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Abstract The author considers the L? boundedness for two kinds of Carleson-type maxi-
mal operators with variable kernels Q(x‘f{ ) where Q(z,y') € L®(R™) x W3 (S™~1) for some
s> 0.
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1 Introduction
For f € L?([-m,7]) and z € [—, 7], the Carleson operator C* is defined by

—1Af
C*f(x) = sup ‘ / f
AER -7 x—t
In 1966, using the fact that C* is of the weak type (2,2), Carleson [6] proved that the Fourier

series of a function in L?([—,7|) converges pointwise almost everywhere. Later, Hunt [12]

extended Carleson’s theorem to the LP([—m, 7)) for 1 < p < o0.
In 1970, Sjolin [17] studied an analogue of the Carleson operator C* on R™ defined by

S*f(z) = sup
ACR®

/n e MK (2 —y) f(y)dy|.

He showed that &* is bounded on L? for 1 < p < oo, where K is an appropriate Calderdén-

Zygmund kernel.
In 2001, Stein and Wainger [18] considered the following more general Carleson-type maxi-

mal operator,
T f(@) = sup | / POK (y) f(x - y)dy),
A n

where Py(z) = > Aoz, A= (Aa)i<|aj<a- They got the result as following.
1<[al<d -
Theorem A (cf. [18]) Suppose that Py(z) = Y. Xqz® and K satisfies the following
2<|al<d
conditions:
(1) K is a tempered distribution and agrees with a C* function K(x) for = # 0;

(2) K € L*>;
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(3) 107K (@)] < Alal 1 for 0< | < 1.
Then [| T fllLe < Cpllfllzr for 1 <p < co.

Recently, Ding and Liu [9] improved Theorem A and obtained weighted L? boundedness for
the Carleson-type maximal operator 7%, that is the following theorem.

Theorem B (cf. [9]) Suppose that Py(z) = >, Agz®, K(z) = Q')|z|™", and Q
2<[al<d
satisfies

/ Q(z")do(2") = 0, (1.1)
Sn—l
1
Qe LIS ) and / quw)dé < oo for somel < q< oo,
0

where wq(0) is the LI-modulus of the continuity of Q. Then for 1 < ¢’ < p < oo, there exists a
constant C' > 0 such that
wq(6)

1

17 Fler < (10 csnny + [ “420a8) 1o
0

where H*(S"~1) is the Hardy space on S™ 1 (see [8] for the definition of H'(S™™1)).

In 2009, the L? bound for another Carleson-type maximal operator is considered, which is
the following theorem.

Theorem C (cf. [10]) Suppose that Q.(t) = > ut®, K(z) = Q(2')|z|™™, and Q €

2<k<d
HY(S"1) and satisfies (1.1). Then the Carleson-type mazimal operator
. Qy’
T f(x) = sup / @t 28 i q,
pera-1 | Jgn ly|”

is bounded on LP for 1 < p < oo. Further, [|T*||1r—1r < C||Q g1 (gn-1y.

If Q(x,y') is integrable on S~ ! for every x € R™ and satisfies

/ Qz,y")do(y’) =0 for all z € R, (1.2)
Sn—l
then singular integrals with the variable kernel
Qz,y'
Kt =p. [ HEE f -y

exist. The continuity property of the singular integral X has been extensively studied, see [3-5]
for more details.

Motivated by the above results about Carleson-type maximal operators and singular inte-
grals with variable kernels, we will consider the LP boundedness for the following two Carleson-
type maximal operators with the variable kernel

* i Q({E,y/)
_ iPyx(y) 22\ J ) _
K f(x)—sgp‘/nep v PR fz y)dy‘ (1.3)
and
* — i /A,(l |)Q(J,‘,yl) —
& f(x) = s /"eQ Y P flx y)dy}7 (1.4)

where Q(z,y’) is integrable on S"~! for every x € R™ and satisfies (1.2).
Our main results in this note are as follows.
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Theorem 1.1 Let K* be given as in (1.3) and Py(x) = >, Agz®. If Qz,y) €
2<|al<d

L>®(R™) x W5(S"™1) for s > 322 then for 1 < p < oo, there ezists a constant C' > 0
such that

IE* £l o ey < CS o eny-

Remark 1.1 The Sobolev imbedding theorem on S™~! (see [14, § 7.1]) states that W3 (S"~1)

c CH(S" 1) for s > ”T“ % < "TH when 2 < n < 4, so, Theorem 1.1 can be looked as an

improvement of Theorem A in some sense. Moreover, in the same way, we can prove that *
is also bounded on LP(w) for w € A,, 1 < p < 0.

Theorem 1.2 Let &* be given as in (1.4) and Q,(t) = > pxt®. If Q(z,y’) € L®(R") x
2<k<d

W3(S™™ 1Y) for s > "T_l, then for 1 < p < oo, there exists a constant C' > 0 such that

18 [ o gy < ClLSlzoqany-

Remark 1.2 The study of singular integrals with an oscillating factor e@=(I¥D has an
important motivation. In fact, the singular integral in (1.4) is a generalization of the strongly
singular convolution operator, which has been well studied by Fefferman (see [11]).

2 Notations and Lemmas

This section is devoted to the description of some basic facts and notations about spherical
harmonics. An exposition of further details can be found in [2] or [16].

