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Limit Cycles Bifurcating from a Quadratic Reversible
Lotka-Volterra System with a

Center and Three Saddles∗
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Abstract This paper is concerned with limit cycles which bifurcate from a period annulus
of a quadratic reversible Lotka-Volterra system with sextic orbits. The authors apply the
property of an extended complete Chebyshev system and prove that the cyclicity of the
period annulus under quadratic perturbations is equal to two.
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1 Introduction

The second part of Hilbert’s 16th problem (see [6]) asks about the maximum number and
the location of limit cycles of a planar polynomial vector fields of degree n. If the quadratic
centers belong to the Hamiltonian class, then the study of the number of limit cycles bifurcating
from a period annulus or annuli (i.e., the weak Hilbert’s 16th problem for n = 2) is finished,
and the study of the number of limit cycles bifurcating from a singular loop, or from infinity is
partially finished (see [3–4, 8–9, 12, 15, 17] and the references therein). If the quadratic centers
belong to the reversible class (and do not belong to the Hamiltonian class), then the study
seems very difficult, and the known results are very limited.

A weaker version of this problem is proposed by Arnold (see [1]) to study the zeros of Abelian
integrals, that is the weak Hilbert’s 16th problem or infinitesimal Hilbert’s 16th problem. The
problem is related to in the following way. Consider the perturbed system of a Hamiltonian
vector field Xε = XH + εY , where

XH = −Hy∂x + Hx∂y, Y = P∂x + Q∂y.

A closed connected component of a level curve {H = h} is denoted by γh and called an oval of
H . The Abelian integral is

I(h) =
∮

γh

Qdx − Pdy.
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Therefore the number of isolated zeros of I(h), counted with multiplicities, provides an upper
bound for the number of ovals of {H = h} that generates limit cycles of Xε for ε ≈ 0 (see [5,
12] for details). If the unperturbed system is integrable and non-Hamiltonian, then one has to
consider pseudo-Abelian integrals (see [1] for details). As far as we know, most of the papers
investigate the Hamiltonian centers and few papers study the non-Hamiltonian centers (see [3,
8, 17] for instance). Recently, Zhao [16] proved that the cyclicity of the period annulus of Q4

is less than or equal to five.
It is well-known by Iliev [8] that any quadratic polynomial reversible Lotka-Volterra system

can be written in the complex form

ż = −iz + z2 + b|z|2, z = x + iy,

or in the real form {
ẋ = y + (b + 1)x2 − (b + 1)y2,

ẏ = −x + 2(1 − b)xy,
(1.1)

where b is a real parameter. Arnold [2] declared that the infinitesimal problem for system
(1.1) is still open. For the system (1.1) of genus one, Gautier et al. [4] classify this kind of
systems into 6 cases (rlv1)–(rlv6). Until now, [7, 11] have studied the cases (rlv1) and (rlv2),
respectively, and [5, 14] have studied the cases (rlv3) and (rlv4), respectively.

The cyclicity of system (1.1) under quadratic perturbations for b = 0, 1
2 , was studied in

[3–4], respectively. In this paper we study the case b = 5
3 , that is, the number of limit cycles

bifurcates from the period annulus of the following quadratic reversible Lotka-Volterra system:{
ẋ = −y(1 + x),

ẏ = x − 2x2 + 2y2.
(1.2)

System (1.2) has a first integral

H(x, y) = −1
6
x2(3 + 2x)(−2 + 3x2 + 2x3) + (1 + x)4y2

with the integrating factor

M(x) = 2(1 + x)2.

Note that system (1.1) for b = 5
3 can be reduced to system (1.2) by using a linear transformation.

