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Abstract The author mainly studies the difference of the weak solutions generated by
a wave front tracking algorithm to the steady Euler system and the isothermal Euler
system. Under the hypothesis that the initial data are of sufficiently small total variation,
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1 Introduction

The planar steady full Euler system for compressible fluids can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ρu)x + (ρv)y = 0,

(ρu2 + p)x + (ρuv)y = 0,

(ρuv)x + (ρv2 + p)y = 0,

(u(1
2ρ(u2 + v2) + ρe + p))x + (v(1

2ρ(u2 + v2) + ρe + p))y = 0,

(1.1)

where ρ is the density of the fluid, (u, v) is the velocity, p is the pressure, and e is the internal
energy. The second law of thermodynamics asserts that

TdS = de + pdv, (1.2)

where T > 0 is the temperature, and S is the entropy. This implies that

eS(S, v) = T, ev(S, v) = −p. (1.3)

For polytropic gas,

p = RρT, e = cv(T − T0), cv =
R

γ − 1
, (1.4)

where R and T0 are constants. Then by scaling, we have

p = exp
{Sε

R

}
ρε+1, e(ρ, S, ε) =

1
ε

((
ρ exp

{ S

R

})ε

− 1
)
, (1.5)
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where

ε = γ − 1 > 0, (1.6)

and γ is the adiabatic index. It follows that

p = ρ(1 + eε). (1.7)

The sound speed is c =
√

(1 + ε)(1 + eε).
As ε → 0, the internal energy is given by (see [1])

e0(ρ, S) = lim
ε→0

e(ρ, S, ε) = ln ρ +
S

R
, (1.8)

and the pressure p = ρ. Correspondingly, the sound speed is c ≡ 1, and the non-isentropic
Euler system (1.1) formally converges to the limiting system as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ρu)x + (ρv)y = 0,

(ρu2 + p0)x + (ρuv)y = 0,

(ρuv)x + (ρv2 + p0)y = 0,(
u
(1

2
ρ(u2 + v2) + ρe0 + p0

))
x

+
(
v
(1

2
ρ(u2 + v2) + ρe0 + p0

))
y

= 0,

(1.9)

which is called an isothermal Euler system.
System (1.9) has a simplified approximation{

(ρu)x + (ρv)y = 0,

vx − uy = 0,
(1.10)

where the density ρ and the velocity (u, v) satisfy the following Bernoulli equation:

u2 + v2

2
+ ln ρ = B0, (1.11)

which gives ρ = exp{B0 − u2+v2

2 } := g(u, v), where B0 is a constant. From e = ln ρ + S
R , we

know that e = ln g(u, v) + S0
R := f(u, v) for isothermal gas.

The main purpose of this paper is to estimate the difference of the solutions to system (1.9)
and system (1.10)–(1.11) in the supersonic region.

Let U
(0)
0 = (u0, v0)T be a constant state with u2

0 + v2
0 < 2B0 and u0 > 1, where the

superscript T stands for the transpose. Denote U
(1)
0 = (g(u0, v0), u0, v0, f(u0, v0))T, and then

the main result is stated as follows.

Theorem 1.1 Denote by U0 = (u0(y), v0(y))T a bounded measurable function with small
bounded variation, such that U0(y) → U

(0)
0 (y → ±∞). Let U1 = (ρ1, u1, v1, e1)T and U2 =

(g(u2, v2), u2, v2, f(u2, v2))T be the respective solutions on R+
x × Ry to the isothermal Euler

system (1.9) and system (1.10), taking U
(1)
0 = (g(u0, v0), u0, v0, f(u0, v0))T as the initial data.

Assume that TV (U0) is sufficiently small so that U1 and U2 are well defined for all x > 0, and
U1(x, y) and U2(x, y) lie in the supersonic region for x ≥ 0. Then, there exist constants δ > 0
and K > 0, such that for all U0 with ‖U0 −U

(0)
0 ‖L∞(R1) +TV (U0) < δ and U −U

(0)
0 ∈ L1, and

for all x > 0,

‖U1(x, ·) − U2(x, ·)‖L1(R1) ≤ Kx(TV (U0))3. (1.12)

