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Abstract This paper is concerned with the pointwise estimates for the sharp function of
two kinds of maximal commutators of multilinear singular integral operators T, and 17y,
which are generalized by a weighted BMO function b and a multilinear singular integral
operator T, respectively. As applications, some commutator theorems are established.
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1 Introduction

The theory of multilinear Calderér-Zygmund singular integral operators, originated from
the works of Coifman and Meyer’s, plays an important role in harmonic analysis. Its study
has been attracting a lot of attention in the last few decades. So far, some properties of the
multilinear operators are parallel to those of the classical linear Caldrén-Zygmund operators
but new interesting phenomena have also been observed. A systematic analysis of many basic
properties of such multilinear operators can be found in the articles by Coifman and Meyer [1],
Grafakos and Torres [2-4], and Lerner et al. [5]. So we first recall the definition and results
of multilinear Calderén-Zygmund operators as well as the corresponding maximal multilinear

operators.

Definition 1.1 (Multilinear Calderén-Zygmund Operators) Let T be a multilinear operator
initially defined on the m-fold product of Schwartz space and taking values into the space of

tempered distributions

T:SR™) x - x S(R™) — &' (R™).

Following [2], we say that T is an m-linear Calderén-Zygmund operator if for some 1 <

q; < o0, it extends to a bounded multilinear operator from L' x --- x L% to L4, where

1

= q% 4+t qi, and if there exists a function K, defined off the diagonal xt =y, = -+ = ym
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in (R™)™+! satisfying

T(fie o) = [ R ) o5 fom)dyn - d

(]Rn ) m

for all z & () suppf;,
j=1

A
|K(y05y17"' aym)| S pr— o (11)
(> e —wl)
k,1=0
and
Aly; —y5l°
|K(y057yja7ym)_K(yOaay_;aaym)lg m - mnte (12)
(3 -l
k,1=0
. 1
for some £ > 0 and all 0 < j < m, where |y; —y}[ < 5 Og}cagxm lyj — Ykl
The maximal multilinear singular integral operator is defined by
T*(f) = sup[T5(f1, -+, fm)(@)], (1.3)
>0

where Ty is the smooth truncation of 1" given by

Tyl fn)le) = [ K@ ) () () - g
l[z—y1|2+-+|z—ym|>>52

—

As pointed out in [4], T*(f) is pointwise well-defined when f; € L% (R") with 1 < ¢; < co.
The study for the multilinear singular integral operator and its maximal operators attracts
many authors’ attention. For the maximal multilinear operator T, one can see for example [4]

for details. We list some results for T* as follows.

Theorem A (see [4]) Let 1 < ¢q; < oo, and q be such that % = q% + 4+ q1 and

weAyN---NA, . Let T be an m-linear Calderon-Zygmund operator. Then there ezists a
constant Cy, 4 < 00, such that all f: (f1,++, fm) satisfy

IT*(Hllzaw) < Cra(A+W) TT 1fillzo ),

j=1
where W is the norm of T in the mapping T: L* x --- L' — Lm°,

Theorem B (see [4]) Let T be an m-linear Calderdn-Zygmund operator. Then, for all

exponents p,p1,- -+ ,Pm, Satisfying p% 4+ 4+ pl = %, we have

T*:LP* x --- x LP™ — LP,
when 1 < p1,--- ,pm < 00, and we also have
T : LPY x - x LPm — [P

when at least one p; equals one. In either case the norm of T™ is controlled by a constant
multiple of A+ W.
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Definition 1.2 (see [6]) (Commutators in the j-th Entry) Given a collection of locally
integrable function b = (b1, -+ ,bm), we define the commutators of the m-linear Calderdn-

Zygmund operator T to be

m

B, T1(F) = Teu( o, ) = D T3 (F)
j=1
where each term is the commutator of bj and T in the j-th entry of T', that is

—

TZZJ( ):bjT(fla"' 7fja"' 7fm)_T(f1a"' 7bjfja"' afm)-

In [7], the following more general iterated commutators of multilinear Calderén-Zygmund
operators and pointwise multiplication with functions in BMO were defined and studied in
products of Lebesgue spaces, including strong type and weak end-point estimates with multiple
Ap weights, that is

—

Trp(f)(@) = [b1, [b2, -+ s (b1, (b, Tlim]m—1, -+ ]2
—/(Rn)m K(z,y1,  Ym) H UNFLG) -+ Fon o) - Ay,

