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1 Introduction

Suppose that (M,J, ω, g) is a smooth Kähler manifold of complex dimension n. Let Ric be

the Ricci tensor of g, and then the Ricci form ρ is defined by

ρ(X,Y ) = Ric(JX, Y ).

Recently, T. Behrndt [1] proposed a generalized mean curvature flow. Instead of considering

the flow in a Kähler-Einstein manifold, he considered the case that the ambient manifold is

almost Einstein, that is, an n-dimensional Kähler manifold (M,J, ω, g) with

ρ = λω + nddcψ

for some constant λ ∈ R and some smooth function ψ on M (see [1]).

Suppose that the Kähler manifold (M,J, ω, g) is almost Einstein. Given an immersion

F0 : Σ → M of an n-dimensional manifold Σ into M , Behrndt [1] considered a generalized

mean curvature flow ⎧⎨
⎩
∂

∂t
F (x, t) = K(x, t), (x, t) ∈ Σ× (0, T ),

F (x, 0) = F0(x), x ∈ Σ,
(1.1)
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where

K = H − nπνΣ(∇ψ)

is a normal vector field along Σ which is called the generalized mean curvature vector field of

Σ. As K is a differential operator differing from H just by lower order terms, it is easy to see

that (1.1) has a unique solution on a short time interval (see [1]).

Behrndt [1] proved that if Σ0 = F0(Σ) is Lagrangian in the almost Einstein manifold M ,

then along the generalized mean curvature flow (1.1), it remains Lagrangian for each time.

Therefore, it is reasonable to call such a flow the generalized Lagrangian mean curvature flow.

As a special case, Behrndt [1] also considered the generalized Lagrangian mean curvature

flow in an almost Calabi-Yau manifold (see [11]).

In [12], we studied the generalized Lagrangian mean curvature flow in an almost Einstein

manifold. We proved that the singularity of this flow is characterized by the second fundamental

form. We also proved that the type-I singularity of the generalized Lagrangian mean curvature

flow in an almost Calabi-Yau manifold is a stationary cone. In particular, the generalized

Lagrangian mean curvature flow has no type-I singularity.

Let (M,J, ω, g) be a Kähler surface. For a compact oriented real surface Σ which is smoothly

immersed in M , α is the Kähler angle of Σ in M (see [5]). We say that Σ is a symplectic surface

if cosα > 0.

In this paper, we mainly study the generalized mean curvature flow in an almost Einstein

surface with the initial surface symplectic. We show that if the initial surface Σ0 is symplectic,

then along the generalized mean curvature flow (1.1), it remains symplectic for each time.

Therefore, we can call this flow the generalized symplectic mean curvature flow.

In general, the mean curvature flow may develop singularities as time evolves. According

to the blow-up rate of the second fundamental form, Huisken [8] classified the singularities

of the mean curvature flow into two types: type I and type II. Chen and Li [2] and Wang

[13] independently proved that if M is a Kähler-Einstein surface, then the symplectic mean

curvature flow has no type-I singularity. Following the idea in [8], we can also define type-I

and type-II singularity for our flow. And we can also prove that if M is an almost Einstein

surface, then the generalized symplectic mean curvature flow has no type-I singularity (see

Theorem 5.1). Note that if ψ = const., our flow is just the symplectic mean curvature flow in

a Kähler-Einstein surface, so our result is a generalization of theirs.

In this paper, we also consider the graph case. Suppose that M = M1 × M2, where

(M1, g1, ω1) and (M2, g2, ω2) are Riemann surfaces with the same average scalar curvature

r. Then M is an almost Einstein surface with ρ = rω + 2ddcψ. Suppose that the initial sur-

face is a graph with 〈e1 × e2, ω1〉 >
√

2
2 , where {e1, e2} is an orthonormal frame of the initial

surface. We show that the generalized mean curvature flow (1.1) exists globally and the global

solution F (·, t) sub-converges to F∞ in C2 as t → ∞, possibly outside a finite set of points,

and Σ∞ = F∞(Σ) is a minimal surface in (M, e2ψg). Chen, Li and Tian [4] and Wang [13]

proved the global existence and convergence of the mean curvature flow in the graph case that
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M1 and M2 are of the same constant curvature. Han and Li [7] proved a similar result for the

Kähler-Ricci mean curvature flow. In [7] and this paper, we only assume that M1 and M2 have

the same average scalar curvature.

2 Evolution Equations

In [12], we computed the evolution equations of the induced metric and the second funda-

mental form of Σt along the generalized mean curvature flow (1.1). We will omit the proof and

state them here in this section.

Lemma 2.1 Along the generalized mean curvature flow (1.1), the induced metric evolves

by

∂

∂t
gij = −2Kαhαij .

Consequently, we have the following corollary.

Corollary 2.1 The area element of Σt satisfies the following equation:

∂

∂t
dμt = −〈K,H〉dμt, (2.1)

and consequently,

∂

∂t

∫
Σt

dμt = −
∫

Σt

〈K,H〉dμt. (2.2)

We also have the following lemma.

Lemma 2.2 Along the generalized mean curvature flow (1.1), the norm of the second fun-

damental form satisfies

∂

∂t
|A|2 ≤ Δ|A|2 − |∇A|2 + C|A|4 + C|A|, (2.3)

where C depends on the ambient space M and ‖ψ‖C2(M).

Theorem 2.1 If the second fundamental form of Σt is uniformly bounded under the gener-

alized mean curvature flow (1.1) for all time t ∈ [0, T ), then the solution can be extended beyond

T .

3 The Evolution of the Kähler Angle Along the Flow

In this section, we consider the case n = 2. That is to say, M is an almost Einstein surface,

and Σ0 is a symplectic surface in M .

