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Abstract The (continuous) finite element approximations of different orders for the com-
putation of the solution to electronic structures were proposed in some papers and the
performance of these approaches is becoming appreciable and is now well understood. In
this publication, the author proposes to extend this discretization for full-potential elec-
tronic structure calculations by combining the refinement of the finite element mesh, where
the solution is most singular with the increase of the degree of the polynomial approxi-
mations in the regions where the solution is mostly regular. This combination of increase
of approximation properties, done in an a priori or a posteriori manner, is well-known to
generally produce an optimal exponential type convergence rate with respect to the num-
ber of degrees of freedom even when the solution is singular. The analysis performed here
sustains this property in the case of Hartree-Fock and Kohn-Sham problems.
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1 Introduction

The basic problem in quantum chemistry starts from the postulate of the existence of a time
dependent complex function of the coordinates x called the wave function Ψ that contains all
possible information about the system we want to consider. The evolution of this wave function
depends on its current state through the following equation proposed by Schrödinger: It involves
a potential-energy function V that takes into account internal or external interactions as, for
instance, those of electrostatic nature; for a single particle, it takes the form

i�
∂Ψ
∂t

= HΨ ≡ − �
2

2m
∇2

xΨ + VΨ.

The understanding of what the wave function represents was provided by Born who postu-
lated, after Schrödinger, that |Ψ(x, t)|2dx represents the probability density of finding at time
t the particle at position x. The wave function Ψ is thus normalized in such a way that the
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spatial L2 norm of Ψ is 1. The strength of the concept comes from the fact that it applies to
any system, in particular to molecules; the coordinates x are then the positions of each particle
(electrons and nuclei) of the system: hence x belongs to R

3(N+M), where N is the number of
electrons and M is the number of nuclei. The Schrödinger’s equations contains all the physical
information on the system it is applied to, it does not involve any empirical parameter except
some fundamental constants of physics like the Planck constant, the mass and charge of the
electrons and nuclei · · · . It is thus a fantastic tool to better understand, predict and control the
properties of matter from the fundamental background. The very simple Schrödinger equation
in appearance is however set in a much too high dimensional framework: 1 + 3(N + M), so
that it is not tractable for most problems of interest, except that a Quantum Monte Carlo
(or QMC for short) approach is used to model and approximate the solutions. These QMC
methods allow now to have access to properties other than the energy, including dipole and
quadrupole moments, as well as matrix elements between different electronic states. Develop-
ment and implementation of linear scaling QMC, analytical forces, wave function optimization,
and embedding techniques are being pursued (see, e.g., [35–36]).

For direct methods, though, simplifications need to be proposed to make this much too
high dimensional problem accessible to numerical discretizations and simulations. Taking into
account the time is quite easy from the principle of the separation of variables in case where the
potential V does not depend on time. As it is classical in this approach, the problem becomes
time independent and takes the form of an eigenvalue problem:

− �
2

2m
∇2

xΨ + VΨ = EΨ, (1.1)

where E has the dimension of an energy.
Through the variation principle, the various solutions to this (linear) eigenproblem, starting

by the one associated with the smallest eigenvalue, are associated with a Hamiltonian energy
〈Ψ | HΨ〉, and, the ground state energy of the molecule corresponds to the smallest eigenvalue
in (1.1). This interpretation through a variation principle does not simplify the matter but leads
to tractable simplified models. The first one— known as the Born Oppenheimer approximation
(see [5])— allows to separate the behavior of nuclei and electrons taking into account their large
difference of masses. By considering the nuclei as fixed (or moving very slowly), the problem
focuses on the behavior of the electrons— in the so-called electronic structure calculation— and
is thus related to the wave function Ψ that depends on N variables in R

3 (the position of the
electrons) and is parametrized by the position of the M nuclei in the associated Hamiltonian.

In order to comply with the Pauli principle of exclusion, the electronic wave function has to
be antisymmetric with respect to the electron positions. The electronic problem thus consists in
the minimization of the Schrödinger’s Hamiltonian over all L2 normalized, antisymmetric wave
functions. By minimizing instead on a smaller set of functions provides a tractable problem at
the price of yielding to a larger ground state energy. This is the matter of the Hartree Fock
problem that consists in minimizing the actual Schrödinger’s energy over all wave functions that
are written as a so-called Slater determinant, i.e., a determinant: det[φi(xj)], where the one
electron orbitals φi (i = 1, · · · , N) are unknown functions over R

3. The minimization problem
over such Slater determinants leads to a minimization problem involving a new energy.

Let us describe this model associated to a so-called closed-shell system with an even number
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N = 2N of electrons, the electronic state is described by N orbitals Φ = (φ1, · · · , φN )T ∈
(H1(R3))N satisfying the orthonormality conditions∫

R3
φiφjdx = δij ,

and the associated electronic density

ρΦ(x) := 2
N∑

i=1

|φi(x)|2.

The factor 2 in the above expression accounts for the spin. In closed-shell systems, each orbital
is indeed occupied by two electrons, one with spin up and one with spin down.

We then introduce the admissible space for molecular orbitals

M =
{

Φ = (φ1, · · · , φN )T ∈ (H1
#(Γ))N

∣∣∣ ∫
Γ

φiφjdx = δij

}
.

In the case where the molecular system we consider is in vacuo and consists of M nuclei of
charges (z1, · · · , zM ) ∈ (N \ {0})M located at the positions (R1, · · · , RM ) ∈ (R3)M of the
physical space, and of N pairs of electrons, the so-called Hartree Fock problem reads: Find Φ0

such that
IHF

N (V nuc) ≡ EHF(Φ0) = inf{EHF(Φ), Φ ∈ M} (1.2)

with

EHF ({φi}) =
N∑

i=1

∫
R3

|∇φi|2dx+
∫

R3
V nuc ρΦdx+

1
2

∫
R3

∫
R3

ρΦ(x) ρΦ(x′)
|x− x′| dxdx′

− 1
2

∫
R3

∫
R3

|τΦ(x, x′)|2
|x− x′| dxdx′, (1.3)

τΦ(x, x′) = 2
N∑

i=1

φi(x)φi(x′), ρΦ(x) = 2
N∑

i=1

|φi(x)|2,

V nuc(x) = −
M∑

k=1

zk

|x−Rk|
. (1.4)

An alternative formalism, different in nature but that ends up to a similar mathematical
problem, is based on the key result of Hohenberg and Kohn [30] that shows that ground state
properties of a system is fully described by the electronic density. This led to the density
functional theory, with the instrumental approach of Kohn and Sham [31]. Indeed, from [30] the
existence of an energy functional of the electronic density was established, this result is weakened
however by the lack, even as of today, of knowledge of its proper functional form. It follows from
the Hohenberg-Kohn theorem (see [30, 37–38, 56]), that there exists an exact functional, that
is a functional of the electronic density ρ that provides the ground state electronic energy and
density of the N -body electronic Schrödinger equation. The work of Kohn and Sham addressed
this issue by providing approximations of the energy functional and laid the foundations for the
practical application of DFT to materials systems.

The Kohn-Sham approach reduces the many-body problem of interacting electrons into an
equivalent problem of non-interacting electrons in an effective mean field that is governed by
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the electron density. It is formulated in terms of an unknown exchange-correlation term that
includes the quantum-mechanical interactions between electrons. Even though this exchange-
correlation term is approximated and takes the form of an explicit functional of electron density,
these models were shown to predict a wide range of materials properties across various materials
systems. The development of increasingly accurate and computationally tractable exchange-
correlation functionals is still an active research area in electronic structure calculations.

