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Abstract The authors mainly study the generalized symplectic mean curvature flow in
an almost Einstein surface, and prove that this flow has no type-I singularity. In the graph
case, the global existence and convergence of the flow at infinity to a minimal surface with
metric of the ambient space conformal to the original one are also proved.
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1 Introduction

Suppose that (M, .J,@,7) is a smooth Kihler manifold of complex dimension n. Let Ric be

the Ricci tensor of g, and then the Ricci form p is defined by
7(X,Y) =Ric(JX,Y).

Recently, T. Behrndt [1] proposed a generalized mean curvature flow. Instead of considering
the flow in a K&hler-Einstein manifold, he considered the case that the ambient manifold is

almost Einstein, that is, an n-dimensional Kéhler manifold (M, J,@,g) with
P = Aw + ndd“y

for some constant A € R and some smooth function ¢ on M (see [1]).

Suppose that the Kéhler manifold (M, J,@,q) is almost Einstein. Given an immersion
Fy : ¥ — M of an n-dimensional manifold ¥ into M, Behrndt [1] considered a generalized
mean curvature flow

B
5 P t) = K(,1), (2,1) € x(0,T),

F(z,0) = Fy(z), xr € X,

(1.1)
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where
K =H —nm,x(VY)

is a normal vector field along > which is called the generalized mean curvature vector field of
Y. As K is a differential operator differing from H just by lower order terms, it is easy to see
that (1.1) has a unique solution on a short time interval (see [1]).

Behrndt [1] proved that if ¥y = Fy(X) is Lagrangian in the almost Einstein manifold M,
then along the generalized mean curvature flow (1.1), it remains Lagrangian for each time.
Therefore, it is reasonable to call such a flow the generalized Lagrangian mean curvature flow.

As a special case, Behrndt [1] also considered the generalized Lagrangian mean curvature
flow in an almost Calabi-Yau manifold (see [11]).

In [12], we studied the generalized Lagrangian mean curvature flow in an almost Einstein
manifold. We proved that the singularity of this flow is characterized by the second fundamental
form. We also proved that the type-I singularity of the generalized Lagrangian mean curvature
flow in an almost Calabi-Yau manifold is a stationary cone. In particular, the generalized
Lagrangian mean curvature flow has no type-I singularity.

Let (M, J,w,q) be a Kéhler surface. For a compact oriented real surface ¥ which is smoothly
immersed in M, « is the Kéhler angle of ¥ in M (see [5]). We say that 3 is a symplectic surface
if cosa > 0.

In this paper, we mainly study the generalized mean curvature flow in an almost Einstein
surface with the initial surface symplectic. We show that if the initial surface ¥y is symplectic,
then along the generalized mean curvature flow (1.1), it remains symplectic for each time.
Therefore, we can call this flow the generalized symplectic mean curvature flow.

In general, the mean curvature flow may develop singularities as time evolves. According
to the blow-up rate of the second fundamental form, Huisken [8] classified the singularities
of the mean curvature flow into two types: type I and type II. Chen and Li [2] and Wang
[13] independently proved that if M is a Kéhler-Einstein surface, then the symplectic mean
curvature flow has no type-I singularity. Following the idea in [8], we can also define type-I
and type-II singularity for our flow. And we can also prove that if M is an almost Einstein
surface, then the generalized symplectic mean curvature flow has no type-I singularity (see
Theorem 5.1). Note that if ¢ = const., our flow is just the symplectic mean curvature flow in
a Kéhler-Einstein surface, so our result is a generalization of theirs.

In this paper, we also consider the graph case. Suppose that M = M; x My, where
(M1,9,,w1) and (Ma, gy, w2) are Riemann surfaces with the same average scalar curvature
r. Then M is an almost Einstein surface with 5 = rw + 2dd®). Suppose that the initial sur-
face is a graph with (e; x e, w1) > %, where {e1,e2} is an orthonormal frame of the initial
surface. We show that the generalized mean curvature flow (1.1) exists globally and the global
solution F(-,t) sub-converges to F., in C? as t — oo, possibly outside a finite set of points,
and Yo, = F(X) is a minimal surface in (M,e?¥g). Chen, Li and Tian [4] and Wang [13]

proved the global existence and convergence of the mean curvature flow in the graph case that
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M; and Ms are of the same constant curvature. Han and Li [7] proved a similar result for the
Kéhler-Ricci mean curvature flow. In [7] and this paper, we only assume that M; and M; have

the same average scalar curvature.

2 Evolution Equations

In [12], we computed the evolution equations of the induced metric and the second funda-
mental form of ¥; along the generalized mean curvature flow (1.1). We will omit the proof and

state them here in this section.
Lemma 2.1 Along the generalized mean curvature flow (1.1), the induced metric evolves

by

a [e'3 e
Consequently, we have the following corollary.

Corollary 2.1 The area element of ¥y satisfies the following equation:

0
8_th = —(K, H)dp, (2.1)
t
and consequently,
0
ot dpe = —/ (K, H)dp. (2.2)
pon oM

We also have the following lemma.