Clearly, when m = 1,

T (f)(x) = Tso(f)(x) = Ty f(x) = 0T f(x) = T(bf) (),

which is the commutator of the Coifman-Rochberg-Weiss type. When T is the Calderén-
Zygmund singular integral operator and b € BMO(R™), Coifman, Rochberg and Weiss showed
that Ty is bounded on LP(R™) for 1 < p < oo. In 1985, Bloom [8] proved that if b € BMO(w) and
T is the singular integral operator, then T}, is bounded from LP(u) to LP(v) with the assumption
that p,v € A, and w(z) = (u(x)u(a:)_l)%. The main purpose of this paper is to extend these
two weighted results to the following two maximal commutators of multilinear singular integral
operators.

Now we present the definitions of two classes of maximal commutators of multilinear singular
integral operators. One is

m

)~ 3 S K i)
(b(@) = b(y)) [ (y5) - fin(Ym)dY], (1.4)
and the other is
Tii(f) (@) = §g}3|[bh b2, s (b1, by Tolmlm—1, -+ 211 () ()]
= ?5;118 /n P oy [2>62 (xvyla e 7ym)
1@, Ui) 1) - Fon(ym)di], (1.5)

Jj=1
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where dy = dy; - - - dy,,. It is obvious to see that
m .
T5(f) (@) < Z 7,7 ()«

We can formulate our results as follows.

Theorem 1.1  Let T be an m-linear Calderdn-Zygmund operator with the kernel K sat-
isfying (1.1) and (1.2). Suppose that 1 < q1, -+ ,Gm,q < 00 are given numbers satisfying
% = qil +o+ q%, and T maps L1 (R™) x --- x L (R™) into LY(R™). Further assume that
v e A, w= (/u/_l)% and that (, v) satisfies the following condition: There exists a constant

Co > 0 such that for any cube B C R™,

1 p—1
(E/Bu(a: |B|/ T 1dx > Cpy > 0. (1.6)
Ifb; € BMO(w), for j=1,---,m, then we have

1757 (Pl ey < ClbslleMore Hl\le\m(u) forj=1,

i=1

Furthermore,

T35 (Hzr ) < CZ [105]|BMO(w) H | fill s (o
j=1

1
Pm

wherel<pj<oo,1<p<ooand%:p—1+~'+

Obviously, choosing w(z) = pu(z) = v(z) = 1, we can get the following strong type estimate

for the maximal iterated commutator for a multilinear singular integral operator.

Theorem 1.2 Let T be an m-linear Calderon-Zygmund operator with the kernel K sat-

isfymg (1. ) and (1.2). Suppose that 1 < q1, -+ ,Gm,q < o0 are given numbers salisfying
% =+t q%, and T maps L9 (R™) x --- x LT (R") into LY(R™). If b; € BMO(w), for
j= 1 -~ ,m, then we have
m m
1T (F Z 165 llenao [T I1£ill o
j=1 i=1

1

wherel<pj<oo,1<p<oo(md%:p%+...+p7_

Theorem 1.3 Let T be an m-linear Calderon-Zygmund operator with the kernel K sat-

isfying (1.1) and (1.2). Suppose that 1 < q1,+* ,Gm,q < 00 are given numbers satisfying

% = qil + ot (%, and T maps LT (R™) x --- x L (R™) into LY(R™). Further assume that

v €A, w= (ul/*l)% and that (p,v) satisfies (1.6). If b; € BMO(w), for j =1,---,m, then
we have
. m
| T5 (Dl Lewy < C T 1bslmMow)ll £l 2 o
j=1

1
Pm

wherel<pj<oo,1<p<ooand%:pil+~'+
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From Theorem 1.3, we can easily get Theorem 1.4.

Theorem 1.4  Let T be an m-linear Calderon-Zygmund operator with the kernel K sat-
isfying (1.1) and (1.2). Suppose that 1 < qi, -+ ,qm,q < 00 are given numbers satisfying
% = qil +oeF i, and T maps L9 (R™) x --- x L (R"™) into LY(R™). If b; € BMO(w), for
j=1,---,m, then we have

m
T30S H 1b5llBaoll £ e

1

wherel<pj<oo,1<p<ooand%:pil+'~+p7.

