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Reflection of Shock Fronts in a van der Waals Fluid∗
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Abstract In this paper, the reflection phenomenon of a vapor shock front (both sides
of the front are in the vapor phase) in a van der Waals fluid is considered. Both the
1-dimensional case and the multidimensional case are investigated. The authors find that
under certain conditions, the reflected wave can be a single shock, or a single subsonic
phase boundary, or one weak shock together with one subsonic phase boundary, which
depends on the strength of the incident shock. This is different from the known result for
the reflection of shock fronts in a gas dynamical system due to Chen in 1989.
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1 Introduction

The phase transition is an important phenomenon in physics, mechanics and fluid dynamics.
For a fluid or a material, if the density-pressure relation or the stress-strain function is non-
monotonic, multiple phases coexist in general, such as in a van der Waals fluid and elastic-plastic
materials. There has been rich literature devoted to the study of the existence and the stability
of phase transitions in one space variable (cf. [8, 12, 16–17] and the references therein). In [8],
Slemrod and Fan generally reviewed the works on the van der Waals fluid and phase transitions.
For multidimensional phase transitions, by mode analysis, Benzoni-Gavage studied the linear
stability of subsonic phase transitions in a van der Waals fluid under the capillarity admissibility
criterion in [2] and obtained a sufficient condition on the uniform stability of subsonic phase
transitions under the viscosity-capillarity criterion in [3]. Recently, Wang and Xin [18] studied
the uniform stability and obtained the local existence of single multidimensional subsonic phase
transitions in a van der Waals fluid under the viscosity-capillarity criterion. Considering the
general conservation laws, Freistühler [9] studied the stability of the under-compressive shock
fronts in multidimensional spaces under Majda’s frame work (cf. [13–14]). The author in [19]
proved the local existence of solutions consisting of one subsonic phase transition and one shock
wave issuing from an initial discontinuity in several space variables.

The purpose of this paper is to investigate the reflection of shock fronts in a van der Waals
fluid. So far as we know, even in the 1-dimensional space, to establish a theory for the general
Riemann problem in a van der Waals fluid, as the one for strictly convex conservation laws (cf.
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[11]), is almost impossible due to the non-uniqueness of the solution to the Riemann problem
arising in the meta-stable region (cf. [8, 16]). Hence it is hard to consider the reflection of shock
fronts in a van der Waals fluid in general. That is why a new model (cf. [6]) is introduced for
the retrograde fluid and it works well in the study of the shock reflection problem (cf. [7]) when
the state behind the reflected shock enters the meta-stable region. But the analytic theory of
this kind of model is not quite complete. Here we expect to get some insights into the shock
reflection problem when the states are away from the meta-stable region via the model of the
van der Waals fluid.

In this paper, we are concerned with the reflection of a shock front, both sides of which are
in the stable vapor phase, against a rigid wall. We study both of the cases when the rigid wall is
a plane and a non-flat surface. For the first case, both sides of the incident shock are constants,
which is the 1-dimensional problem essentially, and we obtain that under certain conditions,
which exclude the situation that the states behind the reflection enter the meta-stable region,
the reflection phenomena are different when the strength of the incident shock varies. More
precisely, the reflection can be a single shock, or a single subsonic phase boundary, or one weak
shock together with a subsonic phase boundary. We shall prove that the reflection pattern is
unique by solving algebraic equations. For the case that the boundary is not flat, we have
two kinds of reflection pattern which also depend on the strength of the incident shock. The
existence of reflection waves in this multidimentsional case will be obtained by developing the
arguments of Chen [4] and Métivier [15]. Comparing the problem of double shocks in [15] and
the problem of reflection shocks in gas dynamics studied in [4], the main novelty and difficulty
of our problem is that it involves two free boundaries, the phase boundary and the shock front,
and the physical boundary which is characteristic. This requires us to modify the arguments of
[4, 15] in order to study the stability estimates for the linearized problem. Another important
point is that the stability condition on the edge of the dihedral is different from the one for the
double shock problem in [15]. As we showed in [19], this condition holds for sufficiently weak
shock which coin-sides with our reflection pattern.

The remainder of this paper is arranged as follows. In the rest part of this section, we
first recall the admissible criterion for subsonic phase boundaries and formulate our problem.
In Section 2, we study the reflection on a plane wall. We shall prove that under certain
conditions the reflected wave can be a single shock wave, or a single phase boundary, or one
shock together with one phase boundary. In Section 3, we formulate the problem of high-
dimensional reflection, and give the assumptions and the main results. We establish the linear
estimate for the linearized problem in Section 4, and the nonlinear problem is studied in Section
5.

1.1 Admissibility criterion for subsonic phase transitions

For simplicity, we shall only study the problem in two space variables, i.e., x = (x1, x2) ∈ R
2.

It is easy to carry out the same discussion for the problem in higher dimensional spaces.
For a compressible inviscid isentropic fluid, the following well-known Euler equations:

∂t

⎛⎝ ρ
ρu
ρv

⎞⎠+ ∂x1

⎛⎝ ρu
ρu2 + p(ρ)

ρuv

⎞⎠+ ∂x2

⎛⎝ ρv
ρuv

ρv2 + p(ρ)

⎞⎠ = 0 (1.1)

represent the conservation of mass and momentum, where ρ and (u, v) are the density and the
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velocity of the fluid, respectively. Denote U = (ρ, u, v)T,

F0(U) =

⎛⎝ ρ
ρu
ρv

⎞⎠ , F1(U) =

⎛⎝ ρu
ρu2 + p(ρ)

ρuv

⎞⎠ , F2(U) =

⎛⎝ ρv
ρuv

ρv2 + p(ρ)

⎞⎠
and

A1(U) = (F ′
0(U))−1F ′

1(U) =

⎛⎜⎜⎝
u ρ 0
c2

ρ
u 0

0 0 u

⎞⎟⎟⎠ ,

A2(U) = (F ′
0(U))−1F ′

2(U) =

⎛⎜⎜⎜⎝
v 0 ρ
0 v 0

c2

ρ
0 v

⎞⎟⎟⎟⎠ ,

where c = (p′(ρ))
1
2 is the sound speed. For smooth solutions, the system (1.1) is equivalent to

∂tU + A1(U)∂x1U +A2(U)∂x2U = 0.

In the following discussion, the notations of the density and the specific volume τ ≡ ρ−1

shall be used simultaneously. In the van der Waals fluid, the pressure law P (τ) = p( 1
τ ) is given

by

P (τ) =
RT

τ − b
− a

τ2
, τ > b, (1.2)

where T denotes the temperature assumed to be a positive constant, R is the perfect gas
constant, and a, b are positive constants. When the temperature a

4bR < T < 8a
27bR is fixed,

there are τ∗ < τ∗, such that{
P ′(τ) < 0, if b < τ < τ∗ or τ > τ∗,
P ′(τ) > 0, if τ∗ < τ < τ∗. (1.3)

The state of τ ∈ (b, τ∗) represents the liquid phase while that of τ ∈ (τ∗,+∞) is the vapor
phase. Generally, these two phases are likely to coexist and one may observe the propagation
of a phase boundary.

As usual, the Maxwell equilibrium {τm, τM} of a phase transition is defined by the equal
area rule:

P (τm) = P (τM ),
∫ τM

τm

(P (τ) − P (τm))dτ = 0, (1.4)

and τm < τ∗, τM > τ∗. It is obvious that there is a unique point τ1 > τM at which the tangent
to the graph of p = P (τ) passes through τm (cf. [3, Figure 3]). Denote

j20 = −P ′(τ1), (1.5)

which equals to P (τm)−P (τ1)
τ1−τm

.
Let us recall the concept of subsonic phase transitions. A piecewise smooth function

U(t, x) =
{
U+(t, x) for x1 > ψ(t, x2),
U−(t, x) for x1 < ψ(t, x2),

(1.6)
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satisfying that U± ∈ C1{±(x1 − ψ(t, x2)) > 0} belong to different phases with ψ ∈ C2 being
the phase boundary, is said to be a subsonic phase transition, if it satisfies the system (1.1) in
the regions where U(t, x) is smooth and satisfies the following Rankine-Hugoniot condition:

ψt[F0(U)] − [F1(U)] + ψx2 [F2(U)] = 0, on {x1 = ψ(t, x2)}, (1.7)

where [ · ] denotes the jump of a function on the phase boundary {x1 = ψ(t, x2)}. Moreover,
the Mach numbers satisfy

M± =
1
c±

∣∣∣u± − ψx2v± − ψt

(1 + ψ2
x2

)
1
2

∣∣∣ < 1, (1.8)

where c± = (p′(ρ±))
1
2 are the sound speeds. Due to (1.8), the Lax entropy condition is violated

at {x1 = ψ(t, x2)}. More precisely, the Rankine-Hugoniot condition (1.7) is not an enough
one on the phase boundary to guarantee the well-posedness of the problem. Additional bound-
ary conditions are needed to select proper candidate which is admissible in physics. In [17],
Slemrod introduced the viscosity-capillarity admissibility criterion to determine the subsonic
phase boundaries in one space variable, i.e., a phase boundary is called the viscosity-capillarity
admissible if the states on both sides of the phase boundary can be connected by a travelling
wave in a system by adding viscosity and capillarity terms to (1.1). This viscosity-capillarity
criterion was studied recently in [3] for the multidimensional subsonic phase boundaries. More
precisely, the phase boundary (1.6) satisfies the viscosity-capillarity admissibility criterion, if
on the boundary {x1 = ψ(t, x2)} the following relation:[

e′(ρ) +
(u− ψx2v − ψt)2

2(1 + ψ2
x2

)

]
= −νa(j, ν), on {x1 = ψ(t, x2)} (1.9)

holds, where ν is the ratio of the viscosity coefficient comparing with the square root of the
capillarity coefficient, e(ρ) = ρE(ρ) is the free energy per unit volume with E(ρ) being the
specific free energy and dρE(ρ) = p(ρ)

ρ2 ,

j =
ρ±(u± − ψx2v± − ψt)

(1 + ψ2
x2

)
1
2

(1.10)

is the mass transfer flux across the phase boundary, which is assumed to be non-zero, and

a(j, ν) = j

∫ +∞

−∞
τ ′2(ξ; j, ν)dξ, (1.11)

where τ(ξ; j, ν) is the viscosity-capillarity profile satisfying⎧⎨⎩τ
′′ = νjτ ′ + π − P (τ) − j2τ,

lim
ξ→−∞

τ =
1
ρ−

∣∣∣
x1=ψ

, lim
ξ→+∞

τ =
1
ρ+

∣∣∣
x1=ψ

(1.12)

with τ ′, τ ′′ being the first and second order derivatives of τ with respect to ξ, respectively,
π = p(ρ±) + j2

ρ±
valued at {x1 = ψ}. In [3], Benzoni-Gavage proved the existence of the

viscosity-capillarity profile τ(ξ; j, ν) to (1.12) when 0 < ν ≤ ν0 for some small ν0 > 0 and
0 < j2 ≤ j20 with j0 being given in (1.5). Moreover, Benzoni-Gavage showed that U±|x1=ψ(t,x2)

depend smoothly only on (j, ν), and as a consequence, a(j, ν) is a smooth function of (j, ν)
in {0 < j2 ≤ j20 , 0 < ν ≤ ν0}. As in [3], we call the subsonic phase transition (1.7) ν-
admissible, if it satisfies (1.1) in the smooth regions and satisfies (1.8), (1.10) on the discontinuity
{x1 = ψ(t, x2)}.