There is a period annulus surrounding the center at (x, y) = (0, 0) bounded by three straight
lines {

x = −1, y = ±2x − 1√
6

}
,

corresponding to H(x, y) = 1
6 . The intersection points (x, y) =

(− 1,−
√

6
2

)
, (x, y) =

(− 1,
√

6
2

)
,

and (x, y) =
(

1
2 , 0

)
of the three straight lines are three saddles of system (1.2). Therefore, the

period annulus can be expressed by
{
γh, h ∈ (

0, 1
12

)}
, where the periodic orbit γh ⊂ {H(x, y) =

h}.
The next result is a particular case of Theorem 3 in [8]. For convenience, we state it in the

present paper.
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Lemma 1.1 The exact upper bound for the number of limit cycles produced by the period
annulus of system (1.2) under quadratic perturbations is equal to the maximal number of zeros
in h ∈ (

0, 1
12

)
(counting multiplicities) of the Abelian integral

I(h) =
∮

γh

(1 + x)3
(
ay + b

y

1 + x
+ c

x

y

)
dx, (1.3)

where a, b and c are arbitrary constant.

The main result of this paper is the following theorems.

Theorem 1.1 The cyclicity of the period annulus of system (1.2) under quadratic pertur-
bations is two.

This paper is organized in the following way. In Section 2 we introduce the definitions and
the notations that we shall use. In Section 3 we give the proof of Theorem 1.1 by applying
Theorem B in [5]. We shall rewrite the Abelian integral (1.3) as a linear combination of {I0(h),
I1(h), I2(h)} and prove that (I0(h), I1(h), I2(h)) forms an extended complete Chebychev system.
Due to Theorem B in [5], we turn the problem of the number of zeros of the Abelian integral into
a pure algebraic problem, namely, counting zeros of a polynomial. To solve the latter problem
we shall use the notion of a resultant. The interested reader is referred to the appendix in [5]
for details.

2 The Definitions of Chebyshev Systems

In order to prove the main results, some definitions and lemmas are needed.

Definition 2.1 Let f0(x), f1(x), · · · , fn−1(x) be analytic functions on an open interval L

of R. Then we have the following:
(a) (f0(x), f1(x), · · · , fn−1(x)) is a Chebyshev system (in short, T-system) on L if any non-

trivial linear combination

a0f0(x) + a1f1(x) + · · · + an−1fn−1(x)

has at most n − 1 isolated zeros on L.
(b) (f0(x), f1(x), · · · , fn−1(x)) is a complete Chebyshev system (in short, CT-system) on L

if (f0(x), f1(x), · · · , fk−1(x)) is a T-system for all k = 1, 2, · · · , n.
(c) (f0(x), f1(x), · · · , fn−1(x)) is an extended complete Chebyshev system (in short, ECT-

system) on L if, for all k = 1, 2, · · · , n, any nontrivial linear combination

a0f0(x) + a1f1(x) + · · · + ak−1fk−1(x)

has at most k − 1 isolated zeros on L counted with multiplicities.

It is clear that if (f0(x), f1(x), · · · , fn−1(x)) is an ECT-system on L, then (f0(x), f1(x), · · · ,
fn−1(x)) is a CT-system on L. However, the reverse implication is not true. Moreover, if
(f0(x), f1(x), · · · , fn−1(x)) is a T-system on L, and f(x) is an analytic function and has a
constant sign on L, then (f(x)f0(x), f(x)f1(x), · · · , f(x)fn−1(x)) is a T-system on L.

Remark 2.1 If (f0(x), f1(x), · · · , fn−1(x)) is an ECT-system on L, then, for each k =
0, 1, 2, · · · , n− 1, there exists a linear combination with exactly k simple zeros on L (see [10,
13] for instance).
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Definition 2.2 Let f0(x), f1(x), · · · , fn−1(x) be analytic functions on an open interval L

of R. The Wronskian of (f0(x), f1(x), · · · , fn−1(x)) at x ∈ L is given by

W [f0, f1, · · · , fn−1](x) = Det(f (i)
j (x))0≤i,j≤n−1 =

∣∣∣∣∣∣∣∣∣
f0(x) · · · fn−1(x)
f ′
0(x) · · · f ′

n−1(x)
...

...
f

(n−1)
0 (x) · · · f

(n−1)
n−1 (x)

∣∣∣∣∣∣∣∣∣
.

The following result is well-known (see [10, 13] for instance).