In the Kohn-Sham model, also described in the closed-shell configuration, the ground state
is obtained by solving the minimization problem: Find Φ0 such that

IKS
N (V ) ≡ EKS(Φ0) = inf

{
EKS(Φ), Φ ∈ M

}
, (1.5)

where the Kohn-Sham energy functional reads

EKS(Φ) :=
N∑

i=1

∫
R3

|∇φi|2dx+
∫

R3
V nucρΦdx+

1
2

∫
R3

∫
R3

ρΦ(x) ρΦ(x′)
|x− x′| dxdx′ + Exc(ρΦ). (1.6)

The first term models the kinetic energy of Φ, the second term models the interactions be-
tween nuclei and electrons, and the third term models the interaction between electrons. The
fourth term, called the exchange-correlation functional actually collects the errors made in the
approximations of the kinetic energy and of the interactions between electrons by the first and
third terms of the Kohn-Sham functional, respectively, as follows from the Hohenberg-Kohn
theorem. The lack of precise knowledge for the Kohn-Sham functional is localized on this
exchange-correlation term only. It therefore has to be approximated in practice. The local
density approximation (or LDA for short) consists in approximating the exchange-correlation
functional by ∫

R3
eLDA
xc (ρ(x)) dx,

where eLDA
xc (ρ) is an approximation of the exchange-correlation energy per unit volume in a

uniform electron gas with density ρ. The resulting Kohn-Sham LDA model is well understood
from a mathematical viewpoint (see [1, 33]). On the other hand, the existence of minimizers
for Kohn-Sham models based on more refined approximations of the exchange-correlation func-
tional, such as generalized gradient approximations (see [1]) or exact local exchange potentials
(see [12]) in the general case, is still an open problem.

Note that the Kohn-Sham problem can be split-up into two problems of minimization, with
one among them being stated as a pure density problem. We first define the set of admissible
densities:

RN =
{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3
ρdx = N

}
, (1.7)

then we propose the first problem

TKS(ρ) = inf
{ N∑

i=1

∫
R3

|∇φi|2dx, Φ = (φi)i=1,··· ,N , ∀i, j = 1, · · · , N,
∫

R3
φiφj dx = δi,j , ρ = ρΦ

}
(1.8)

followed by the pure density functional problem

IKS
N (V ) = inf

{
F(ρ) = TKS(ρ) +

∫
R3
V nucρ dx+

1
2

∫
R3

∫
R3

ρ(x) ρ(x′)
|x− x′| dxdx′ + Exc(ρ)

}
. (1.9)
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There are a lot of variations on the frame of the simulation of these equations. First we may
be interested in simulating a molecule alone, small or big, the molecule may also have neighbors,
and these can be taken into account exactly or in an average manner like for molecules in
solvation (see [52]). When there are many molecules, these can be arranged in a periodic array
that is exactly periodic or contains some local defects then the simulation will be done on a
very large box composed of many cells, one of them containing the defect. In this case, the
simulation domain, sometimes referred to as the supercell, is no longer the whole space R

3, as in
(1.5); it is the unit cell Γ of some periodic lattice of R

3. In the periodic Kohn-Sham framework,
the periodic boundary conditions are imposed to the Kohn-Sham orbitals (Born-von Karman
PBC). Imposing PBC at the boundary of the simulation cell is the standard method to compute
condensed phase properties with a limited number of atoms in the simulation cell, hence at a
moderate computational cost.

Both minimization problems (1.2)–(1.5) lead to the resolution of a nonlinear eigenvalue
problem, where the eigensolutions are atomic orbitals, function over R

3, that thus become
tractable to numerical simulations. In order to formulate these eigenproblems, we have to
introduce the Hamiltonian for the Hartree-Fock or Kohn-Sham energies:

HHF
Φ = −1

2
Δ +

(
V nuc + V Coulomb

ρΦ
− V Exchange

τΦ

)
= h+ VΦ,

where
h = −1

2
Δ + V nuc, VΦ = V Coulomb

ρΦ
− V Exchange

τΦ
, (1.10)

where V Coulomb and V Exchange are defined for any ψ by

V Coulomb
ρ ψ(x) =

(
ρ �

1
|x|

)
ψ(x), V Exchange

τ ψ(x) =
∫

R3

τ(x, y)
|x− y|ψ(y)dy, ∀x ∈ R

3. (1.11)

We notice that EHF ′(Φ0) = 4HHF
Φ0 Φ0 and thus the Euler equations associated with the

minimization problem (1.2) read

HHF
Φ0 φ0

i =
N∑

j=1

λ0
ijφ

0
j , ∀1 ≤ i ≤ N, (1.12)

where the N ×N matrix Λ0
N = (λ0

ij), which is the Lagrange multiplier of the matrix constraint∫
Γ
φiφjdx = δij , is symmetric.
In fact, the problem (1.2) has an infinity of minimizers since any unitary transform of the

Hartree-Fock orbitals Φ0 is also a minimizer of the Hartree-Fock energy. This is a consequence
of the following invariance property:

UΦ ∈ M and EHF (UΦ) = EHF (Φ), ∀Φ ∈ M, ∀U ∈ U(N), (1.13)

where U(N) is the group of the real unitary matrices:

U(N) =
{
U ∈ R

N×N | UTU = 1N

}
,

1N denoting the identity matrix of rank N . This invariance can be exploited to diagonalize the
matrix of the Lagrange multipliers of the orthonormality constraints (see, e.g., [18]), yielding
the existence of a minimizer (still denoted by Φ0), such that

HHF
Φ0 φ0

i = ε0iφ
0
i (1.14)
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for some ε01 ≤ ε02 ≤ · · · ≤ ε0N .
Similarly, for the Kohn Sham problem, we introduce the associated Hamiltonian

HKS
Φ = −1

2
Δ +

(
V nuc + V Coulomb

ρΦ
+

deLDA
xc

dρ
(ρΦ)

)
= h+ VρΦ ,

where h is the same as above and

Vρ = V Coulomb
ρ +

deLDA
xc

dρ
(ρ). (1.15)

The same analysis leads to an eigenvalue problem. By using again the invariance through
unitary transforms (1.13), that still holds for the Kohn-Sham problem, we get the existence of
a minimizer with a set of molecular orbitals still denoted as Φ0, such that

HKS
Φ0 φ0

i = ε0iφ
0
i (1.16)

for some ε01 ≤ ε02 ≤ · · · ≤ ε0N .

2 About Numerical Methods

2.1 Generalities

For problems set in a periodic framework (analysis of crystals), the approximation by plane
waves (Fourier) has traditionally been one of the popular approaches used for solving the
Kohn-Sham problem since it allows for an efficient computation of the electrostatic interac-
tions through Fourier transforms. In addition the plane waves (Fourier) approximation is a
high order method that is fully deployed if the solutions to be approximated are very regular.
Unfortunately, for full potential electronic structure calculations, the nuclear potential is not
smeared out and induces singularities in the solutions (atomic orbitals and density) at the level
of the nuclei, more precisely cusps in place of the nuclei and rapidly varying wave functions
in their vicinity (see [24, 29]). Another drawback of these methods lies in the nonlocality of
the basis set that leads to a uniform spatial resolution which can be useless e.g. for materials
systems with defects, where higher basis resolution is required in some spatial regions and a
coarser resolution suffices elsewhere. In practice of such discretizations, the singular nuclear
potential V nuc defined by (1.4) is usually replaced with a smoother potential V ion; this amounts
to replacing point nuclei with smeared nuclei. Not surprisingly, the smoother the potential, the
faster the convergence of the planewave approximation to the exact solution of (1.2) or (1.5)
(see [8]). The nuclear potential V nuc is replaced by a pseudopotential modeling the Coulomb
interaction between the valence electrons on the one hand, and the nuclei and the core electrons
on the other hand. The pseudopotential consists of two terms: a local component Vlocal (whose
associated operator is the multiplication by the function Vlocal) and a nonlocal component. As
a consequence, the second term in the Kohn-Sham energy functional (1.6) is replaced by

∫
Γ

ρΦVlocaldx+ 2
N∑

i=1

〈φi|Vnl|φi〉.