Reflection of Shock Fronts in a van der Waals Fluid 931

1.2 The problem of reflection

Let Σ = {x1 = ϕ0(x2)} be a physical boundary in R
2. For simplicity, suppose that ϕ0 ∈ C∞

and ϕ0(0) = ϕ′
0(0) = 0. The outside domain Σ, {x1 > ϕ0(x2)}, is filled with a van der Waals

fluid. On Σ, the normal velocity of the fluid vanishes, so the boundary condition on Σ can be
written as

u− ϕ′
0v = 0. (1.13)

Let S = {x1 = V t} be a planar shock front moving towards Σ when t < 0, and on both sides
of S the flow fields are constants. We denote the incident shock by

U(t, x) =
{
UA = (ρA, uA, vA), x1 < V t,
UB = (ρB, uB, vB), x1 > V t,

(1.14)

where we assume τA, τB ∈ (τM ,+∞), τA > τB , namely, the states on both sides of the shock
front are in the stable vapor phase. Due to (1.13), it is easy to see that the incident shock
satisfies

uA = 0 and vA = vB = 0. (1.15)

At t = 0, S meets Σ at the point (0, 0). Obviously, before the shock front S intersects with the
surface Σ, the velocity of S and the flow fields on both sides of S remain constants. Therefore,
the intersection of S with Σ is

Γ =
{
x1 = ϕ0(x2), t =

1
V
ϕ0(x2)

}
.

For t > 1
V ϕ0(x2), the normal velocity of the fluid at the boundary Σ should vanish, which

is incompatible with the state behind the shock front S , so there will be some waves issuing
from the curve {x1 = ϕ0(x2), t = 1

V ϕ0(x2)} when t > 1
V ϕ0(x2). The purpose of this paper is

to study such reflected waves. When the domain {x1 > ϕ0(x2)} is filled with a single-phased
fluid, whose state function p = p(ρ) is strictly increasing, Chen [4] established the existence
of a reflected shock front after the planar shock hits the boundary. Due to the possibility
of coexisting multiple phases, we shall see that there will be several interesting phenomena
appearing after the reflection of a shock front in a van der Waals fluid.

2 Reflection in 1-Dimensional Problem

Let us begin with the simple 1-dimensional case where the physical boundary is a plane,
namely, ϕ0(x2) = 0. Essentially, this is a 1-dimensional problem.

For two fields (ρ1, u1), (ρ2, u2) satisfying

(τ1 − τ2)(P (τ1) − P (τ2)) < 0,

we denote
〈τ1, τ2〉 =

√
(τ1 − τ2)(P (τ2) − P (τ1)).

It is easy to see from the Rankine-Hugoniot conditions that if the two fields can be connected
by a single discontinuity, then

〈τ1, τ2〉 = |u1 − u2|
is the strength of the discontinuity.

The following is a basic fact of the reflection problem.
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Theorem 2.1 The sum of the strength of all the reflected discontinuities equals the strength
of the incident shock. Namely, after the incident shock (1.14) meets the wall Σ, we suppose that
there are N discontinuities, Rk (k = 1, · · · , N), i.e.,

(ρ, u) =
{

(ρk, uk), x1 > σkt,
(ρk+1, uk+1), x1 < σkt,

k = 1, · · · , N,

where σ1 > σ2 > · · · > σN > 0. Then we have

N∑
k=1

〈τk, τk+1〉 = 〈τA, τB〉. (2.1)

The relation (2.1) can be easily deduced from the Rankine-Hugoniot conditions and the
facts

(τ1, u1) = (τB , uB), uN+1 = uA = 0.

As in [3], we denote by (τl(j, ν), τr(j, ν)) the unique pair satisfying τl ∈ (b, τ∗), τr ∈ (τ∗,+∞),
which can be connected by a ν-admissible phase boundary for a fixed mass transfer flux j. For
the van der Waals fluid, we propose the following hypothesis. There is a j (0 < j

2 ≤ j20), such
that the ν-admissible phase transition (τl(j, ν), τr(j, ν)) satisfies the following:

(H1) The strength of the phase transition (τl(j, ν), τr(j, ν)) is large enough, such that the
estimate

〈τl(j, ν), τr(j, ν)〉 > 〈τr(j, ν), τ∗〉 (2.2)

holds.
(H2) The state function (1.2) is convex at τ = τr(j, ν), i.e.,

P ′′(τr(j, ν)) > 0. (2.3)

Remark 2.1 The hypothesis (H1) can help us exclude the situation that the state behind
the reflection enters the meta-stable region, which will break the symmetry of planar wave (cf.
[7]). In fact, if the strength of the incident shock (1.14) is the closed 〈τl(j, ν), τr(j, ν)〉 and the
specific volume behind the shock is specified as τr(j, ν), then the state behind the reflection
can not be in the interval (τ∗, τr(j, ν)), since the total strength of the reflected discontinuities
is smaller than that of the incident shock.

Due to the continuity of τr, τl with respect to j (cf. [3]), the estimates (2.2)–(2.3) can be
extended to

〈τl(j, ν), τr(j, ν)〉 + 〈τr(j, ν), τr(j, ν)〉 > 〈τr(j, ν), τ∗〉, (2.4)

P ′′(τr(j, ν)) > 0 (2.5)

for all j satisfying j2 ≤ j2 ≤ j
2 with a j2 < j

2.
The following example shows that the hypotheses (H1)–(H2) are valid when the temperature

is close to the critical value Tc = 8a
27bR , i.e., the assumptions (2.2)–(2.3) are valid.

Example 2.1 When T = Tc = 8a
27bR , the state function P (τ) is decreasing in τ . Obviously,

the estimate (2.2) holds. When T = Tc and ν = 0, by straightforward computation, we
find that τr(j0, 0) .= 10.2024b is greater than the inflection point τ .= 6.6338b, which implies
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P ′′(τr(j0, 0)) > 0. Hence the conditions (2.2)–(2.3) are valid when the temperature T is close
to 8a

27bR and ν is small.

As we mentioned in Remark 2.1, we set that the state behind the incident shock (1.14)
satisfies

τB = τr(j, ν). (2.6)

The result of 1-dimensional reflection is stated by the following theorem.

Theorem 2.2 (i) When

〈τA, τB〉 = 〈τl(j, ν), τr(j, ν)〉, (2.7)

the reflection is a phase boundary.
(ii) When

〈τA, τB〉 < 〈τl(j, ν), τr(j, ν)〉, (2.8)

χ(τA, τB) > χ(τl(j, ν), τr(j, ν)) + χ(τr(j, ν), τr(j, ν)), (2.9)

the reflection is one shock wave and one subsonic phase boundary.

Proof First we consider the case when there is only one discontinuity in the reflection.
Denote by (ρ+, u+, v+) and (ρ−, u−, v−) the flow fields ahead of and behind the reflected dis-
continuity, respectively, and σ the speed of the discontinuity. We have that

τ+ = τB, u+ = uB, u− = 0, v− = v+ = 0 (2.10)

and the Rankine-Hugoniot conditions⎧⎪⎪⎨⎪⎪⎩
− σ

τ−
=
u+ − σ

τ+
,

P (τ−) +
σ2

τ−
= P (τ+) +

(u+ − σ)2

τ+
.

(2.11)

From Theorem 2.1, we get

χ(τB , τ−) = χ(τB , τA). (2.12)

Set F (τ) = χ(τB, τ) − χ(τB, τA). We have F ′(τ) < 0 for τ ∈ (b, τ∗] ∪ [τ∗, τB).
(i) When (2.9) holds, we get

F (τB) < 0, F (τI) > 0.

Therefore, one can find a unique τ− in the interval (τI , τB) satisfying (2.12). It is easy to
see that τ− and τ+ can be connected by a shock front. There would be another τ− ∈ (b, τ∗)
satisfying (2.12), which implies that the reflection could also be a subsonic phase boundary.
Due to the uniqueness of (τl, τr) with respect to j and the assumption (2.2), we find that this
situation can not be true.

(ii) When (2.7) holds, obviously, τ− = τr is the unique point satisfying (2.12) for τ− ∈
(b, τ∗] ∪ [τ∗, τB). Therefore, the reflection is a ν-admissible subsonic phase boundary with the
mass transfer flux j.
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(iii) When (2.8)–(2.9) hold, one can find a unique τ− ∈ (τl(j, ν), τ∗), which implies that
the reflection could be a subsonic phase boundary. Due to the uniqueness of (τl(j, ν), τr(j, ν))
(cf. [3]), τ− should be τl(j, ν) which is impossible by using (2.9). Therefore, in this case, there
should appear more than one discontinuity in the reflection. By analyzing the characteristic,
we find that the reflected wave should consist of one subsonic phase boundary and one shock
front. The phase boundary is behind the shock front. Denote by (ρ±, u±, v±) the flow fields
ahead of and behind the phase boundary, σ1 and σ2 the speeds of the phase boundary and the
reflected shock front, respectively. Noting that the flow fields ahead of and behind the shock
are (ρB , uB, vB) and (ρ+, u+, v+), respectively, we have

u− = 0, v− = v+ = 0, (2.13)

0 < σ1 <
√
p′(ρ−), (2.14)

u+ < σ1 < σ2 < u+ +
√
p′(ρ+), (2.15)

σ2 > uB +
√
p′(ρB). (2.16)

Denote by

j1 = − σ1

τ−
=
u+ − σ1

τ+
and j2 =

u+ − σ2

τ+
=
uB − σ2

τB
(2.17)

the mass transfer fluxes acrossing the phase boundary and the shock front, respectively. To
determine the reflected waves, we need to find (τ+, τ−, σ1, σ2, u+), such that (2.13)–(2.17) and
the following equations:⎧⎪⎪⎨⎪⎪⎩

P (τ−) + j21τ− = P (τ+) + j21τ+,

(e′(ρ−) − e′(ρ+)) +
j21
2

(τ2
− − τ2

+) = −νa(j1, ν),
P (τ+) + j22τ+ = P (τB) + j22τB

(2.18)

hold. From Theorem 2.1, we get

〈τ−, τ+〉 + 〈τB , τ+〉 = 〈τA, τB〉. (2.19)

Regarding τ+ and τ− as functions of j1 and setting

f(j1) = 〈τ−, τ+〉 + 〈τB , τ+〉 − 〈τA, τB〉,
we have

f ′(j1) = − 1
〈τ−, τ+〉 ([P

′(τ)∂j1τ ][τ ] + [P (τ)][∂j1τ ])

+
P ′(τ+)∂j1τ+(τB − τ+) − (P (τ+) − P (τB))∂j1τ+

2
√

(P (τ+) − P (τB))(τB − τ+)
.

According to the results in [2], we have

∂j1τ+ = −j1 τ− − τ+
C2

+

+O(ν) and ∂j1τ− = j1
τ− − τ+
C2−

+O(ν), (2.20)

where C2
± = −P ′(τ±)−j21 . Substituting (2.20) into f ′(j1) and noticing j1 < 0, we get f ′(j1) < 0

when ν is sufficiently small. It is easy to know that f(−|j|) < 0 and f(−|j|) > 0. Thus we can
find a unique j1 ∈ (−|j|,−|j|) satisfying f(j1) = 0 which gives τ+ and τ−. Therefore, we can
determine u+, σ1 and σ2 from (2.17).



Reflection of Shock Fronts in a van der Waals Fluid 935

3 Reflection in Multidimensional Spaces

In this section, we consider the case when a shock hits a curved rigid wall which is a
perturbation of the planar case studied in Section 2 near the origin.

As in Section 2, here we assume that (2.3)–(2.4) are valid and the incident shock (1.14)
satisfies (2.6). We have the following main results of this paper.

Theorem 3.1 (i) When

χ(τA, τB) < χ(τB , τI), (3.1)

the reflection is a shock wave.
(ii) When

χ(τA, τB) < χ(τl(j, ν), τr(j, ν)), (3.2)

χ(τA, τB) > χ(τl(j, ν), τr(j, ν)) + χ(τr(j, ν), τr(j, ν)), (3.3)

the reflection is one shock wave and one phase transition.

As we can see from this theorem, in this multidimensional reflection problem, we do not
have the situation that the reflection wave contains only one subsonic phase boundary as in
Theorem 2.2(ii). To explain this difference, let us first give the following result analogous to
Theorem 2.1.

