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Abstract The author considers the Lp boundedness for two kinds of Carleson-type maxi-

mal operators with variable kernels Ω(x,y′)
|y|n , where Ω(x, y′) ∈ L∞(Rn)×W s

2 (Sn−1) for some
s > 0.
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1 Introduction

For f ∈ L2([−π, π]) and x ∈ [−π, π], the Carleson operator C∗ is defined by

C∗f(x) = sup
λ∈R

∣∣∣ ∫ π

−π

e−iλtf(t)
x − t

dt
∣∣∣.

In 1966, using the fact that C∗ is of the weak type (2,2), Carleson [6] proved that the Fourier
series of a function in L2([−π, π]) converges pointwise almost everywhere. Later, Hunt [12]
extended Carleson’s theorem to the Lp([−π, π]) for 1 < p < ∞.

In 1970, Sjölin [17] studied an analogue of the Carleson operator C∗ on R
n defined by

S∗f(x) = sup
λ∈Rn

∣∣∣ ∫
Rn

e−iλ·yK(x − y)f(y)dy
∣∣∣.

He showed that S∗ is bounded on Lp for 1 < p < ∞, where K is an appropriate Calderón-
Zygmund kernel.

In 2001, Stein and Wainger [18] considered the following more general Carleson-type maxi-
mal operator,

T ∗f(x) = sup
λ

∣∣∣ ∫
Rn

eiPλ(y)K(y)f(x − y)dy
∣∣∣,

where Pλ(x) =
∑

1≤|α|≤d

λαxα, λ := (λα)1≤|α|≤d. They got the result as following.

Theorem A (cf. [18]) Suppose that Pλ(x) =
∑

2≤|α|≤d

λαxα and K satisfies the following

conditions:
(1) K is a tempered distribution and agrees with a C1 function K(x) for x �= 0;
(2) K̂ ∈ L∞;
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(3) |∂γ
xK(x)| ≤ A|x|−n−|γ| for 0 ≤ |γ| ≤ 1.

Then ‖T ∗f‖Lp ≤ Cp‖f‖Lp for 1 < p < ∞.

Recently, Ding and Liu [9] improved Theorem A and obtained weighted Lp boundedness for
the Carleson-type maximal operator T ∗, that is the following theorem.

Theorem B (cf. [9]) Suppose that Pλ(x) =
∑

2≤|α|≤d

λαxα, K(x) = Ω(x′)|x|−n, and Ω

satisfies ∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.1)

Ω ∈ Lq(Sn−1) and
∫ 1

0

ωq(δ)
δ

dδ < ∞ for some 1 < q ≤ ∞,

where ωq(δ) is the Lq-modulus of the continuity of Ω. Then for 1 ≤ q′ < p < ∞, there exists a
constant C > 0 such that

‖T ∗f‖Lp ≤ C
(
‖Ω‖H1(Sn−1) +

∫ 1

0

ωq(δ)
δ

dδ
)
‖f‖Lp,

where H1(Sn−1) is the Hardy space on Sn−1(see [8] for the definition of H1(Sn−1)).

In 2009, the Lp bound for another Carleson-type maximal operator is considered, which is
the following theorem.

Theorem C (cf. [10]) Suppose that Qμ(t) =
∑

2≤k≤d

μktk, K(x) = Ω(x′)|x|−n, and Ω ∈

H1(Sn−1) and satisfies (1.1). Then the Carleson-type maximal operator

T∗f(x) = sup
μ∈Rd−1

∣∣∣ ∫
Rn

eiQμ(|y|) Ω(y′)
|y|n f(x − y)dy

∣∣∣
is bounded on Lp for 1 < p < ∞. Further, ‖T∗‖Lp→Lp ≤ C‖Ω‖H1(Sn−1).

If Ω(x, y′) is integrable on Sn−1 for every x ∈ R
n and satisfies∫

Sn−1
Ω(x, y′)dσ(y′) = 0 for all x ∈ R

n, (1.2)

then singular integrals with the variable kernel

Kf(x) = p.v.

∫
Rn

Ω(x, y′)
|y|n f(x − y)dy

exist. The continuity property of the singular integral K has been extensively studied, see [3–5]
for more details.

Motivated by the above results about Carleson-type maximal operators and singular inte-
grals with variable kernels, we will consider the Lp boundedness for the following two Carleson-
type maximal operators with the variable kernel

K∗f(x) = sup
λ

∣∣∣ ∫
Rn

eiPλ(y) Ω(x, y′)
|y|n f(x − y)dy

∣∣∣ (1.3)

and

K∗f(x) = sup
μ∈Rd−1

∣∣∣ ∫
Rn

eiQμ(|y|) Ω(x, y′)
|y|n f(x − y)dy

∣∣∣, (1.4)

where Ω(x, y′) is integrable on Sn−1 for every x ∈ R
n and satisfies (1.2).