The pseudopotential approximation gives satisfactory results in most cases, but sometimes fails.
Note that a mathematical analysis of the pseudopotential approximation is still lacking. More-
over, the core electrons need sometimes be considered since they are responsible for intricate
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properties. The full-potential/all-electron calculation is thus sometimes necessary. In order
to overcome the convergence difficulties of the plane wave approximations, resulting from the
cusp singularities one can augment the plane waves bases set as done in the augmented plane
wave (or APW for short) method (see [42, 50]), which is among the most accurate methods
for performing electronic structure calculations for crystals. We refer to [16] for the numerical
analysis of the convergence based on the careful analysis of the properties of the cusp that we
shall recall in Section 2.2. These APWs provide very good results, at the price however of two
remaining drawbacks. The first one is that of the periodic framework that does not fit for single
molecules or molecules in solvent. The second one is that the basis come from two different
families and the locality of the plane waves (orthonormal basis) is lost.

For efficient computations in the case of all-electron calculations on a large materials system,
approximation methods based on Gaussian basis are among the other most classical methods.
An example is using the Gaussian package (see [25]). These approaches initially introduced
on Hartree-Fock problem, have been developed both for reasons of accuracy and easiness of
implementation due to the fact that product of these basis functions arising in nonlinear terms
of the potential are easy to evaluate through analytical expressions. The basis functions are
centered at each nuclei and are fitted so as to represent well the behavior of the atomic orbital
at the level of the cusp and at infinity. There exist a large amount of know how in these
methods, that benefit from highly optimized Gaussian basis functions on many molecules.
When this expertise does not exist, the approximation properties of the Gaussian expansion
are more questionable. We refer e.g. to [9–10] for the presentation and numerical analysis in
this context.

Due to the large nonlinearities encountered in the energies involved in advanced Kohn-Sham
models, the complexity of the computations, when it turns to implement the methods, scales
as O(Nd), where N is the number of degrees of freedom, and d can be pretty large (d ≥ 3).
One way is to “squeeze” at most the numerical scheme, performing, at the mathematical level,
what computational experts in simulations for electronic structure calculations design when
they propose ad-hoc discrete basis (e.g. contracted Gaussian bases sets). The expertise here
is based on the mathematical arguments involved in model reduction techniques (the reduced
basis approximation), and we refer to [11, 40] for a presentation of these techniques. They are
based on adapted (not universal) discretizations and are shown to provide good approximations,
but are still in their infancy.

There is thus room for the development of more robust approaches for electronic structure
calculations, like for example finite element approximation of low or high order that, in other
contexts (fluid mechanics, structure mechanics, wave, · · · ), are of classical use. There has been
already quite a lot of experiences in the domain of quantum chemistry even though the relative
number of contributions is still small. We refer to [2, 6, 21, 34, 39, 43, 45–47, 51, 53–55, 58–59]
and the references therein for an overview of the contributions in this direction.

In order to be competitive with respect to plane-wave basis or Gaussian type basis, though,
the full knowledge and expertise in the finite element machinery has to be requested, indeed, as
appears in e.g. [6, 28], the accuracy required for electronic structure calculation involves of the
order of 100, 000 basis functions per atom for P1 finite elements, which is far too expensive and
the use of higher-order finite element methods is thus the only viable way. However, the use
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of high-order finite elements has some consequences on the complexity of the implementation,
indeed these require the use of higher-order accurate numerical quadrature rules with larger
stencils of points and leads also to increase in the bandwidth of the stiffness matrices that
grow cubically with the order of the finite-element, with a mass matrix that, contrarily to what
happens for plane wave approximation, is not diagonal. In addition, using high order methods
in regions where the solution presents singularities is a waste of resources.

The right question to raise is thus not accuracy with respect to number of degrees of freedom
but accuracy with respect to run time. In this respect, the publication [57] analyses in full details
on a variety of problems and regularity of solutions, the accuracy achieved by low to high order
finite element approximations as a function of the number of degrees of freedom and of the
run time. It appears, with respect to this second argument that the use of degrees between
5 and 8 is quite competitive. Of course, the answer depends on the implementation of the
discretization method and the exact properties of the solution to be approximated but this
indicates a tendency that is confirmed, both by the numerical analysis and by implementation
on a large set of other applications.

A recent investigation in the context of orbital-free DFT indicates that the use of higher-
order finite elements can significantly improve the computational efficiency of the calculations
(see [44, 51]). For instance, a 100 to 1000 fold computational advantage was reported by using
a fourth to sixth order finite element in comparison to a linear finite element. This involves a
careful implementation of various numerical and computational techniques: (i) an a priori mesh
adaption technique to construct a close to optimal finite element discretization of the problem;
(ii) an efficient solution strategy for solving the discrete eigenvalue problem by using spectral
finite elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration
technique for computing the occupied eigenspace (see [44]).

As far as we are aware of, the current implementations of the finite element method involve
uniform degree of the polynomial approximation. This results in an improved accuracy-per-node
ratio that is still polynomial in the number of degrees of freedom. This is actually a bit disap-
pointing since, as is explained in a series of papers by Fournais, Sørensen, Hoffmann-Ostenhof,
and Hoffmann-Ostenhof [22–24, 29] the solution is analytic (with exponential convergence to
zero at infinity on unbounded domains) at least away from the position of the nuclei, where, if
exact singular potential are used, the knowledge on singular behavior of the solution is rather
well known (this one being of the shape e−

Zr
2 ), which results that the solution is not better

than H
5
2 around the singularities.

In the finite element culture, such behavior— very regular except at some point where the
behavior of the pointwise singularity is known— is know to allow for an exponential convergence
with respect to the number of degrees of freedom. Indeed, in a series of papers written by
Babuška and co-authors [3, 26–27], a careful analysis is performed that leads to the conclusion
that the h−P version of the finite element method allows for an exponential rate of convergence
when solving problems with piecewise analytic data. In particular, in the three papers [3, 26–
27], the authors focus on the approximation of the function (x − ξ)α

+ over (0, 1) for ξ ∈ (0, 1),
this simple function is a prototype of pointwise singular behavior that can be present in the
solution of regular problems in geometries with corners or edges, or for problems with nonregular
coefficients. It is straightforward to check that when
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(1) α > − 1
2 then the function is in L2(0, 1),

(2) α > 1
2 then the function is in H1(0, 1),

(3) α > 3
2 then the function is in H2(0, 1),

(4) α > 5
2 then the function is in H3(0, 1).

We believe that it is interesting to summarize the conclusion of these papers as follows:
(1) For the P version of the FEM (or spectral method (see [13])): If ξ ∈ (0, 1), the conver-

gence of the best fit is of the order of C

P α− 1
2

(i.e., C
P r , where r is related to the regularity of

the function). Note that, if ξ = 0 (or ξ = 1), the convergence of the best fit is of the order of
C

P 2α−1 . This phenomenon is known as the doubling of convergence for singular functions (see,
e.g., [4] for more results in this direction).

(2) For the h− P version of the FEM (or spectral element method): The approximation is
generally of the order of hmin(α− 1

2 ,P+1).
(3) For the h − P version, with a graded mesh, i.e., the size of the mesh diminishes as

one gets closer to the singularities and P uniformly increasing: The approximation can be of
exponential order with respect to the number of degrees of freedom.