Theorem 3.2 Suppose that after the incident shock (1.14) meets the wall Σ, there are N
discontinuities Rk (k = 1, · · · , N) in the reflection which are denoted by

U(t, x) =
{

(ρk, uk, vk), x1 > ϕk(t, x2),
(ρk+1, uk+1, vk+1), x1 < ϕk(t, x2),

satisfying
∂tϕ1 > ∂tϕ2 > · · · > ∂tϕN > 0,

and then on Γ = {x1 = ϕ0(x2), t = 1
V ϕ0(x2)}, we have

χ(τA, τB) =
N∑
k=1

χ(τk, τk+1)
√

1 + ϕ′2
0 . (3.4)

This result can be obtained by computing the Rankine-Hugoniot condition as done in The-
orem 2.1, and we omit the details here.

Remark 3.1 As a consequence of Theorem 3.2, we can see that in the multidimensional
case the reflected wave can not be a single phase boundary. In fact, if the reflected wave contains
only one phase boundary and we denote by (ρ+, u+, v+) and (ρ−, u−, v−) the flow fields ahead
of and behind this phase boundary, then from Theorem 3.2, we get

τ+ = τB = τr(j, ν), (3.5)

χ(τ+, τ−)
√

1 + ϕ′2
0 = χ(τA, τB). (3.6)

Due to the uniqueness of (τl(j, ν), τ(j, ν)) with respect to j (cf. [3]), we get τ− = τl(j, ν), which
implies that the left-hand side of (3.6) is not a constant while the right-hand side is a constant.
Therefore, the reflection can not be a single phase boundary.
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The case that the reflection wave is only a shock front was studied by Chen [4] already. So
we shall focus on the problem that the reflected wave contains one shock front and one subsonic
phase boundary. Suppose that (3.2)–(3.3) hold. By continuity, there is a neighborhood O of
the origin (t, x) = (0, 0) such that

χ(τA, τB) < χ(τl(j, ν), τr(j, ν))
√

1 + ϕ′2
0 , (3.7)

χ(τA, τB) > (χ(τl(j, ν), τr(j, ν)) + χ(τr(j, ν), τr(j, ν)))
√

1 + ϕ′2
0 (3.8)

are satisfied in O.

By carrying out the same calculation as in the proof of Theorem 2.2(iii), we see that if we
froze the data of the fluid field behind the incident shock (1.14) at any fixed point of Γ, there
should appear one planar shock and one planar phase boundary in the reflection. Inspired by
this observation, let us construct the reflection wave in this 2-dimensional case containing one
shock and one phase boundary as follows:

U(t, x) =

⎧⎪⎨⎪⎩
(ρ−, u−, v−), ϕ0(x2) < x1 < ϕ1(t, x2),

(ρ+, u+, v+), ϕ1(t, x2) < x1 < ϕ2(t, x2), for t >
1
V
ϕ0(x2),

(ρB, uB, vB), x1 > ϕ2(t, x2)

where Γ1 = {x1 = ϕ2(t, x2)} and Γ2 = {x1 = ϕ1(t, x2)} are the shock front and the subsonic
phase boundary, respectively, satisfying

ϕ1

(ϕ0(x2)
V

, x2

)
= ϕ2

(ϕ0(x2)
V

, x2

)
= ϕ0(x2).

Therefore, the unknowns (ρ±, u±, v±) and (ϕ1, ϕ2) satisfy the following problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tU± +A1(U±)∂x1U± +A2(U±)∂x2U± = 0, in G±,
u− − ϕ′

0v− = 0, on Γ0,
∂tϕ1[F0(U)]1 − [F1(U)]1 + ∂x2ϕ1[F2(U)]1 = 0, on Γ1,[
e′(ρ) +

(u− ∂x2ϕ1v − ∂tϕ1)2

2(1 + (∂x2ϕ1)2)

]
1

= −νa(j, ν), on Γ1,

∂tϕ2[F0(U)]2 − [F1(U)]2 + ∂x2ϕ2[F2(U)]2 = 0, on Γ2,

(3.9)

where G− = {(t, x) | ϕ0(x2) < x1 < ϕ1(t, x2), t > 0}, G+ = {(t, x) | ϕ1(t, x2) < x1 <

ϕ2(t, x2), t > 0}, Γ0 = {(t, x) | x1 = ϕ0(x2), t > 0}, [ · ]i (i = 1, 2) denotes the jump of a
function on Γi (i = 1, 2), and the notations in the 4th equation are defined in the same way as
in (1.10)–(1.12).

Remark 3.2 In the above problem all functions are defined on {t > 0} instead of
{
t >

ϕ0(x2)
V

}
, this is just for simplicity of presentation since one can replace t by t− ϕ0(x2)

V without
changing the discussion by noticing that t̃ = t− ϕ0(x2)

V is still the time direction.

As we did in the proof of Theorem 2.2(iii), we shall show that the data of (U±, ϕ1, ϕ2) on
Γ = {t = 0, x1 = ϕ0(x2)} satisfy the corresponding boundary condition on Γi (i = 0, 1, 2)
and they are uniquely determined. Let σ1 = ∂tϕ1(t, x2) and σ2 = ∂tϕ2(t, x2). The data of
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(U±, ϕ1, ϕ2) on Γ should satisfy

u− − ϕ′
0v− = 0, (3.10)

0 < σ1 <
√
p′(ρ−), (3.11)

u+ − ϕ′
0v+ < σ1 < σ2 < u+ − ϕ′

0v+ +
√
p′(ρ+), (3.12)

σ2 > uB +
√
p′(ρB) (3.13)

and the following jump conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1[ρ]1 − [ρu]1 + ϕ′
0[ρv]1 = 0,

σ1[ρu]1 − [ρu2 + p]1 + ϕ′
0[ρuv]1 = 0,

σ1[ρv]1 − [ρuv]1 + ϕ′
0[ρv

2 + p]1 = 0,[
e′(ρ) +

(u− ϕ′
0v − σ1)2

2(1 + ϕ′2
0 )2

]
1

= −νa(j1, ν),
σ2[ρ]2 − [ρu]2 + ϕ′

0[ρv]2 = 0,
σ2[ρu]2 − [ρu2 + p]2 + ϕ′

0[ρuv]2 = 0,
σ2[ρv]2 − [ρuv]2 + ϕ′

0[ρv2 + p]2 = 0,

(3.14)

where [ · ]i (i = 1, 2) denotes the jump of a function on Γi (i = 1, 2) as the (t, x) approaches Γ,
a(j1, ν) = j1

∫ +∞
−∞ τ ′2(ξ; j1, ν)dξ with τ(ξ; j1, ν) being the viscosity capillarity profile satisfying⎧⎨⎩

τ ′′ = νj1τ
′ + π − P (τ) − j21τ,

lim
ξ→−∞

τ =
1
ρ−

∣∣∣
x1=ϕ0

, lim
ξ→+∞

τ =
1
ρ+

∣∣∣
x1=ϕ0

(3.15)

with j1 = ρ±(u±−ϕ′
0v±−σ1)√

1+ϕ′2
0

and π = P (τ±) + j21τ± valued at {x1 = ϕ0}. From Theorem 3.2, we

have

(χ(τ+, τ−) + χ(τ+, τB))
√

1 + ϕ′2
0 = χ(τA, τB). (3.16)

Regarding (τ+, τ−) as functions of j1 and noticing (3.7)–(3.8), similar to the proof of Theorem
2.2(iii), we can find a unique j1(x2) ∈ (−|j|,−|j|) satisfying (3.16). Then from (3.10) and
(3.14), all data of (U±, ∂tϕ1, ∂tϕ2) on Γ are determined uniquely.

Remark 3.3 Since ϕ0 ∈ C∞, from the above discussion, we see that the data of (ρ±, u±,
v±), σ1 and σ2 on Γ are smooth in x2.

Obviously, the problem (3.9) is the one with two free boundaries and one fixed boundary.
To transform the free boundaries into fixed ones, we introduce the following transformation

x̃1 =

⎧⎪⎪⎨⎪⎪⎩
t(x1 − ϕ0)
ϕ1 − ϕ0

, in G−,

t(x1 + ϕ2 − 2ϕ1)
ϕ2 − ϕ1

, in G+,

x̃2 = x2, t̃ = t, Ũ(t̃, x̃) = U(t, x). (3.17)

The transformation (3.17) changes G+, G− and Γi (i = 0, 1, 2) into

G̃+ = {(t̃, x̃) | t̃ < x̃1 < 2̃t, t̃ > 0}, G̃− = {(t̃, x̃) | 0 < x̃1 < t̃, t̃ > 0}
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and

Γ̃i = {(t̃, x̃) | x̃1 = it, t̃ > 0}, i = 0, 1, 2,

respectively. Denote Ã±
1 (U±, ψ) = ∂x̃1

∂t I + A1(U±)∂x̃1
∂x + A2(U±)∂x̃1

∂x2
and Ã±

2 (U±) = A2(U±).
The problem (3.9) now becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU± +A±
1 ∂x1U± +A±

2 ∂x2U± = 0, in G±,
u− − ϕ′

0v− = 0, on Γ0,

∂tϕ1[F0(U)]1 − [F1(U)]1 + ∂x2ϕ1[F2(U)]1 = 0, on Γ1,[
e′(ρ) +

(u− ∂x2ϕ1v − ∂tϕ1)2

2(1 + (∂x2ϕ1)2)

]
1

= −νa(j, ν), on Γ1,

∂tϕ2[F0(U)]2 − [F1(U)]2 + ∂x2ϕ2[F2(U)]2 = 0, on Γ2,

(3.18)

where we have dropped the tildes for simplicity.

Remark 3.4 From (3.17), it is easy to have

lim
t→0

∣∣∣∂(t̃, x̃)
∂(t, x)

∣∣∣ =

⎧⎪⎨⎪⎩
lim
t→0

t

ϕ1 − ϕ0
, in G−,

lim
t→0

t

ϕ2 − ϕ1
, in G+.

Noticing that ϕ1|t=0 = ϕ2|t=0 = ϕ0 and 0 < ∂tϕ1|t=0 < ∂tϕ2|t=0, we know that the transfor-
mation (3.17) is nonsingular in G± when t is small.

Denote by γi· the trace operator on Γi (i = 0, 1, 2), γU = (γ1U−, γ2U−, γ2U+) and l =
(0,−1, ϕ′

0). For simplicity of notations, we denote the problem (3.18) by⎧⎪⎪⎪⎨⎪⎪⎪⎩
L±(U±, ψ)U± = 0, in G±,
γ0U− · l = 0, on Γ0,

F1(γU, ϕ) = 0, on Γ1,

F2(γU, ϕ) = 0, on Γ2.

(3.19)

Next, we propose the following assumptions for the problem (3.19).
(A1) The planar phase boundary

U(t, x) =

{
U−(0, 0, 0) for x1 < σ1(0)t,
U+(0, 0, 0) for x1 > σ1(0)t

and the planar shock front

U(t, x) =

{
U+(0, 0, 0) for x1 < σ2(0)t,
UB for x1 > σ2(0)t

are uniformly stable in the sense of [18] and [13], respectively.
(A2) U+(0, 0, 0) satisfies a stability condition on the edge of the dihedral in connection with

the one proposed by Alinhac [1] for solving the linear Goursat problem. This will be described
in detail by Remark 4.1 in the coming section.
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4 Linear Problems

To study the nonlinear problem (3.19), let us first study its linearized problem in this section.
Denote U = (U+, U−) and ϕ = (ϕ1, ϕ2). Let (V, ψ) be the perturbation of (U,ϕ). The linearized
problem of (3.19) is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

L±(U±, ϕ)V± = ∂tV± +A±
1 (U±, ϕ)∂x1V± +A±

2 (U±)∂x2V± = f±, in G±,
γ0V− · l = 0, on Γ0,

F1,(γU,ϕ)(γV, ψ) = b1∂tψ1 + c1∂x2ψ1 + M1γ1V+ + N1γ1V− = g1, on Γ1,

F2,(γU,ϕ)(γV, ψ) = b2∂tψ2 + c2∂x2ψ2 + N2γ2V+ = g2, on Γ2,

(4.1)

where Fi,(γU,ϕ)(γV, ψ) (i = 1, 2) are the Fréchet derivatives of Fi(γU, ϕ) with respect to (γU, ϕ),
i.e.,

Fi,(γU,ϕ)(γV, ψ) =
d
dε

Fi(γU + εγV, ϕ+ εψ)
∣∣∣
ε=0

.

