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Abstract This paper considers the steady Swift-Hohenberg equation

u′′′′ + β2u′′ + u3 − u = 0.

Using the dynamic approach, the authors prove that it has a homoclinic solution for each
β ∈ [ 4

√
8− ε0,

4
√

8), where ε0 is a small positive constant. This slightly complements Santra
and Wei’s result [Santra, S. and Wei, J., Homoclinic solutions for fourth order traveling
wave equations, SIAM J. Math. Anal., 41, 2009, 2038–2056], which stated that it admits
a homoclinic solution for each β ∈ (0, β0) where β0 = 0.9342 · · · .
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1 Introduction

The well-known Swift-Hohenberg (SH) equation

ut = μu − (1 + ∂xx)2u − u3 (1.1)

was originally derived in the context of Rayleigh-Bénard convection with thermal fluctuations
in the limit of infinite Prandtl numbers (see [11]). It captures much of the observed physical
behavior and has now become a general tool used to investigate not only the Rayleigh-Bénard
convection, but also other pattern-forming systems (see [2]). This equation has been studied
intensively by many authors. Mielke and Schneider [7] proved the existence of the global
attractor in a weighted Sobolev space on the whole real line. Hsieh et al [4–5] remarked that
the elemental instability mechanism is the negative diffusion term −uxx. Yari [13] discussed
the bifurcation and asymptotic behavior of its solutions with the Dirichlet boundary condition
and Peletier and Rottschäfer [8] gave some numerical results.

If we consider only the steady solutions of (1.1) for μ > 1, it can be written as

u′′′′ + β2u′′ + u3 − u = 0 (1.2)
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after scaling, where the prime ′ means taking the derivative with respect to x. Van den Berg,
Peletier and Troy [12] investigated the existence of periodic solutions. Bonheure [1] established
the existence of multitransition kinks and pulses obtained as local minima of the associated func-
tional. Smets and Van den Berg [10] used the mountain-pass lemma and Struwe’s monotonicity
trick to prove that the equation (1.2) has a homoclinic solution for almost all β ∈ (0, 4

√
8)

while Santra and Wei [9] employed the energy and the Morse index to show that it admits a

homoclinic solution for each β ∈ (0, β0), where β0 =
√√

2
k0

≈ 0.9342 · · · , and k0 is a solution of
4k2

0 − 2k0 − 3 = 0.
For each fixed β ∈ [β0,

4
√

8), whether (1.2) has a homoclinic solution is still an open question.
In this paper, we use the dynamic approach and the norm form analysis in particular to obtain
that the equation (1.2) has a homoclinic solution for each β less than but close to 4

√
8. This

partially complements the result in [9].

2 Main Results

Note that (1.2) has three stationary solutions: 0, 1 and −1. We are here interested in
the last two stationary solutions 1 and −1 which correspond to the homoclinic solutions. By
symmetry, it is sufficient to consider the solutions homoclinic to 1. Let v = u−1 which changes
(1.2) into

v′′′′ + β2v′′ + v3 + 3v2 + 2v = 0. (2.1)

The linear equation of (2.1) is

v′′′′ + β2v′′ + 2v = 0, (2.2)

whose eigenvalues satisfy

λ2
± =

−β2 ± √
β4 − 8

2
. (2.3)

Thus, the threshold β = 4
√

8 corresponds to the upper limit for saddle-focus equilibriums. If
|β| < 4

√
8, then four eigenvalues ±λ± are complex and have nonzero real parts. We have the

following theorem.

Theorem 2.1 There exists a positive constant ε0 such that for each β ∈ [ 4
√

8− ε0,
4
√

8), the
equation (1.2) has a homoclinic solution exponentially approaching 1.

Remark 2.1 In the same way, we can prove that (1.2) has a homoclinic solution exponen-
tially approaching −1.

The proof of Theorem 2.1 is based on the normal form analysis and the results given by
Iooss and Pérouème [6]. In the following, we will give the proof.