Here TV (U0) stands for the total variation of U0. The superscript T stands for the transpose,
and ‖ · ‖L1(R1) stands for the L1-norm.
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Here and hereafter x is regarded as the time variable. The proof of Theorem 1.1 is given in
Section 5. We follow the idea of Bressan [2–3] to compare the solutions in L1. That is, the proof
is based on the comparison of solutions to the isothermal Euler system (1.9) and system (1.10),
and we use some L1-stability estimates for the standard Riemann semigroup generated by the
isothermal Euler system (1.9). The same ideas were used to treat the isentropic approximation
for the full Euler system by Saint-Raymond [4] and the classical limit of the relativistic Euler
equations by Bianchini and Colombo [5]. Zhang [6] compared the solutions to the isentropic
Euler system and the system of irrotational supersonic flow for γ > 1. Liu [7] discussed the
difference between the solutions to the full Euler system and the system of isentropic supersonic
flow for γ > 1. Note that the isothermal case γ = 1 is also important in practice, and engineers
often use the potential flow to simulate the solution, so it is also necessary to compare the
solutions to the full isothermal Euler system and the system of irrotational supersonic flow for
γ = 1.

The remaining is organized as follows. In Sections 2 and 3, we study some properties on the
wave curves for the isothermal Euler system (1.9) and system (1.10). In Section 4, we compare
the solution to the Riemann problems for these two systems. In Section 5, we first estimate the
difference between the ε-approximate solutions for irrotational flow equations and the solution
to the isothermal Euler system. Then, by taking the limit we prove the main result.

2 Wave Curves for the System of Irrotational Flow

The matrix form of system (1.10) is(
uρu + ρ uρv

0 1

) (
u
v

)
x

+
(

vρu vρv + ρ
−1 0

) (
u
v

)
y

= 0. (2.1)

From (1.11), we know that ρu = −uρ, ρv = −vρ.
The corresponding two eigenvalues of (2.1) are

λj =
uv + (−1)j

√
u2 + v2 − 1

u2 − 1
, j = 1, 4. (2.2)

The corresponding right eigenvectors (2.1) are

−→r j = bj r̃j , j = 1, 4, (2.3)

where

r̃j = (−λj , 1)T, j = 1, 4 (2.4)

and

bj = (∇λj · r̃j)−1, (2.5)

where if u > 1, then ∇λj · r̃j �= 0. So the system (1.10) is strictly hyperbolic.
Due to [8] (see also [9–10]), there is a δ1 > 0, such that the following holds. For any constant

state Ul ∈ Oδ1(U
(0)
0 ) ⊂ R2, the wave curves through Ul for the system of irrotational flow can

be parameterized by τj → Φj(τj , Ul) with Φj ∈ C2 and

Φj(0, Ul) = Ul,

∂Φj

∂τj
(0, Ul) = −→r j(Ul),

∂2Φj

∂τ2
j

(0, Ul) = ∇−→r j(Ul) · −→r j(Ul).
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Moreover, for τj ≥ 0 and j = 1, 4,

d
dτj

Φj(τj , Ul) = −→r j(Φj(τj , Ul)). (2.6)

Define

D = {(u, v)T ∈ Oδ1(U
(0)
0 ) ⊂ R2 | u > 1}.

Consider the following Riemann problem for system (1.10):

U |x=0 =

{
Ul = (ul, vl), y < 0,

Ur = (ur, vr), y > 0,
(2.7)

where Ul, Ur ∈ D are constant states. From the above discussion, the set of right states Ur,
which can be connected to the left states Ul by a j-simple wave must lie in the curve Φj

parameterized by τj . Define

Φ(τ1, τ4, Ul) = Φ4(τ4, Φ1(τ1, Ul)).

Due to Lax [8] (see also [9–12]), we have the following result.

Lemma 2.1 There exists a constant δ1 > 0, such that for any Ul, Ur ∈ D, the Riemann
problem (2.7) admits a unique solution, i.e.,

Ur = Φ(τ1, τ4, Ul). (2.8)

Moreover, Φ|τ1=τ4=0 = Ul,
∂Φ
∂τj

∣∣
τ1=τ4=0

= −→r j(Ul), j = 1, 4.

Proof Differentiating (2.8) with respect to τj , we have

det
( ∂Φ

∂(τ1, τ4)

)∣∣∣
τ1=τ4=0

= det(−→r 1(Ul),−→r 4(Ul)) �= 0.

For sufficiently small δ1, Ul, Ur ∈ D, system (2.8) has a unique solution τj = τj(Ur, Ul), j =
1, 4, by the implicit function theorem.