(4) For the optimal h− P version of the finite element method: The approximation can be
of exponential order with a better rate (with respect to the above rate) if the degree P that
is used in the largest elements increases while the graded mesh is refined in the neighborhood
of the singularity. Starting from a uniform mesh, the elements that contain the singularity are
recursively refined; starting from the singularity, the degree of the approximation is equal to
1 and linearly increases with the distance to the singularities in the other elements; the error
then scales like exp(−cNβ

h ), where Nh is the number of degrees of freedom of the finite element
approximation.

2.2 Regularity results

The natural question is then: What is the regularity of the density, the solution to the
Hartree Fock or Kohn Sham problems?

It is proven (see, e.g., the careful analysis of [26–28]) that the solution to such systems is
analytic (with exponential convergence to zero on unbounded domains) at least away from the
position of the nuclei, where, if exact singular potential is used there, the solution is not better
than H

5
2 around the singularities (this one being of the shape e−

Zr
2 ).

For the same reasons as the doubling of convergence, if the finite element vertices are on
the nuclei positions, then there is a doubling of convergence for the P and h − P version
of the approximation leading to a convergence rate like P−3 for the solution obtained with
polynomial degree 4, if the mesh is uniform. The energy is approximated with another doubling
of accuracy, i.e., P−6 · · · . This analysis deals only with the polynomial approximation without
taking care of any h effect and is consistent with the analysis of the paper [20]. At this level,
we want to emphasize on two points for which we refer to [16]. The first one deals with a
better understanding of the characteristics of the singularity of the solution of the Hartree
Fock problem at the level of nuclei; indeed it appears that locally, when expressed in spherical
coordinates around the nuclei, the solution is infinitely differentiable. The second is to indicate
that, from this knowledge, it is actually possible to propose combined approximations that
allows exponential convergence with respect to the number of degrees of freedom (see also the
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recent approach in [39]).
In order to be more precise on the regularity of the solutions to such systems, we are going to

place ourselves in an adapted framework. We follow [53–54] to define, over any regular bounded
domain Ω that contains (far from the boundary) all nuclei Rj , j = 1, · · · ,M , some weighted
Sobolev spaces well suited for the numerical analysis of adapted finite element methods (as
explained in [17], these weighted Sobolev spaces are well suited to characterize the singular
behavior of solutions of general second-order elliptic boundary value problems in polyhedra).
First, we define the subdomain Ω0 which is the complementary in Ω to the union of small
enough balls ωj around each nuclei position Rj , j = 1, · · · ,M . In addition, to each nuclei
position Rj , j = 1, · · · ,M , we associate an exponent βj , and the following semi-norms for any
m ∈ N:

|u|2Mm
β (Ω) = |u|Hm(Ω0) +

M∑
j=1

∑
α=m

‖rβj+|α|
j Dαu‖L2(ωi), (2.1)

where rj denotes the distance to Rj and norm

‖u‖2
Mm

β (Ω) =
m∑

k=0

|u|2Mk
β (Ω), (2.2)

where Dα denotes the derivative in the local coordinate directions corresponding to the multi-
index α.

The space Mm
β (Ω) is then the closure of C∞

0 (Ω) of all infinitely differentiable functions that
vanish on the boundary of Ω.

From the results stated above, we deduce that the solutions of the Hartree-Fock problem φ0
i

for any i (1 ≤ i ≤ N) belong to such spaces (they are said asymptotically well behaved) and
moreover

|φ0
i |Mm

β (Ω) ≤ Cmm! (2.3)

with βj > − 3
2 . In [16], it is indicated that the same type of result can be assumed for the

solution to the Kohn-Sham problem, at least for regular enough exchange correlation potential.
In what follows we shall assume that the same regularity result holds for those solutions.

3 Galerkin Approximation

3.1 Generalities on the variational approximation

Let us consider a family of finite dimensional spaces Xδ, with dimension Nδ. We assume
that it is defined through the data of a finite basis set {χμ}1≤μ≤Nδ

. Let us assume that these
are subspaces of H1

0 (Ω) (for the time being this means that the discrete functions should be
continuous).

The variational approximations of the Hartree-Fock or Kohn-Sham problems are

IHF
N,δ (V )=inf

{
EHF (Φδ), Φδ =(φ1,δ, · · · , φN,δ)T∈(Xδ)N ,

∫
R3
φi,δφj,δdx=δij , 1≤ i, j≤N

}
(3.1)

and

IKS
N,δ(V )=inf

{
EKS(Φδ), Φδ =(φ1,δ, · · · , φN,δ)T∈(Xδ)N ,

∫
R3
φi,δφj,δdx=δij , 1≤ i, j≤N

}
. (3.2)
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The solution to the Galerkin approximation procedure is determined by

φi,δ =
Nδ∑
μ=1

Cμiχμ.

Hence by the determination of the rectangular matrix C ∈ M(Nδ, N) contains the Nδ coeffi-
cients of the molecular orbital φi,δ in the basis {χμ}1≤μ≤Nδ

. It is classical in this context to
introduce the so-called overlap matrix S defined as

Sμν =
∫

R3
χμχνdx, (3.3)

so that the constraints
∫

R3 φi,δφj,δdx = δij on the discrete solutions read

δij =
Nδ∑
μ=1

Nδ∑
ν=1

CμjSμνCνi,

or again in matrix form
C∗SC = IN .

Similarly,

N∑
i=1

1
2

∫
R3

|∇φi,δ|2dx+
∫

R3
ρΦδ

V nucdx

=
N∑

i=1

(1
2

∫
R3

∣∣∣∇ Nδ∑
μ=1

Cμiχμ

∣∣∣2dx+
∫

R3
V nuc

∣∣∣ Nδ∑
μ=1

Cμiχμ

∣∣∣2dx)

=
N∑

i=1

Nδ∑
μ=1

Nδ∑
ν=1

hμνCνiCμi = Trace (hCC∗),

where h ∈ MS(Nδ) denotes the matrix of the operator − 1
2Δ + V nuc in the basis {χk}:

hμν =
1
2

∫
R3

∇χμ · ∇χνdx +
∫

R3
V nucχμχνdx. (3.4)

Finally, we can write the Coulomb and exchange terms by introducing first the notations

(μν | κλ) =
∫

R3

∫
R3

χμ(x)χν(x)χκ(x′)χλ(x′)
|x− x′| dxdx′, (3.5)

and, for any matrix X with size Nδ ×Nδ

J(X)μν =
Nδ∑

κ,λ=1

(μν | κλ)Xκλ, K(X)μν =
Nδ∑

κ,λ=1

(μλ | νκ)Xκλ.

The Coulomb and exchange terms can respectively be expressed as

∫
R3

∫
R3

ρΦδ
(x) ρΦδ

(x′)
|x− x′| dxdx′ =

Nδ∑
μ,ν,κ,λ=1

N∑
i,j=1

(μν | κλ)CμiCνiCκjCλj = Trace (J(CC∗)CC∗)



12 Y. Maday

and∫
R3

∫
R3

|τΦδ
(x, x′)|2

|x− x′| dxdx′ =
Nδ∑

μ,ν,κ,λ=1

N∑
i,j=1

(μλ|κν)CμiCνiCκjCλj = Trace (K(CC∗)CC∗).