Our main results in this note are as follows.
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Theorem 1.1 Let K∗ be given as in (1.3) and Pλ(x) =
∑

2≤|α|≤d

λαxα. If Ω(x, y′) ∈

L∞(Rn) × W s
2 (Sn−1) for s > 3n−2

4 , then for 1 < p < ∞, there exists a constant C > 0
such that ∥∥K∗f

∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn).

Remark 1.1 The Sobolev imbedding theorem on Sn−1 (see [14, § 7.1]) states that W s
2 (Sn−1)

⊂ C1(Sn−1) for s > n+1
2 . 3n−2

4 < n+1
2 when 2 ≤ n < 4, so, Theorem 1.1 can be looked as an

improvement of Theorem A in some sense. Moreover, in the same way, we can prove that K∗

is also bounded on Lp(w) for w ∈ Ap, 1 < p < ∞.

Theorem 1.2 Let K∗ be given as in (1.4) and Qμ(t) =
∑

2≤k≤d

μktk. If Ω(x, y′) ∈ L∞(Rn)×

W s
2 (Sn−1) for s > n−1

2 , then for 1 < p < ∞, there exists a constant C > 0 such that∥∥K∗f
∥∥

Lp(Rn)
≤ C‖f‖Lp(Rn).

Remark 1.2 The study of singular integrals with an oscillating factor eiQμ(|y|) has an
important motivation. In fact, the singular integral in (1.4) is a generalization of the strongly
singular convolution operator, which has been well studied by Fefferman (see [11]).

2 Notations and Lemmas

This section is devoted to the description of some basic facts and notations about spherical
harmonics. An exposition of further details can be found in [2] or [16].

For m ∈ N, denote the space of spherical harmonics of degree m on Sn−1 by Hm, and let hm

be the dimension of Hm. If {Ym,j}hm

j=1 denotes the normalized complete system in Hm, then,
{Ym,j : m ∈ N, j = 1, 2 · · · , hm} is an orthonormal basis for the Hilbert spaces L2(Sn−1) with
the inner product

〈f, g〉 :=
∫
Sn−1

f(x′)g(x′)dσ(x′), f, g ∈ L2(Sn−1).

Thus, for any f ∈ L2(Sn−1), its Fourier-Laplace series converges to f in the L2 norm, that is,

f(x′) =
∑

m∈N

hm∑
j=1

am,jYm,j(x′), where the coefficients am,j are given by

am,j := 〈f, Ym,j〉 =
∫
Sn−1

f(x′)Ym,j(x′)dσ(x′). (2.1)

Definition 2.1 For a secondly differentiable function f on Sn−1, set F by

F (z) = f
( z

|z|
)
, z ∈ R

n \ {0}.

The Laplace-Beltrami operator Λ on Sn−1 is defined by

Λf(x′) := ΔF (z)
∣∣∣
z=x′

=
n∑

k=1

∂2

∂z2
k

F (z)
∣∣∣
z=x′

, x′ ∈ Sn−1.

Essentially, the following lemma is Lemma 2.8 in [7], which can also be found in [2, §6].
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Lemma 2.1 For the above hm, Ym,j and Λ, we have

hm =
(

m + n − 1
n − 1

)
−

(
m + n − 3

n − 1

)
≤ Cnmn−2, m ∈ N, (2.2)

|Ym,j(x′)| ≤ Cnm
n
2 −1, ∀x′ ∈ Sn−1, j = 1, 2, · · · , hm, (2.3)

ΛYm,j = −m(m + n − 2)Ym,j , m ∈ N, j = 1, 2, · · · , hm. (2.4)

For s ∈ N, Λs denotes the s-th order Laplace-Beltrami operator. According to (2.4), we
have

(−Λ)sYm,j(x′) = ms(m + n − 2)sYm,j(x′), m ∈ N, j = 1, 2, · · · , hm.

For s > 0, we define the s-th order Laplace-Beltrami operator on Sn−1 in a distributive sense
by

Hm

(
(−Λ)sf

)
(x′) = ms(m + n − 2)sHm(f)(x′), m ∈ N,

where f is a distribution on Sn−1, and Hm(f) denotes the orthogonal projection of f onto Hm.
We call f (s) := (−Λ)

s
2 f the s-th order derivative of the distribution f . Similar to the definition

of Sobolev spaces on R
n, the Sobolev spaces on Sn−1 can be given as follows (see [13, §2.2] and

[15, §1.7]).

Definition 2.2 For s ≥ 0, the Sobolev space W s
2 (Sn−1) is defined by

W s
2 (Sn−1) :=

{
f(x′) =

∑
m∈N

hm∑
j=1

am,jYm,j(x′) :
∑
m∈N

ms(m + n − 2)s
hm∑
j=1

a2
m,j < ∞

}

with the inner product 〈f, g〉s := 〈f (s), g(s)〉.

The “by parts integration” formula is a crucial property of the operator Λ, which can be
found in [2, §6] and [7].

Lemma 2.2 Let f, g ∈ C2(Sn−1), and then∫
Sn−1

f(x′)Λg(x′)dσ(x′) =
∫
Sn−1

Λf(x′)g(x′)dσ(x′).