Let JΣt be the almost complex structure in a tubular neighborhood of Σt on M with⎧⎪⎪⎨
⎪⎪⎩
JΣte1 = e2,
JΣte2 = −e1,
JΣte3 = e4,
JΣte4 = −e3.

(3.1)
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It is proved in [2] that

|∇JΣt |2 = |h4
1k + h3

2k|2 + |h4
2k − h3

1k|2 ≥
1
2
|H |2. (3.2)

Choose an orthonormal basis {e1, e2, e3, e4} on (M ,g) along Σt such that {e1, e2} is the basis

of Σt and the symplectic form ωt takes the form

ωt = cosαu1 ∧ u2 + cosαu3 ∧ u4 + sinαu1 ∧ u3 − sinαu2 ∧ u4, (3.3)

where {u1, u2, u3, u4} is the dual basis of {e1, e2, e3, e4}. Then along the surface Σt the complex

structure on M takes the form (see [2])

J =

⎛
⎜⎜⎝

0 cosα sinα 0
− cosα 0 0 − sinα
− sinα 0 0 cosα

0 sinα − cosα 0

⎞
⎟⎟⎠ .

Theorem 3.1 The evolution equation for cosα along Σt is

( ∂

∂t
−Δ

)
cosα = |∇JΣt |2 cosα+ λ sin2 α cosα− 2〈∇ψ,∇ cosα〉

+ 2 sinα cosα[−∇2
ψ(e1, Je3) +∇2

ψ(e2, Je4)]. (3.4)

As a corollary, if the initial surface Σ0 is symplectic, then along the flow, at each time t, Σt is

symplectic.

Proof Using Lemma 2.1, (3.3), and the fact that ∇ω = 0, we have

∂

∂t
cosα =

∂

∂t

ω(e1, e2)√
det(gij)

= ω(∇e1K, e2) + ω(e1,∇e2K)− 1
2

cosαgij
∂

∂t
gij

= ω(∇e1K4e4, e2)− ω(∇e2K3e3, e1) + ω(K3∇e1e3, e2) + ω(K4∇e1e4, e2)
+ ω(e1,K3∇e2e3) + ω(e1,K4∇e2e4) + 〈K,H〉 cosα

= sinα(K4
,1 +K3

,2) + ω(−K3h3
11e1, e2) + ω(−K4h4

11e1, e2)

+ ω(e1,−K3h3
22e2) + ω(e1,−K4h4

22e2) + 〈K,H〉 cosα

= sinα(K4
,1 +K3

,2)−K3h3
11 cosα−K4h4

11 cosα−K3h3
22 cosα

−K4h4
22 cosα+ 〈K,H〉 cosα

= sinα(K4
,1 +K3

,2). (3.5)

Recall the equation in Proposition 3.1 and Lemma 3.2 in [6] for cosα to have

Δ cosα = −|∇JΣt |2 cosα+ sinα(H4
,1 +H3

,2)− sin2 αRic(Je1, e2).

Thus we have( ∂

∂t
−Δ

)
cosα = |∇JΣt |2 cosα− sinα(V 4

,1 + V 3
,2) + sin2 αRic(Je1, e2). (3.6)
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Denote V = 2πνΣ(∇ψ) = V αeα. Then

K = H − V. (3.7)

It is computed in [12] that

V α,i = 2〈∇ei∇ψ, eα〉+ 2hαij〈∇ψ, ej〉.

Recalling that (see [6])

∂1α = −(h4
11 + h3

12)

and

∂2α = −(h3
22 + h4

12),

we get

V 4
,1 + V 3

,2 = 2〈∇e1∇ψ, e4〉+ 2h4
1j〈∇ψ, ej〉+ 2〈∇e2∇ψ, e3〉+ 2h3

2j〈∇ψ, ej〉
= 2〈∇e1∇ψ, e4〉+ 2〈∇e2∇ψ, e3〉 − 2〈∇ψ, ∂1αe1 + ∂2αe2〉
= 2〈∇e1∇ψ, e4〉+ 2〈∇e2∇ψ, e3〉 − 2〈∇ψ,∇α〉. (3.8)

Since M is an almost Einstein surface, we have

Ric(Je1, e2) = ρ(e1, e2) = λω(e1, e2) + 2ddcψ(e1, e2) = λ cosα+ 2ddcψ(e1, e2).

Moreover,

dcψ(el) = −dψ ◦ J(el) = −g(∇ψ, Jel) = −〈∇ψ, Jel〉.

Hence

ddcψ(e1, e2) = e1(dcψ(e2))− e2(dcψ(e1))− dcψ([e1, e2])

= −e1〈∇ψ, Je2〉+ e2〈∇ψ, Je1〉 − 0

= −〈∇e1∇ψ, Je2〉 − 〈∇ψ, J∇e1e2〉+ 〈∇e2∇ψ, Je1〉+ 〈∇ψ, J∇e2e1〉
= −〈∇e1∇ψ, Je2〉 − 〈∇ψ, hα12Jeα〉+ 〈∇e2∇ψ, Je1〉+ 〈∇ψ, hα12Jeα〉
= −〈∇e1∇ψ, Je2〉+ 〈∇e2∇ψ, Je1〉
= −〈∇e1∇ψ, e1〉〈Je2, e1〉 − 〈∇e1∇ψ, e4〉〈Je2, e4〉

+ 〈∇e2∇ψ, e2〉〈Je1, e2〉+ 〈∇e2∇ψ, e3〉〈Je1, e3〉
= 〈∇e1∇ψ, e1〉 cosα+ 〈∇e1∇ψ, e4〉 sinα

+ 〈∇e2∇ψ, e2〉 cosα+ 〈∇e2∇ψ, e3〉 sinα.