3 Wave Curves for the System of Isothermal Euler System

System (1.9) has four eigenvalues

λ∗
j =

uv + (−1)j
√

u2 + v2 − 1
u2 − 1

, j = 1, 4, (3.1)

λ∗
2 = λ∗

3 =
v

u
. (3.2)

The corresponding right eigenvectors are
−→r ∗

j = b∗j r̃
∗
j , j = 1, 4,

−→r ∗
2 = (0, u, v, 0)T,

−→r ∗
3 = (0, 0, 0, 1)T,

where

r̃∗j = (ρ(λ∗
ju − v),−λ∗

j , 1, λ∗
ju − v)T,

b∗j = (∇λ∗
j · r̃∗j )−1, j = 1, 4,
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and if u > 1, then ∇λ∗
j · r̃∗j �= 0 (j = 1, 4) and ∇λ∗

j · r̃∗j = 0 (j = 2, 3).
Due to [8], there is a δ2 > 0, such that the following hold. For any constant state U∗

l ∈
Oδ2(U

(1)
0 ) ⊂ R4, the j-th wave curves through U∗

l for the isothermal Euler system can be
parameterized by τj → Φ∗

j (τj , U
∗
l ) with Φ∗

j ∈ C2 and

Φ∗
j (0, U∗

l ) = U∗
l ,

∂Φ∗
j

∂τj
(0, U∗

l ) = −→r ∗
j (U

∗
l ),

∂2Φ∗
j

∂τ2
j

(0, U∗
l ) = ∇−→r ∗

j (U
∗
l ) · −→r ∗

j (U
∗
l ).

Moreover,

d
dτj

Φ∗
j (τj , U

∗
l ) = −→r ∗

j (Φ
∗
j (τj , U

∗
l )), τj ≥ 0, j = 1, 4 (3.3)

and

d
dτj

Φ∗
j (τj , U

∗
l ) = −→r ∗

j (Φ
∗
j (τj , U

∗
l )), j = 2, 3.

Here the superscript ∗ stands for the isothermal Euler system.
Let Φ∗

j (τj , U
∗
l ) = (ρ∗j (τj , U

∗
l ), u∗

j (τj , U
∗
l ), v∗j (τj , U

∗
l ), e∗j (τj , U

∗
l )). Then define

D∗ = {(ρ, u, v, e)T ∈ Oδ2(U
(1)
0 ) ⊂ R4 | u > 1}.

Consider the following Riemann problem for system (1.9):

U∗|x=0 =

{
U∗

l = (ρl, ul, vl, el), y < 0,

U∗
r = (ρr, ur, vr, er), y > 0,

(3.4)

where U∗
l , U∗

r ∈ D∗ are constant states. From the above discussion, the set of right states
U∗

r which can be connected to the left states U∗
l by a j-simple wave must lie in the curve Φ∗

j

parameterized by τj . Define

Φ∗(τ1, τ2, τ3, τ4, U
∗
l ) = Φ∗

4(τ4, Φ∗
3(τ3, Φ∗

2(τ2, Φ∗
1(τ1, U

∗
l )))).

Due to Lax [8] (see also [9–12]), we have the following result.

Lemma 3.1 There exists a constant δ2 > 0, such that for any U∗
l , U∗

r ∈ D∗, the Riemann
problem (3.4) admits a unique solution, i.e.,

U∗
r = Φ∗(τ1, τ2, τ3, τ4, U

∗
l ). (3.5)

Moreover, Φ∗|τ1=τ2=τ3=τ4=0 = U∗
l , ∂Φ∗

∂τj
|τ1=τ2=τ3=τ4=0 = −→r ∗

j (U
∗
l ), j = 1, 2, 3, 4.

Proof Differentiating (3.5) with respect to τj , we have

det
( ∂Φ∗

∂(τ1, τ2, τ3, τ4)

)∣∣∣
τ1=τ2=τ3=τ4=0

= det(−→r ∗
1(U

∗
l ),−→r ∗

2(U
∗
l ),−→r ∗

3(U
∗
l ),−→r ∗

4(U
∗
l )) �= 0.

For sufficiently small δ2, U∗
l , U∗

r ∈D∗, the system (3.5) has a unique solution τj =τj(U∗
r , U∗

l ),
j =1, 2, 3, 4 by the implicit function theorem.