The discrete problem, is thus written equivalently as a minimization problem over the space

WN = {WNδ
∈ M(Nδ, N), C∗SC = IN},

as
inf{EHF (CC∗), C ∈ WNδ

}, (3.6)

where for any D ∈ MS(Nδ),

EHF (D) = Trace (hD) +
1
2
Trace (J(D)D) − 1

2
Trace (K(D)D).

The energy can also be written in term of the so-called density matrix

D = CC∗

leading to the problem
inf{EHF (D), D ∈ PN} (3.7)

with
PN = {D ∈ MS(N), DSD = D, Trace (SD) = N}.

Similarly, the Kohn-Sham problem (3.2) reads

IKS
N,δ(V ) = inf{EKS(CC∗), C ∈ WNδ

} (3.8)

with
EKS(D) = 2Trace (hD) + 2Trace (J(D)D) + Exc(D),

here Exc(D) denotes the exchange-correlation energy:

Exc(D) =
∫

R3
ρ(x) εLDA

xc (ρ(x)) dx with ρ(x) = 2
N∑

i=1

Dμνχμ(x)χν(x).

For general analysis of these discrete problems and the associated approximation results, we
refer to [10–11, 18–19, 24, 36, 46, 65] and the references therein.

3.2 The adapted h − P discrete spaces

Part 1 Definition of the h− P discrete spaces
The purpose of this section is to introduce the class of h − P finite elements spaces for

the approximation of the minimization problems (1.2) and (1.5) which we want to propose
and analyze in this paper. They will be used to get an exponential convergence for the finite
element approximation of the solution to the Hartree-Fock and Kohn-Sham problems. We start
by truncating the domain R

3 in a regular bounded domain Ω that, for the sake of simplicity,
we shall consider to be a ball large enough to contain largely each nuclei, similarly as in papers
where this class of approximations was proposed (see [3, 26–27, 48–49]).
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The first step of the discretization consists in defining an initial triangulation T 0 of Ω
composed of hexahedral elements K subject to the following classical assumptions:

(1) Ω =
⋃

K∈T 0
K;

(2) Each element K is the image of the reference cube (−1, 1)3 under a diffeomorphism,
that, in most cases, is a homothetic transformation (except of course on the boundary of Ω,
but we shall not carefully analyze the approximation there since the solution is very regular at
this level);

(3) The initial triangulation is conforming in the sense that the intersection of two different
elements K and K ′ is either empty, a common vertex, a common edge or a common face;

(4) The initial triangulation is regular and quasi-uniform in the sense that there exist two
constants κ1, κ2 > 0 with κ2h ≤ hK ≤ κ1ρK , where hK denotes the diameter of K, ρK denotes
the diameter of the largest circle that can be inscribed into K and h = max

K
{hK}.

We assume in addition that the positions of the nuclei R1, R2, · · · , RM are the vertices of
some element in the initial triangulation T 0. Starting from this initial hexahedral triangulation
T 0 of Ω, for the h− P procedure, we define a family of so-called σ-geometric triangulations.

First for the triangulation, we refine recursively (by partitioning into 4 hexahedra) each
hexahedron that admits a nuclei at the vertex. This partitioning is based on a ratio (σ, 1 − σ)
(with 0 < σ < 1) of each edge starting from the vertex that coincide at the nucleus, as explained
in Figure 1. Note that the refinement only deals the elements that have a nuclei as a vertex, this
refinement preserves the conformity with the non-refined elements. The first refinement allows
to define the triangulation denoted as T 1. Next, the same process applied to T i allows to define
T i+1. For any element K of the new triangulations T i (that of course are not quasi-uniform
anymore), hK still denotes the diameter of K.

Figure 1 The partitioning of a hexahedron, that admits a nuclei at Ri as a vertex,
in a (σ, 1 − σ)-ratio (the left: before the refinement, the middle: after the refine-
ment, the right: an element created in the refined hexahedron that maintains the
conformity with adjacent elements).

Concerning the degree of the approximation that is used over each elements, we start at
the level T 0 by using polynomials in Q1, i.e., tri-affine, over each element. Then each time a
triangulation refinement is performed, the new elements, created at this stage, are provided with
Q1 polynomials, while, on the other elements that did not change, the degree of the polynomial
is increased by 1 unit in each variable (or by a fixed factor σ > 0 to be more general). In
particular, the partial degree of the polynomial on the elements of a triangulation T i that have
never been cut is ≤ 1 + iσ and is uniform in all directions.
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The discrete finite element space X i
h−P is composed of all continuous such piecewise polyno-

mials (associated to the triangulation T i) that vanish on the boundary of Ω. From the analysis
in 1D explained in [26], exponential convergence for pointwise singular solutions can be obtained
from the combination of the σ-geometric mesh refinement and σ-linear increase of the degree
of the polynomials.

Part 2 Analysis of the h− P approximation
The difficulty in this analysis lies in the conjunction of three facts:
(1) The problem is set in three dimensions.
(2) Neither the mesh nor the degree from one element to the other is uniform.
(3) We are interested in approximation results for functions asymptotically well behaved.
For asymptotically well behaved functions, we modify the analysis proposed in [49] that

dealt with discontinuous finite element methods. We thus start from the the existence of
one dimensional operators π̂p,k defined for any integer k ≥ 0 and any integer p ≥ 2k + 1:
Hk(−1, 1) → P

p(−1, 1) such that

(π̂p,k)(j)u(±1) = u(j)(±1), j = 0, 1, · · · , k − 1. (3.9)

These operators can actually be chosen such that the following proposition holds.

Proposition 3.1 For every k ∈ N, there exists a constant Ck > 0 such that

‖π̂p,ku‖Hk(−1,1) ≤ Ck‖u‖Hk(−1,1), ∀u ∈ Hk(−1, 1), ∀p ≥ 2k + 1. (3.10)

For integers, p, k ∈ N with p > 2k − 1, κ = p− k + 1 and for u ∈ Hk+s(−1, 1) with k ≤ s ≤ κ,
there holds the error bound

‖(u− πp,ku)(j)‖2
L2(Ω) ≤

(κ− s)!
(κ+ s)!

‖u(k+s)‖2
L2(Ω) (3.11)

for any j = 0, 1, · · · , k.

We then notice that, on the particular mesh of interest T i (except for those elements of T i —
that are actually also in T 0 — that are close to the boundary and for which there is no problem
of regularity nor approximation), there are essentially two reference elements: A perfect cube
K̂ = (−1, 1)3 and a truncated pyramid T̂ P like the one represented in Figure 2 below:

Figure 2 The reference truncated pyramidal element T̂ P .

Over such a reference element T̂ P , we want to propose a local reference quasi-interpolant
and we follow, for this sake, the same construction as in [49] that is dedicated to the cube Ĉ.
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It uses the tensorization of the one dimensional operator π̂p,2 that leads to the operator over Ĉ
defined by

Π̂3
p,2 = π̂

(x)
p,2 ⊗ π̂

(y)
p,2 ⊗ π̂

(z)
p,2

for which it is proved (see [49, Proposition 5.2]).

Theorem 3.1 For any integer 3 ≤ s ≤ p, the operator Π̂3
p,2 satisfies

‖u− Π̂3
p,2u‖2

H2
mix(Ĉ)

≤ (p− s)!
(p+ s− 2)!

‖u‖2
Hs+5(Ĉ)

(3.12)

and
H2

mix(Ĉ) = H2(−1, 1)⊗H2(−1, 1)⊗H2(−1, 1).

In order to get the same type of result, over T̂ P , we modifying the operator Π̂3
p′,2 defined

above over Ĉ by using the affine transform from the cube to the truncated pyramid T̂ P . This
results in an operator with range equal to the set of all polynomials over T̂ P with partial
degree ≤ p′ with respect to x and y but ≤ 3p′ with respect to the z direction. In order to be
an operator of degree ≤ p, we choose p′ = p

3 , and denote by Π̂3
p,2,TP this operator for which the

following theorem holds.