This article is arranged as follows. In Section 2, we present some definitions and lemmas.
Some propositions will be listed and proved in Section 2. The proofs of Theorems 1.1-1.3 can

be found in Section 3.

2 Preliminaries and Some Lemmas

A non-negative function p defined on R™ is called a weight if it is locally integral. A weight

w is said to belong to the Muckenhoupt class A,(R™), 1 < p < oo, if there exists a constant C

such that
(i/ (z)dx / ida p71<C<oo
"5 \IB] Jp" |B| -

for every ball B C R™. A weight p is said to belong to class A;(R"™) defined by

< C mf w(x a.e. x € R"
(71 /6 )

for every ball B 3 z. The class Ax(R™) can be characterized as Ao = |J A4,.
1<p<oo
Many properties of weights can be found in the book [9], and we only collect some of them

in the following properties of weights which are the A, condition and the Reverse Holder
condition:
(a) Aoo condition: w is in the class A if there exist constants C' and o > 0, such that, for

every cube B and measurable set £ C B we have

% < C(%)U.

(b) Reverse Hélder condition: w € A, and there exist constants C' and € > 0 such that,

g1 o) < o)
— w(x d

(31 /, @ = 15|
for all cubes B.

The important properties of the weights are the weighted estimates for the maximal function,

the sharp maximal function and their variants. We first recall the maximal function defined by

M) = s oz [ 1l
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It is well known that for 1 < p < co, M maps LP(u) into itself if and only if € A, (see [10]).

The sharp maximal function is defined by

M) @) = sup iz [ 1) = foldy = suwinf [ 17(0) =l

B>x

We also recall the variants Ms(f)(z) = (M(|f|?)(z))s and Mi(f)(z) = (M(|f]°)(x))5.
The weighted maximal operator is defined by

M) = s (= [ 1wty

B3x

And we denote

00 = (5 [, 1Pmt)an)

Lemma 2.1 (see [11]) (Kolmogorov’s Inequality) Let (X, 1) be a probability measure space
and let 0 < p < g < 00, and then there exsits a constant C' = Cp 4 such that

”f”Lp(u) < CHfHquoo(M)

for any measurable function f.

Lemma 2.2 (see [11]) Let 0 < p,d < oo, and p € A(R™), and there exists C > 0
depending on the As(R™) constant of u such that

IMs () ey < CIME ) o

for any function f whose left side is finite.

The following definitions can be found in [8]. Let w be a weight and b be an L' locally
integrable function. Then b is in the weighted BMO class BMO(w) provided that

I¥lasio) = sup == [ [b(e) = boldr < € < .
We can easily know that
b€ BMO(w) < / 1b— bylde < Cw(B)
B

for all cubes B.
Let r > 1 and w be a weight. Define

1 %.
Sr(b,w, B) = (E/B|b—b3|rw(x)rdm) ,

M) = ([ 7@t ar)”

K:(b7 f,w)(a:) = sup Srq’ (bvwv B)Arq(fvwila B)

rEB

We denote K* = K7.
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Lemma 2.3 (see [8]) For an appropriate choice of ¢ < p and for any r with 1 < r < %,
there exists a weight w depending on r such that

(1) we € Ag;

(2) Jgn (B (b, f,w) (@) Pr(z)de < Clblgypo ) Jon | (@)Pu(z)de

Lemma 2.4 For any 1 < ¢ < oo, let p,v € Ay, w = (/ufl)%, and (p,v) satisfy (1.6).
Then there exists a constant C > 0 such that

57 | @)y < 0L fwl7)i @)

Proof Thanks to Holder’s inequality, we obtain

1 J, ok < |B|/ )’ |B|/ %dy)q’
< ()" Gy /'f“"q” )" |B|/ ()" dy)’
< @) (50 (7 [ o) %dy)q_’.

Since w = (pv~ )% then
I

—q =9
w vae =urvr

—-d(3-3).
% — %) = %, and s is so large for ¢ near p. And apply the reverse

-
p

Choose s such that sq’(

Holder’s inequality to u

1

_qdy
IBI IBI )
|B|/W o)
C Cy) » / y /
1 % ”p
ey [ /
<|B| B“” (3
1 % 1 7%1 5(11/
(a/;@ B|/ (E/B“ w)
1 % pi,+b;/
b oo /u%
|B| /B IBI
1 % % p—l 1
< (i1 f, o) (5 [0 0) " [(5 [, vo000) (i [, v 10)" ]
C

where we have used the assumption (1.6) in the fourth inequality. Thus

57 | @)y < COL(1fwl7)i @)

U=

S

2
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The following lemma was established by Bloom [8].