For m € N, denote the space of spherical harmonics of degree m on S"~! by H,,, and let h,,
be the dimension of H,,. If {Y,, ; };L:l denotes the normalized complete system in H,,, then,
{Yij:m€eN,j=1,2--- hp} is an orthonormal basis for the Hilbert spaces L?(S™"~!) with
the inner product

()= [ 1)o@, L€ L2E),

Thus, for any f € L%(S"™!), its Fourier-Laplace series converges to f in the L? norm, that is,

I
f(@)= > > am,;Ym,j(2"), where the coefficients a,,_ ; are given by
meN j=1

am,j = {f,Ymj) :/ (@)Y, (2" )do(2). (2.1)

Sn—1

Definition 2.1 For a secondly differentiable function f on S™~ !, set F by
F(z) = f(|—j|), z€R"\ {0}.
The Laplace-Beltrami operator A on S™~ ' is defined by

Af(z") .= AF(2) , o' es" .

Essentially, the following lemma is Lemma 2.8 in [7], which can also be found in [2, §6].
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Lemma 2.1 For the above hy,, Yy, ; and A, we have

B, = (m:fl_ 1) - (m:fl_g) <Cpm™?, meN, (2.2)
|Ym’]($,)| é C’ﬂmgilv V(E, € Snila .7 = ]-a 27 e ah’rrn (23)

AY,;=—mm+n—-2)Y,;, meN, j=1,2,--- hp.

For s € N, A® denotes the s-th order Laplace-Beltrami operator. According to (2.4), we
have

(_A)gmej(xl) = ms(m +n— 2)8Ym7j(q"/)a m e N7 j = 17 2) e ahYVL'

For s > 0, we define the s-th order Laplace-Beltrami operator on S”~! in a distributive sense
by

Hy (A f) (@) =m®(m+n —2)°Hny(f)(2'), meN,

where f is a distribution on S™~!, and H,,(f) denotes the orthogonal projection of f onto H,,.

We call f(*) ;== (=A)3 f the s-th order derivative of the distribution f. Similar to the definition

of Sobolev spaces on R™, the Sobolev spaces on S"~! can be given as follows (see [13, §2.2] and
[15, §1.7]).

Definition 2.2 For s > 0, the Sobolev space W5(S"1) is defined by

R hom

W5 (8™ 1) = {f(x’) = Z ZamJYm}j(x') : Z m*(m +n —2)° aiw» < oo}

meN j=1 meN =1

<

with the inner product (f,g)s := (f), ().

The “by parts integration” formula is a crucial property of the operator A, which can be
found in [2, §6] and [7].

Lemma 2.2 Let f,g € C?(S"1), and then

/ f(@)Aga)do(2!) = / AF()g(a')do(').
Snfl

Sn—1

3 Proof of the Main Results

For Q(z,y') € L>®(R™) x W5 (S"~1), by a limit argument in [5, §5] or [3, §2], we may assume
that

hm

U, y) = DD (@)Y (v) (3.1)

meN j=1

is a finite sum, where a,, ;(x) are the Fourier-Laplace coefficients given by (2.1).
By (2.4) in Lemma 2.1, Lemma 2.2 and Hélder’s inequality,

|am,j(2)] =m™*(m +n—2)7°

/Sni1 Q(l‘, Z,)(_A)SYm,j (Z/)dO'(Z/)

=m *(m+n—-2)"°

/Sn—l (_A)SQ(% z’)Ym}j (Z/)da(z/)

<m” im0 —2) (=AU, )| 2 gr -1y Yo jll L2(s0-1)- (3.2)
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Applying the Plancherel theorem, we have
I(=A)*Q, )Fagn-1y = Yy m*(m+n— 2)§ dy, (@) = 192, ) [fys 01y < 00 (3.3)

meN =1

Note that Y, ; can be normalized such that [|Y, ;|| 2(sn-1) = 1. (3.2) and (3.3) imply that

|am,j(z)| < Crm ™2, (3.4)

3.1 Proof of Theorem 1.1
According to the representation of Q(z,y’) in (3.1), we get the following estimate:

< 3 S (s @ @),

meN j=1

where

i Ym !
Knsd ) =sup| [ am IntlBh )
A n vl

By Minkowski’s inequality and (3.4), we have
1K fllee <> Z | oo 1K s fll o < Co Y m*QSZ 1K s fll Lo (3.5)
meN j=1 meN

Therefore, it suffices to consider the terms [|KC};, , f| L». It is easy to see that, for 1 < ¢ < oo,

Woo(0)

dé.
o

1 1
L®(S™ 1) ¢ L9(S"Y) ¢ HY(S™ 1) and / wqé(é)dég/
0 0

Then, Theorem B implies that

1K i llLe < CUYm sl L2(sn-1) + C(m, ) fll e,

where C'(m, j) := 01 Ldé and w7 (§) denotes the continuous modulus of Yy, ;.

To estimate the constants C(m, j) we need the following Markov inequality, which can be
found in [13, §2] and [1].

Lemma 3.1 ForY,, ; € Hy, ',y € S"™1, we have

|Ym>j(x/) =Yy )| <mlz’ —y'[[[Yom 4] Loo(Sn—1)-

By Lemma 3.1 and (2.3), we have C(m, j) < Cm? and ||}, ; fllz» <
(3.5) and (2.2) imply that

Kl < Cn 3 S m2md s < Co 3 =2

meN j=1 meN

. Then,

< Call fllze,

where we use the fact that 37" — 2 —2s < —1, because s > 3” 2,
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3.2 Proof of Theorem 1.2
Maximal operators £ can also be treated as K* in the previous subsection. Define

i Ym,' y,
/ . Qu(y)ﬁf(x )y,

R, f(x) = sup
pERI—L

Theorem C shows that
185, fllLe < CllY il sn-0ll flle < ClYmjll2sn-—1)l1 | Le-

Then, in a similar way as (3.5), for s > "T_l, we have

hom R
1Rl < Y > Namglliee 8l < C Y > m= || f |l
meN j=1 meN j=1
< Co 32 M fll e < Cullfllue
meN
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