Lemma 2.1 The system (f0(x), f1(x), · · · , fn−1(x)) is an ECT-system on L if and only if,
for each k = 1, 2, · · · , n,

W [f0, f1, · · · , fk−1](x) �= 0 for all x ∈ L.

3 Proof of Main Results

Recall that H(x, y) = A(x) + B(x)y2 with

A(x) = −x2(3 + 2x)(−2 + 3x2 + 2x3)
6

, B(x) = (1 + x)4.

It is clear that H(x, y) has a local minimum at (x, y) = (0, 0), B(x) > 0 and A(x) have a
local minimum at x = 0. Denote the period annulus associated to the center origin by P and
the projection of P on the x-axis by (xl, xr) =

(− 1, 1
2

)
. Then there exists a unique analytic

involution function σ(x), such that A(x) = A(σ(x)) for all x ∈ (xl, xr) =
(− 1, 1

2

)
. The next

result is a particular case of Theorem B in [5]. For convenience, we state it in the present paper.

Theorem 3.1 (see [5]) Let us consider the Abelian integrals

Ii(h) =
∮

γh

fi(x)y2s−1dx, i = 0, 1, · · · , n − 1,

where, for each h ∈ (0, h0), γh is the oval surrounding the origin inside the level curve {A(x)+
B(x)y2 = h}. Let σ be the involution associated to A(x) and we define

li(x) =
fi(x)

A′(x)B(x)
2s−1

2

− fi(σ(x))

A′(σ(x))B(σ(x))
2s−1

2

.

Then (I0, I1, · · · , In−1) is an ECT-system on (0, h0) if s > n − 2 and (l0, l1, · · · , ln−1) is a
CT-system on (0, xr).

Recall that a mapping σ is an involution if σ ◦ σ = Id and σ �= Id. An involution σ is
a diffeomorphism with a unique fixed point. Noting that li(x) = −li(σ(x)), we have that
(l0, l1, · · · , ln−1) is a CT-system on (0, xr) if and only if (l0, l1, · · · , ln−1) is a CT-system on
(xl, 0).

We rewrite the Abelian integral (1.3) as I(h) = aI0(h) + bI1(h) + cI2(h), where

I0(h) =
∮

Γh

(1 + x)3ydx, I1(h) =
∮

Γh

(1 + x)2ydx, I2(h) =
∮

Γh

(1 + x)3x
y

dx. (3.1)

The following lemma, proved in [5], establishes a formula to change the integrand of an
Abelian integral into other Abelian integrals that we want.
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Lemma 3.1 (see [5]) Let γh be an oval inside the level curve {A(x) + B(x)y2 = h}, and
consider a function F (x) such that F (x)

A′(x) is analytic at x = 0. Then, for any k ∈ N,∮
γh

F (x)y2k−1dx =
∮

γh

G(x)y2k+1dx,

where

G(x) =
2

2k + 1

(BF

A′
)′

(x) −
(B′F

A′
)
(x).

In what follows, we shall apply Theorem 3.1 to prove that (I0(h), I1(h), I2(h)) is an ECT-
system. By Lemma 3.1, it yields that

I2(h) =
∮

Γh

(1 + x)3x
y

dx = −2
∮

Γh

(−2 + x)(1 + x)3

(−1 + 2x)2
dx.

However, we discover that n = 3 and s = 1 in the integrand of (I0(h), I1(h), I2(h)), so that the
condition s > n − 2 is not fulfilled. Therefore we must take s = 3 and apply Lemma 3.1 to
overcome the shortcomings. Applying Lemma 3.1, we have that

I0(h) =
∮

Γh

(1 + x)3ydx =
1
h

∮
Γh

(A(x) + B(x)y2)(1 + x)3ydx

=
1
h

∮
Γh

f0(x)y3dx =
1
h

Ĩ0(h),

where

f0(x) =
(1 + x)3(24 + 2x − 119x2 − 85x3 + 190x4 + 260x5 + 88x6)

18(−1 + 2x)2
.