Lemma 2.5 (sce [8]) Let u,v € A, and put w = (/u/_l)%, 1 <p < oo. Then for any cube
B, there exists a constant C > 0, such that

1

dy / dy / w7y qdy 7 <0< .
IBL/ [B] IBI )

Lemma 2.6 (see [8]) Letw € As, b € BMO(w). There exists a constant o > 0, such that

kn(1—o) w(2"1B)
lbp — barr1p| < C2 ”bHBMO W

3 Weighted Estimates for Maximal Commutators

We will prove our theorems in this section. To begin with, we prepare another two maximal
commutators to control the commutators.

Let ¢, 1) € C°([0,+00)) such that |/ ()] < &, /(1) < &

+ and they satisfy

X(2,00) (1) < @(t) < X[1,00) (), X1,21() < 0(t) < xqa 5()

We define the maximal operators

o F VIE =yl +-+lz—yal\
®*(f)(x) = sup K, ym)e( )H (v:)
n>0 (Rn)™ n i
[t =i+ e —yal\ 1
T ( —sup‘/ xyh"',ym)l/J(\/ m)H (yi) dy‘
n>0 71 m n i1
For simplicity, we denote
/e pTE el
K‘Pm(‘x7y17"'aym,):K(mayl7"'aym SO( m)7

\/Ix—y1|+ [T — Y
( )

K¢777(x7y17"' ;ym,) = K(xay17"' y Ym w

)

—

(I)n( )(l’) = /(]R") K@J}(‘(anla"' 7ym)Hfl(y’L)dy)
A i=1

—

@) = [ Koo v ] 000
i=1

The kernels of ®, and ¥, satisfy conditions (1.1) and (1.2) uniformly in 7, respectively.
And by the same argument as that in [4], the maximal operators ®* and ¥* have the same
weighted estimates to T that appeared in Theorems A and B.

It is easy to see that T*(f) < ®*(f) + U*(f), and

— — — — — —

Ty (f) < @5 (f) + s (f), Trp(f) < Py (f) + Wi (), (3.1)
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where

=

s (f)(2) = sup

n>0

Kon(@,y, - sym) fr(yr) -+ (05 (x) — b (y)) 5 (y;) -« fn (Y)Y

—

Wy (f)(x) = sup Kyn(@ i, ym) fr(yn) - (0 (@) = b)) f5(y5) -+ fn(ym)dy

> Juor
>

S— \\[ng \\tvjs

7>0 (Rn)m
@Eb( _})((E):SI;IS ) Ktp,n(xaylv"' 7ym H _b y] Hfz yz dy‘
n n)m :
U, (F)(2) = sup / Kaalwoan,-som) [J030) = 0) 1177
n>0 | J(Rn)m j=1 i=1

For simplicity, we will only prove the case m = 2. The arguments for the case m > 2
are similar. For the similarity of the two commutators @3, ( f) and v, ( f), we might as well

consider the former. And we establish the following crucial lemma.

Lemma 3.1 Let b; € BMO(w) (j = 1,2), 0 < § < %, and w? € Ay . Supposing that

WV €A, w= (/u/*l)%, 1 < p < oo, and that (u,v) satisfies (1.6), then
M@ (f1, f2))(x) < CK*(bj, @ (f1, f2),@)(x) + C(M, | fow|"(x)) 5 K* (b, f1,3)(x)
+ Clbjllmo) (Mo | f2w]U(x)) # (M, | frw|?(z)) s
+ C(M, | frw|?(x)) s K* (by, fo,@)(x)

and

M (fr, 2))(@) < CK* (b, W (f1, £2),@)(x) + C(M, | faw|*(2)) s K*(by, f1,0) ()
+ C|Ibj | 7o) (M| f2w] ! (2)) 5 (M, | frw] () 5
+ O(M, | fro|?(x)) s K* (b2, fo,0)(2).

Proof Without loss of generality, we only consider the case: j = 1 and denote b; by b for
convenience. Fix € R™ and let B = B(z, R) with R > 0, and A = bp be the average of b on B.
To proceed with, we decompose f; = f0 + f2°, where f0 = fixp~, i = 1,2, and B* = B(x,2R).
Let ¢ be a constant to be fixed along the proof.