Firstly we focus on the normal form of (2.1) for β near 4
√

8 and assume that for simplicity

β2 =
√

8 − aμ, (2.4)

where a is a positive constant and μ > 0 is a small parameter. Let U = (v, u1, u2, u3)T, where
u1 = vx, u2 = vxx and u3 = vxxx, which changes (2.1) into

U ′ = AU + μAµU + N(U), (2.5)

where

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−2 0 −√

8 0

⎞
⎟⎟⎠ , Aµ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 a 0

⎞
⎟⎟⎠ , N(U) =

⎛
⎜⎜⎝

0
0
0

−v3 − 3v2

⎞
⎟⎟⎠ . (2.6)
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The system (2.5) is reversible with a reverser S defined by

S(v, u1, u2, u3) = (v,−u1, u2,−u3),

that is, S(v, u1, u2, u3)(−x) is also a solution whenever (v, u1, u2, u3)(x) is. A solution (v, u1, u2,
u3) is reversible if S(v, u1, u2, u3)(−x) = (v, u1, u2, u3)(x).

A has two eigenvalues ±is1 which are double, where s1 = 4
√

2. The eigenvector U1 and the
generalized eigenvector U2 of A corresponding to is1 are given by

U1 =
(
− 1

4
√

23
,− i√

2
,

1
4
√

2
, i

)T

, U2 =
(
− 3

2
i, 4
√

2,
i√
2
, 0

)T

, (2.7)

respectively, and they satisfy

SU1 = U1, SU2 = −U2.

The eigenvector V2 and the generalized eigenvector V1 of the adjoint operator A∗ = AT corre-
sponding to −is1 are given by

V1 =
( 1

2 4
√

2
, 0,

3

2 4
√

23
,

i
2

)T

, V2 =
(
− i

2
,

1
2 4
√

2
,− i

2
√

2
,

1

2 4
√

23

)T

, (2.8)

respectively. They satisfy (Uj , Vj) = 1 and (Uj , Vk) = 0 for j �= k, j, k = 1, 2, where (·, ·)
denotes the scalar product in C4.

We can write

U = AU1 + BU2 + AU1 + BU2 (2.9)

such that (2.5) is changed into

X ′ = LX + F (μ, X), (2.10)

where X = (A, B, A, B)T, L is given by

L =

⎛
⎜⎜⎝

is1 1 0 0
0 is1 0 0
0 0 −is1 1
0 0 0 −is1

⎞
⎟⎟⎠ , (2.11)

F (μ, 0) = 0, DXF (0, 0) = 0 and F (0, X) = O(|X |2).
Note that the reverser S is given by

S(A, B) = (A,−B) (2.12)

and

SF = −FS, SL = −LS. (2.13)

From the general theory of normal forms (see [3]), (2.10) can be written as (for the sake of
convenience, we still use X)

A′ = is1A + B + iAP0(μ, AA, i(AB − AB)) + R1(μ, X),

B′ = is1B + iBP0(μ, AA, i(AB − AB)) + AQ0(μ, AA, i(AB − AB)) + R2(μ, X),
(2.14)
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and their complex conjugates, where P0 and Q0 are real polynomials of their arguments with
degree n (arbitrary but fixed), and

P0(μ, AA, i(AB − AB)) = O(|(μ, A, B)|n−1),

Q0(μ, AA, i(AB − AB)) = O(|(μ, A, B)|n−1),

R1(μ, X) = O(|(A, B)||(μ, A, B)|n),

R2(μ, X) = O(|(A, B)||(μ, A, B)|n).

Moreover,

S

(
R1(μ, X)
R2(μ, X)

)
= −

(
R1(μ, SX)
R2(μ, SX)

)

and Q0 has the form

Q0(μ, AA, i(AB − AB)) = q0μ + q1AA + · · · ,

where

q0 =
a

4
> 0, q1 = −1.

The calculations of q0 and q1 are similar to the ones in [3] by (2.7) and (2.8). Note that the
normal form of the system (2.14) is exactly the system (4) in [6]. If we replace μ by −μ and
use the results in IV. 3 of [6], we have the following theorem.

Theorem 2.2 There exists a positive constant μ0 such that for 0 < μ ≤ μ0 the system
(2.14) has a homoclinic solution which is reversible and exponentially tends to 0 as x → ±∞.

From this theorem, we easily obtain Theorem 2.1.
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