The solution to the Riemann problem (1.9) and (3.4) satisfies the following properties.
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Lemma 3.2 For τj ≥ 0 and j = 1, 4, it holds that

e∗j − ln ρ∗j = constant. (3.6)

Proof From (3.3), we know that

dρ∗j
dτj

(τj , U
∗
l ) = b∗jρ

∗
j (λ

∗
ju

∗
j − v∗j ), (3.7)

de∗j
dτj

(τj , U
∗
l ) = b∗j (λ

∗
ju

∗
j − v∗j ), (3.8)

which implies

dρ∗j
dτj

− ρ∗j
de∗j
dτj

= 0. (3.9)

Thus, we have e∗j − ln ρ∗j = constant.

Lemma 3.3 For τj ≥ 0 and j = 1, 4, it holds that

(u∗
j )

2 + (v∗j )2

2
+ ln ρ∗j = B0. (3.10)

Proof From (3.3), we know that

dρ∗j
dτj

(τj , U
∗
l ) = b∗jρ

∗
j (λ

∗
ju

∗
j − v∗j ),

du∗
j

dτj
(τj , U

∗
l ) = b∗j (−λ∗

j ),

dv∗j
dτj

(τj , U
∗
l ) = b∗j ,

which implies

d
dτj

{ (u∗
j )

2 + (v∗j )2

2
+ ln ρ∗j

}
= u∗

j

du∗
j

dτj
+ v∗j

dv∗j
dτj

+
1
ρ∗j

dρ∗j
dτj

= b∗j (−λ∗
ju

∗
j + v∗j + λ∗

ju
∗
j − v∗j )

= 0,

yielding

(u∗
j )

2 + (v∗j )2

2
+ ln ρ∗j = B0.

Moreover, we get the lemma as follows.

Lemma 3.4 For τj ≥ 0 and j = 1, 4, it holds that
(1) λ∗

j (Φ
∗
j (τj , U

∗
l )) = λj(u∗

j (τj , U
∗
l ), v∗j (τj , U

∗
l )),

(2) b∗j (Φ
∗
j (τj , U

∗
l )) = bj(u∗

j (τj , U
∗
l ), v∗j (τj , U

∗
l )).
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Proof From (2.2) and (3.1), we can easily get statement (1). It suffices to prove statement
(2).

b∗−1
j (Φ∗

j (τj , U
∗
l )) − b−1

j (u∗
j (τj , U

∗
l ), v∗j (τj , U

∗
l ))

= (∇(ρ,u,v,e)λ
∗
j · −→r ∗

j −∇(u,v)λj · −→r j)
∣∣∣
(ρ,u,v,e)=(ρ∗

j ,u∗
j ,v∗

j ,e∗
j )

=
(∂λ∗

j

ρ
,
∂λ∗

j

u
,
∂λ∗

j

v
,
∂λ∗

j

e

)
(ρ(λ∗

ju − v),−λ∗
j , 1, (λ∗

ju − v)T)
∣∣∣
(ρ,u,v,e)=(ρ∗

j ,u∗
j ,v∗

j ,e∗
j )

−
(∂λj

u
,
∂λj

v

)
(−λj , 1)T

∣∣∣
(u,v)=(u∗

j ,v∗
j )

=
(
0,

∂λ∗
j

u
,
∂λ∗

j

v
, 0

)
(ρ(λ∗

ju − v),−λ∗
j , 1, (λ∗

ju − v)T)
∣∣∣
(ρ,u,v,e)=(ρ∗

j ,u∗
j ,v∗

j ,e∗
j )

−
(∂λj

u
,
∂λj

v

)
(−λj , 1)T|(u,v)=(u∗

j ,v∗
j ).

In view of statement (1), we get

b∗−1
j (Φ∗

j (τj , U
∗
l )) − b−1

j (u∗
j (τj , U

∗
l ), v∗j (τj , U

∗
l ))

=
(
− ∂λj

u
λj +

∂λj

v

)∣∣∣
(u,v)=(u∗

j ,v∗
j )

−
(
− ∂λj

u
λj +

∂λj

v

)∣∣∣
(u,v)=(u∗

j ,v∗
j )

= 0.

The proof is complete.

Lemma 3.5 For τj ≥ 0 and j = 1, 4, there hold that

d
dτj

(
u∗

j

v∗j

)
= bj(u∗

j , v
∗
j )

(−λj

1

) ∣∣∣
(u,v)=(u∗

j ,v∗
j )

(3.11)

and (
u∗

j(0, U∗
l )

v∗j (0, U∗
l )

)
=

(
ul

vl

)
. (3.12)

Proof Lemma 3.4 implies that

b∗j (Φ
∗
j (τj , U

∗
l )) = bj(u∗

j (τj , U
∗
l ), v∗j (τj , U

∗
l )) (3.13)

for j = 1, 4. Then, applying (3.13) and Lemma 3.4 to (3.3) gives the result.
The proof is complete.