Since 0 < § < 1, we have

%/ ||<I>Zv1(f1,f2)(y)|5_|C|5|dy)ﬁ g ﬁ/ |<I)Z’1(f1,f2)(y)—c|5dy)g
|B|/' ¥ R))” |B|/I<1> (16~ N2 D)y’
(i3 /B |<I>*<<b—A>f?,f;°><y>|5dy) + (g7 [ 6= N5 )

o=

1 * 00 poo
+ (17 [ 19O = 05 15 w) — el ay)
=1+ +1I4+IV+ V.
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For the first term I, since 0 < § < 1, by the Holder’s inequality and noting that w? €
Ay, A =bp, we get
1 *
< o1 [ )~ bll@*(fr, £2) )|y
|B| /p
1
< ﬁ(/ b(y) — b [6° (. £2)(9)Idy + [bs — b

Crgt [ ) = b B (1, 2R

@/B'b( ~ bi-ldy) |B|/ U 2)0)ldy)
(= [ 10 )00 ")

B|/ “(f1, fo)(y )|dy)

<cf ﬁ/ (o) — b (07 )
(g [ 1o >|qw<y>—Qdy)5(ﬁ B*my)ff’dy);’
(g1 [ b =2 @) ([ st

= CSy (b,@, B)A (D*(f1, fo)@ !, )[1+(|B*| w(y)q/dy)?(|§*| B*w(y)_Qdy>a}

< CK*(bv(I)*(fla f2),w)({£).
, by Kolmogorov’s inequality with p =6, ¢ = 5 and

For the second term II, since 0 < § <
it ensures that

the L1(R™) x --- x LY(R™) to L (R")- boundedness of ®*,

I [0 (b = N ) e

gc(ﬁ bt - A||f1<y1>|dy1)(|;| | 1f2(w2)lde)

= C1I; - 1ls.
For 11y, IIs, estimating these just as I and Lemma 2.4 gives

I < K*(b, f1,0)(z)

and

I, < C(M, (| fw|?)(2))s.

Therefore,

I1 < CK*(b, f1,@)(2) (M, (| fow|?)(z)) 7.
¢,y € B, the size

For the third term III, using the fact |y — ya| ~ |y2 — x| for any y» € (B*)¢,

estimate on K, ,, and Lemma 2.4, we obtain

me o / sup [@,((b = V)7, /)W)y
NAwIRe 4

B
// (b(y1) —
|B| *x (RP\ B*) |y vl + ly — y2l)?"
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<C [ [(by) —/\)fl(yl)|dy1/ )]

2
B re\B* Y2 — T[*"

gc( / ) = b s o)l + b5 = | [ 1)

foly
/ |fa( 2)2|nd92)
2k B*\2k—1B* Y2 —J)l

. (;2’“”|2k3*| / |.f2 y2)|dy2)
< CK*(b, f1,@)(x) (M, (| faw|?)(2)) 5.

We use the same computational technique in I to get the last inequality.

Ji(y1)|dys + [bp — b~

| sl

For the fourth term IV, using the fact |y — y1| ~ |y1 — | for any y1 € (B*)¢, y € B, the size

estimate on K, , and Lemma 2.4, we obtain
1 * %)
v g [ =D

Al(b(y1) — A fi(y1) f2(y2)l
|B|//w\3 oxpe (y—wl+ly =yl dy1dyady

< /R,,\B* CLI= 2000y ) ([ 1fallane)

o0

C(ZT’“”mlBﬂ 10 - bB)fl(y1)|dy1)<ﬁ /B [Fa(y2)ldye)

k=1

IN

[e )

1
—kn
< C(; 2 |2k+1B| - |(b(y1) - 52k+1B)f1(y1)|dy1

1

etk [ ian) (s [ Fetvinn)
k=1

2k+1B
1
7

(%)<ﬁ - w@z)*q'v(yz)_%dy?)q

ORI (K70 2+ 32 gianl [ i)
For simplicity, we bound
22 ’C"'bB,Qkff’“g[B' o M)l
< Clblsnor) Z 2‘k"2’“"<1‘“’“]éii§) S [, Ml
< Cllbllsyoc gj 24 (e [ el )

.
a’

(2¥1B) rv(2F1B)\ 5 1 . N
o (g ) (B fyn 202 v i)’
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1
< C|bllemow) (My(| fow|*) (@) 7,

where in the third inequality we have used Lemmas 2.5-2.6.

