ C exp(2MT )
(

max
x∈I

|A|2
∫

ΩT

(|p|2 + |u|2)dtdx + max
x∈I

|C|2
∫

ΩT

(|q|2 + |v|2)dtdx

+
∫

I

(|α
N

(x) − m(x)|2 + |β
N

(x) − n(x)|2)dx
)
. (3.12)



850 S. Gnanavel and K. Balachandran

Proof Multiply the first equation (3.11) by P and integrate over I to have

−1
2

d
dt

‖P‖2
L2(I) +

∫
I

|Px|2dx +
∫

I

a
N
|P |2dx = −

∫
I

dPQdx −
∫

I

APp dx. (3.13)

Using the assumption on a
N

and applying Cauchy’s inequality, we get

−1
2

d
dt

‖P‖2
L2(I) +

∫
I

|Px|2dx + a0

∫
I

|P |2dx

≤
∫

I

|P |2dx +
1
2

max
x∈I

|A|2
∫

I

|p|2dx +
1
2

max
x∈I

|d|2
∫

I

|Q|2dx. (3.14)

Similarly, from the second equation of (3.11), we have

−1
2

d
dt

‖Q‖2
L2(I) +

∫
I

|Qx|2dx + c0

∫
I

|Q|2dx

≤
∫

I

|Q|2dx +
1
2

max
x∈I

|C|2
∫

I

|q|2dx +
1
2

max
x∈I

|b|2
∫

I

|P |2dx. (3.15)

Coupling the above two inequalities, we have

− d
dt

[exp(Mt)(‖P‖2
L2(I) + ‖Q‖2

L2(I))]

≤ exp(Mt)
(

max
x∈I

|A|2
∫

I

|p|2dx + max
x∈I

|C|2
∫

I

|q|2dx
)
, (3.16)

where M is the constant defined in Lemma 2.1. Thus, integrating over (t, T ), we arrive at

‖P‖2
L2(I) + ‖Q‖2

L2(I)

≤ exp(−Mt)
(

max
x∈I

|A|2
∫

I

∫ T

t

exp(Ms)|p|2dsdx + max
x∈I

|C|2
∫

I

∫ T

t

exp(Ms)|q|2dsdx
)

+ 2 exp(M(T − t))
( ∫

I

(|U(x, T )|2 + |V (x, T )|2)dx

+
∫

I

(|α
N

(x) − m(x)|2 + |β
N

(x) − n(x)|2)dx
)
.

It is not difficult to conclude the proof by applying Lemma 3.1.

Theorem 3.1 Let (a, c) and (a
N

, c
N

) be the solutions of the optimal control problems (2.1)

and (2.6) respectively. Suppose that there exists a point x0 ∈ I such that a
N

(x0) = a(x0) and

cN (x0) = c(x0). Then there exists an instant of time T0 such that, for T ≥ T0,

a
N

(x) → a(x)
cN (x) → c(x)

}
in C(0, 1), as h → 0. (3.17)

Proof Let us start the proof by taking k = a
N

, l = c
N

in (2.5) to have∫
ΩT

qv(c − c
N

)dtdx +
∫

ΩT

pu(a − a
N

) dtdx

+ N

∫
I

[∇a · ∇(a
N
− a) + ∇c · ∇(c

N
− c)]dx ≥ 0. (3.18)
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And, by taking k = a, l = c in (2.8), we also have∫
ΩT

q
N

v
N

(c
N
− c)dtdx +

∫
ΩT

p
N

u
N

(a
N
− a) dtdx

+ N

∫
I

[∇a
N
· ∇(a − a

N
) + ∇c

N
· ∇(c − c

N
)]dx ≥ 0, (3.19)

where (u, v), (u
N

, v
N

) are the solutions of the systems (1.1) and (2.9) respectively and (p, q), (p
N

,

q
N

) are the solutions of the corresponding adjoint systems (3.1) and (2.10) respectively. Now

from (3.18)–(3.19), we get

N
(∫

I

|∇(a
N
− a)|2dx +

∫
I

|∇(c
N
− c)|2dx

)
≤

∫
ΩT

A(p
N

u
N
− pu)dtdx +

∫
ΩT

C(q
N

v
N
− qv)dtdx

=
∫

ΩT

A(p
N

U + Pu)dtdx +
∫

ΩT

C(q
N

V + Qv)dtdx. (3.20)

Applying Cauchy’s inequality to each of the integrals on the right-hand side, we obtain

N

∫
I

(|∇A|2 + |∇C|2)dx

≤ 1
2

(
max
x∈I

|A|2
∫

ΩT

(|pN |2 + |u|2)dtdx + max
x∈I

|C|2
∫

ΩT

(|qN |2 + |v|2)dtdx
)

+
1
2

∫
ΩT

(|U |2 + |V |2 + |P |2 + |Q|2)dtdx. (3.21)

From Lemmas 3.1–3.2, it clear that∫
ΩT

(|U |2 + |V |2 + |P |2 + |Q|2)dtdx

≤ CT exp(2MT )
(

max
x∈I

|A|2
∫

ΩT

(|p|2 + |u|2)dtdx + max
x∈I

|C|2
∫

ΩT

(|q|2 + |v|2)dtdx

+
∫

I

(|α
N

(x) − m(x)|2 + |β
N

(x) − n(x)|2)dx
)
. (3.22)