The coefficients in the boundary conditions of (4.1) read

b1=

⎛⎝ [F0(U)]1
[v − ∂x2ϕ1v]1
1 + (∂x2ϕ1)2

+ ν∂ja
ρ−√

1 + (∂x2ϕ1)2

⎞⎠ ,

c1=

⎛⎝ [F2(U)]1

ν∂ja
ρ−v−+∂x2ϕ1ρ−(u− − ∂tϕ1)

(1 + (∂x2ϕ1)2)
3
2

+
[v(u − ∂x2ϕ1v − ∂tϕ1)]1

1 + (∂x2ϕ1)2
+

∂x2ϕ1[(∂tϕ1 + ∂x2ϕ1v − u)2]1
(1 + ∂x2ϕ1)2

⎞⎠ ,

M1=

(
∂tϕ1F

′
0(U+) + ∂x2ϕ1F

′
2(U+) − F ′

1(U+)
l+

)
,

N1=

(
F ′

1(U−) − ∂tϕ1F
′
0(U−) − ∂x2ϕ1F

′
2(U−)

l−

)
with ∂ja = ∂a

∂j ,

l+ =
(
− e′′(ρ+),

∂tϕ1 − u+ + ∂x2ϕ1v+
1 + (∂x2ϕ1)2

,
∂x2ϕ1(u+ − ∂x2ϕ1v+ − ∂tϕ1)

1 + (∂x2ϕ1)2
)
,

l− =
(
ν∂ja

∂tϕ1 − u− + ∂x2ϕ1v−√
1 + (∂x2ϕ1)2

+ e′′(ρ−),−ν∂ja ρ−√
1 + (∂x2ϕ1)2

+
u− − ∂x2ϕ1v− − ∂tϕ1

1 + (∂x2ϕ1)2
,

∂x2ϕ1

(
ν∂ja

ρ−√
1 + (∂x2ϕ1)2

+
∂tϕ1 + ∂x2ϕ1v− − u−

1 + (∂x2ϕ1)2
))

and

b2 = [F0(U)]2,

c2 = [F2(U)]2,

N2 = F ′
1(U+) − ∂tϕ2F

′
0(U+) − ∂x2ϕ2F

′
2(U+).

Remark 4.1 With all the coefficients given in the above, we can describe the assumption
(A2) precisely. Freeze all the coefficients at the origin (0, 0, 0). Denote by λ±1 < λ±2 < λ±3 the
eigenvalues of A±

1 , and r±1 , r
±
2 , r

±
3 the corresponding right eigenvectors. Let

R1 = (M1r
+
3 ,N1r

−
1 ,N1r

−
2 , b1)

−1(M1r
+
1 ,M1r

+
2 ,N1r

−
3 ) ∈ R

4×3,

R2 = (N2r
+
1 ,N2r

+
2 , b2)

−1N1r
+
3 ∈ R

3×1.
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The stability condition is as follows:

|(R1)11(R2)11| + |(R1)12(R2)21| < 1, (4.2)

where ( · )ij denotes the (i, j)-th element of a matrix.
The above stability condition is similar to the one for the double shock problem given in

[15]. It is satisfied when the shock front is sufficiently weak while the strength of the phase
boundary is fixed. In fact, through a tedious calculation as in the appendix of [19], we can get

|(R1)11(R2)11| + |(R1)12(R2)21| = M
(λ+

3 − σ2)
(λ+

1 − σ2)
,

where M is bounded depending only on [U ]1. Therefore, if we fix [U ]1 and let λ+
3 − σ2 be

sufficiently small, then (4.2) is valid.

To establish estimates of the solutions to the problem (4.1), as in [4, 15], we first introduce
the weighted Sobolev spaces.

4.1 Weighted Sobolev spaces

Due to the transformation (3.9), the weighted Sobolev spaces that we use here are a little
different from those in [4, 15]. Therefore, it is necessary for us to verify the equivalence of the
spaces after the blow-up of Γ = {t = x1 = 0}, the dyadic partition of unity and the dilation as
in [4, 15]. Denote β = (β1, β2), GT± = {(t, x) | (t, x) ∈ G±, t ∈ (0, T )}, ΓTi = {(t, x) | (t, x) ∈
Γi, t ∈ (0, T )} (i = 0, 1, 2), V1 = x1∂x1 , V2 = ∂x2 and ∂x = (∂x1 , ∂x2). We introduce the
following spaces and the corresponding norms:

L2
λ(Ω) = {u | t−λu ∈ L2(Ω)},

‖u‖L2
λ(Ω) = ‖t−λu‖L2(Ω),

Hr
λ(G

T
±) = {u | ∂lt∂βxu ∈ L2

λ−l−β1
(GT±), l + |β| ≤ r},

‖u‖Hr
λ(GT

±) =
{ ∑
l+|β|≤r

λ2(r−l−β1)‖∂lt∂βxu‖2
L2

λ−l−β1
(GT

±)

} 1
2
,

Hr,k
λ (GT−) = {u | ∂ltV β∂mx1

u ∈ L2
λ−l−m(GT−), l+ |β| +m ≤ r + k,m ≤ r},

‖u‖Hr,k
λ (GT

−) =
{ ∑

l+|β|+m≤r+k
m≤r

λ2(r+k−l−m)‖∂ltV β∂mx1
u‖2

L2
λ−l−m(GT

−)

} 1
2
,

Bkλ(G
T
−) =

⋂
r≤k

2

Hr,k−2r
λ (GT−),

‖u‖Bk
λ(GT

−) =
{∑
r≤k

2

‖u‖2
Hr,k−2r

λ (GT
−)

} 1
2
,

Hr
λ(Γ

T
i ) = {f | ∂lt∂mx2

f ∈ L2
λ−l(Γ

T
i ), l +m ≤ r}, i = 1, 2,

‖f‖Hr
λ(ΓT

i ) =
{ ∑
l+m≤r

λ2(r−l)‖∂lt∂mx2
f‖2

L2
λ−l(Γ

T
i )

} 1
2
, i = 1, 2.

Analogous to [15], we introduce the following transformation to blow up the Γ = {t = x1 = 0}:

j : s = t, y1 =
x1

t
, y2 = x2, (4.3)
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which maps ΓTi (i = 0, 1, 2) into

Γ̂Ti = {(s, y) | y1 = i, s ∈ (0, T )}, i = 0, 1, 2

and GT± into

ĜT+ = {(s, y) | 1 < y1 < 2, s ∈ (0, T )},
ĜT− = {(s, y) | 0 < y1 < 1, s ∈ (0, T )}.

Denote

Jλu(s, y1, y2) = s−λu(s, sy1, y2), in GT±,

Jλf(s, y2) = s−λf(s, y2), on ΓTi , i = 0, 1, 2,

V̂1 = y1∂y1 , V̂2 = ∂y2 , V̂ = (V̂1, V̂2), and ∂y = (∂y1 , ∂y2). Similar to [15], in the coordinates
(s, y), we introduce the following spaces and norms:

Ĥr(ĜT±) = {u | (s∂s)l∂βy u ∈ L2(ĜT±), l + |β| ≤ r},

‖u‖Ĥr
λ(ĜT

±) =
{ ∑
l+|β|≤r

λ2(r−l−β1)‖(s∂s)l∂βy u‖2
L2(ĜT

±)

} 1
2
,

Ĥr,k(ĜT−) = {u | (s∂s)lV̂ β∂my1u ∈ L2(ĜT−), l + |β| +m ≤ r + k,m ≤ r},

‖u‖Ĥr,k
λ (ĜT

−) =
{ ∑

l+|β|+s≤r+k
m≤r

λ2(r+k−l−m)‖(s∂s)lV̂ β∂my1u‖2
L2(ĜT

−)

} 1
2
,

B̂k(ĜT−) =
⋂
r≤k

2

Ĥr,k−2r(ĜT−),

‖u‖B̂k
λ(ĜT

−) =
{∑
r≤k

2

‖u‖2
Ĥr,k−2r

λ (ĜT
−)

} 1
2
,

Ĥr
λ(Γ̂

T
i ) = {f | (s∂s)l∂my2f ∈ L2(Γ̂Ti ), l +m ≤ r}, i = 1, 2,

‖f‖Ĥr
λ(Γ̂T

i ) =
{ ∑
l+m≤r

λ2(r−l)‖(s∂s)l∂my2f‖2
L2(Γ̂T

i )

} 1
2
, i = 1, 2.

Lemma 4.1 Jλ is isomorphic from Hr
λ+ 1

2
(GT±) to Ĥr

λ(Ĝ
T
±) and from Hr

λ(Γ
T
i ) to Ĥr

λ(Γ̂
T
i )

(i = 1, 2).

Proof Here we only prove that Jλ is isomorphic from Hr
λ+ 1

2
(GT±) to Ĥr

λ(Ĝ
T
±). The other

conclusions can be proved in the same way. Noticing that the Jacobian of the transformation
j in GT± is ∣∣∣∣∂(s, y)

∂(t, x)

∣∣∣∣ =
1
t
, (4.4)

we see that Jλ is an isomorphic mapping from L2
λ+ 1

2
(GT±) to L2(ĜT±).

Considering the higher order norm, from (4.3), we have

∂t = ∂s − y1
s
∂y1 , ∂x1 =

1
s
∂y1 , ∂x2 = ∂y2 .
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Then we have

|λr−l−β1t−(λ−l−β1)∂lt∂
β
xu|

=
∣∣∣λr−l−β1s−(λ−l−β1)

(
∂s − y1

s
∂y1

)l(1
s
∂y1

)β1

∂β2
y2 (sλJλu)

∣∣∣
≤ O(1)λr−l−β1

∑
k≤l

|s−(λ−l−β1)∂ks (s
λ−l−β1+k∂β+(l−k,0)

y Jλu)|

≤ O(1)
∑
k≤l

∑
j≤k

λr−β1−k+j |(s∂s)k−j∂β+(l−k,0)
y Jλu|,

which implies that there exists a constant M > 0, such that

‖u‖Hr

λ+1
2
(GT

±) ≤M‖Jλu‖Ĥr
λ(ĜT

±).

Similarly, we can prove that there exists a constant m > 0, such that

‖Jλu‖Ĥr
λ
(ĜT

±) ≤ m‖u‖Hr

λ+1
2
(GT

±).

Thus we have proved that Jλ is isomorphic from Hr
λ+ 1

2
(GT−) to Ĥr

λ(Ĝ
T
−).

Remark 4.2 Similar to Lemma 4.1, we can prove that Jλ is isomorphic from Bk
λ+ 1

2
(GT−)

to B̂kλ(Ĝ
T−).

Similar to [15], we introduce the following dyadic partition of unity and dilation. Set χ ∈
C∞

0 (R1), such that

suppχ ⊂
(1

2
, 2
)

and
+∞∑
j=−∞

χ(2js) = 1, s > 0.

Let

vj(s, y) = χ(2js)v(s, y),

ṽj(s, y) = 2−
j
2 vj(2−js, y),

Tj = min(2, 2jT ),

Γ̃Ti = {(s, y) | y1 = i, s ∈ (−∞, T )}, i = 0, 1, 2,

G̃T− = {(s, y) | 0 < y1 < 1, s ∈ (−∞, T )},
G̃T+ = {(s, y) | y1 > 1, s ∈ (−∞, T )}.