Thus we have

Ric(Je1, e2) = λ cosα+ 2〈∇e1∇ψ, e1〉 cosα+ 2〈∇e1∇ψ, e4〉 sinα
+ 2〈∇e2∇ψ, e2〉 cosα+ 2〈∇e2∇ψ, e3〉 sinα. (3.9)
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Putting (3.8)–(3.9) into (3.6), we get

( ∂

∂t
−Δ

)
cosα = |∇JΣt |2 cosα+ λ sin2 α cosα+ 2 sinα〈∇ψ,∇α〉

− 2 sinα〈∇e1∇ψ, e4〉 − 2 sinα〈∇e2∇ψ, e3〉
+ 2 sin2 α cosα〈∇e1∇ψ, e1〉+ 2 sin3 α〈∇e1∇ψ, e4〉
+ 2 sin2 α cosα〈∇e2∇ψ, e2〉+ 2 sin3 α〈∇e2∇ψ, e3〉

= |∇JΣt |2 cosα+ λ sin2 α cosα− 2〈∇ψ,∇ cosα〉
− 2 sinα cos2 α〈∇e1∇ψ, e4〉 − 2 sinα cos2 α〈∇e2∇ψ, e3〉
+ 2 sin2 α cosα〈∇e1∇ψ, e1〉+ 2 sin2 α cosα〈∇e2∇ψ, e2〉

= |∇JΣt |2 cosα+ λ sin2 α cosα− 2〈∇ψ,∇ cosα〉
+ 2 sinα cosα〈∇e1∇ψ, sinαe1 − cosαe4〉
+ 2 sinα cosα〈∇e2∇ψ, sinαe2 − cosαe3〉

= |∇JΣt |2 cosα+ λ sin2 α cosα− 2〈∇ψ,∇ cosα〉
+ 2 sinα cosα〈∇e1∇ψ,−Je3〉+ 2 sinα cosα〈∇e2∇ψ, Je4〉

= |∇JΣt |2 cosα+ λ sin2 α cosα− 2〈∇ψ,∇ cosα〉
+ 2 sinα cosα[−∇2

ψ(e1, Je3) +∇2
ψ(e2, Je4)].

This proves the theorem.

The above theorem motivates the following definition.

Definition 3.1 A family of symplectic surfaces satisfying (1.1) is said to evolve by the

generalized symplectic mean curvature flow.

4 Monotonicity Formula

Let H(X,X0, t, t0) be the backward heat kernel on R
4. Let Σt be a smooth family of surfaces

in R
4 defined by Ft : Σ→ R

4. Define

ρ(X, t) = (4π(t0 − t))H(X,X0, t, t0) =
1

4π(t0 − t) exp
(
− |X −X0|2

4(t0 − t)
)

for t < t0. We have along the generalized symplectic mean curvature flow (1.1)

∂ρ

∂t
=

( 1
t0 − t −

〈K,X −X0〉
2(t0 − t) − |X −X0|2

4(t0 − t)2
)
ρ. (4.1)

We also have

Δρ =
(〈F −X0,∇F 〉2

4(t0 − t)2 − 〈F −X0, H + gijΓ
α

ρσ
∂Fρ

∂xi
∂Fσ

∂xj eα〉
2(t0 − t) − 1

t0 − t
)
ρ. (4.2)
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Combining (4.1) with (4.2) gives us

( ∂

∂t
+ Δ

)
ρ =

(
−

∣∣∣K +
(F −X0)⊥

2(t0 − t)
∣∣∣2 + |K|2 − 〈g

ijΓ
α

ρσ
∂Fρ

∂xi
∂Fσ

∂xj eα, F −X0〉
t0 − t

− 〈πνΣ(∇ψ), F −X0〉
t0 − t

)
ρ. (4.3)

Applying the evolution equation for cosα, we have( ∂
∂t
−Δ

)
cosα ≥ |∇JΣt |2 cosα− 2〈∇ψ,∇ cosα〉 − C cosα, (4.4)

where C depends on ‖ψ‖C2(M) and λ.

On Σt, we set

v = eCt cosα,

where C is the constant in (4.4). Denote the injectivity radius of (M, g) by iM . For X0 ∈ M ,

take a normal coordinate neighborhood U and let φ ∈ C∞
0 (B2r(X0)) be a cut-off function with

φ ≡ 1 in Br(X0), 0 < 2r < iM . Using the local coordinates in U we may regard F (x, t) as a

point in R
k whenever F (x, t) lies in U . We define

Ψ(F,X0, t, t0) =
∫

Σt

1
v
φ(F )ρ(F, t)dμt.

The following monotonicity formula generalizes Proposition 4.2 of [2] to the almost Einstein

case. In [12], we got the similar monotonicity formula for the generalized Lagrangian mean

curvature flow. Some of the estimates in the proof of the following proposition have appeared

in [12]. For completeness, we sketch the proof below.