4 Comparison of the Solutions to the Riemann Problems

Set

D = {(u, v)T ∈ Oδ1(U
(0)
0 ) ⊂ R2 | u > 1}

and

D∗ = {(ρ, u, v, e)T ∈ Oδ2(U
(1)
0 ) ⊂ R4 | u > 1}.

Denote

Φ(τ1, τ4, Ul) = Φ4(τ4, Φ1(τ1, Ul))
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for Ul ∈ D,

Φ∗(τ1, τ2, τ3, τ4, U
∗
l ) = Φ∗

4(τ4, Φ∗
3(τ3, Φ∗

2(τ2, Φ∗
1(τ1, U

∗
l ))))

for U∗
l ∈ D∗, and

Hj(τj , Ul) :=

⎛⎝g(φj(τj , Ul))
φj(τj , Ul)

f(φj(τj , Ul))

⎞⎠ .

Lemma 4.1 For j = 1, 4, it holds that

φ∗
j (τj , U

∗
l ) = Hj(τj , Ul) (4.1)

for τj ≥ 0,

∂Hj

∂τj
(0, Ul) = r∗j (U∗

l ) (4.2)

and

∂2Hj

∂τ2
j

(0, Ul) =
∂2φ∗

j

∂τ2
j

(0, U∗
l ), (4.3)

where U∗
l = (g(Ul), Ul, f(Ul)).

Proof For j = 1, 4, by (3.11)–(3.12), we have(
u∗

j (τj , U
∗
l )

v∗j (τj , U
∗
l )

)
= φj(τj , Ul)

for τj ≥ 0. Then, by Lemma 3.3,

ρ∗j (τj , U
∗
l ) = g(φj(τj , Ul))

for τj ≥ 0. Moreover, by Lemma 3.2,

e∗j(τj , U
∗
l ) = f(φj(τj , Ul))

for τj ≥ 0. These lead to (4.1) for τj ≥ 0.
On the other hand, both φ∗

j and Hj are functions of C2 class. Then, by (4.1), we have the
results (4.2)–(4.3). The proof is complete.

Proposition 4.1 Suppose that Ul ∈ D. For small αk with k = 1 or 4, the equations

Φ∗(β1, β2, β3, β4, U
∗
l ) =

⎛⎝g(φk(αk, Ul))
φk(αk, Ul)

f(φk(αk, Ul))

⎞⎠ = H(αk, Ul) (4.4)

have a unique solution (β1, β2, β3, β4). Moreover,

βk = αkδjk + O(1)|α−
k |3 (4.5)

and

βj = O(1)|α−
k |3, j �= k. (4.6)

Here U∗
l = (g(Ul), Ul, f(Ul)) and α− = min{α, 0}. The bound of O(1) is independent of αk and

Ul.
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Proof Since

det
( ∂Φ∗

∂(β1, β2, β3, β4)

)∣∣∣
βi=0

�= 0, (4.7)

then the implicit function theorem implies the existence of the solution (β1, β2, β3, β4) to (4.4)
with βj = βj(αk, Ul) ∈ C2. Moreover, βj |αk=0 = 0.

Next we go to get the Taylor expansion for βj . Differentiating (4.4) with respect to αk and
letting αk = 0, by Lemma 4.1, we have

4∑
j=1

∂βj

∂αk

∣∣∣
αk=0

−→r ∗
j (U

∗
l ) = −→r ∗

k(U∗
l ) (4.8)

for k = 1, 4, which gives the coefficients in the first order terms,

∂βj

∂αk

∣∣∣
αk=0

= δjk, (4.9)

where δjk = 1 for j = k and δjk = 0 for j �= k.
To get the terms of the second order in the Taylor expansion, we differentiate the equations

(4.4) with respect to αk again and let αk = 0. Then together with Lemma 4.1 and (4.9), we
have

4∑
j=1

∂2βj

∂α2
k

∣∣∣
αk=0

−→r ∗
j (U

∗
l ) +

∂2Φ∗

∂β2
k

(0, U∗
l ) =

∂2Hk

∂α2
k

(0, Ul) (4.10)

for k = 1 or k = 4. Therefore, applying Lemma 4.1 to (4.10) gives

∂2βj

∂α2
k

∣∣∣
αk=0

= 0. (4.11)

Therefore, when αk < 0, combining (4.9) with (4.10), we can derive the result. Moreover,
when αk ≥ 0, due to Lemma 4.1 and the uniqueness of the solution (β1, β2, β3, β4) from the
implicit function theorem, we have βk = αk and βj = 0 (j �= k). The proof is complete.