The corresponding spaces and norms are as follows:

Hr(G̃T±) = {v | ∂ls∂βy v ∈ L2(G̃T±), l + |β| ≤ r},

‖v‖Hr
λ
(G̃T

±) =
{ ∑
l+|β|≤r

λ2(r−l−β1)‖∂ls∂βy v‖2
L2(G̃T

±)

} 1
2
,

Hr,k(G̃T−) = {v | ∂lsV̂ β∂my1u ∈ L2(G̃T−), l + |β| +m ≤ r + k, m ≤ r},

‖v‖Hr,k
λ (G̃T

−) =
{ ∑

l+|β|+s≤r+k
m≤r

λ2(r+k−l−m)‖∂lsV̂ β∂my1v‖2
L2(G̃T

−)

} 1
2
,
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Bk(G̃T−) =
⋂
r≤ k

2

Hr,k−2r(G̃T−),

‖v‖Bk
λ(G̃T

−) =
{∑
r≤k

2

‖v‖2
Hr,k−2r

λ (G̃T
−)

} 1
2
,

Hr
λ(Γ̃

T
i ) = {g | ∂ls∂my2g ∈ L2(Γ̃Ti ), l+m ≤ r}, i = 1, 2,

‖g‖Hr
λ(Γ̃T

i ) =
{ ∑
l+m≤r

λ2(r−l)‖∂ls∂my2g‖2
L2(Γ̃T

i )

} 1
2
, i = 1, 2.

As in [15], we have the following lemma.

Lemma 4.2 (i) If v ∈ Ĥr(ĜT±), and ṽj is defined as above, then ṽj ∈ Hr(G̃Tj

± ) and∑
j

‖ṽj‖2

Hr
λ(G̃

Tj
± )

≤ C1‖v‖2
Ĥr

λ(ĜT
±)

for a constant C1 > 0.
(ii) If there exists a sequence {wj} satisfying wj ∈ Hr(G̃Tj

± ), suppwj ⊂ {γ ≤ τ ≤ Tj} with
γ > 0, and

∑
j

‖wj‖2

Hr
λ(G̃

Tj
± )

<∞, then v =
∑
j

2
j
2wj(2js, y) ∈ Ĥr(ĜT±) and

‖v‖2
Ĥr

λ(ĜT
±)

≤ C2

∑
j

‖wj‖2

Hr
λ(G̃

Tj
± )

for a constant C2 > 0.

Remark 4.3 For the dyadic partition of unity and the dilation on Γ̂Ti (i = 1, 2) with respect
to s, the conclusion of Lemma 4.2 is also true.

4.2 Linear estimates

In order to avoid tedious notations in our coming estimates, we introduce the following
notations. We denote f = (f−, f+), g = (g1, g2), A± = (A±

1 , A
±
2 ), A = (A+, A−), b = (b1, b2),

c = (c1, c2), M = M1, N = (N1,N2) and

‖V ‖2
Ck

λ,T
= ‖V−‖2

Bk
λ(GT

−) + ‖V+‖2
Hk

λ(GT
+), ‖f‖2

Ck
λ,T

= ‖f−‖2
Bk

λ(GT
−) + ‖f+‖2

Hk
λ(GT

+),

‖γV ‖2
Hk

λ,T
=

2∑
i=1

‖γiV+‖2
Hk

λ(ΓT
i ) + ‖γ1V−‖2

Hk
λ(ΓT

1 ), ‖g‖2
Hk

λ,T
=

2∑
i=1

‖gi‖2
Hk

λ(ΓT
i ).

We also use ‖ · ‖Ĉk
λ,T

, ‖ · ‖Ĥk
λ,T

and ‖ · ‖C̃k
λ,T

, ‖ · ‖H̃k
λ,T

to denote the corresponding quantities of
the norms that we defined in Subsection 4.1. We denote

|‖(V, ψ)‖|2k,λ,T = λ‖V ‖2
Ck

λ+1
2 ,T

+ ‖γV ‖2
Hk

λ,T
+ ‖ψ‖2

Hk+1
λ+1,T

,

ε(L,F ) = max{‖A−A(0)‖L∞ , ‖b− b(0)‖L∞ , ‖c− c(0)‖L∞ ,

‖M − M (0)‖L∞ , ‖N − N (0)‖L∞},
‖L,F‖k = ‖A‖Ck

T
+ ‖b‖Hk

T
+ ‖c‖Hk

T
+ ‖M ‖Hk

T
+ ‖N ‖Hk

T
,
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where A(0), b(0), · · · denote the coefficients frozen at the origin, and CkT , Hk
T denote the normal

norms of the Sobolev spaces without weights. Denote

W k
λ,T = {(V, ψ) | V+ ∈ Hk

λ+ 1
2
(GT+), V− ∈ Bkλ+ 1

2
(GT−), ψi ∈ Hk+1

λ+1(ΓTi ), i = 1, 2},
W ′k

λ,T = {(f, g) | f+ ∈ Hk
λ− 1

2
(GT+), f− ∈ Bkλ− 1

2
(GT−), gi ∈ Hk

λ(ΓTi ), i = 1, 2}.
We have the following theorem on the linear estimate.

Theorem 4.1 Suppose s ≥ 10 and that the assumptions (A1)–(A4) are satisfied. There
exist ε0 > 0, λ0(K), C(K) such that under the condition

ε(L,F ) ≤ ε0, ‖L,F‖s ≤ K, (4.5)

if ∂mt f |t=0 = 0, ∂mt g|t=0 = 0 (0 ≤ m ≤ k − 1) for k ≤ s, then the problem (4.1) has a unique
solution (V, ψ) ∈ W k

λ,T for any λ > λ0(K), T ≤ T0, and (f, g) ∈ W ′k
λ,T . Moreover, the estimate

|‖(V, ψ)‖|2k,λ,T ≤ C(K)
( 1
λ
‖f‖2

k,λ− 1
2 ,T

+ ‖g‖2
k,λ,T

)
(4.6)

holds.

Proof Denote V̂± = JλV± and ψ̂ = Jλ+1ψ. By employing the transformation (4.3) for the
problem (4.1), it follows that V̂± and ψ̂ satisfy the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L̂λ,±V̂± = (s∂sV̂± + λV̂±) + Â±
1 ∂y1 V̂± + ŝA±

2 ∂y2 V̂± = Jλ−1f±, in ĜT±,

γ0V̂− · l = 0, on Γ̂T0 ,

F̂1,λ(γV̂ , ψ̂) = (s∂sψ̂1 + (λ + 1)ψ̂1)b1 + sc1∂y2 ψ̂1 + M1γ1V̂+ + N1γ1V̂− = Jλg1, on Γ̂T1 ,

F̂2,λ(γV̂ , ψ̂) = (s∂sψ̂2 + (λ + 1)ψ̂2)b2 + sc2∂y2 ψ̂2 + N2γ2V̂+ = Jλg2, on Γ̂T2 ,

where we still use γi· to denote the trace operators on Γ̂Ti (i = 1, 2), Â±
1 = A±

1 − y1I and
Â±

2 = A±
2 . From Lemma 4.1, we see that (4.6) is equivalent to the following estimate on V̂±

and ψ̂:

λ‖V̂ ‖2
Ĉk

λ,T

+ ‖γV̂ ‖2
Ĥk

λ,T

+ ‖ψ̂‖2
Ĥk+1

λ+1,T

≤ C
( 1
λ
‖L̂λV̂ ‖2

Ĉk
λ−1,T

+ ‖F̂λ(γV̂ , ψ̂)‖2
Ĥk

λ,T

)
, (4.7)

where L̂λV̂ = (L̂λ,+V̂+, L̂λ,−V̂−) and F̂λ(γV̂ , ψ̂) = (F̂1,λ(γV̂ , ψ̂), F̂2,λ(γV̂ , ψ̂)). For simplicity,
we still denote V̂±, ψ̂ by V±, ψ. Introducing V j±, ψj , Ṽ j±, ψ̃j by using the dyadic partition of
unity and dilation as in Subsection 4.1, we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L̂λ,±V
j
± = χ(2js)L̂λ,±V± + wj±, in G̃Tj

± ,

γ0V
j
− · l = 0, on Γ̃Tj

0 ,

F̂1,λ(γV j , ψj) = χ(2js)F̂1,λ(γV, ψ) + gj1, on Γ̃Tj

1 ,

F̂2,λ(γ2V
j , ψj) = χ(2js)F̂2,λ(γV, ψ) + gj2, on Γ̃Tj

2 ,

where wj± = sχ′(2js)2jV± and gji = sχ′(2js)2jψibi (i = 1, 2). Furthermore, L̂λ,±V
j
± and

F̂i,λ(γV j , ψj) (i=1,2) can be written as L̃jλ,±Ṽ
j
±, F̃ ji,λ(γṼ

j , ψ̃j) by changing s into 2−js in all
coefficients in the equations and boundary conditions. From Lemma 4.2, we see that (4.7) is
equivalent to

λ‖Ṽ j‖2
C̃k

λ,Tj

+ ‖γṼ j‖2
H̃k

λ,Tj

+ ‖ψ̃j‖2
H̃k+1

λ+1,Tj

≤ C
( 1
λ
‖L̃jλṼ j‖2

H̃k
λ−1,Tj

+ ‖F̃ jλ(γṼ j , ψ̃j)‖2
H̃k

λ,Tj

)
(4.8)
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for all j ∈ Z, where L̃jλṼ
j = (L̃jλ,+Ṽ

j
+, L̃

j
λ,−Ṽ

j
−), F̃ jλ(γṼ j , ψ̃j) = (F̃ j1,λ(γṼ

j , ψ̃j), F̃ j2,λ(γṼ
j , ψ̃j))

and Tj = min(2, 2jT ).
Now we can separately establish estimates in the neighborhoods of the physical boundary

Γ̃Tj

0 , the phase boundary Γ̃Tj

1 and the shock front Γ̃Tj

2 . Let κ be a smooth cut-off function
with κ ≡ 1 on [23 , 1] and κ ≡ 0 in [0, 1

3 ]. Let W1 = κ(y1)Ṽ
j
−, W2 = (1 − κ(y1))Ṽ

j
−, W3 =

(1 − κ(y1 + 1))Ṽ j+, W4 = κ̃(y1 + 1)Ṽ j+ and Ψ1 = ψ̃j1, Ψ2 = ψ̃j2. Then (W1,W3,Ψ1) satisfies the
following problem:⎧⎪⎪⎨⎪⎪⎩

L̃jλ,−W1 = κ(y1)L̃
j
λ,−Ṽ

j
− + (L̃jλ,−κ(y1))Ṽ

j
−, in G̃Tj

− ,

L̃jλ,+W3 = (1 − κ(y1 + 1))L̃jλ,+Ṽ
j
+ + (L̃jλ,+(1 − κ(y1 + 1)))Ṽ j+, in G̃Tj

+ ,

F̂1,λ(γW,Ψ1) = F̃ j1,λ(γṼ
j , ψ̃j), on Γ̃Tj

1 ,

and (W4,Ψ2) satisfies the following problem:{
L̃jλ,+W4 = κ(y1 + 1)L̃jλ,+Ṽ

j
+ + (L̃jλ,+κ(y1 + 1))Ṽ j+, in G̃Tj

+ ,

F̂2,λ(γW,Ψ2) = F̃ j1,λ(γṼ
j , ψ̃j), on Γ̃Tj

2 .