Proposition 4.1 Let Ft : Σ → M be a generalized symplectic mean curvature flow in

a compact almost Einstein surface M . Then there exist positive constants c1, c2, c3 and c4

depending only on M , F0, t0 and r which is the constant in the definition of Ψ, such that

∂

∂t

(
ec1

√
t0−t

∫
Σt

1
v
φρdμt

)

≤ −ec1
√
t0−t

∫
Σt

1
v
φρ

(2|∇v|2
v2

+
∣∣∣K +

(F −X0)⊥

2(t0 − t)
∣∣∣2 + c4|K|2

)
dμt

+
c2ec1

√
t0−t

(t0 − t) 3
4

+ c3ec1
√
t0−t. (4.5)

Proof By (3.4), we have

( ∂

∂t
−Δ

)1
v
≤ −|∇JΣt |2

v
− 2

〈
∇ψ,∇1

v

〉
− 2|∇v|2

v3
. (4.6)

Note that

∂φ(F )
∂t

= 〈∇φ,K〉.
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Using (2.1), (3.7), (4.3) and (4.6), we have

d
dt

Ψ(F,X0, t, t0) =
d
dt

∫
Σt

1
v
φρdμt

=
∫

Σt

( ∂

∂t
−Δ

)1
v
φρdμt +

∫
Σt

Δ
1
v
φρdμt +

∫
Σt

1
v
ρ〈∇φ,K〉dμt +

∫
Σt

1
v
φ
( ∂

∂t
+ Δ

)
ρdμt

−
∫

Σt

1
v
φΔρdμt −

∫
Σt

1
v
φρ〈K,K + V 〉dμt

≤ −
∫

Σt

φρ
( |∇JΣt |2

v
+

2
v3
|∇v|2 +

1
v

∣∣∣K +
(F −X0)⊥

2(t0 − t)
∣∣∣2)dμt +

∫
Σt

(
φρΔ

1
v
− 1
v
φΔρ

)
dμt

−
∫

Σt

1
v
φρ
〈gijΓαρσ ∂F

ρ

∂xi
∂Fσ

∂xj eα, F −X0〉
t0 − t dμt +

∫
Σt

1
v
ρ
(
ε2φ|K|2 +

1
4ε2
|∇φ|2
φ

)
dμt

−
∫

Σt

2
〈
∇ψ,∇1

v

〉
φρdμt −

∫
Σt

1
v
φρ
〈V, F −X0〉

2(t0 − t) dμt −
∫

Σt

1
v
φρ〈K,V 〉dμt. (4.7)

Again, by (2.1) and (3.7), we have

∂

∂t
dμt = −〈K,H〉dμt = −〈H,H − V 〉dμt = (−|H |2 + 〈H,V 〉)dμt

≤ 1
4
|V |2dμt ≤ Cdμt,

which implies that

∂

∂t
Area(Σt) ≤ CArea(Σt).

Therefore, we have

Area(Σt) ≤ eCt0Area(Σ0) ≤ C. (4.8)

The same estimate as in [2] implies∫
Σt

(
φρΔ

1
v
− 1
v
φΔρ

)
dμt ≤ C. (4.9)

As φ ∈ C∞
0 (B2r(X0),R4), we have (see [9, Lemma 6.6])

|∇φ|2
φ
≤ 2 max

φ>0
|∇2

φ|. (4.10)

By Young’s inequality,

−
∫

Σt

1
v
φρ〈K,V 〉dμt ≤ ε

∫
Σt

1
v
φρ|K|2dμt + C(ε)

∫
Σt

1
v
φρ|V |2dμt

≤ ε
∫

Σt

1
v
φρ|K|2dμt + C(ε). (4.11)

Using the fact that |∇ψ| ≤ C, |∇v| ≤ C|∇α| ≤ C|∇JΣt | and Hölder’s inequality, we have∫
Σt

〈
∇ψ,∇1

v

〉
φρdμt ≤ C

∫
Σt

∣∣∣〈∇ψ, ∇v
v2

〉∣∣∣φρdμt ≤ C( ∫
Σt

|∇v|2 1
v
φρdμt

) 1
2
(∫

Σt

1
v
φρdμt

) 1
2

≤ ε
∫

Σt

|∇JΣt |2
1
v
φρdμt + C(ε). (4.12)
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Since

|∇JΣt |2 ≥
1
2
|H |2 =

1
2
|K|2 +

1
2
|V |2 + 〈K,V 〉 ≥ 1

4
|K|2 − 1

2
|V |2,

we have

−
∫

Σt

1
v
φρ|∇JΣt |2dμt ≤ −

∫
Σt

1
4v
φρ|K|2dμt + C. (4.13)

In a way similar to the proof of (13) in [3], we have

〈F −X0, g
ijΓ

α

ρσ
∂Fρ

∂xi
∂Fσ

∂xj eα〉
2(t0 − t) ρ(F, t) ≤ C1

ρ(F, t)√
t0 − t + C. (4.14)

Finally, we need to estimate the term − ∫
Σt

1
vφρ

〈V,F−X0〉
2(t0−t) dμt. We claim that (see [12] for the

proof)

|F −X0|2
(t0 − t)α ρ(F, t) ≤ C1

ρ(F, t)
(t0 − t)β + C, 0 < α− 1 < β < 1. (4.15)

Especially, if we choose α = 5
4 and β = 1

2 , then we have

−
∫

Σt

1
v
φρ
〈V, F −X0〉

2(t0 − t) dμt ≤ C√
t0 − tΨ +

C

(t0 − t) 3
4
. (4.16)

Putting (4.9), (4.12)–(4.14) and (4.16) into (4.7), we obtain

∂

∂t
Ψ ≤ −

∫
Σt

1
v
φρ

(2|∇v|2
v2

+
∣∣∣K +

(F −X0)⊥

2(t0 − t)
∣∣∣2 + c4|K|2

)
dμt

+
c1√
t0 − tΨ +

c2

(t0 − t) 3
4

+ c3. (4.17)

Rearranging (4.17) yields the desired inequality.

5 No Type-I Singularity

Using (2.3), we can argue in the same way as that of the mean curvature flow (for example,

Lemma 4.6 of [2]) to obtain the lower bound of the blow-up rate of the maximal norm of the

second fundamental form at a finite singular time T .

