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Abstract Let l1, l2, · · · , lg be even integers and x be a sufficiently large number. In
this paper, the authors prove that the number of positive odd integers k ≤ x such that
(k + l1)

2, (k + l2)
2, · · · , (k + lg)2 can not be expressed as 2n + pα is at least c(g)x, where

p is an odd prime and the constant c(g) depends only on g.
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1 Introduction

In 1849, de Polignac [12] conjectured that every odd number larger than 3 can be written
as the sum of an odd prime and a power of 2. He found a counterexample 959 soon. In 1934,
Romanoff [13] proved that there are positive proportion natural numbers which can be expressed
in the form 2k + p, where k is a positive integer and p is an odd prime. On the other hand, in
1950, van der Corput [16] proved that the counterexamples of de Polignac’s conjecture form a
set of positive lower density. By employing a covering system, Erdős [7] proved that there is
an infinite arithmetic progression of positive odd numbers, each of which has no representation
of the form 2k + p. Usually, nonlinear problems are difficult. Chen [1] firstly proved that if
(r, 12) ≤ 3, then the set of positive odd integers k such that kr − 2n has at least two distinct
prime factors for all positive integers n contains an infinite arithmetic progression. For general
r, Chen [1] gave the following conjecture.

Conjecture 1.1 For any positive integer r, there exist infinitely many positive odd numbers
k such that kr − 2n has at least two distinct prime factors for all positive integers n.

Conjecture 1.1 is particularly difficult when r is a high power of 2. Filaseta, Finch and
Kozek [9] confirmed Conjecture 1.1 for r = 4, 6. Wu and Sun [17] proved that for any positive
integer m divisible by none of 3, 5, 7, 11, 13, there exists an infinite arithmetic progression of
positive odd integers, the mth powers of whose terms are never of the form 2n ± pα. Chen [2]
proved that there exists an arithmetic progression of positive odd numbers for each term M of
which none of the eight consecutive odd numbers M , M − 2, M − 4, M − 6, M − 8, M − 10,
M − 12 and M − 14 can be expressed in the form 2n + pα, where p is a prime and n, α are
nonnegative integers.
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Up to now, all the arguments to the above problems used the method of covering con-
gruences. Recently, using Selberg’s sieve method, Tao [15] proved that for any K ≥ 1 and
sufficiently large x, the number of primes p ≤ x such that |kp ± jan| is composite for all
1 ≤ a, j, k ≤ K and 1 ≤ i ≤ K log x, is at least CK

x
log x , where CK is a constant depending only

on K. Using Tao’s idea, in this paper we shall prove the following theorem.

Theorem 1.1 Let l1, l2, · · · , lg be even integers and x be a sufficiently large number. Then
the number of positive odd integers k ≤ x such that (k + l1)2, (k + l2)2, · · · , (k + lg)2 can not be
expressed as 2n + pα is at least c(g)x, where p is an odd prime and the constant c(g) depends
only on g.

Remark 1.1 With a similar discussion, we can prove that for any even integers l1, l2, · · · ,
lg and a sufficiently large number x, the number of primes q ≤ x such that q + l1, q + l2, · · · ,
q + lg can not be expressed as 2n + pα is at least c1(g) x

log x , where p is a prime and the constant
c1(g) depends only on g.

2 Proofs

Lemma 2.1 (see [10, Theorem 4.1]) Let A be a finite set of integers. Let P be a set of
some primes, P (z) =

∏
p<z
p∈P

p and S(A, P, z) =
∑
a∈A

(a, P (z))=1

1. Take a multiplicative function ω(d)

satisfying ω(d) > 0 for d | P (z) and ω(d) = 0 for otherwise. Let B1, B2 and κ be three positive
constant numbers such that 0 ≤ ω(p)

p ≤ 1− 1
B1

and
∑

w≤p<z

ω(p) log p
p ≤ κ log z

w +B2. Let Ad be the

number of elements of A which are divisible by d. Take a number X and let R(d) = |Ad|− ω(d)
d X.

Let ν(d) denote the number of distinct prime factors of d and W (z) =
∏

p<z

(
1− ω(p)

p

)
. Then we

have

S(A, P, z) ≤ B3XW (z) +
∑

d|P(z)
d<z2

3ν(d) | R(d)|,

where B3 depends only on B1, B2 and κ.