Proposition 4.2 Suppose that (ul, vl), (ur, vr) ∈ D with(
ur

vr

)
= φ(α1, α4, (ul, vl)),

and that ⎛⎜⎜⎝
ρr

ur

vr

er

⎞⎟⎟⎠ = φ∗(β1, β2, β3, β4, (ρl, ul, vl, el))

with ρi = g(ui, vi), ei = f(ui, vi) for i = l, r. Then

βj = αj + O(1){|α−
1 | + |α−

4 |}3, j = 1, 4 (4.12)

and

βk = O(1){|α−
1 | + |α−

4 |}3, k = 2, 3, (4.13)

where α− = min{α, 0}. The bound of O(1) is independent of α1, α4 and (ul, vl).
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Proof It suffices to solve the following equations for any given α1, α4 and (ul, vl) ∈ D:

φ∗(β1, β2, β3, β4, ρl, ul, vl, el) =

⎛⎝g(φ(α1, α4, ul, vl))
φ(α1, α4, ul, vl)

f(φ(α1, α4, ul, vl))

⎞⎠ .

In the same way as in the proof of Proposition 4.1, we can find C2 functions βk = βk(α1, α4,
ul, vl), such that (β1, β2, β3, β4) is the unique solution to the above system.

To derive the estimates on βk, we let

(um, vm)T = Φ(α1, 0, ul, vl), ρm = g(um, vm), em = f(um, vm) (4.14)

and consider the following equations:⎛⎜⎜⎝
ρm

um

vm

em

⎞⎟⎟⎠ = φ∗(β′
1, β

′
2, β

′
3, β

′
4, ρl, ul, vl, el),

⎛⎜⎜⎝
ρr

ur

vr

er

⎞⎟⎟⎠ = φ∗(β′′
1 , β′′

2 , β′′
3 , β′′

4 , ρm, um, vm, em).

By Proposition 4.1, we have

β′
k = α1δk1 + O(1)|α−

1 |3, (4.15)

β′′
k = α4δk4 + O(1)|α−

4 |3, (4.16)

where δij is a kronecker symbol. Therefore, with the Glimm interaction estimates (see [3, 9,
13–16]), (4.15)–(4.16) give the estimates on βk, k = 1, 2, 3, 4. The proof is complete.

5 Proof of the Main Result

Let {Uε
2 (x, y)}ε>0 be a sequence of approximate solutions to system (1.10) constructed by

a wave-front tracking algorithm (see [3, 18]), such that

‖Uε
2 (0, ·) − U0(y)‖L1 < ε.

Uε
2 is called an ε-approximate solution to system (1.10) and is a piecewise constant function

in x > 0 with a finite number of wave fronts, which consist of shocks, rarefaction-fronts and
non-physical-fronts. The small parameter ε controls three types of errors in Uε

2 as follows:
(1) The error in the speeds of shock and rarefaction fronts.
(2) The maximum strength of rarefaction fronts.
(3) The total strength of all non-physical waves.
As ε → 0+, Uε

2 tends in L1
loc to the entropy weak solution U2 to (1.10). Due to [2, 18],

the limit is unique. Therefore, the solution U2 to system (1.10) is given by U2 = (g(u, v), u, v,
f(u, v))T.

To prove the main result, we need to study these approximate solutions. Due to [3], such
approximate solutions have the following properties.

Lemma 5.1 There exists a constant M > 0 independent of ε and Uε, such that

‖Uε
2 (x1, ·) − Uε

2 (x2, ·) ‖L1(R1)≤ M |x1 − x2|, x1, x2 ∈ [0, +∞). (5.1)
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By Kong-Yang’s result (see [17]), we can obtain the standard Riemann semigroup Sx gener-
ated by system (1.9). Suppose that the initial data U for system (1.9) satisfies U = U

(0)

0 (y →
±∞) and U − U

(0)

0 ∈ L1. Then the ε-approximate solution U
ε

2 to system (1.9) with an initial
data U converges to a limiting function U(x, y). Such a mapping (U, x) → U(x, ·) .= SxU gen-
erates a standard Riemann semigroup. Furthermore, there exists a positive constant L, such
that for any initial data U, V and s, t > 0, we have

S0U = U, (5.2)

Ss(StU) = Ss+tU, (5.3)

‖StU − SsV ‖ ≤ L(‖U − V ‖L1 + | t − s |). (5.4)

Here, U
(0)

0 = (g(u0, v0), u0, v0, f(u0, v0)).