From the assumption (A4), we can establish the following estimate by utilizing the results in
[13, 18]:

λ‖(κṼ j−, Ṽ j+)‖2
Ck

λ,Tj

+
2∑
i=1

‖γṼ j‖2
Hk

λ,Tj

+ ‖ψ̃ji ‖2
Hk+1

λ+1,Tj

≤ C
( 1
λ

(‖(κL̃jλ,−Ṽ j−, L̃jλ,+Ṽ j+)‖2
Ck

λ−1,Tj

+ ‖Ṽ j−‖2

Bk
λ−1(G̃

Tj
− )

) + ‖F̃ jλ(γṼ j , ψ̃j)‖2
Hk

λ,Tj

)
. (4.9)

The problem for W2 is as follows:{
L̃jλ,−W2 = (1 − κ)L̃jλ,−Ṽ

j
− − (L̃jλ,−κ)Ṽ j−, in G̃Tj

− ,

γ0W2 · l = 0, on Γ̃Tj

0 .

By using the results of [5, 10] for the above problem with Γ̃Tj

0 being characteristic, we have

λ‖(1 − κ)Ṽ j−‖2

Bk
λ(G̃

Tj
− )

≤ C · 1
λ

(‖(1 − κ)L̃jλ,−Ṽ
j
−‖2

Bk
λ−1(G̃

Tj
− )

+ ‖Ṽ j−‖2

Bk
λ−1(G̃

Tj
− )

). (4.10)

Summing up (4.9) and (4.10) and letting λ be sufficiently large, we see that (4.8) holds. Thus
we have proved (4.6).

4.3 1-dimensional linear problems

In this subsection, we study the linearized problem of (3.18) in the one space variable case,
which is essential to the construction of an approximate solution to the original nonlinear
problem (3.18). We shall mainly follow the arguments of Métivier’s work (cf. [15]). The main
difference from [15] is that the problem is posed on two areas and the unknowns are coupled
on free boundaries. Considering the following linearized problem of (3.18) independent of x2:⎧⎪⎪⎪⎨⎪⎪⎪⎩

L0±(U±, ϕ)V± = ∂tV± +A±
1 (U±, ϕ)∂x1V± = f±, in GT±,

γ0(V−)2 = 0, on ΓT0 ,
F 0

1 (γV, ψ) = b1∂tψ1 + M1γ1V+ + N1γ1V− = g1, on ΓT1 ,
F 0

2 (γV, ψ) = b2∂tψ2 + N2γ2V+ = g2, on ΓT2 ,

(4.11)
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where, without confusion, we denote

ΓTi = {(t, x1) | x1 = it, t ∈ (0, T )}, i = 0, 1, 2,

GT+ = {(t, x1) | t < x1 < 2t, t ∈ (0, T )},
GT− = {(t, x1) | 0 < x1 < t, t ∈ (0, T )},

and γi · (i = 1, 2, 3) are the corresponding trace operators, i.e.,

γ1V (t) = V (t, 0), γ2V (t) = V (t, t), γ3V (t) = V (t, 2t).

As in [15], for λ > 0, τ > 0, we define the following norms:

‖v‖τ = ‖e−τtv‖L∞(GT
±),

|‖v‖|k,τ =
∑
|α|≤k

τk−|α|‖∂αv‖τ ,

‖v‖τ,λ = ‖t−λe−τtv‖L∞(GT
±).

For λ ≥ 1, we define
‖v‖′τ,λ = ‖(λtλ−1 + τtλ)−1e−τtv‖L∞(GT

±).

The norms of a function on ΓTi (i = 1, 2) can be defined similarly.
For the problem (4.11), we have the following theorem.

Theorem 4.2 Under the assumptions (A1)–(A2), there exist ε0 > 0 and T0 > 0 such that
if ε(L0, F0) ≤ ε0 and f |t=0 = 0, g|t=0 = 0, then for T ≤ T0, (4.11) has a unique solution
V± ∈ C0(GT±), ψi ∈ C1(ΓTi ) (i = 1, 2) for f± ∈ C0(GT±) and gi ∈ C0(ΓTi ) (i = 1, 2), and

(i) for τ > 0,

‖V−‖τ + ‖V+‖τ +
2∑
i=1

(‖∂tψi‖τ + τ‖ψi‖τ ) ≤ C
(1
τ

(‖f−‖τ + ‖f+‖τ ) +
2∑
i=1

‖gi‖τ
)
; (4.12)

(ii) for τ > 0, λ ≥ 1,

‖V−‖τ,λ + ‖V+‖τ,λ +
2∑
i=1

‖∂tψi‖τ,λ ≤ C
(1
τ

(‖f−‖′τ,λ + ‖f+‖′τ,λ) +
2∑
i=1

‖gi‖τ,λ
)
; (4.13)

(iii) If the coefficients in (4.11) are Ck, f± ∈ Ck(GT±), gi ∈ Ck(ΓTi ) (i = 1, 2) and ∂jt f |t=0 =
0, ∂jt g|t=0 = 0 (0 ≤ j ≤ k), then V± ∈ Ck(GT±), ψi ∈ Ck+1(ΓTi ) (i = 1, 2). Moreover, for
sufficiently large τ , we have

‖V−‖k,τ + ‖V+‖k,τ +
2∑
i=1

‖ψi‖k+1,τ ≤ C
(1
τ
(‖f−‖k,τ + ‖f+‖k,τ ) +

2∑
i=1

‖gi‖k,τ
)
. (4.14)

Proof We only sketch the proof for the estimate (4.12). The estimates (4.13)–(4.14) can
be established in the same way with a little more computation (cf. [15]). Without loss of
generality, we only consider the case that A±

1 (i = 2, 3) is diagonal, i.e., A±
1 = diag(λ±1 , λ

±
2 , λ

±
3 ).

In this case, the first equation of the problem (4.11) becomes

∂t(V±)k + λ
(i)
k ∂x1(V±)k = (f±)k, in GT±, k = 1, 2, 3, (4.15)
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where ( · )k denote the k-th component of a vector. When ε(L,F ) is sufficiently small, due to
the assumption (A1), we can rewrite the third and fourth equations of (4.11) as⎛⎜⎜⎝

γ1(V+)3
γ2(V−)1
γ1(V−)2
∂tψ1

⎞⎟⎟⎠ = R1

⎛⎝γ1(V+)1
γ1(V+)2
γ1(V−)3

⎞⎠+ h1, on ΓT1 (4.16)

and ⎛⎝γ2(V+)1
γ2(V+)2
∂tψ2

⎞⎠ = R2γ2(V+)3 + h2, on ΓT2 , (4.17)

where
h1 = (m1e3, n1e1, n1e2, b1)−1g1, h2 = (n2e1, n2e2, b2)−1g2,

and R1, R2 are the same as defined in Remark 4.1. Here the detailed forms of R1 and R2 are
as follows:

R1 = −(M1e3,N1e1,N1e2, b1)−1(M1e1,M1e2,N1e3), R2 = −(N2e1,N2e2, b2)−1N2e3

with ei ∈ R
3 (i = 1, 2, 3) being the standard unit vector. Together with the boundary condition

on ΓT0

γ0(V−)2 = 0, on ΓT
3 , (4.18)

we shall solve the problem (4.15)–(4.18). Since the problem is a 1-dimensional linear problem,
we can solve it by integrating along the characteristics. The key point is to determine the
boundary value of the unknowns. First, we are going to determine the data γ2(V+)3. For this
purpose, we first analyze the characteristics. For (t0, x0) ∈ GT±, we denote by

C±
k (t0, x0) =

{
(t, x±k (t))

∣∣∣ dx±k
dt

= λ±k , x
±
k (t0) = x0, 0 ≤ t ≤ t0

}
the backward characteristic of ∂t + λ±k ∂x1 passing (t0, x0). Due to our calculation in Section 2,
we have the following list of intersection points between the boundaries and the characteristics:

C+
1 (t0, x0) ∩ ΓT2 = (T1(t0, x0), 2T1(t0, x0)),

C+
2 (t0, x0) ∩ ΓT2 = (T2(t0, x0), 2T2(t0, x0)),

C+
3 (t0, x0) ∩ ΓT1 = (T3(t0, x0), T3(t0, x0)),

C−
3 (t0, x0) ∩ ΓT0 = (S3(t0, x0), 0),

where, as we can see, in GT+, C+
1 and C+

2 start from ΓT2 while C+
3 starts from ΓT1 . In GT−, C−

3

starts from ΓT0 . Obviously, we have that 0 ≤ Tk(t, x) ≤ t and S3(t, x) ≤ t.
By integrating along the characteristics, we get the solution to the problem (4.15)–(4.18) as

follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(V+)1(t, x) = γ2(V+)1(T1(t, x)) + (F+)1(t, x),
(V+)2(t, x) = γ2(V+)2(T2(t, x)) + (F+)2(t, x),
(V+)3(t, x) = γ1(V+)3(T3(t, x)) + (F+)3(t, x),
(V−)3(t, x) = (F−)3(t, x),

(4.19)
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where (F±)k are the integrals of (f±)k along the corresponding characteristics, i.e.,

(F+)1(t, x) =
∫ t

T1(t,x)

(f+)1(s, x+
1 (s))ds, (F+)2(t, x) =

∫ t

T2(t,x)

(f+)2(s, x+
2 (s))ds,

(F+)3(t, x) =
∫ t

T3(t,x)

(f+)3(s, x+
3 (s))ds, (F−)3(t, x) =

∫ t

S3(t,x)

(f−)3(s, x−3 (s))ds.

By substituting (4.19) and (4.17) into (4.16), we get the following functional equation of γ1(V+)3:

γ2(V+)3(t) = (R1)11(R2)11γ2(V+)3(Z1(t)) + (R1)12(R2)21γ2(V+)3(Z2(t)) +H(t), (4.20)

where
Z1(t) = T1(T3(t, 2t), T3(t, 2t)), Z2(t) = T2(T3(t, 2t), T3(t, 2t))

and

H(t) = (R1)11(γ1(F+)1(T3(t, 2t)) + (h2)1(Z1(t))) + (R1)12(γ1(F+)2(T3(t, 2t)) + (h2)2(Z2(t)))

+ (R1)13γ1(F−)3(T3(t, 2t)) + h1(T3(t, 2t)).

Since 0 ≤ Tk(x, t) ≤ t, it is easy to verify

0 ≤ Zi(t) ≤ t, i = 1, 2 (4.21)

and

‖h‖τ ≤ C‖g‖τ , ‖F‖τ ≤ C

τ
‖f‖τ . (4.22)

From (4.21)–(4.22), we have

‖H‖τ ≤ C(τ−1‖f‖τ + ‖g‖τ). (4.23)

Denote by Λ the operator as follows:

Λ : v → Λv = (R1)11(R2)12v ◦ Z2 + (R2)12(R2)21v ◦ Z3.

Then from the assumption (A4) and (4.21), we can see that there exists a constant 0 < ρ < 1
such that

‖Λv‖τ ≤ ρ‖v‖τ . (4.24)

Therefore, there is a unique solution v to the equation

v = Λv +H (4.25)

and the solution satisfies the following inequality:

‖v‖τ ≤ C‖H‖τ . (4.26)

With the inequalities (4.22)–(4.23) and (4.26), we determine γ2(V+)3 from (4.20) and

‖γ2(V+)3‖τ ≤ C(τ−1‖f‖τ + ‖g‖τ).
Since γ2(V+)3 is determined, (V+)3 is solved. Then by (4.18), γ2(V+)1, γ2(V+)2 and ∂tψ2 are
determined. Therefore, (V+)1, (V+)2 and ψ2 are solved. Then by (4.17) and (4.19), we can
solve V− and ψ1. For the case when A

(i)
1 is not diagonal, we can easily diagonalize A±

1 , which
yields that V± satisfy equations similar to (4.15) with low-order terms of V±. These terms can
be absorbed by the left-hand sides of the inequalities by letting τ be sufficiently large.
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5 Nonlinear Problems

In this section, we establish the existence of the solution to the nonlinear problem (3.18) by
using the fixed point argument. To do that, first, we need to give the compatibility conditions
and construct the first approximate solution.

5.1 Higher order compatibility conditions

According to the calculation in Section 3, we see that the 0-th order compatibility conditions
for the problem (3.18) are satisfied.