Lemma 5.1 Let Ut = max
Σt

|A|2. If the generalized mean curvature flow (1.1) blows up at a

finite time T > 0, there exists a positive c depending only on M , such that if 0 < T − t < π
32

√
c
,

then the function Ut satisfies

Ut ≥ 1
8
√

2(T − t) .

According to the lower bound of the blow-up rate, we can classify the singularities of the

generalized symplectic mean curvature flow (1.1) into two types, which is similar to that of the

mean curvature flow defined by Huisken [8]. This definition was given in [12].
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Definition 5.1 We say that the generalized mean curvature flow (1.1) develops type-I sin-

gularity at T > 0, if

lim sup
t→T

(T − t)max
Σt

|A|2 ≤ C

for some positive constant C. Otherwise, we say that the generalized mean curvature flow (1.1)

develops type-II singularity.

Arguing as in [2], we have

Theorem 5.1 The generalized symplectic mean curvature flow has no type-I singularity at

any T > 0.

Proof Suppose that the generalized mean curvature flow develops a type-I singularity at a

finite time t0 > 0. Assume that

λ2
k = |A|2(xk, tk) = max

t≤tk
|A|2 →∞ as k →∞.

As Σ is closed, we may assume that xk → p ∈ Σ and tk → t0 as k → ∞. We choose a

local coordinate system on (M, g) around F (p, t0) such that F (p, t0) = 0. Then we rescale the

generalized mean curvature flow to have

Fk(x, t) = λk(F (x, tk + λ−2
k t)− F (p, tk)), t ∈ [−λ2

ktk, 0].

Denote by Σkt the scaled surface Fk(·, t). Then the induced metric satisfies

gkij = λ2
kgij , (gk)ij = λ−2

k gij .

The scaled surface satisfies

∂Fk
∂t

= Kk = Hk − 2λ−1
k πνΣk

(∇ψ).

By Lemma 5.1, we have

C

t0 − tk ≥ |A|
2(xk, tk) ≥ c

t0 − tk
for some uniform constants c and C independent of k. We then have

|Ak|2(xk, 0) =
1
λ2
k

|A|2(xk, tk) = 1 (5.1)

and

|Ak|2(x, t) =
1
λ2
k

|A|2(x, λ−2
k t+ tk) ≤ 1,

so there exists a subsequence of Fk which we also denote by Fk, such that Fk → F∞ in any ball

BR(0) ⊂ R
4, and F∞ satisfies

∂F∞
∂t

= K∞ = H∞
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with

|A∞|2(p, 0) = 1, |A∞|2 ≤ 1. (5.2)

Set vk(Fk(x, t)) = v(F (x, λ−2
k t + tk)) and φk(Fk(x, t)) = φ(F (x, λ−2

k t + tk)). It is easy to see

that ∫
Σk

t

1
vk
φk(Fk)

1
0− t exp

(
− |Fk + λkF (p, tk)|2

4(0− t)
)
dμkt

=
∫

Σ
tk+λ

−2
k

t

1
v
φ(F )

1
tk − (tk + λ−2

k t)
exp

(
− |F (x, tk + λ−2

k t)|2
4(tk − (tk + λ−2

k t))

)
dμt,

where φ is the function defined in the definition of Ψ. Notice that tk + λ−2
k t→ t0 for any fixed

t. By Proposition 4.1,

∂

∂t
(ec1

√
t0−tΨ(F,X0, t, t0)) ≤ c2ec1

√
t0−t

(t0 − t) 3
4

+ c3ec1
√
t0−t,

and it then follows that lim
t→t0

ec1
√
t0−tΨ exists. This implies that, for any fixed s1 and s2 with

−∞ < s1 < s2 < 0, we have

ec1
√
tk−(tk+λ−2

k s2)

∫
Σk

s2

1
vk
φk

1
0− s2 exp

(
− |Fk + λkF (p, tk)|2

4(0− s2)
)
dμks2

− ec1
√
tk−(tk+λ−2

k s1)

∫
Σk

s1

1
vk
φk

1
0− s1 exp

(
− |Fk + λkF (p, tk)|2

4(0− s1)
)
dμks1

→ 0 as k →∞. (5.3)

Integrating (4.5) from s1 to s2, we obtain

− ec1
√

−λ−2
k s2

∫
Σk

s2

1
vk
φk

1
0− s2 exp

(
− |Fk + λkF (p, tk)|2

4(0− s2)
)
dμks2

+ ec1
√

−λ−2
k s1

∫
Σk

s1

1
vk
φk

1
0− s1 exp

(
− |Fk + λkF (p, tk)|2

4(0− s1)
)
dμks1

≥
∫ s2

s1

ec1
√

−λ−2
k
t

∫
Σk

t

1
vk
φkρ(Fk, t)

∣∣∣Kk +
(Fk + λkF (p, tk))⊥

2(0− t)
∣∣∣2dμkt dt

+
∫ s2

s1

ec1
√

−λ−2
k t

∫
Σk

t

2|∇vk|2
v3
k

φkρ(Fk, t)dμkt dt

+
∫ s2

s1

ec1
√

−λ−2
k t

∫
Σk

t

1
vk
φkρ(Fk, t)c4|Kk|2dμkt dt

− 4
c2√
λk

((−s1) 1
4 − (−s2) 1

4 )ec1λ
−1
k

√−s1 − c3λ−2
k (s2 − s1)ec1λ

−1
k

√−s1 . (5.4)

Since the singularity is of type I and the vector field V = 2πνΣ(∇ψ) is bounded, we know that

there exists a constant C > 0 such that for t closed to t0,

|K| ≤ |H |+ |V | ≤ C√
t0 − t .
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Therefore,

|F (p, tk)| ≤
∫ t0

tk

∣∣∣∂F
∂t

∣∣∣dt =
∫ t0

tk

|K|dt ≤ C√t0 − tk ≤ C

λk
,

where the last inequality follows from the type-I singularity assumption. Without loss of gen-

erality, we can assume that λkF (p, tk)→ Q as k →∞. Letting k →∞ in (5.4) and using (5.3),

we get that

H∞ = K∞ ≡ 0,

(F∞ +Q)⊥ ≡ 0.