3 Proof of the Main Results

For Ω(x, y′) ∈ L∞(Rn)×W s
2 (Sn−1), by a limit argument in [5, §5] or [3, §2], we may assume

that

Ω(x, y′) =
∑
m∈N

hm∑
j=1

am,j(x)Ym,j(y′) (3.1)

is a finite sum, where am,j(x) are the Fourier-Laplace coefficients given by (2.1).
By (2.4) in Lemma 2.1, Lemma 2.2 and Hölder’s inequality,

|am,j(x)| = m−s(m + n − 2)−s
∣∣∣ ∫

Sn−1
Ω(x, z′)(−Λ)sYm,j(z′)dσ(z′)

∣∣∣
= m−s(m + n − 2)−s

∣∣∣ ∫
Sn−1

(−Λ)sΩ(x, z′)Ym,j(z′)dσ(z′)
∣∣∣

≤ m−s(m + n − 2)−s‖(−Λ)sΩ(x, ·)‖L2(Sn−1)‖Ym,j‖L2(Sn−1). (3.2)
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Applying the Plancherel theorem, we have

‖(−Λ)sΩ(x, ·)‖2
L2(Sn−1) =

∑
m∈N

ms(m + n − 2)s
hm∑
k=1

a2
m,j(x) = ‖Ω(x, ·)‖2

W s
2 (Sn−1) < ∞. (3.3)

Note that Ym,j can be normalized such that ‖Ym,j‖L2(Sn−1) = 1. (3.2) and (3.3) imply that

|am,j(x)| ≤ Cnm−2s. (3.4)

3.1 Proof of Theorem 1.1
According to the representation of Ω(x, y′) in (3.1), we get the following estimate:

K∗f(x) ≤
∑
m∈N

hm∑
j=1

|am,j(x)|K∗
m,jf(x),

where

K∗
m,jf(x) = sup

λ

∣∣∣ ∫
Rn

eiPλ(y) Ym,j(y′)
|y|n f(x − y)dy

∣∣∣.
By Minkowski’s inequality and (3.4), we have

‖K∗f‖Lp ≤
∑
m∈N

hm∑
j=1

‖am,j‖L∞‖K∗
m,jf‖Lp ≤ Cn

∑
m∈N

m−2s
hm∑
j=1

‖K∗
m,jf‖Lp . (3.5)

Therefore, it suffices to consider the terms ‖K∗
m,jf‖Lp . It is easy to see that, for 1 < q < ∞,

L∞(Sn−1) ⊂ Lq(Sn−1) ⊂ H1(Sn−1) and
∫ 1

0

ωq(δ)
δ

dδ ≤
∫ 1

0

ω∞(δ)
δ

dδ.

Then, Theorem B implies that

‖K∗
m,jf‖Lp ≤ C(‖Ym,j‖L2(Sn−1) + C(m, j))‖f‖Lp ,

where C(m, j) :=
∫ 1

0
ωm,j

∞ (δ)
δ dδ, and ωm,j

∞ (δ) denotes the continuous modulus of Ym,j .
To estimate the constants C(m, j), we need the following Markov inequality, which can be

found in [13, §2] and [1].

Lemma 3.1 For Ym,j ∈ Hm, x′, y′ ∈ Sn−1, we have∣∣Ym,j(x′) − Ym,j(y′)
∣∣ ≤ m|x′ − y′|‖Ym,j‖L∞(Sn−1).

By Lemma 3.1 and (2.3), we have C(m, j) ≤ Cm
n
2 and ‖K∗

m,jf‖Lp ≤ Cnm
n
2 ‖f‖Lp. Then,

(3.5) and (2.2) imply that

‖K∗f‖Lp ≤ Cn

∑
m∈N

hm∑
j=1

m−2sm
n
2 ‖f‖Lp ≤ Cn

∑
m∈N

mn−2m−2sm
n
2 ‖f‖Lp ≤ Cn‖f‖Lp,

where we use the fact that 3n
2 − 2 − 2s < −1, because s > 3n−2

4 .
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3.2 Proof of Theorem 1.2
Maximal operators K∗ can also be treated as K∗ in the previous subsection. Define

K∗
m,jf(x) = sup

μ∈Rd−1

∣∣∣ ∫
Rn

eiQμ(|y|) Ym,j(y′)
|y|n f(x − y)dy

∣∣∣.
Theorem C shows that

‖K∗
m,jf‖Lp ≤ C‖Ym,j‖H1(Sn−1)‖f‖Lp ≤ C‖Ym,j‖L2(Sn−1)‖f‖Lp.

Then, in a similar way as (3.5), for s > n−1
2 , we have

‖K∗f‖Lp ≤
∑
m∈N

hm∑
j=1

‖am,j‖L∞‖K∗
m,jf‖Lp ≤ Cn

∑
m∈N

hm∑
j=1

m−2s‖f‖Lp

≤ Cn

∑
m∈N

mn−2m−2s‖f‖Lp ≤ Cn‖f‖Lp.
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