Lemma 2.2 Along the generalized mean curvature flow (1.1), the norm of the second fun-

damental form satisfies
%|A|Q < AJA]? = VAP + CIAI* + C|A], (2.3)
where C' depends on the ambient space M and ||Vl c2(ar)-

Theorem 2.1 If the second fundamental form of ¥; is uniformly bounded under the gener-
alized mean curvature flow (1.1) for all time t € [0,T), then the solution can be extended beyond
T.

3 The Evolution of the Kahler Angle Along the Flow

In this section, we consider the case n = 2. That is to say, M is an almost Einstein surface,
and X is a symplectic surface in M.

Let Jx, be the almost complex structure in a tubular neighborhood of ¥y on M with

Jx,e1 = ea,
JZf,eQ = —é€1, (3 1)
Js,e3 = ey,

J2t64 — —es.
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It is proved in [2] that

[VJs, > = |hl), + h3yl* + |hgy, — B3> > | H. (3.2)

N =

Choose an orthonormal basis {e1, ez, e3,e4} on (M,g) along ¢ such that {e;, es} is the basis

of ¥; and the symplectic form w; takes the form
wy = cosauy A us + cosaus A ug + sinauy A us — sin aug A ug, (3.3)

where {uq, us, us, us} is the dual basis of {e1, es, €3, e4}. Then along the surface ¥; the complex

structure on M takes the form (see [2])

0 cosa  sina 0
J— | cose 0 0 —sina
| —sina 0 0 cos
0 sina  —cosa 0

Theorem 3.1 The evolution equation for cosa along ¥ is

(% - A) cosa = |VJZ,5|2 cosa + Asin? accos a — 2(V, V cos a)

+ 2sin a cos a[—va(el, Jes) +V2w(e2, Jeq)]. (3.4)

As a corollary, if the initial surface Xq is symplectic, then along the flow, at each time t, ¥; is

symplectic.

Proof Using Lemma 2.1, (3.3), and the fact that Vw = 0, we have

0 w(e,es) — — 1 0
5 COSQ = 5 oo, Ww(Ve, K, e) +w(er, Ve, K) 5 Cos g =gij

= w(V61K4e4, es) — w(vezK?’eg, e1) + w(K3veleg, es) + w(K4vele4, €2)
+w(er, K3V, e3) +w(er, K*V,eq) + (K, H) cosa

=sina(K} + K%) + w(—K°hi e1, e2) + w(—K*hije1, e2)
+ wler, —K3h3yes) +w(er, —K*hjses) + (K, H) cos a

= sincu(Kfl1 + K?’Q) — K3h3, cosa — K*hi, cosa — K3h3, cos o
— K*hjycosa + (K, H) cosa

=sina(K] + K%). (3.5)

Recall the equation in Proposition 3.1 and Lemma 3.2 in [6] for cosa to have
Acosa = —|VJs,|? cosa + sin oz(Hj“1 + H‘32) —sin? aRic(Jey, e3).
Thus we have

0 - ; —
(& - A) cosa = |V.Js, |* cos a — sin oz(Vfl1 + Vg) + sin? aRic(Jey, e3). (3.6)
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Denote V = 27,5(V1)) = V@,. Then

It is computed in [12] that
V& =2(Ve, Vi, eq) + 205 (Vi, €5).
Recalling that (see [6])
drav = —(hiy + hi)
and
o = —(h3y + hiy),
we get

V4 + V3 2<v€1vw7 €4> + 2h£11] <v¢7 ej> + 2<v626w7 €3> + 2h§j <v¢7 €j>
2<Ve1vwv 64> + 2<v62vw7 63> - 2<v1/)7 alael + a2a62>
2<Ve1vwv 64> + 2<v62vw7 63> - 2<v1/)7 VO(> (38)

Since M is an almost Einstein surface, we have
Ric(Jer,e2) = pler, ea) = \w(er, e2) + 2ddp(er, e2) = Acosa + 2dd“(eq, ea).
Moreover,

dp(er) = —dip o J(er) = —g(Vip, Jer) = —(Vi, Jey).

Hence

dd®(er, e2) = e1(d“Y(e2)) — e2(dY(er)) — d“P([e1, e2])
= —e1(V), Jea) + ea(Vih, Jer) — 0
—Weﬁw, Jea) — (Vip, IV e2) + (Ve, Vb, Jer) + (Vb, IV e1)
—(Ve, Vb, Jea) — (Vi hiyJeq) 4+ (Ve, Vb, Jer) + (Vib, hfy Jeq)
<ve Vi, Jea) + (Ve, Vi), Jer)
—(Ve, Vb, er)(Jez, e1) = (Ve, Vi, ea)(Jez, ea)
+(Ve, Vb, ea)(Jer, ea) + (Ve, Vb, e3)(Jeq, e3)
= (Ve, Vb, er) cosa + (Ve, Vi, e4) sina
+ (Ve, Vb, e3) cosa + (V,, V), e3) sin .