Exactly in the same way we obtain

I1(h) =
1
h

∮
Γh

f1(x)y3dx =
1
h

Ĩ1(h),

I2(h) =
1
h

∮
Γh

f2(x)y3dx =
1
h

Ĩ2(h),

where

f1(x) =
(1 + x)2(24 − 4x − 111x2 − 68x3 + 184x4 + 240x5 + 80x6)

18(−1 + 2x)2
,

f2(x) =
2(1 + x)3(−24 − 11x + 91x2 + 53x3 − 164x4 − 130x5 + 40x6 + 40x7)

9(−1 + 2x)4
.

It is clear that (I0(h), I1(h), I2(h)) is an ECT-system in the interval
(
0, 1

12

)
if and only if

(Ĩ0(h), Ĩ1(h), Ĩ2(h)) is an ECT-system in the interval
(
0, 1

12

)
.

Setting

Fi(x) =
fi(x)

A′(x)B(x)
3
2
,

then

F0(x) = −24 + 2x − 119x2 − 85x3 + 190x4 + 260x5 + 88x6

36x(1 + x)6(−1 + 2x)3
,

F1(x) =
24 − 4x − 111x2 − 68x3 + 184x4 + 240x5 + 80x6

36x(1 + x)7(−1 + 2x)3
,

F2(x) = −−24− 11x + 91x2 + 53x3 − 164x4 − 130x5 + 40x6 + 40x7

9x(1 + x)6(−1 + 2x)5
.
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Denote by σ the involution associated to A(x), i.e., A(x) = A(σ(x)). In order to compute
Wronskians, we set z = σ(x) and

Li(x, z) =
fi(z)

2
√

2A′(z)B(z)
3
2
− fi(x)

A′(x)B(x)
3
2

= F (z) − F (x).

Then li(x) = Li(x, z). We only need to prove that system (L0(x, z), L1(x, z), L0(x, z)) is an
ECT-system on

(
0, 1

2

)
. On account of

A(z) − A(x) = −1
6
(z − x)(3z + 2z2 + 3x + 2zx + 2x2)

× (−2 + 3z2 + 2z3 + 3x2 + 2x3)

= 0,

it turns out that z = σ(x) is defined by

q(x, z) = 3x + 2x2 + 3z + 2xz + 2z2 = 0 (3.2)

and

σ′(x) = −3 + 4x + 2z

3 + 2x + 4z
.

We shall depend on Wolfram Mathematica to compute three Wronskians and the resultant
between two polynomials to show the nonexistence of zeros of a polynomial on the interval. In
the following, we show the following lemma.

Lemma 3.2 System {L0(x, z), L1(x, z), L2(x, z)} is an ECT-system on the interval
(
0, 1

2

)
,

i.e., system {l0(z), l1(z), l2(z)} is an ECT-system on the interval
(
0, 1

2

)
, where z is defined by

(3.2).

Proof By Lemma 2.1, we split the proof into three cases to show that the three Wronskians
have no zeros on

(
0, 1

2

)
.

First, note that W [L0(x, z)] = L0(x, z). By the common denominator and the factorization,
we have

W [L0(x, z)] =
(x − z)α0(x, z)

36x(1 + x)6(−1 + 2x)3z(1 + z)6(−1 + 2z)3
,

where α0(x, z) is a polynomial of degree 15 in (x, z) with a very long expression. It follows
from direct computations that the resultant with respect to z between α0(x, z) and q(x, z) is
512(1 + x)12(−1 + 2x)6ζ0(x) (i.e., eliminating z from α0(x, z) = 0 and q(x, z) = 0), where

ζ0(x) = 576 + 144x− 5808x2 − 4866x3 + 23377x4 + 34643x5 − 33266x6 − 96116x7

− 29704x8 + 85432x9 + 102448x10 + 46112x11 + 7744x12.

Note that ζ0(0) = 576, ζ0

(
1
2

)
= 36, and ζ0(x) has a local minimum 35.0652 at x ≈ 0.486258

on the interval
(
0, 1

2

)
. Therefore, α0(x, z) = 0 and q(x, z) = 0 have no common roots for any

z ∈ (
0, 1

2

)
, which implies that W [L0(x, z)] �= 0 for any z ∈ (

0, 1
2

)
or z ∈ (−1, 0).