Hence,

IV < C(M, (| fo0|") (2)) T [K* (b, f1,3)(2) + [[b]lBroe) (M (| frw]*) (2)) 7).

For V, fixing the value of ¢ by taking ¢ = ®*((b — \) f7°, f5°)(x0), and recalling that K,

satisfies (1.2) uniformly in 7, then we can obtain

: |_;| /B 1% ((b— N %, 5°)(y) — (b — N) 22, 15°) (o) |dy
1

< = [ sup [Py (0 — A f17 £5°)(y) — @u((0 = N7 f27) (20)|dy
|B| J B n>0

< i/ / sup | Koy (Y, y1,92) — Kopn(w0, y1, y2)[10(y1 — M| f1(y1)[| f2(y2)|dy1dyady
|B] n\B*)2 >0

C xo —yl|°
B Lo T a1 00) — b )ty iy

C > o — yl|°
< —/ Z/ wa(yl)_bB)fl(yl)fQ(QQ)ldylddey
|B| /B (2k+1 B*\2k B*)

2 Jy —yi]?nte

CZ |2k|§*:2+ /2k+lB*)2 |(b(y1) - bB)fl(yl)f2(y2)|dy1dy2

1 1
< Z—ks - _ o
< C,; (g [ 100 =)t (e [ tm)idse)
CIE™(b, f1,0)(x) + |6l BMO(w) (Mo (| frw]*) ()« ] (M, (| faw]|?) () o
From the estimates of I, II, III, IV and V, one obtains the desired result.

Now we are ready to return to the proof of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 2.3, we choose w € A, such that

Kby, £@) e vla)de < Clbs o, [ 1fPn()is

R

By Hardy and Littlewood’s theorem, we have

[ nlpeniv@as <c [ |alvee =C [ ifue)da
n Rn
With the weighted bounded operator ®*, we have

o K*(bja q)*(flv f2)a w)pz/(x)dx
<c [ 10 fPula)da
AP ) da / |l ()

R™
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Thus, with the help of Lemma 2.2 and Hélder’s inequality, we obtain

1%, (F1s f2) o) < IME(@%,(f1, £2))(@) ]| Lo o)
< c( K*(b, @ (f1, fg),w)py(x)da:) v

Rn
1 1

—G—C(/”( v (| fow]) (2 ))TQ (J:)da:) m( o K*(bufhw)pll/(x)da:) o

1

+ blssiora ([ (4 fawl1(a) F (o)) * ([ (ullfelo) ) F v(a)ar) ™

n

< C|1bllBmoe) I fill e (1 f2ll Lr2 () -

Similarly,

125 (F1 )l r ) < IMECUE(f1y f2)) (@) 2oy < CllblBMo @)1l o (| foll Loz o) -

Consequently, from (3.1), we conclude the proof of Theorem 1.1.

Now we turn to prove Theorem 1.3. As before, we only consider the case m = 2. And the
proof of Theorem 1.2 is based on the following estimate of the sharp maximal function. So first
we establish the following lemma about the sharp maximal function for @y, since the proof

for Wy, is almost the same as for ®yy,.

Lemma 3.2 Let b; € BMO(w) (j = 1,2), 0 < 6 < %, and @7 € Ay . Suppose that

v €A, w= (ul/*l)%,l < p < oo, and that (u,v) satisfies (1.6). Then

M@y, (f1, f2))(@) < C TTIE" (b, £5,2)(@) + 11bs | r0 ) (M (| fiw]|) ()) 7]

—

Il
_

J

and

2
MW, (f1, f2))(x H *(bj, £5,@)() + [1b; ] Bro) (M (| fiw]9) () 7).

Proof Fix z € R" and let B = B(x, R). Take \; = (b;)p as the average of b; on B, i=1, 2.
Let ¢ be a constant to be fixed along the proof. We split ®3,(f1, f2)(y) in the following way,

O3, (f1, f2)(y)
= sup [(b1(y) — A1)(b2(y) — A2) Py (f1, f2)(y) — (b1(y) — A1) @y (f1, (b2 — A2) f2)(v)

— (b2(y) = A2) @y ((br — A1) f1, f2)(y) + @y (b — A1) f1, (b2 — X2) f2)(y)]-
Since 0 < § < %, then we have
(ﬁ/}g”‘bﬁb(fh]%)(yﬂé — |c|5|dy)g
< (ﬁ/Bl(beb(foQ)(y) —c|‘5dy)g
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< |7§| [ 1610 = A @alo) = 22)9* (1. 2) ) P)
5o\
|B| 5 [ (sup 1) = 3 b2 = X)) )] ) )

n>0

|B| = (swplieaty A2><I>n<<b1—mfl,fg)(yn)édy)

n>0

o=

(7 [ sup 1940 = )1, G0 = ) o) — 'ty

n>0
= E1 +Es +Es + Ey.