Lemma 2.2 Let x be a sufficiently large number. Then there exists an absolutely constant
number c2 such that

#{k ≤ x : k ≡ a (mod m), k2 = 2n + p} ≤ c2
x

φ(m) log x

∏
2<p|m

(
1 +

1
p − 2

)

for any positive integer n.

Proof Suppose that A(n) = {k2 − 2n : k ≤ x, k ≡ a (mod m)}. Take P = {p : p ≡ ±1
(mod 8), (p, m) = 1, p is a prime}. Take a multiplicative function ω(d) satisfying ω(p) = 2 for
p ∈ P and ω(p) = 0 for p �∈ P . Let B1 = 3, and we have 0 ≤ ω(p)

p ≤ 1 − 1
B1

.
By the prime number theory in arithmetic progressions [6], we have

∑
p≤x

p≡s (mod r)

log p =
x

φ(r)
+ O

( x

log2 x

)
.



Chen’s Conjecture and Its Generalization 959

Thus, we have

∑
w≤p<z

ω(p) log p

p

≤ 2
∑

w≤p<z
p≡±1 (mod 8)

log p

p

≤ 2
∫ z

w

1
t
d

∑
w≤p<t

p≡±1 (mod 8)

log p

≤ log
z

w
+ O(1).

Similarly, we have

W (z) =
∏
p<z

(
1 − ω(p)

p

)

≤
∏
p<z

p≡±1 (mod 8)

(
1 − 2

p

) ∏
2<p|m

(
1 − 2

p

)−1

≤ c3

log z

∏
2<p|m

(
1 − 1

p

)−1 ∏
2<p|m

(
1 − 2

p

)−1

(1 − 1
p
)

≤ c3m

φ(m) log z

∏
2<p|m

(
1 +

1
p − 2

)
.

Take X = |A(n)|. Noting |R(d)| ≤ 2ν(d) for d | P (z), we have
∑

d|P(z)
d<z2

3ν(d)|R(d)| ≤
∑
d<z2

6ν(d) = O(z2( log 6
log 2 +1)).

By Lemma 2.1, taking z = x
1
6 , we have

#{k ≤ x : k ≡ a (mod m), k2 = 2n + p}
≤ #{k ≤ x : k ≡ a (mod m), k2 = 2n + p, p ≥ z}

+ #{k ≤ x : k ≡ a (mod m), k2 = 2n + p, p < z}
≤ #{k ≤ x : k ≡ a (mod m), (k2 − 2n, P (z)) = 1} + z

≤ #{k2 − 2n : k ≤ x, k ≡ a (mod m), (k2 − 2n, P (z)) = 1} + z

≤ S(A(n), P, z) + z

≤ c4
x

φ(m) log z

∏
2<p|m

(
1 +

1
p − 2

)
+

∑
d|P(z)
d<z2

3ν(d)|R(d)| + z.

≤ c5
x

φ(m) log z

∏
2<p|m

(
1 +

1
p − 2

)
+ O(z2( log 6

log 2+1))

≤ c2
x

φ(m) log x

∏
2<p|m

(
1 +

1
p − 2

)
.

This completes the proof of Lemma 2.2.
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By Lemma 2.1, similar to Lemma 2.2, we have the following Lemma 2.3.

Lemma 2.3 Let x be a sufficiently large number. Suppose that p1, p2, · · · , ph are distinct
primes less than x

1
6 . Then

#{1 ≤ n ≤ x : n �≡ 0 (mod pj) for every 1 ≤ j ≤ h} ≤ c6x

h∏
j=1

(
1 − 1

pj

)
,

where c6 is an absolute constant.

Lemma 2.4 (see [5]) Let A, B and C be nonzero integers. Let p, q and r be positive
integers for which 1

p + 1
q + 1

r < 1. Then the generalized Fermat equation Axp + Byq = Czr has
only finitely many solutions in integers x, y, z with (x, y, z) = 1.

Lemma 2.5 Let r be a positive integer. Then the equation

kr = 2n + pα

has o
(

x
log x

)
solutions in k, n, p, α with odd integers k ≤ x, positive integers n, primes p and

integers α ≥ 2.

Proof Suppose that α > r. Since n ≤ r log x
log 2 , α ≤ r log x

log 2 and p ≤ x
r
α , there exist

O
(
x

r
α

(
r log x
log 2

)2) solutions.
Suppose that α ≤ r. For r = 2 and α = 2, we have k = 2n1 + p and k = 2n2 − p. Hence

2k = 2n1 + 2n2 , and thus the number of k is O(log2 x). So there exist O(log3 x) solutions. For
r ≥ 3, let n = 7l + t, t = 0, 1, 2, · · · , 6. Thus we have

kr = 2t(2l)7 + pα.