Secondly, by the definition of W [L0(x, z), L1(x, z)], it follows that

W [L0, L1] =
(x − z)3α1(x, z)

1296x2(1 + x)14(−1 + 2x)5z2(1 + z)14(−1 + 2z)5(3 + 2x + 4z)
,
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where α1(x, z) is a polynomial of degree 20 in (x, z) with a very long expression. It follows
from direct computations that the resultant with respect to z between α1(x, z) and q(x, z) is
131072(1 + x)22(−1 + 2x)10ζ1(z), where

ζ1(x) = 2799360− 4105728x− 46503072x2 + 45785088x3 + 400338504x4 − 183937680x5

− 2275672545x6 − 129790572x7 + 9130566970x8 + 5218540697x9 − 25610976347x10

− 29571499544x11 + 45089620496x12 + 94543100152x13 − 25802210680x14

− 185339941376x15 − 92210899744x16 + 193050497152x17 + 262418215808x18

− 8054306816x19 − 261232193536x20 − 208431021056x21 + 15675223040x22

+ 146996101120x23 + 128615911424x24 + 60615639040x25 + 17178050560x26

+ 2775449600x27 + 198246400x28.

By calculating, we have that ζ1(0) = 2799360, ζ1

(
1
2

)
= 6561, and ζ1(x) has a local minimum

6128.2996 at x ≈ 0.487723 on the interval
(
0, 1

2

)
. Therefore, α1(x, z) = 0 and q(x, z) = 0 have

no common roots on the interval
(
0, 1

2

)
, and W [L0(x, z), L1(x, z)] �= 0 for any x ∈ (

0, 1
2

)
.

Finally, let us compute the third Wronskian and we have that

W [L0, L1, L2] =
(x − z)6α2(x, z)

648x3(1 + x)21(−1 + 2x)12z3(1 + z)21(−1 + 2z)12(3 + 2x + 4z)3
,

where α2(x, z) is a polynomial of degree 50 in (x, z) with a very long expression. The resultant
with respect to z between α2(x, z) and q(x, z) is 618475290624(1+x)37(−1+2x)19ζ2(x), where

ζ2(x) = 314424115200− 338610585600x− 7197591260160x2 + 3682188564480x3

+ 82047833521920x4 + 5210989511040x5 − 592497119129472x6

− 372635968302720x7 + 2885867540768232x8 + 3558716269442172x9

− 9292142328963813x10 − 19140007898353035x11 + 16482330221454718x12

+ 67114041663802748x13 + 5453813359662526x14 − 154918512493381814x15

− 126209494807367500x16 + 208708533197557384x17 + 381340040113757184x18

− 48210981342553392x19 − 597836271817833312x20 − 401835362862302080x21

+ 403848032675763712x22 + 774435670832268032x23 + 266221550147915264x24

− 467143726426274816x25 − 712552216353261568x26 − 398681792365246464x27

+ 197229693031993344x28 + 703625042364088320x29 + 693897335772938240x30

+ 81980316555083776x31 − 593575661879296000x32 − 701169891281207296x33

− 226210840396169216x34 + 319417039476752384x35 + 534653451975524352x36

+ 433636456305524736x37 + 236139850292527104x38 + 92931145817128960x39

+ 26870184295792640x40 + 5633450904125440x41 + 819325409689600x42

+ 74705587404800x43 + 3248069017600x44,

ζ2(0) = 314424115200, ζ2

(
1
2

)
= 76527504, and ζ2(x) has a local minimum 7.07214 × 107 at

x ≈ 0.490262 on the interval
(
0, 1

2

)
. Hence, we can assert that W [L0, L1, L2] �= 0 for any

z ∈ (
0, 1

2

)
. By Lemma 2.1, the proof of the result is completed.

Proof of Theorem 1.1 By Lemma 1.1, Lemma 3.2 and Theorem 3.1, we obtain Theorem
1.1.
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Remark 3.1 The proof depends on the symbolic computations by Wolfram mathematica
and some very long expressions are omitted for the sake of briefness, while the derivative process
can be done precisely.
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