Theorem 3.2 For any integer 3 ≤ s ≤ p, the operator Π̂3
p,2,TP satisfies

‖u− Π̂3
p,2,TPu‖2

H2
mix(T̂P )

≤ (c
T̂P

)s (p− s)!
(p+ s− 2)!

‖u‖2
Hs+5(T̂P )

, (3.13)

where the constant c
T̂P

≥ 1 only depends on the shape of T̂ P .

In order to construct a quasi-interpolant in the equivalent DG space to X i
h−P built over T i,

the operator Π̂3
p,2 was then used in [49] by scaling it on each element of the mesh T i with the

appropriate degree to propose a discontinuous approximation of the solution. Here we need to
be a little bit more cautious since we want the approximation to be continuous since X i

h−P is
a conforming approximation of H1

0 (Ω).
We nevertheless proceed as in [49]. We first notice that every element K ∈ T i, is canonically

associated to a reference element K̂ that is either Ĉ or T̂ P . The mapping that allows to go
from K to K̂ is denoted as χK and is composed of a rotation, i.e., a homothetic transformation
that thus preserve the polynomial degree. From these transformations, we first build from the
operators Π̂3

p,2 and Π̂3
p,2,TP a totally discontinuous approximation of any H1

0 (Ω) function u

with the appropriate degree as in X i
h−P . We denote by Π̃DG

i this operator. From the analysis
performed in [49] based on the same regularity results as in (2.3), this first nonconforming
approximation satisfies (see (5.21), (5.25) and (5.35) in [49]):

∑
K∈T i

p2
K

h2
K

‖u− Π̃DG
i u‖2

L2(K) +
∑

K∈T i

‖∇(u− Π̃DG
i u)‖2

L2(K)

≤ C
∑

K∈T i

hK‖û|K − π̂(û|K)‖2
H2

mix
, (3.14)

where, for any K ∈ T i, we denote by û|K the pull back function associated with u|K through
χK . The argument of the function û|K is thus points x ∈ K̂. It can thus be projected with the
appropriate reference operator π̂ equal to either Π̂3

p,2 or Π̂3
p,2,TP .
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We have now to make the approximation conforming (continuous) between two adjacent
elements. This is done by lifting the discontinuities one after the other starting from the
discontinuities at the vertex, then at the sides and then, finally at the faces.

Let us start with the vertices. We consider the set of all elements of T i that share a common
vertex a and denote them as Kj

a with j = 1, · · · , J . The non-conforming approximation Π̃DG
i u

thus proposes J distinct, but close, values. The rectification first consists in modifying this value
so that the new approximation over Kj

a with j = 2, · · · , J is equal to [Π̃DG
i u]|K1

a
(a). Assume

that for a given Kj
a with j = 2, · · · , J , the associated K̂ is Ĉ, and that the associated pull back

transformation maps the vertex a onto (1, 1, 1). The rectification of π̂(û|Kj
a
) is obtained by

adding a quantity
r̂ecta,j(x̂, ŷ, ẑ) = εa,jHp,1(x̂)Hp,1(ŷ)Hp,1(ẑ),

where Hp,1 is the polynomial Hp,1(x̂) = α(1 − x̂)L′
p(x̂); here Lp stands for the Legendre poly-

nomial with degree p, and α is such that Hp,1(1) = 1.
This modification, εa,j, is upper bounded by the L∞ bound between [Π̃DG

i u]|K1
a
(a) and

[Π̃DG
i u]|Kj

a
(a), hence bounded by

|εa,j| ≤ c‖û|K1
a
− π̂(û|K1

a
)‖H2

mix
+ ‖û|Kj

a
− π̂(û|Kj

a
)‖H2

mix
. (3.15)

From classical considerations we know that

‖Hp,1‖L2(−1,1) ≤ C
1
p
, ‖∇Hp,1‖L2(−1,1) ≤ Cp.

Hence
‖∇[εa,jHp,1(x̂)Hp,1(ŷ)Hp,1(ẑ)]‖L2(K̂) ≤ C

1
p
.

The associated modification of the approximation Π̃DG
i u of u, that we denote by recta,j over

Kj
a is thus upper bounded with an additional factor chK :

‖∇[recta,j]‖L2(Kj
a) ≤ c

hK

pK
εa,j.

Let us continue on the rectification. We proceed similarly with the edge values, and then
the faces values. Let us present the face rectification. We only have two elements K and K ′,
that share a whole common face which we denote by FK,K′ . The two approximations (already
rectified at each vertex and edge) only differ from the internal values on this face. The difference
is thus a function ε(x, y) (say) that vanishes on the boundary of the face, and that we are going
to lift on the element that has the largest degree (say K ′). This lifting is again performed
thanks to a function Hp,1(ẑ):

rectFK,K′ (x̂, ŷ, ẑ) = ε(x̂, ŷ)Hp,1(ẑ),

the norm of which satisfies

‖∇[rectFK,K′ ]‖L2(K′) ≤ c
[hK′

pK′
‖∇εa,j‖L2(FK,K′ ) +

pK′

hK′
‖εa,j‖L2(FK,K′)

]
. (3.16)

By summing up these three type of corrections, we deduce that the new conforming approxi-
mation still satisfies∑

K∈T i

‖∇(u− Πconf
i u)‖2

L2(K) ≤ C
∑

K∈T i

hK‖û|K − π̂(û|K)‖2
H2

mix
. (3.17)
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We finish up as in [49] where the term on the right-hand side above is bounded, with the
regularity (2.3) by upper bounding this contribution by exp(−ci), where i is the index of the
triangulation T i, hence by exp(−c 4

√
Ni ) where Ni is the total number of degrees of freedom of

X i
h−P .
Let us now introduce the H1

0 (Ω) orthogonal projection operator Πi
H1,h−P over X i

h−P thus
defined as follows:

Πi
H1,h−P (ϕ)∈X i

h−P , ∀ϕ∈H1
0 (Ω) and

∫
Ω

∇(ϕ− [Πi
L2,h−P (ϕ)])∇ψdx=0, ∀ψ∈X i

h−P . (3.18)

We can state as follows.

Theorem 3.3 There exists a constant C0 > 0, such that, for all u that satisfies the regularity
assumption (2.3),

‖u− [Πi
H1,h−P (u)]‖H1 ≤ C0 exp(−c 4

√
Ni). (3.19)

4 A Priori Analysis

4.1 The Hartree-Fock problem

Part 1 Prelimary analysis
Let us first start with the discretization of the Hartree-Fock problem.
Following (3.1), the h− P approximation of the Hartree-Fock problem is

IHF,i
N,h−P (V ) = inf

{
EHF (Φh−P ), Φh−P = (φ1,h−P , · · · , φN,h−P )T ∈ (X i

h−P )N ,∫
Ω

φi,h−Pφj,h−P dx = δij , 1 ≤ i, j ≤ N
}
. (4.1)

Remark 4.1 The various integrals appearing in this energy should be — and are— generally
computed through numerical quadrature. These affect (sometimes dramaticaly) the convergence
of the discrete ground state to the exact one. We shall not investigate here this effect that is
well described in e.g. [7] in more simple settings.

The lack of uniqueness for the minimization problem, as recalled in (1.13) is a difficulty
for the error analysis that requires the understanding of the the geometry of the Grassmann
manifold M, this was first addressed in [41]. For each Φ = (φ1, · · · , φN )T ∈ M, we denote by

TΦM =
{

(ψ1, · · · , ψN )T ∈ (H1
0 (Ω))N

∣∣∣ ∀1 ≤ i, j ≤ N,

∫
Ω

(φiψj + ψiφj)dx = 0
}

the tangent space to M at Φ, and we also define

Φ⊥⊥ =
{
Ψ = (ψ1, · · · , ψN )T ∈ (H1

0 (Ω))N
∣∣∣ ∀1 ≤ i, j ≤ N,

∫
Ω

φiψjdx = 0
}
.