Now we compute the k-th order compatibility conditions for the problem (3.18). Differen-
tiating the boundary condition on Γ0 given in (3.18) with respect to t, we get

l · ∂kt U− = 0, at {x1 = t = 0}. (5.1)

Differentiating the third and fourth equations in (3.18) in the direction τ1 = (1, 1, 0), we have⎧⎪⎨⎪⎩
∂k+1
t ϕ1[F0(U)]1 − F ′

0(U−)(σ1I −A1(U−) + ϕ′
0A2(U−))∂kτ1U−

+F ′
0(U+)(σ1I −A1(U+) + ϕ′A2(U+))∂kτ1U+ = Hk

1 ,

a0∂
k+1
t ϕ1 + l−0 ∂

k
τ1U− + l+0 ∂

k
τ1U+ = Hk

2 ,

(5.2)

at {x1 = 0, t = 0}, where Hk
i (i = 1, 2) depend smoothly on ∂lτ1ϕ1|t=0 (0 ≤ l ≤ k) and

∂lτ1U±|t=0,x1=0 (0 ≤ l ≤ k − 1),

a0 = ϕ′
0v+ − u+ − να(j1, ν)ρ0

−
√

1 + ϕ′2
0 ,

l0+ = ((1 + ϕ′2
0 )e′′(ρ+), u0

+ − ϕ′
0v+ − σ1, ϕ

′
0(σ1 − u+ + ϕ′

0v+)),

l0− = (−να(j1, ν)σ1

√
1 + ϕ′2

0 − (1 + ϕ′2
0 )e′′(ρ−), να(j1, ν)ρ−

√
1 + ϕ′2

0 + σ1,

− ϕ′
0(σ1 + να(j1, ν)ρ−

√
1 + ϕ′2

0 )),

where α(j1, ν) = ∂j1a(j1, ν). Differentiating the fifth equation in (3.18) in the direction τ2 =
(1, 2, 0), we have

∂k+1
t ϕ2[F0(U)]2 − F ′

0(U+)(σ2I −A1(U+) + ϕ′
0A2(U0))∂kτ2U+ = Hk

3 , (5.3)

at {x1 = 0, t = 0}, where Hk
3 (i = 1, 2) depend smoothly on ∂lτ2ϕ2|t=0 (0 ≤ l ≤ k) and

∂lτ2U+|t=0,x1=0 (0 ≤ l ≤ k − 1).
On the other hand, from the equations of U± given in (3.18), it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂kt U− =
1
σk1

(ϕ′
0A2(U−) −A1(U−))k∂kx1

U− + Ik2 ,

∂kτ1U− =
1
σk1

(σ1I −A1(U−) + ϕ′
0A2(U−))k∂kx1

U− + Ik1 ,

∂kτ1U+ =
1

(σ2 − σ1)k
(σ1I −A1(U+) + ϕ′

0A2(U+))k∂kx1
U+ + Ik3 ,

∂kτ2U+ =
1

(σ2 − σ1)k
(σ2I −A1(U+) + ϕ′

0A2(U+))k∂kx1
U+ + Ik4 ,

(5.4)
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at {x1 =0, t=0}, where Iki (i=1, 2) depend smoothly on {∂mx2
∂lx1

U±|x1=t=0} and {∂mx2
∂ltϕi|t=0}

(i = 1, 2) for 0 ≤ l ≤ k − 1, 0 ≤ m+ l ≤ k. Substituting (5.4) into (5.1)–(5.3), we get the k-th
order compatibility conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(−σ1)k

l(A1(U−) − ϕ′
0A2(U−))k∂kx1

U− = Jk1 ,

∂k+1
t ϕ1[F0(U)]1 + 1

(−σ1)kF
′
0(U−)(A1(U−) − ϕ′

0A2(U−) − σ1I)k+1∂kx1
U−

+
1

(σ2 − σ1)k
(σ1I −A1(U+) + ϕ′

0A2(U+))k+1∂kx1
U+ = Jk2 ,

a0∂
k+1
t ϕ1 +

1
(−σ1)k

l0−(A1(U−) − ϕ′
0A2(U−) − σ1I)k∂kx1

U−

+
1

(σ2 − σ1)k
l0−(σ1I −A1(U+) + ϕ′

0A2(U+))k∂kx1
U+ = Jk3 ,

∂k+1
t ϕ2[F0(U)]2 +

1
(σ1 − σ2)k

F ′
0(U+)(A1(U+) − ϕ′

0A2(U+) − σ2I)k+1∂kx1
U+ = Jk4 ,

(5.5)

at {x1 = 0, t = 0}, where Jki (i = 1, 2, 3, 4) depend smoothly on {∂mx2
∂lx1

U±|x1=t=0} and
{∂mx2

∂ltϕi|t=0} (i = 1, 2) for 0 ≤ l ≤ k − 1, 0 ≤ m+ l ≤ k.

5.2 Validity of compatibility conditions and the construction of approximate solu-
tions

In this subsection, first, we show that we can find the data satisfying the compatibility
conditions (5.5). Denote by λ±1 < λ±2 < λ±3 the eigenvalues of A1(U±) − ϕ′

0A2(U±) at {t =
x1 = 0}. We have ⎧⎨⎩

λ±1 = u± − ϕ′
0v± − (1 + ϕ′2

0 )
1
2 c±,

λ±2 = u± − ϕ′
0v±,

λ±3 = u± − ϕ′
0v± + (1 + ϕ′2

0 )
1
2 c±,

(5.6)

where c± = p′(ρ±)
1
2 . The corresponding eigenvectors are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r±1 =
(
1, − c±

ρ±

√
1 + ϕ′2

0 ,
c±ϕ′

0

ρ±

√
1 + ϕ′2

0

)T

,

r±2 =
(
0,

ϕ′
0

ρ±
,

1
ρ±

)T

,

r±3 =
(
1,

c±
ρ±

√
1 + ϕ′2

0 , −
c±ϕ′

0

ρ±

√
1 + ϕ′2

0

)T

.

(5.7)

For constants β1, β2 and vector (v−, v+) ∈ R
3 × R

3, we denote

M1(β1, v−, v+) =

⎛⎝ 0
[F0(U)]1

a0

⎞⎠β1 +
(
− 1
σ1

)k⎛⎝ l(A1(U−) − ϕ′
0A2(U−))k

F ′
0(U−)(A1(U−) − ϕ′

0A2(U−) − σ1I)k+1

l0−(A1(U−) − ϕ′
0A2(U−) − σ1I)k

⎞⎠ v−

+
( 1
σ2 − σ1

)k⎛⎝ 0
(σ1I −A1(U+) + ϕ′

0A2(U+))k+1

l0−(σ1I −A1(U+) + ϕ′
0A2(U+))k

⎞⎠ v+,

M2(β2, v+) = [F0(U)]2β2 +
( 1
σ1 − σ2

)k
F ′

0(U+)(A1(U+) − ϕ′
0A2(U+) − σ2I)k+1v+.

Similar to [14], we have the following results.
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Theorem 5.1 If constants β1, β2 and vectors (v−, v+) ∈ R
3 × R

3 satisfy{
M1(β1, v−, v+) = 0,
M2(β2, v+) = 0, (5.8)

then we have β1 = 0, β2 = 0, v− = 0, v+ = 0.

Proof For simplicity, we only consider the case when ϕ′
0 ≡ 0. When ϕ′

0 is sufficiently small,
the conclusion still holds. Denote by P+ the smoothly varying projections onto the subspace
span{r+3 }. Denote w+ = P+v+ and u+ = (I − P+)v+. Considering M1(β1, v−, v+) = 0, we
have that the basis of the set

{(β1, v−, w+) | w+ = P+w+}

is given by
(1, 0, 0) ∪ (0, r−1 , 0) ∪ (0, r−2 , 0) ∪ (0, r−3 , 0) ∪ (0, 0, r+3 ).

We have

det(M1(1, 0, 0),M1(0, r−1 , 0),M1(0, r−2 , 0),M1(0, r−3 , 0),M1(0, 0, r+3 ))

=
(λ−1 − σ1)(λ−2 − σ1)(λ−3 − σ1)(σ1 − λ+

3 ))k+1

(−σ1)3k(σ2 − σ1)k

×

∣∣∣∣∣∣∣∣∣∣∣
0

(λ−1 )kl · r−1
(λ−1 − σ1)k+1

0
(λ−3 )kl · r−3

(λ−3 − σ1)k+1
0

[F0(U)]1 F ′
0(U−)r−1 F ′

0(U−)r−2 F ′
0(U−)r−3 F ′

0(U+)r+3

a0
l0− · r−1
λ−1 − σ1

l0− · r−2
λ−2 − σ1

l0− · r−3
λ−3 − σ1

l0+ · r+3
σ1 − λ+

1

∣∣∣∣∣∣∣∣∣∣∣
.

Denote the determinant on the right-hand side of the above equality by �. We have

� = − (λ−1 )kl · r−1
(λ−1 − σ1)k+1

∣∣∣∣∣∣∣
[F0(U)]1 F ′

0(U−)r−2 F ′
0(U−)r−3 F ′

0(U+)r+3

a0
l0− · r−2
λ−2 − σ1

l0− · r−3
λ−3 − σ1

l0+ · r+3
σ1 − λ+

1

∣∣∣∣∣∣∣
− (λ−3 )kl · r−3

(λ−3 − σ1)k+1

∣∣∣∣∣∣∣
[F0(U)]1 F ′

0(U−)r−1 F ′
0(U−)r−2 F ′

0(U+)r+3

a0
l0− · r−1
λ−1 − σ1

l0− · r−2
λ−2 − σ1

l0+ · r+3
σ1 − λ+

1

∣∣∣∣∣∣∣ .
Denote the first and the second determinants on the right-hand side of the above equality by
�1 and �2, respectively. By using the Rankine-Hugoniot conditions, we get

�1 = [u]21 +
c−c+
ρ−ρ+

[ρ]21 − να(j1, ν)ρ−,

�2 = [u]21 +
c−c+
ρ−ρ+

[ρ]21 + να(j1, ν)ρ−.

According to the result in [2], for sufficiently small ν, we have

α(j1, ν) =
∂

∂j1
a(j1, ν) ≥ α > 0.
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Therefore, noticing λ−1 < 0 < λ−2 < σ1 < λ−3 and l · r−1 = −l · r−3 = c−
ρ−

, we get � > 0. Thus,
we has proved

det(M1(1, 0, 0),M1(0, r−1 , 0),M1(0, r−2 , 0),M1(0, r−3 , 0),M1(0, 0, r+3 )) �= 0. (5.9)

Similarly, we consider M2(β2, v+) = 0. The basis of the set

{(β2, u+) | P+u+ = 0}

is given by
(1, 0) ∪ (0, r+1 ) ∪ (0, r+2 ).

By direct computation, we get

det(M2(1, 0),M2(0, r+1 ),M2(0, r+2 )) = −c+[u]2((σ2 − λ+
1 )(σ2 − λ+

2 ))k+1

(ρ+)2(σ2 − σ1)2k
�= 0. (5.10)

Thus, we obtain the conclusion.

Remark 5.1 With Theorem 5.1, we can find the high order derivatives (∂kx1
U±, ∂k+1

t ϕ1,
∂k+1
t ϕ2) from (5.5), once the 0-th order compatibility condition is satisfied.

Next, we shall construct the approximate solution to the problem (3.18). Denote

Hϕ =
(
ϕ,
ϕ

t
,∇ϕ, x1

∇ϕ
t

)
,

εT0(U,ϕ) = ‖U+‖L∞(G
T0
+ )

+ ‖U−‖L∞(G
T0
− )

+
2∑
i=1

‖Hϕi‖L∞(Γ
T0
i )
,

‖(U,ϕ)‖WT0
= ‖U+‖HN (G

T0
+ )

+ ‖U−‖BN (G
T0
− )

+ ‖γ1U−‖HN (Γ
T0
1 )

+
2∑
i=1

‖γiU+‖HN (Γ
T0
i )

+
2∑
i=1

(‖ϕi‖HN+1(Γ
T0
i )

+ ‖Hϕi‖HN (Γ
T0
i )

).