That is,

〈F∞ +Q, eα〉 = 0.

It follows that for α = 3, 4,

det((h∞)αij) = 0.

Since H∞ = 0, we also have for α = 3, 4,

tr((h∞)αij) = 0.

Thus, (h∞)αij = 0 for all i, j = 1, 2, α = 3, 4, which yields that |A∞| ≡ 0. This contradicts (5.2).

This finishes the proof of the theorem.

6 The Graph Case

In this section we study the generalized symplectic mean curvature flow (1.1) in a special

case. Suppose that M is a product of compact Riemann surfaces M1 and M2, i.e. (M, g) =

(M1 × M2, g1⊕ g2). We denote by r1 and r2 the average scalar curvature of M1 and M2,

respectively. We assume that r1 = r2. Suppose that Σ is a graph in M = M1 ×M2. Recall the

definition of the graph in [4]. A surface Σ is a graph in M1 ×M2 if v = 〈e1 ∧ e2, ω1〉 ≥ c0 > 0,

where ω1 is a unit Kähler form on M1, and {e1, e2} is an orthonormal frame on Σ. In this

section, we use some ideas in [4, 7, 13]. We first prove a proposition.

Proposition 6.1 Each Riemann surface (N, g, ω) is an almost Einstein curve with ρ =

rω + ddcϕ for some smooth function ϕ on N , where r is the average scalar curvature of N .

Proof Since r = 1
vol(N)

∫
N dμ,

∫
N (r − R)dμ = 0. By the Hodge theorem, there exists a

smooth function ϕ such that R = r + Δϕ. Since the complex dimension of N is 1, we have

ρ = rω + ddcϕ. This finishes the proof of the proposition.

Then we can get the following theorem.
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Theorem 6.1 Let (M1, g1, ω1) and (M2, g2, ω2) be Riemann surfaces which have the same

average scalar curvature. Suppose that Σ0 evolves along the generalized mean curvature flow in

M1 ×M2. If v(·, 0) >
√

2
2 , then the generalized mean curvature flow exists for all time.

Proof Set r ≡ r1 = r2. By the above proposition, there exist smooth functions ψ1 on M1

and ψ2 on M2 such that ρ1 = rω1 + 2ddcψ1 and ρ2 = rω2 + 2ddcψ2. For each point (p1, p2) on

M1 ×M2, let ψ(p1, p2) = ψ1(p1) + ψ2(p2). It follows that ψ is a smooth function on M1 ×M2,

and ρ = rω + 2ddcψ, which means that M1 ×M2 is an almost Einstein surface.

Choose an orthonormal basis {e1, e2, e3, e4} on M along Σt such that {e1, e2} is the basis

of Σt. Set u1 = 〈e1 ∧ e2, ω1 + ω2〉 and u2 = 〈e1 ∧ e2, ω1 − ω2〉, where ω2 is a unit Kähler form

on M2. Since both ω1 + ω2 and ω1 − ω2 are parallel Kähler forms on M1 ×M2, we see that

Theorem 3.1 is applicable. Therefore,

( ∂

∂t
−Δ

)
u1 = J1u1 + r(1 − u2

1)u1 − 2〈∇ψ,∇u1〉

+ 2
√

1− u2
1 u1[−∇2

ψ(e1, Je3) +∇2
ψ(e2, Je4)]

≥ J1u1 − 2〈∇ψ,∇u1〉 − c1u1, (6.1)

where

J1 = |h4
11 + h3

12|2 + |h4
21 + h3

22|2 + |h4
12 − h3

11|2 + |h4
22 − h3

21|2.

By switching e3 and e4, we get that

( ∂

∂t
−Δ

)
u2 = J2u2 + r(1 − u2

2)u2 − 2〈∇ψ,∇u2〉

+ 2
√

1− u2
2 u2[−∇2

ψ(e1, Je4) +∇2
ψ(e2, Je3)]

≥ J2u2 − 2〈∇ψ,∇u2〉 − c2u2, (6.2)

where

J2 = |h4
11 − h3

12|2 + |h4
21 − h3

22|2 + |h4
12 + h3

11|2 + |h4
22 + h3

21|2.

It is clear that

〈e1 ∧ e2, ω1〉2 + 〈e1 ∧ e2, ω2〉2 ≤ 1.

The initial condition v(x, 0) >
√

2
2 implies that ui(x, 0) ≥ v(x, 0) −

√
2

2 ≥ c0 > 0, i = 1, 2. By

(6.1)–(6.2),

( ∂

∂t
−Δ

)
(ecitui) ≥ −2〈∇ψ,∇(ecitui)〉.

Applying the maximum principle for parabolic equations, we obtain that ui(x, t) have positive

lower bounds at any finite time. Suppose that ui ≥ δ for 0 ≤ t < t0. Then we claim that the

flow F can be extended smoothly to t0 + ε for some ε.
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Set u = u1 + u2. Adding (6.1) to (6.2), we get

( ∂
∂t
−Δ

)
u ≥ u|A|2 + 2(u1 − u2)h3

2kh
4
1k − 2(u1 − u2)h3

1kh
4
2k − 2〈∇ψ,∇u〉 − Cu. (6.3)

Since u ≥ 2δ + |u1 − u2|, using the Cauchy-Schwarz inequality, we get

( ∂

∂t
−Δ

)
u ≥ 2δ|A|2 − 2〈∇ψ,∇u〉 − C. (6.4)

Assume that (X0, t0) is a singularity point. As in the proof of Proposition 4.1, we can derive

a weighted monotonicity formula for
∫
Σt
φ 1
uρ(F,X0, t, t0)dμt, where φ is the cut-off function in

Proposition 4.1.