Let us recall (see, e.g., [41, Lemma 4]) that

TΦM = AΦ ⊕ Φ⊥⊥,

where A =
{
A ∈ R

N×N | AT = −A
}

is the space of the N ×N antisymmetric real matrices.
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The second order condition associated to the minimization problem (1.2) reads

aΦ0(W,W ) ≥ 0, ∀W ∈ TΦ0M,

where for all Ψ = (ψ1, · · · , ψN )T and Υ = (υ1, · · · , υN)T in (H1
0 (Ω))N ,

aΦ0(Ψ,Υ) =
1
4
EHF′′

(Φ0)(Ψ,Υ) −
N∑

i=1

ε0i

∫
Ω

ψiυidx

=
N∑

i=1

〈(HKS
ρ0 − ε0i )ψi, υi〉H−1,H1

0
+ 4

N∑
i,j=1

∫
Ω

∫
Ω

φ0
i (x)ψi(x)φ0

j (y)υj(y)
|x− y]

dxdy

− 2
N∑

i,j=1

∫
Ω

∫
Ω

υi(x)φ0
i (y)φ

0
j (x)ψj(y)

|x− y]
dxdy

− 2
N∑

i,j=1

∫
Ω

∫
Ω

φ0
i (x)υi(y)φ0

j (x)ψj(y)
|x− y]

dxdy. (4.2)

It follows from the invariance property (1.13) that

aΦ0(Ψ,Ψ) = 0 for all Ψ ∈ AΦ0.

This leads us, as in [41], to make the assumption that aΦ0 is positive definite on Φ0,⊥⊥, so that,
as in [41, Proposition 1], it follows that aΦ0 is actually coercive on Φ0,⊥⊥ (for the H1

0 norm). In
all what follows, we thus assume that there exists a positive constant cΦ0 such that

aΦ0(Ψ,Ψ) ≥ cΦ0‖Ψ‖2
H1

0
, ∀Ψ ∈ Φ0,⊥⊥. (4.3)

Remark 4.2 As noticed in [8], in the linear framework, the coercivity condition (4.3) is
satisfied if and only if

(i) ε01, · · · , ε0N are the lowest N eigenvalues (including multiplicities) of the linear self-adjoint
operator h = − 1

2Δ + V nuc;
(ii) There is a gap cΦ0 > 0 between the lowest N th and (N + 1)st eigenvalues of h.

The topology of the Grassmann manifold M quotiented by the equivalence relation through
unitary transformations (see e.g. [19]) was analyzed in this context in [41] and in [8]. In
particular,

(1) Let Φ ∈ M and Ψ ∈ M. If MΨ,Φ is invertible, then UΨ,Φ = MT
Ψ,Φ(MΨ,ΦM

T
Ψ,Φ)−

1
2 is the

unique minimizer to the problem min
U∈U(N)

‖UΨ − Φ‖(L2(Ω))N .

(2) The set

MΦ :=
{
Ψ ∈ M

∣∣∣ ‖Ψ − Φ‖L2 = min
U∈U(N)

‖UΨ − Φ‖L2

}
verifies

MΦ = {(1N −MW,W )
1
2 Φ +W |W ∈ Φ⊥⊥, 0 ≤MW,W ≤ 1N}.

Hence, for any Φ ∈ M and any Ψ ∈ MΦ there exists W ∈ Φ⊥⊥ such that

Ψ = Φ + S(W )Φ +W, (4.4)
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where S(W ) = (1N −MW,W )
1
2 −1N is an N×N symmetric matrix, and the converse also holds.

Similarly, at the discrete level, for any Φh−P ∈ [X i
h−P ]N ∩M and any Ψh−P ∈ V N

h−P ∩MΦh−P

there exists Wh−P ∈ [X i
h−P ]N ∩ Φ⊥⊥

h−P such that

Ψh−P = Φh−P + S(Wh−P )Φh−P +Wh−P , (4.5)

where S(Wh−P ) = (1N −MWh−P ,Wh−P
)

1
2 −1N is an N×N symmetric matrix, and the converse

also holds.
In what follows, we shall compare, as in [8], the error between the solution to (4.1) and Φ0,

the solution to (1.2), with its best approximation in (X i
h−P )N ∩M (see [8, Lemma 4.3]).

Lemma 4.1 (1) Let Φ = (φ1, · · · , φN )T ∈ M. If i ∈ N is such that

dim(span(Πi
L2,h−P (φ1), · · · ,Πi

L2,h−P (φN ))) = N,

then the unique minimizer of the problem min
Φi,h−P ∈(Xi

h−P
)N∩M

‖Φi,h−P − Φ‖[L2(Ω)]N is

πM
i,h−P Φ = (MΠi

L2,h−P
Φ,Πi

L2,h−P
Φ)−

1
2 Πi

L2,h−P Φ. (4.6)

In addition, πM
i,h−P Φ ∈ (X i

h−P )N ∩MΦ,

‖πM
i,h−P Φ − Φ‖[L2(Ω)]N ≤

√
2‖Πi

L2,h−P Φ − Φ‖[L2(Ω)]N , (4.7)

and for all i large enough,

‖πM
i,h−P Φ−Φ‖[H1(Ω)]N ≤ ‖Φ‖[H1(Ω)]N ‖Πi

L2,h−P Φ−Φ‖2
[L2(Ω)]N +‖Πi

L2,h−P Φ−Φ‖[H1(Ω)]N . (4.8)

(2) Let i ∈ N such that dim(X i
h−P ) ≥ N and Φi,h−P ∈ (X i

h−P )N ∩M. Then

(X i
h−P )N ∩MΦi,h−P = {(1N −MWi,h−P ,Wi,h−P

)
1
2 Φi,h−P +Wi,h−P |

Wi,h−P ∈ (X i
h−P )N ∩ Φ⊥⊥

i,h−P , 0 ≤MWi,h−P ,Wi,h−P
≤ 1N}. (4.9)

The following Lemma 4.2 (see [8]) collects some properties of the function W �→ S(W ).

Lemma 4.2 Let
K = {W ∈ (L2(Ω))N | 0 ≤MW,W ≤ 1N},

and S : K → R
N×N
S (the space of the symmetric N ×N real matrices) defined by

S(W ) = (1N −MW,W )
1
2 − 1N .

The function S is continuous on K and differentiable on the interior
◦
K of K. In addition,

‖S(W )‖F ≤ ‖W‖2
L2, ∀W ∈ K, (4.10)

where ‖ · ‖F denotes the Frobenius norm. For all (W1,W2, Z) ∈ K ×K × (L2(Ω))N such that
‖W1‖L2 ≤ 1

2 and ‖W2‖L2 ≤ 1
2 ,

‖S(W1) − S(W2)‖F ≤ 2(‖W1‖L2 + ‖W2‖L2)‖W1 −W2‖L2, (4.11)

‖(S′(W1) − S′(W2)) · Z‖F ≤ 4‖W1 −W2‖L2‖Z‖L2, (4.12)

‖(S′′(W1)(Z,Z)‖F ≤ 4‖Z‖2
L2. (4.13)
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Now, we recall the following stability results that can be proved following the same lines as
in [8].