Similar to [15], we construct the approximate solution as follows by using Theorem 4.2.

Theorem 5.2 For ε > 0, there exist an M > 0 and a C∞ sequence {U j, ϕj}, such that

L±(U j±, ϕ
j)U j± = O(tj), (5.11)

l · γ0U
j
− = 0, (5.12)

F1(γU j , ϕj) = O(tj+1), (5.13)

F2(γU j , ϕj) = O(tj+1) (5.14)

and

εT0(U
j − U0, ϕj − σt) ≤ ε, (5.15)

‖(U j, ϕj)‖WT0
≤M. (5.16)

Proof The proof of this theorem is similar to the one given in [15, Proposition 7.1.2] by
iteration and by using Theorem 4.2. Here we sketch the proof for completeness. We take U0± =
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V±(x2), ϕ0
i = σi(x2)t (i = 1, 2), where V±(x2) and σi(x2) satisfy the 0-th order compatibility

conditions. We define successively U j , ϕj by

U j+1
± = U j± + V j±, ϕj+1 = ϕj + ψj ,

with (V j±, ψ
j) satisfying

L0
±V

j
± = −L±(U j±, ϕ

j)U j±,

γ0V− · l = 0,

F 0
i (γV j , ψj) = −Fi(γU j , ϕj), i = 1, 2,

where the operators L0
±, F 0

i are the same as in (4.11) with the coefficients valued at U0, ϕ0.
It is convenient to add two conditions

U j − U0 = O(t), ϕj − ϕ0 = O(t2) (5.17)

to (5.11)–(5.14). Obviously, (5.11)–(5.14) and (5.17) are valid for j = 0. Now suppose that
they are valid for j ≤ n, and we prove that they are also valid for j = n+1. By using Theorem
4.2, from (5.11)–(5.14) for j = n, we have

V n = O(tn+1), ψn = O(tn+2), (5.18)

which implies Hψn = O(tn+1). Since L±(Un+1
± , ϕn+1) − L±(Un±, ϕn) can be written as a first

order partial differential operator with coefficients containing Un+1 − Un and Hψn, we get

(L±(Un+1
± , ϕn+1) − L±(Un±, ϕ

n))Un+1
± = O(tn+1). (5.19)

Similarly, L±(Un±, ϕn)−L0± can be written as a sum of the first order operator with respect to
x2 and the first order operator with respect to (t, x1) with coefficients containing the factors
Un − U0 and H(ϕn − ϕ0). Therefore, by ∇(t,x1)V

n = O(tn), ∂x2V
n = O(tn+1) and (5.17), we

have

(L±(Un±, ϕ
n) − L0

±)V n± = O(tn+1). (5.20)

Combining (5.19)–(5.20) with

fn+1
± = (L±(Un+1

± , ϕn+1) − L±(Un±, ϕ
n))Un+1

± + (L±(Un±, ϕ
n) − L0

±)V n± ,

we get fn+1
± = O(tn+1).

Considering

gn+1
i = Fi(γUn + γV n, ϕn + ψn)

= Fi(γUn + γV n, ϕn + ψn) + Fi,(γUn,ϕn)(γV n, ψn) +O(|γV n|2 + |ψn|2)
= (Fi,(γUn,ϕn) − F 0

i )(γV n, ψn) +O(|γV n|2 + |ψn|2),

from (5.17), we know γUn − γU0 = O(t), ϕn − ϕ0 = O(t2). Then by γV n = O(tn+1),
ψn = O(tn+1) and ∂x2ψ

n = O(tn+1), we get gn+1
i = O(tn+2). Therefore, the relations (5.11)–

(5.14) hold when j = n+ 1.
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To prove (5.15)–(5.16), we modify the sequence {(U j , ϕj)}. Let ζ(t) ∈ C∞
0 be a cut-off

function, equal to 1 near the origin. δJ is a constant, which will be determined later. For
j ≤ J , set

Ũ j = ζ
( t

δJ

)
(U j − U0) + U0, ϕ̃j = ζ

( t

δJ

)
(ϕj − ϕ0) + ϕ0.

Obviously, (Ũ j , ϕ̃j) still satisfy (5.11)–(5.14). We may choose δJ sufficiently small such that
finite pairs (Ũ j , ϕ̃j) for j ≤ J satisfy (5.15). Moreover, letting M = 1 + max

j≤J
‖(U j, ϕj)‖, the

inequality (5.14) holds for (Ũ j , ϕ̃j).
For j ≥ J , set

Ũ j = ŨJ + ζ
( t

δj

)
(U j − UJ), ϕ̃j = ϕ̃Jζ

( t

δj

)
(ϕj − ϕJ).

As mentioned above, the equalities (5.11)–(5.14) are valid. Taking δj sufficiently small, we have
εT0(Ũ j − ŨJ , ϕ̃j − ϕ̃J ) < ε, ‖Ũ j − ŨJ , ϕ̃j − ϕ̃J‖WT0

< 1. Hence (5.15)–(5.16) are valid for all
(Ũ j , ϕ̃j).

5.3 The iteration scheme and existence

In this subsection, we introduce the iteration scheme and establish the existence of the
solution to the problem (3.18).

For 0 < T < T0
2 , we denote by ET and E′

T the two linear extension operators

ET : Bkλ+ 1
2
(GT−) ×Hk

λ+ 1
2
(GT+) → Bkλ+ 1

2
(GT0− ) ×Hk

λ+ 1
2
(GT0

+ ),

E′
T : Hk

λ(ΓTi ) → Hk
λ(ΓT0

i ), i = 1, 2

with norms less than C for any k, λ ∈ R
+, and suppETU ⊂ G2T− × G2T

+ , suppE′
T g ⊂ Γ2T

i for
U ∈ Bk

λ+ 1
2
(GT−) ×Hk

λ+ 1
2
(GT+) and g ∈ ΓTi (i = 1, 2).

The iteration scheme for solving the problem (3.18) is as follows, which is similar to [14]. For
fixed j0 > λ0(K), we choose (U j0 , ϕj0) constructed in Theorem 5.2 as (U0, ϕ0) and (V 0, ψ0) =
(0, 0). We set

(Un+1, ϕn+1) = (U0, ϕ0) + (ETV n+1, E′
Tψ

n+1),

where (V n+1, ψn+1) is the solution of the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L±(Un±, ϕ

n)V n+1
± = −L±(Un±, ϕ

n)U0
±, in GT0± ,

l · γ0V
n+1
− = 0, on ΓT0

0 ,

F1,(γUn,ϕn)(γV n+1, ψn+1) = −F1(γUn, ϕn) + F1,(γUn,ϕn)(γV n, , ψn), on ΓT0
1 ,

F2,(γUn,ϕn)(γV n+1, ψn+1) = −F2(γUn, ϕn) + F2,(γUn,ϕn)(γV n, ψn), on ΓT0
2 .

(5.21)

With the above iteration scheme, we now give the following result.

Theorem 5.3 (i) There exist ε1 > 0, M1 > 0 and T ∈ (0, T0), such that for T ≤ T1 the
sequence defined above satisfies

εT0(U
n − U(0), ϕn − σ(0)t) ≤ ε1, ‖(Un, ϕn)‖WT0

≤M1. (5.22)

(ii) There exist C0 > 0, λ0 > 0, such that for λ > λ0, T ≤ T1, the sequence defined in the
above satisfies

‖(Un+2 − Un+1, ϕn+2 − ϕn+1)‖2
0,λ,T

≤ C0T ‖(Un+1 − Un, ϕn+1 − ϕn)‖2
0,λ,T . (5.23)
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The proof of this Theorem is analogous to that given in [4, 15]. Here we sketch the main
steps for completeness.

Proof (i) The inequality (5.22) is valid for n = 0 obviously. Supposing that it is true for
n, we prove that it is valid for n+ 1.

Write L±(Un±, ϕn)U0± as L±(U0±, ϕ0)U0± − (L±(U0±, ϕ0) − L±(Un±, ϕn))U0±. Noticing that

‖A(Un, ϕn) −A(U0, ϕ0)‖2
HN

λ− 1
2 ,T

≤ C(‖V n‖2
CN

λ− 1
2 ,T

+ ‖Hψn‖2
HN

λ− 1
2 ,T

),

‖Hψn‖2
HN

λ− 1
2 ,T

≤ C‖ψn‖2
HN+1

λ− 1
2 ,T

,

and L±(U0
±, ϕ

0)U0
± = O(tj0 ) (j0 > λ0(K)), we get

‖L(Un, ϕn)U0‖2
CN

λ− 1
2 ,T

≤ C1T. (5.24)

Similarly, we have

‖F(γUn,ϕn)(γV n+1, ψn+1)‖2
HN

2λ−1,T
≤ C(‖γV n‖2

HN
λ,T

+ ‖ψn‖2
HN+1

λ+1,T

).

In the case of 2λ > λ+ 1, the above inequality yields

‖F(γUn,ϕn)(γV n+1, ψn+1)‖2
HN

2λ−1,T
≤ C2T. (5.25)

If we properly choose ε1 and M1, we can check the validity of the conditions in Theorem 4.1.
Thus, for the problem (5.21), we obtain (V n+1, ψn) ∈WN

λ,T and

|‖(V n, ψn)‖|2N,λ,T ≤ C3T. (5.26)

When N ≥ 9, we can use the embedding theorem to obtain

εT0(U
n+1 − U(0), ϕn+1 − σ(0)t) ≤ C3C4KT. (5.27)

Taking T1 =min
(

1
C3
, ε1
C3C4K

)
, (5.22) is valid for (Un+1, ϕn+1). Thus the sequences {Un, ϕn}n≥0

can be determined successively.
(ii) Denote an = Un+1 − Un, αn = ϕn+1 − ϕn and

bn± = L±(Un+1
± , ϕn)an+1

± ,

βni = Fi,(γUn+1,ϕn+1)(γan+1, αn+1), i = 1, 2.

From the iteration scheme (5.21), we have

bn± = (L±(Un±, ϕ
n) − L±(Un+1

± , ϕn+1))Un+1
± ,

βni = −Fi(γUn+1, ϕn+1) + Fi(γUn, ϕn) + Fi,(γUn,ϕn)(γan, αn), i = 1, 2.

When N ≥ 10, we obtain

‖bn‖2
CN−1

λ,T

≤ C1T |‖(Un+1 − Un, ϕn+1 − ϕn)‖|2N−1,λ−1,T ,

‖βn‖2
HN−1

2λ−1,T

≤ C2|‖(Un+1 − Un, ϕn+1 − ϕn)‖|2N−1,λ−1,T .
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Letting 2λ− 1 > λ+ 1 and noticing the uniform bound of |‖(Un, ϕn)‖|N−1,λ,T0 , we have

‖βn‖2
HN−1

λ,T

≤ C2T |‖(Un+1 − Un, ϕn+1 − ϕn)‖|2N−1,λ−1,T .

Employing Theorem 4.1 for the problem (V n+2−V n+1, ψn+2−ψn+1) from (5.21), one deduces

|‖(Un+2 − Un+1, ϕn+2 − ϕn+1)‖|2N−1,λ,T ≤ C3λ|‖(bn, βn)‖|2N−1,λ,T ,

which yields (5.23) by choosing λ properly.

From Theorem 5.3, it is easy to know that {Un, ϕn}n≥0 is bounded in Bs
λ+ 1

2
(GT0− ) ×

Hs
λ+ 1

2
(GT0

+ ) and convergent in B0
λ+ 1

2
(GT0− )×H0

λ+ 1
2
(GT0

+ ), which implies that their limits (U,ϕ)
are the solution to the problem (3.18).
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