∂

∂t

∫
Σt

1
u
φρ(F,X0, t, t0)dμt

=
∫

Σt

( ∂
∂t
−Δ

) 1
u
φρdμt +

∫
Σt

Δ
1
u
φρdμt +

∫
Σt

1
u
〈∇φ,K〉ρdμt

+
∫

Σt

1
u
φ
( ∂

∂t
+ Δ

)
ρdμt −

∫
Σt

1
u
φΔρdμt −

∫
Σt

1
u
φρ〈K + V,K〉dμt

≤ −
∫

Σt

φρ
(
δ
|A|2
u2

+
δ

2
|H |2
u2

+
1
u

∣∣∣K +
(F −X0)⊥

2(t0 − t)
∣∣∣2 +

2|∇u|2
u3

)
dμt

+ n

∫
Σt

1
u2
〈∇ψ,∇u〉φρdμt +

∫
Σt

C

u2
φρdμt

+
∫

Σt

1
u
〈∇φ,K〉ρdμt −

∫
Σt

1
u
φρ
〈gijΓαρσ ∂F

ρ

∂xi
∂Fσ

∂xj eα, F −X0〉
2(t0 − t) dμt

−
∫

Σt

1
u
φρ
〈V, F −X0〉

2(t0 − t) dμt −
∫

Σt

1
u
φρ〈K,V 〉dμt +

∫
Σt

Δφ
1
u
ρdμt + 2

∫
Σt

1
u
〈∇φ,∇ρ〉dμt

≤ −
∫

Σt

φρ
(
δ
|A|2
u2

+
δ

2
|K|2
u2

+
2|∇u|2
u3

)
dμt + ε

∫
Σt

|K|2
u2

φρdμt +
c1√
t0 − t

∫
Σt

1
u
φρdμt

+
c2

(t0 − t) 3
4

+ c3

≤ −δ
∫

Σt

φρ
|A|2
u2

dμt +
c1√
t0 − t

∫
Σt

1
u
φρdμt +

c2

(t0 − t) 3
4

+ c3.

It follows that

∂

∂t

(
ec1

√
t0−t

∫
Σt

1
u
φρdμt

)
≤ −δec1

√
t0−t

∫
Σt

φρ
|A|2
u2

dμt +
c2ec1

√
t0−t

(t0 − t) 3
4

+ c3ec1
√
t0−t. (6.5)

From this we see that lim
t→t0

∫
Σt

1
uφρdμt exists.

Let 0 < λi →∞ and let Fi be the blow-up sequence:

Fi(x, s) = λi(F (x, t0 + λ−2s)−X0).

Let dμis denote the induced volume form on Σis by Fi. It is obvious that∫
Σt

1
u
φρ(F,X0, t, t0)dμt =

∫
Σi

s

1
ui
φiρ(Fi, 0, s, 0)dμis,
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where

t = t0 + λ−2s.

Therefore we get that

∂

∂s

(
ec1λ

−1
i

√−s
∫

Σi
s

1
u
φρ(Fi, 0, s, 0)dμis

)

= λ−2
i

∂

∂t

(
ec1

√
t0−t

∫
Σt

1
u
φρ(F,X0, t, t0)dμt

)

≤ − δ

λ2
i

ec1
√
t0−t

∫
Σt

φρ
|A|2
u2

dμt +
c2
λ2
i

ec1
√
t0−t

(t0 − t) 3
4

+
c3
λ2
i

ec1
√
t0−t

= −δec1λ−1
i

√−s
∫

Σi
s

φ
|Ai|2
u2

ρ(Fi, 0, s, 0)dμis +
c2ec1λ

−1
i

√−s
√
λi(−s) 3

4
+
c3
λ2
i

ec1λ
−1
i

√−s.

Note that t0 + λ−2
i s → t0 for any fixed s as i → ∞ and that lim

t→t0
ec1

√
t0−t ∫

Σt

1
uφρdμt exists.

By the above monotonicity formula, we have, for any fixed s1 and s2,

0← ec1λ
−1
i

√−s1w
∫

Σi
s1

1
ui
φiρ(Fi, 0, s1, 0)dμis1 −

∫
Σi

s2

1
ui
φiρ(Fi, 0, s2, 0)dμis2

= −
∫ s2

s1

d
ds

(
ec1λ

−1
i

√−s
∫

Σi
s

1
ui
φiρ(Fi, 0, s, 0)dμis

)
ds

≥ δ
∫ s2

s1

ec1λ
−1
i

√−s
∫

Σi
s

φi
|Ai|2
u2
i

ρ(Fi, 0, s, 0)dμisds

− 4
c2√
λi

ec1λ
−1
i

√−s1((−s1) 1
4 − (−s2) 1

4 )− c3
λ2
i

ec1λ
−1
i

√−s1(s2 − s1).

Since ui is bounded below, we have∫ s2

s1

∫
Σi

s

φ|Ai|2ρ(Fi, 0, s, 0)→ 0 as i→∞.

Therefore, for any ball BR(0) ⊂ R
4,∫

Σi
si

∩BR(0)

|Ai|2ρ(Fi, 0, s, 0)→ 0 as i→∞. (6.6)

Because u has a positive lower bound, we see that Σt can locally be written as the graph of a

map ft : Ω ⊂M1 →M2 with uniformly bounded |dft|. Consider the blow up of ft0+ si
λ2

i

, as

fi(y) = λift0+λ−2
i si

(λ−1
i y).