Lemma 4.3 There exists C ≥ 0 such that
(1) for all (Υ1,Υ2,Υ3) ∈ ((H1

0 (Ω))N )3,

|(EHF′′
(Φ0 + Υ1) − EHF′′

(Φ0))(Υ2,Υ3)| ≤ C(‖Υ1‖α
L2 + ‖Υ1‖2

H1
0
) ‖Υ2‖H1

0
‖Υ3‖H1

0
;

(2) for all (Υ1,Υ2,Υ3) ∈ ((H2(Ω))N )3,

|(EHF′′
(Φ0 + Υ1) − EHF′′

(Φ0))(Υ2,Υ3)| ≤ C(‖Υ1‖L2 + ‖Υ1‖2
L2) ‖Υ2‖L2 ‖Υ3‖H2 .

In addition, for all (q, r, s) ∈ R
3
+ such that 3

2 < q, s > 3
2 and r ≤ min(q, s), and all

0 < M <∞, there exists a constant C ≥ 0 such that
(1) for all (Υ1,Υ2,Υ3) ∈ (Hq(Ω))N × (H−r

0 (Ω))N × (Hs
0(Ω))N such that ‖Υ1‖Hq ≤M ,

|(EHF′′
(Φ0 + Υ1) − EHF′′

(Φ0))(Υ2,Υ3)| ≤ C ‖Υ1‖Hq ‖Υ2‖H−r ‖Υ3‖Hs .

Following the same lines as in [8, Lemma 4.7], we deduce from Lemma 4.3 that there exists
C ≥ 0 such that for all Ψ ∈ M,

EHF(Ψ) = EHF(Φ0) + 2aΦ0(Ψ − Φ0,Ψ − Φ0) +R(Ψ − Φ0) (4.14)

with
|R(Ψ − Φ0)| ≤ C(‖Ψ − Φ0‖3

H1
0

+ ‖Ψ − Φ0‖4
H1

0
). (4.15)

Part 2 Existence of a discrete solution
We now use the parametrization of the manifold X i

h−P ∩ MΦi,h−P explained in (4.9) to
express a given minimizer of the problem (4.1) close to Φ0 in terms of an element Wi,h−P in a
neighborhood of 0 expressed as Wi,h−P ∈ Bi,h−P , where

Bi,h−P := {W i,h−P ∈ [X i
h−P ]N ∩ [πM

i,h−P Φ0]⊥⊥ | 0 ≤MW i,h−P ,W i,h−P ≤ 1}.

Indeed, we can define

Ei,h−P (W i,h−P ) = EHF(πM
i,h−P Φ0 + S(W i,h−P )πM

i,h−P Φ0 +W i,h−P ), (4.16)

the minimizers of which are in one-to-one correspondence with those of (4.1). Then the same
line as in the proof of Lemma 4.8 in [8] leads to the following lemma.

Lemma 4.4 There exist r > 0 and i0 such that for all i ≥ i0, the functional Ei,h−P has a
unique critical point W i,h−P

0 in the ball

{W i,h−P ∈ [X i
h−P ]N ∩ [πM

i,h−P Φ0]⊥⊥ | ‖W i,h−P‖H1
0
≤ r}.

Besides, W i,h−P
0 is a local minimizer of Ei,h−P over the above ball and we have the estimate

‖W i,h−P
0 ‖H1

0
≤ C‖πM

i,h−P Φ0 − Φ0‖H1
0
. (4.17)
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Since the solution Φ0 is asymptotically well behaved, i.e., satisfies (2.3), we obtain from the
accuracy offered by the h − P finite elements spaces X i

h−P stated in Theorem 3.3 that there
exists a constant C such that

‖W i,h−P
0 ‖H1

0
≤ C exp(−c 4

√
Ni).

Then we deduce the existence and uniqueness of a local minimizer to the problem (4.1) close
to Φ0 which satisfies that (see [8, (4.71)–(4.72)]) for i large enough,

1
2
‖W 0

i,h−P ‖L2 ≤ ‖Φ0
i,h−P − Φ0‖L2 ≤ 2‖W 0

i,h−P ‖L2 , (4.18)

1
2
‖W 0

i,h−P ‖H1
0
≤ ‖Φ0

i,h−P − Φ0‖H1
0
≤ 2‖W 0

i,h−P ‖H1
0
. (4.19)

Hence we have proven the following theorem.

Theorem 4.1 Let Φ0 be a local minimizer of the Hartree-Fock problem (1.2), and assume
that it is asymptotically well behaved, i.e., satisfies (2.3). Then there exist r0 > 0 and i0 such
that, for any i ≥ i0, the discrete problem (4.1) has a unique local minimizer Φ0

i,h−P in the set

{Ψi,h−p ∈ (X i
h−P )N ∩MΦ0

| ‖Ψi,h−p − Φ0‖H1
0 (Ω) ≤ r0},

and there exist constants C > 0 and c > 0, independent of i such that

‖Φ0
i,h−P − Φ0‖H1

0
≤ C exp(−c 4

√
Ni).

Finally, the discrete solution Φ0
i,h−P satisfies the Euler equations

〈HHF
ρ0

i,h−P
φ0

j,i,h−P , ψj,i,h−P 〉H−1,H1
0

=
N∑

ν=1

[λ0
i,h−P ]jν(φ0

ν,i,h−P , ψν,i,h−P )L2 , ∀Ψi,h−P ∈ [X i
h−P ]N ,

where ρ0
i,h−P = ρΦ0

i,h−P
and the N×N matrix Λ0

i,h−P is symmetric (but generally not diagonal).
Of course, it follows from the invariance property (1.13) that (4.1) has a local minimizer of
the form UΦ0

i,h−P with U ∈ U(N) for which the Lagrange multiplier of the orthonormality
constraints is a diagonal matrix.

In order to get more precise results on the convergence rate of the eigenvalues, further
analysis needs to be performed on the approximation properties in standard Sobolev spaces of
the discrete space X i

h−P . As far as we know, these results concerning
(1) inverse inequalities,
(2) convergence properties of the L2(Ω) orthogonal projection operator Πi

L2,h−P over X i
h−P

for e.g. H1 functions,
(3) convergence properties of the H1

0 (Ω) orthogonal projection operator Πi
H1,h−P overX i

h−P

for e.g. H2 functions,
do not exist in optimal form, which is what is required to get the doubling of convergence for the
approximation of the eigenvalues with respect to the convergence of ‖Φ0

i,h−P − Φ0‖H1
0
. These

results will be proven in a paper in preparation.



22 Y. Maday

4.2 The Kohn-Sham problem

Following (3.2), the h− P approximation of the Kohn-Sham problem is

IKS,i
N,h−P (V ) = inf

{
EKS(Φh−P ), Φh−P = (φ1,h−P , · · · , φN,h−P )T ∈ (X i

h−P )N ,∫
Ω

φi,h−Pφj,h−P dx = δij , 1 ≤ i, j ≤ N
}
. (4.20)

Following the same lines as in the proof of the previous result, and the analysis of the plane
wave approximation of the Kohn-Sham problem presented in [8], we can prove the following
theorem.

Theorem 4.2 Let Φ0 be a local minimizer of the Kohn-Sham problem (1.5), and assume
that it is asymptotically well behaved, i.e. satisfies (2.3), Then there exist r0 > 0 and i0 such
that, for any i ≥ i0, the discrete problem (4.20) has a unique local minimizer Φ0

i,h−P in the set

{Ψi,h−p ∈ (X i
h−P )N ∩MΦ0

| ‖Ψi,h−p − Φ0‖H1
0 (Ω) ≤ r0},

and there exist constants C > 0 and c > 0, independent of i such that

‖Φ0
i,h−P − Φ0‖H1

0
≤ C exp(−c 4

√
Ni).
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