Corollary 5.1 Suppose Ul, Ur ∈ D, |λ| ≤ λ̂ and x > 0, where λ̂ is a fixed constant. Define
W = W (x, y) as the self-similar solution to system (1.9) with the Riemann initial data

W (0, y) =

{
U∗

l = (ρl = g(ul, vl), ul, vl, f(ul, vl)), y < 0,

U∗
r = (ρr = g(ur, vr), ur, vr, f(ur, vr)), y > 0.

(5.5)

Here Ul = (ul, vl)T and Ur = (ur, vr)T. Consider the following function:

V (x, y) =

{
U∗

l , y < λx,

U∗
r , y ≥ λx.

(5.6)

It holds that
(i) Generally, we have

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1)= O(1)|Ur − Ul|. (5.7)

(ii) If Ur = φj(σj , Ul) for σj > 0, j = 1 or 4 and λ = λj(Ur), i.e., Ul and Ur can be
connected by a j-simple wave for system (1.10), then we have

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1)= O(1)σ2

j . (5.8)

Here φj is the j-simple wave curve, λj is the j-eigenvalue, and σj is the strength of the j-simple
wave.

(iii) If Ul and Ur can be connected by a j-shock wave, i.e., Ur = φj(σj , Ul) for σj > 0, j = 1
or 4 and λ = sj(Ur, Ul), where sj(Ur, Ul) is the shock wave speed for system (1.10), then we
have

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1)= O(1)|Ur − Ul|3. (5.9)

Proof (i) (5.7) can be deduced as follows:

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1) =

1
x

∫ ∞

−∞
|V (x, y) − W (x, y)|dy

=
1
x

∫ xλ̂

−xλ̂

|V (x, y) − W (x, y)|dy

= O(1)|Ur − Ul|.
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(ii) Here we only prove the case of k = 1, and the result for k = 4 can be deduced similarly.
If σ1 > 0, the Riemann solution to system (1.9) can be given as follows:

φ∗(β1, β2, β3, β4, U
∗
l ) =

⎛⎝g(φ1(σ1, Ul))
φ1(σ1, Ul)

f(φ1(σ1, Ul))

⎞⎠ .

By Proposition 4.1, the above equation has a unique solution for σ1 > 0

β1 = σ1, βk = 0, k = 2, 3, 4. (5.10)

Thus we have

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1) =

1
x

∫ ∞

−∞
|V (x, y) − W (x, y)|dy

=
1
x

∫ xλ∗
1(U∗

r )

xλ∗
1(U∗

l )

|V (x, y) − W (x, y)|dy

= O(1)|U∗
r − U∗

l |(λ∗
1(U

∗
r ) − λ∗

1(U
∗
l ))

= O(1)σ2
1 .

(iii) Similarly, by Proposition 4.1,

φ∗(β1, β2, β3, β4, U
∗
l ) =

⎛⎝g(φ1(σ1, Ul))
φ1(σ1, Ul)

f(φ1(σ1, Ul))

⎞⎠
has a unique solution

β1 = σ1 + O(1)|σ1|3, (5.11)

βk = O(1)|σ1|3, k = 2, 3, 4. (5.12)

Suppose that Wm, W ′
m are the intermediate states of the Riemann problem. Then

|W ′
m − Ur| = O(1)|β4| = O(1)|Ur − Ul|3,

|Wm − Ur| ≤ |Wm − W ′
m| + |W ′

m − Ur|
= O(1)(|β2| + |β3| + |β4|)
= O(1)|Ur − Ul|3.

Since β1 < 0, assume that s∗1 is the corresponding shock speed. From

s1(σ1) = λ1(Ul) +
1
2
σ1 + O(1)σ2

1 ,

s∗1(β1) = λ∗
1(U

∗
l ) +

1
2
β1 + O(1)σ2

1 = λ1(Ul) +
1
2
σ1 + O(1)σ2

1 ,

we know that

s∗1 − s1 = O(1)|σ1|2 = O(1)|Ur − Ul|2.
Define

q1
M = max(s1, s

∗
1), q1

m = min(s1, s
∗
1),

q4
M = max(λ4(Ur), λ4(Um)), q4

m = min(λ4(Ur), λ4(Um)).
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Then we have

1
x
‖V (x, ·) − W (x, ·) ‖L1(R1)=

1
x

∫ ∞

−∞
|V (x, y) − W (x, y)|dy

=
1
x

(∫ q1
M x

q1
mx

+
∫ q4

M x

q1
M x

)
|V (x, y) − W (x, y)|dy

= O(1)|Ur − Ul| · |s1 − s∗1| + O(1)|Ur − Ul|3
= O(1)|Ur − Ul|3.