For the term E;, we overcome it by restricting that 0 < ¢ < %, and then by Holder’s

inequality, the boundedness of ®*, and Lemma 2.4, noting that \; = (b;) g, we have

L
5

B < (o [ )= 2a0) ([ o) = 2aa0) ™ (o [ )
< (g [ i) = k) (17 [ baGom) = Nl 19 3. 201 3
SC(%/}Jbl(yl)—)\ﬂdyl) (ﬁ/}gﬁl@lﬂdyl)

%' [ at) = el (5 [ Ifz(yz)ldyz)
< (3 [ ) = 2l ) ( |B| / ) 15() 0y

=T w(m)’qdyl : —/w(m)q dyr )"
IBI/ |B|

|B|/ [b2(y2) — A2| @(ya)? dy2>7/ |;|/B|f2(?42)|qw(yz)_qdy2>a

=T w(yz)’qdyz : —/w(yz)q'dyz i
|B|/B |B| /g )

S CK*(bl, fl,w)(x‘)K*(bQ,fg,w)(l‘).

1

For the term Esg, noting that 0 < § < %, we use the facts 1 =6 + 30 + (1 — 46), and then by
Holder’s inequality, Komolgorov’s inequality (Lemma 2.1) and the (L' x L', L%"X’)—boundedness
of ®*, we have

1
B2 < C(157 [ 101) = G)slay)

(o, smontn s = omsrian) (g fL o) ™
<c |B|/ b1 (1) — (b1) B|dy1)|\<1> (f1. (b2 = M) )l 3,
)(
w)

(1B

[b1(y1) — (b1)B|dys / |f1(y1 |dy1 / |b2(y2) — (b2) B|| f2(y2)|dy2
|B| / |B| [B] )

SCK (blvfla )( ) (b27f2a ( )

Similarly, for the term Ej, we have

Eg < [[b2latoe) (M (| f2|") (2)) 1 K™ (b, f1,3)().
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Now we turn to estimate the last term E4. To proceed with, we denote that f; = fio + £,
where f) = fixp+,i=1,2 and B* = B(z,2R). Let ¢ = ¢; + ¢ + c3, where

c1 = @y((br — M) 7, (b2 — A2) f5°) (&

)
Co = (I)n((bl - Al)flooa (b2 - AQ)fg)(x)v
ez = Op((br — A1) [T, (b2 — A2) f27) ().

)

We split Ey in the following way:
Es <E4q1 + Eqo + Eg3 + Eug,

where

(ST

Bt = (% [ sup i@y (0 = A0, 02 = 2 )0 ay)

Fyp — (;ﬁ sup [ @, (b — A1) £2, (b2 — X2) f5°)(y)

B >0

ST

= @y (b1 = A, (b2 = X) f5°) @)y )

Bag = (7 [ sup[y((b1 = M), (02 = 22) 1))
Bl JB n>0

= @ ((by = M)F®, (b2 = Xa) f3) (@) dy)

Bas = (o [ sup |y (b = M)SF%, (2 = X)) (0)
1Bl Jgn>0

(b1 M (b~ X)) @) )

For the term E41, by Kolmogorov’s inequality and the boundedness of ®*, choosing 1 <
po < 2—15, and estimating this just as I in the proof of Lemma 3.1, we deduce that

1
Pod

Eyp < (% /B |®*((by — A1) Y, (ba — )\Q)fg)(yﬂpoédy)
(b1

< 97 (b1 — M)A (b2 = M) )], 3

<ﬁ?>

|B|/|b1 Y1) >\1)f1(y1)|dy1 Bl /|bz Yy2) Az)fz(y2)|dy2)
1

< (g7 10 = @0mdtnian) (7 [ 1(0a(02) = ba)5) o))
< CK*(b1, f1,0)(2) K™ (b2, f2,@)(x).