Besides, from Lemma 2.1 and an analogue of Lemma 2.2, there exists a constant Γ > 0 such

that∫
ΩT

(|u|2 + |v|2)dtdx ≤ T exp(MT )Γ,

∫
ΩT

(|p|2 + |q|2)dtdx ≤ T exp(2MT )Γ. (3.23)

Moreover, taking A(x0) = 0 into account and applying Hölder’s inequality, we get

|A(x)| =
∣∣∣ ∫ x

x0

(A(y))′dy
∣∣∣ ≤ (∫

I

|∇A|2dy
) 1

2
, (3.24)

so that

max
x∈I

|A| ≤ ‖∇A‖L2(I), ∀x ∈ I. (3.25)
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Combining the preceding estimates with (3.21), we arrive at

max
x∈I

|A|2 + max
x∈I

|C|2 ≤ CT (max
x∈I

|A|2 + max
x∈I

|C|2)

+
CT

2N
exp(2MT )

∫
I

(|α
N

(x) − m(x)|2 + |β
N

(x) − n(x)|2)dx, (3.26)

where the constant

CT =
T

2N
exp(4MT )Γ(1 + CT ).

Now choosing T0 > 0 such that CT0 = 1
2 , we have

max
x∈I

|A|2 + max
x∈I

|C|2 ≤ CT

N
exp(2MT )

∫
I

(|α
N

(x) − m(x)|2 + |β
N

(x) − n(x)|2)dx

≤ 8CT

N
exp(2MT )M̂2h2. (3.27)

Therefore, from the above inequality, we easily conclude that

max
x∈(0,1)

|a
N

(x) − a(x)|2 + max
x∈(0,1)

|c
N

(x) − c(x)|2 → 0, as h → 0.

This concludes the proof of Theorem 3.1.

Remark 3.1 It is interesting to note that we can easily establish the existence and unique-

ness of the inverse problem of reconstructing two time-independent coefficients in the reaction

diffusion system with zero flux boundary conditions from the final time overspecified measure-

ment (1.3) as in [15]. But, in order to analyze the asymptotic behavior of the reconstruction

from the discrete measurement m(x), n(x) as in (1.2), the assumption (3.1) should be replaced

with

m(x), n(x) ∈ C2(0, 1), max
x∈I

|m′′(x)| ≤ M̃, max
x∈I

|n′′(x)| ≤ M̃. (3.28)

Lemma 3.4 For α
N

and β
N

defined in (1.5) and (1.6), respectively, we have the following

estimates:

|αN (x) − m(x)| ≤ M̃h2,

|β
N

(x) − n(x)| ≤ M̃h2,
x ∈ [0, 1]. (3.29)

Proof We assume R
N

(x) = α
N

(x)−m(x), x ∈ [x1, xN
]. By using Taylor’s approximation,

we have the following reminder (see [16]):

RN (x) =
1
2
m′′(ξ)(x − xi)(x − xi+1), x, ξ ∈ [xi, xi+1], i = 1, 2, · · · , N − 1. (3.30)

Estimation of the reminder terms, along with the assumption (3.28) gives

|R
N

(x)| ≤ 1
2

max
x∈(0,1)

|m′′(x)| · max
x∈(0,1)

|(x − xi)(x − xi+1)| ≤ M̃h2

8
. (3.31)
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For x ∈ [0, x1], we have

αN (x) = αN (x1) = m(x1) = m(0) + m′(0)h + m′′(ξ1)
h2

2

= m(0) + m′′(ξ1)
h2

2
, ξ1 ∈ [0, x1], (3.32)

m(x) = m(0) + m′′(ξ2)
x2

2
, ξ2 ∈ [0, x] ⊂ [0, x1]. (3.33)

From (3.32)–(3.33) along with the assumption (3.28), we have

|αN (x) − m(x)| =
∣∣∣m′′(ξ1)

h2

2
− m′′(ξ2)

x2

2

∣∣∣ ≤ M̃h2, x ∈ [0, x1]. (3.34)

For x ∈ [x
N

, 1], we also have

|α
N

(x) − m(x)| ≤ M̃h2, x ∈ [x
N

, 1]. (3.35)

By combining (3.34) and (3.35), one can conclude that |α
N

(x) − m(x)| ≤ M̃h2. Similarly we

can prove

|β
N

(x) − n(x)| ≤ M̃h2.

Remark 3.2 By using the upper bound for the reminders on Theorem 3.1, we get

max
x∈I

|A|2 + max
x∈I

|C|2 ≤ 8CT

N
exp(2MT )M̃2h4. (3.36)

This yields the required asymptotic convergence of the reconstruction of the coefficients from

the linearly coupled reaction diffusion system with zero flux boundary condition through the

final time discrete measurement data.

Remark 3.3 The main difference in the convergence for the system with Dirichlet boundary

conditions and zero flux boundary condition is that the Dirichlet boundary conditions require

more numbers of discrete measurements than the zero flux boundary condition. For the re-

construction of the coefficients on the linearly coupled reaction diffusion system with zero flux

boundary condition the cost of the measurement is less.
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