Noting 1
r + 1

7 + 1
α < 1, and by Lemma 2.4, there exist finitely many solutions.

This completes the proof of Lemma 2.5.

Lemma 2.6 (see [9]) The series
∞∑

n=1

(log n)α

P (2n − 1)

converges for any α < 1
2 , where P (n) denotes the largest prime factor of n.

Proof of Theorem 1.1 By Lemma 2.6, we have that the series
∞∏

n=3

(
1 − 1

P (2n−1)

)−1 and
∞∏

n=3

(
1 + 1

P (2n−1)−2

)
are both convergent, and we denote them by c7 and c8, respectively. Let

C be a sufficiently large constant number. Take 3 ≤ p11, · · · , p1K1 , · · · , pg1, · · · , pgKg ≤ C to
be primes satisfying

Ki∏
j=1

(
1 − 1

pij

)
≤ log 2

17gc2c6c7c8
.

Take qij to be the largest prime factor of 2pij − 1 and W =
g∏

i=1

Ki∏
j=1

qij . Let M be an odd

integer satisfying

M + li ≡ 1
(
mod

Ki∏
j=1

qij

)
, i = 1, 2, · · · , g.
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Let

S = {k ≤ x : k ≡ M (mod 2W )},
T1i = {k ≤ x : k ≡ M (mod 2W ), (k + li)2 can be expressed as 2n + pα

with p, α, n satisfying n ≡ 0 (mod pij) for some j with 1 ≤ j ≤ Ki}

and

T2i = {k ≤ x : k ≡ M (mod 2W ), (k + li)2 can only be expressed as 2n + pα

with p, α, n satisfying n �≡ 0 (mod pij) for all j with 1 ≤ j ≤ Ki}.

For k ∈ T1i, we have (k+ li)2−2n ≡ (M + li)2−2n (mod qij), so (k+ li)2−2n ≡ 0 (mod qij).
Thus p = qij . Hence |T1i| ≤ Ki(

2 log(x+li)
log 2 )2.

By Lemmas 2.2–2.3 and Lemma 2.5, we have

|T2i| ≤ c6
2 log(x + li)

log 2

Ki∏
j=1

(
1 − 1

pij

)(
c2

x + li
φ(2W ) log(x + li)

∏
p|W

(
1 +

1
p − 2

))
+ o

( x

log x

)

≤ 3c2c6

log 2
x + li

W

Ki∏
j=1

(
1 − 1

pij

) ∏
p|W

(
1 +

1
p − 2

) g∏
i=1

Ki∏
j=1

(
1 − 1

qij

)−1

≤ 4c2c6

log 2
x

W

Ki∏
j=1

(
1 − 1

pij

) g∏
i=1

Ki∏
j=1

(
1 +

1
qij − 2

) g∏
i=1

Ki∏
j=1

(
1 − 1

qij

)−1

≤ x

4gW
.

Thus, we have

|S| −
g∑

i=1

(|T1i| + |T2i|) ≥ x

2W
− 1 −

( g∑
i=1

Ki
2 log(x + li)

log 2

)2

− x

4W
≥ c(g)x.

This completes the proof of Theorem 1.1.

Now, considering Conjecture 1.1 and the proof of Theorem 1.1, we propose the following
Conjecture 2.1.

Conjecture 2.1 Let r be a positive integer. Let x be a sufficiently large number. Then
there exists an absolutely constant number c9 such that

#{k ≤ x : k ≡ a (mod m), kr = 2n + p} ≤ c9
x

φ(m) log x

∏
2<p|m

(
1 +

1
p − 2

)

for any positive integer n.

Remark 2.1 Under Conjecture 2.1, we can prove the following result: Let l1, l2, · · · , lg be
even integers and x be a sufficiently large number. Then the number of positive odd integers
k ≤ x such that (k + l1)r, (k + l2)r, · · · , (k + lg)r can not be expressed as 2n + pα is at least
c10(g, r)x, where p is an odd prime and the constant c10(g, r) depends on g and r.
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[7] Erdős, P., On integers of the form 2r + p and some related problems, Summa Brasil. Math., 2, 1950,
113–123.

[8] Filaseta, M., Finch, C. and Kozek, M., On powers associated with Sierpiński numbers, Riesel numbers and
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