For Ey4o, since K, ,, satisfies (1.2) uniformly in n, using Lemma 2.4, we deduce that

By < / sup [ @, (b1 = M) 7, (b2 = A2) £5°) (y) — Py (b1 — M) 7, (ba — Az)féx’)(xﬂdy)
|B| B >0
il ly — ol B
B /B /*x<R"\B*> (ly =il + 1y —y2|)2n+s|(b1(yl) A1) fi(y)

[ba(y2) = el fa(y2) |y dyz ) dy
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© €
Z/ ly — 2o
= Joeripe\oipe |y — ot

<c( [ 1) = s)imlan ) (
[ba(y2) = (b2) 5| o) dye )
<[ 1oatm) = @s)fin)ldm)
(Z |2k-i|-13;|*|2+5 /k+1 i |b2(y2) — ( 2)B||f2(y2)|dy2>
< (g [ 10 = sl

. (Za—kwmﬁ lba(y2) = (b2) 5 Fo(v2)dy2 )

2k+lB*

> 1
< CK*(b (z) Y 27kt —— b —( d
1, f1,w 2 PE 2k+1B*| 2(y2) — (b2) [ f2(y2)|dy2
> 1
< CK*(b 2’“”“)7/ b — (b2)ok+1 d
CK* (b1, f1,® EZI (|2k+lB*| AR CARS PR ORI
1
GG fosey, (028 = G2)osr L2 (a2) )

< CK* (b1, f1,@)(2) (K" (b2, f2,3) (@) + [[b2 B30 (M (| 2] ) (@)) 7).

Similar to E4o, we can get the estimates for Eys,

Byg < CK* (ba, f2,0)(@)(K* (br, f1,0)(@) + [ballsmoe) (Mo(| freo]) () 7).

Now we turn to estimate Eq4. Since K, satisfies (1.2) uniformly in n, using Lemma 2.4,

we deduce that

|5y ((b1 = A1) f1%5 (b2 = A2) f3°)(y) — @iy (b1 — A1) f7°, (b2 — A2) f57°) ()]
- Ckz:o/(2’c+1113*\2mf3*)2 (ly = y1l + ly — ya2|)?te (Grn) = 2)fao)
< (b2(y2) — A2) fa(y2)|dy1dys

<X zk'ﬁi:; Lo 10100 = GOS0 2) = )5l

2
o (-

b3 () — (b5 1135y )

2k+1 B

< C TT(E* (). f5,w0)(@) + bjllmroq) (M (| fw]9)(z)) 7).

J

\/\
',’:]m TTM@

Il
a

Therefore,

By <

sup [®y (b1 = M) f7%, (b2 = A2) £2°)(y) = P((b1 = M) ST%, (b2 = A2) £2°) () |dy

1B />0
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2 1
< C T (K by, £5,@) (@) + 116l Bro) (M. (| f50]7) () ).
j=1

Consequently, combining the estimates for Eq, Eo, E3 and E4, we conclude the Lemma 3.2.
Now we are ready to return to the proof of Theorem 1.3.

Proof of Theorem 1.3 By Lemma 2.3, we choose w € A, such that

[ K 1.7 < O o, [\ PuG)d

By Hardy and Littlewood’s theorem, we have
[ onleltiviaae <0 [ pepve=c [ |7Puts
n R™ R™
Thus, thanks to Lemma 2.2 and Hoélder’s inequality, we get

1951 (f1, f2)) @) 2oy < MG (@1(f1, f2)) (@) 00

<o

o=

Kby, 1,8 K (bg, f2,0)"v(x)d)

R”
1

+Clballmniow (| 1) @) F o)) ([ B D@ (@)

R R™

' ”blHBMO(w)</ (M”(|flw|q)($))p71l/(x)d$) g (

Rn Rn

K* (b, fo, D)@ v(@)da) ™

(M, (| frl?) ()

+ Cllon s 2 lsatoge | (M (1 fawo 1) (@)

Lr2(v) Lri(v)

< Clb1|lsMmow) 102l BMOo ) L1l Lo () | f2ll Lp2 () -

Similarly,

2
15 (f1, £2) @) |y < IMEET(fr £2) @) e ) < C [T IBslmMO @) 1 £l 273 (1) -
j=1

Consequently, from (3.1), we conclude the proof of Theorem 1.3.
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