Proof of Theorem 1.1 Let S be the standard Riemann semigroup generated by sys-
tem (1.9). By Lemma 5.1, for any ε > 0, there exists an ε-approximate solution Uε

2 (x, y) =
(uε

2(x, y), vε
2(x, y)) to system (1.10). Define

Uε∗
2 (x, y) = (g(uε

2(x, y), vε
2(x, y)), uε

2(x, y), vε
2(x, y), f(uε

2(x, y), vε
2(x, y))). (5.13)

Firstly, we estimate the error between Uε
2 (x, y) and the weak solution x → SxU∗

0 . In view
of (5.1)–(5.4) and by [3, Theorem 2.9], we have the following error formula:

‖Uε∗
2 (x, ·) − SxU∗

0 ‖L1(R1) ≤ L

∫ x

0

(
lim

h→0+
inf

‖Uε∗
2 (τ + h) − ShUε∗

2 (τ)‖L1(R1)

h

)
dτ. (5.14)

Suppose that at time τ ∈ [0, x], no interaction takes place, and Uε∗
2 has jumps at points

y1 < y2 < · · · < yN . Denote S = {α | 1 ≤ α ≤ N, Uε∗
2 (τ, yα−) and Uε∗

2 (τ, yα+) can be
connected by shock fronts or contact discontinuities}, R = {α | 1 ≤ α ≤ N, Uε∗

2 (τ, yα−) and
Uε∗

2 (τ, yα+) can be connected by rarefaction fronts} and NP = {α | 1 ≤ α ≤ N, Uε∗
2 (τ, yα−)

and Uε∗
2 (τ, yα+) can be connected by nonphysical fronts}.

For any fixed α, we define Wα as the Riemann solution to system (1.9) with the initial
data Ul = Uε∗

2 (τ, yα−) and UR = Uε∗
2 (τ, yα+). For any small h, the mapping h → ShUε∗

2 is a
piecewise constant function with a finite number of fronts. Then by Lemma 5.1 and (5.7)–(5.9),
we have

lim
h→0+

‖Uε∗
2 (τ + h) − ShUε∗

2 (τ)‖L1(R1)

h

=
∑

α∈S∪R∪NP

(
lim

h→0+

1
h

∫ yα+ρ

yα−ρ

|Uε∗
2 (τ + h, y) − Wα(h, y − yα)|dy

)
=

∑
α∈S

O(1)(ε|Uε∗
2 (τ, yα+) − Uε∗

2 (τ, yα−)| + |Uε∗
2 (τ, yα+) − Uε∗

2 (τ, yα−)|3)

+
∑
α∈R

O(1)|σα|(|σα| + ε) +
∑

α∈NP

O(1)|Uε∗
2 (τ, yα+) − Uε∗

2 (τ, yα−)|, (5.15)

where σα is the strength of the rarefaction wave, and ρ is a suitable small positive constant.
By the properties of the ε-approximation solution, the strengthes of the rarefaction wave and
nonphysical fronts are less than ε. So the terms in (5.15) can be controlled by O(1) · ε. For any
τ ∈ [0, x], we have

lim
h→0+

‖Uε∗
2 (τ + h) − ShUε∗

2 (τ)‖L1(R1)

h

= O(1)(ε + εTV (Uε∗
2 (τ, ·)) + TV (Uε∗

2 (τ, ·))3)
= O(1)(ε + εTV (Uε∗

2 (0, ·)) + TV (Uε∗
2 (0, ·))3)

= O(1)(ε + TV (U0))3).
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Inserting the above equalities into (5.14), we get

‖Uε∗
2 (x, ·) − SxU∗

0 ‖L1(R1) ≤ O(1)(ε + TV (U0))3). (5.16)

Uε
2 converges to the weak solution to (1.10) and Uε∗

2 converges to U1 uniformly. So letting
ε → 0 in (5.16), we complete the proof of Theorem 1.1.
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