It is clear that |dft| is also uniformly bounded and lim
i→∞

fi(0) = 0. By the Arzela’s theorem,

fi → f∞ in Cα on any compact set. By the inequality (29) in [10], we have

|Ai| ≤ |∇dfi| ≤ C(1 + |dfi|3)|Ai|,
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where ∇dfi is measured with respect to the induced metric on Σisi
. From (6.6) it follows that,

for any ball BR(0) ⊂ R
4,∫

Σi
si

∩BR(0)

|∇dfi|2ρ(Fi, 0, s, 0)→ 0 as i→∞,

which implies that fi → f∞ in Cα ∩W 1,2
loc and the second derivative of f∞ is 0. It is then clear

that Σisi
→ Σ∞ and Σ∞ is the graph of a linear function. Therefore,

lim
i→∞

∫
Bλir(X0)∩Σi

Si

ρ(Fi, 0, si, 0)dμisi
=

∫
Σ∞

ρ(F∞, 0,−1, 0)dμ∞ = 1.

We therefore have

lim
t→t0

∫
Br(X0)∩Σt

ρ(F,X0, t, t0)dμt = lim
i→∞

∫
Bλir(X0)∩Σi

Si

ρ(Fi, 0, si, 0)dμisi
= 1.

By [14, Theorem 4.1] (note that β(M) in this theorem for our flow is β(M)(X,V ) = nπV ⊥(∇ψ)−
trace II(x)|V , where X = (x, t) and II(x) is the second fundamental form of M in R

N at x),

we know that (X0, t0) is a regular point. This proves the theorem.

Now we consider the convergence of the generalized mean curvature flow. We follow the

idea in [4]. We do not require the ambient space M to have a product structure in the following

Theorem 6.2.

Theorem 6.2 Let M be a Kähler surface. Suppose that the smooth solution of the gen-

eralized mean curvature flow (1.1) exists on [0,∞). Then there exists a finite set of points S

and a sequence of ti →∞ such that Σti converges to a surface satisfying H = 2πνΣ(∇ψ), and

the convergence is in C2 outside S. In particular, if (M, g) is an almost Einstein surface with

ρ = λω + 2ddcψ, then the limit surface is a minimal surface in (M, e2ψg).

Proof By the Gauss equation, we have∫
Σt

|A|2dμg̃ ≤
∫

Σt

|H |2dμg̃ + Cμ̃t(Σt) + 4g − 4

≤
∫

Σt

|K|2dμg̃ + Cμ̃t(Σt) + 4g − 4,

where g is the genus of the initial surface Σ0. Because Σt is a continuous deformation of Σ0, so

its genus is also g. Define two conformally rescaled Riemannian metrics g̃ and g on M by

g̃ = e2ψg and ĝ = eψg.

Proposition 2 in [1] gives

∂

∂t

∫
Σt

dμg̃ = −
∫

Σt

|K|2ĝdμĝ,

from which we get

μ̃t(Σt) ≤ μ̃0(Σ0) and
∫ ∞

0

∫
Σt

|K|2ĝdμĝdt ≤ μ̃0(Σ0).
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So, ∫
Σt

|A|2dμg̃ ≤
∫

Σt

|K|2dμg̃ + C,

and there exists a sequence ti →∞ such that∫
Σti

|K|2ĝdμĝ → 0 as i→∞.

Hence, ∫
Σti

|K|2dμg̃ =
∫

Σti

e−ψ|K|2ĝeψdμĝ =
∫

Σti

|K|2ĝdμĝ → 0 as i→∞. (6.7)

It follows that ∫
Σti

|A|2dμ̃ti ≤ C,

and then ∫
Σti

|A|2dμti =
∫

Σti

e−2ψ|A|2dμ̃ti ≤ C
∫

Σti

|A|2dμ̃ti ≤ C. (6.8)

Suppose that Σti blows up around a point p ∈M . We have

λ2
i = max

Σti
∩BM

r (p)

|A|2 →∞.

Assume that λi = |A|(xi) and that F (xi, ti)→ p as i→∞. Considering the blow-up sequence

Fi = λi(F (x + xi, ti)− F (xi, ti)),

we can see that Fi → F∞ as i→∞ and F∞ is a minimal surface in R
4 with |A| ≤ |A(0)| = 1.

By [4, Lemma 5.3], we have

ε0 ≤
∫
B4

1(0)∩Σi

|Ai|2dμi =
∫
B4

λ
−1
i

(0)∩Σi

|A|2dμti .

By (6.8), one can see that the blow-up set is at most a finite set of points which we denote by

S. We can see from (6.7) that Σ∞ is a surface with K = 0, i.e., H = 2πνN (∇ψ). As mentioned

in [1], given a surface Σ in (M, g), H̃ = e−2ψ(H − 2πνN (∇ψ)) = e−2ψK, where H̃ is the mean

curvature vector field on Σ with respect to the metric on Σ which is induced by g̃ = e2ψg.

Consequently, K = 0 is equivalent to H̃ = 0. This proves the theorem.

Combining Theorem 6.1 and Theorem 6.2, we have the following corollary.

Corollary 6.1 Assume that M = M1 ×M2, M1 and M2 are Riemann surfaces with the

same average scalar curvature r. Then M is an almost Einstein surface with ρ = rω + 2ddcψ.

Let Σ0 be a graph in M . If v(x, 0) ≥ v0 > 1√
2
, then the glabal solution F (·, t) of (1.1) exists and

sub-converges to F∞ in C2 as t→∞, possibly outside a finite set of points, and Σ∞ = F∞(Σ)

is a minimal surface in (M, e2ψg).
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