Thus we have

Ric(Je1,e2) = Acosa + 2(Ve, Vib, e1) cosa + 2(V,, Vb, e4) sin
+2(Ve, Vib, e2) cos a + 2(V,, Vi, e3) sin a. (3.9)
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Putting (3.8)—(3.9) into (3.6), we get
(% - A) cosa = |VJsg, | cosa + Asin? a cos a 4 2sin a(Ve), Va)
—2sina(V,, Vib, eq) — 2sina(V,, Vi, e3)
+ 2sin? acos a(V,, Vi, e1) + 2sin® a(V,, Vb, eq)
+ 2sin? a cos a(V,, Vi), e2) + 2sin® a(V,, V), e3)
= |VJs,|?cosa + Asin? acosa — 2(V), V cos a)
— 2sina cos® a(V,, Vi, e4) — 2sinacos® a(V,, Vi), e3)
+ 2sin® acos a(V,, Vi, e1) + 2sin? accos a(V., Vi), e3)
= |VJs,|*cosa + Asin? acosa — 2(V), V cos a)
+ 2sinacos a(V,, Vib, sin ae; — cos aeq)
+ 2sina cos a(V,, Vi, sin aes — cos aes)
= |VJs,|*cosa + Asin? acosa — 2(V), V cos a)
+2sinacosa(V,, Vb, —Jez) + 2sinacos a(V,, V), Jes)
= |VJs,|?cosa + Asin? acosa — 2(V), V cos a)
+ 2sinacos a[—vzw(el, Jes) + Vzw(eg, Jeq)].

This proves the theorem.

The above theorem motivates the following definition.

Definition 3.1 A family of symplectic surfaces satisfying (1.1) is said to evolve by the

generalized symplectic mean curvature flow.

4 Monotonicity Formula

Let H(X, Xo,t,t0) be the backward heat kernel on R*. Let ¥; be a smooth family of surfaces
in R* defined by F; : ¥ — R*. Define

p(X,t) = (4n(to — t)) H(X, Xo, 1, to) = X - X0|2)

dn(to—1) ( Aty — 1)

for t < tg. We have along the generalized symplectic mean curvature flow (1.1)

_ _ 2
@:< 1 (K, X-Xo) |X—X ) . (4.1)
ot \tg—t 2(to — t) 4(to — )2
We also have
Ay ((F—XO,VF>2 (P = Xo,H+¢"T,, %5095 e,) 1 ) 42)
P\ 4t - 1)2 2(to — ) to—t)" '
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Combining (4.1) with (4.2) gives us

(G o= (- S

_ <7TVE(VQ/})a F— X0> )P (43)

to—t

< ij Fa IFP 9F°
po Dzt dxi

to— 1

OL)F_X0>

Applying the evolution equation for cos a;, we have

0 - -
(& - A) cosa > [VJs, |* cosa — 2(Vi), Vcosa) — Ccosa, (4.4)
where C' depends on |[¢[|c2(ar) and .

On X, we set

v=-e%cosa,

where C' is the constant in (4.4). Denote the injectivity radius of (M,q) by iy. For Xy € M,
take a normal coordinate neighborhood U and let ¢ € C§°(Ba,(Xp)) be a cut-off function with
¢ =11in B,(Xyp), 0 < 2r < ip. Using the local coordinates in U we may regard F(z,t) as a
point in R* whenever F(z,t) lies in U. We define

1
W(F, Xo,tsto) = | —&(F)p(F, t)dp.
3t

The following monotonicity formula generalizes Proposition 4.2 of [2] to the almost Einstein
case. In [12], we got the similar monotonicity formula for the generalized Lagrangian mean
curvature flow. Some of the estimates in the proof of the following proposition have appeared

n [12]. For completeness, we sketch the proof below.

Proposition 4.1 Let Fy : ¥ — M be a generalized symplectic mean curvature flow in
a compact almost Einstein surface M. Then there exist positive constants ¢y, co, c3 and cy

depending only on M, Fy, to and r which is the constant in the definition of ¥, such that

§t< C“/to—/ ¢Pdﬂt)

2 2 (F - X
<—e01‘/t°—‘t/ ;qﬁ |W| ‘K+70) ‘ +C4IK|2)dut
o

2(to — 1)
civito—t
L + czeftVioTt, (4.5)
(to— )%

Proof By (3.4), we have

(5-2) -t

5 (4.6)

Note that
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Using (2.1), (3.7), (4.3) and (4.6), we have

d d 1
—W(F, X = — —
¢ ( 5 07tat0) dt /Zt ,U(bpd/'[/t

/ L oA pdp, - / L (K K + Vg
5 U

IN

2(to — 1)
1 (g T OF” 9F” ea, F — Xo)

po dxt Dz
n, U ¢ to —t
— 1 V.F — X,
- / 2<w7V—>¢pdut— Lop UL =Koy, -
0, v 2(to — t) U

Again, by (2.1) and (3.7), we have
ot
< 1|V|2dut < Cdpy,
which implies that
0
EArea(Zt) < CArea(X;).

Therefore, we have

Area(X;) < e“Area(Xg) < C.
The same estimate as in [2] implies

| (o0~ Sonp)am <
As ¢ € C§°(B2,(Xp), R*), we have (see [9, Lemma 6.6])

[Vg|?
<
P 2%1§S(|V 9l

By Young’s inequality,

% v

<e ;qﬁpIKl dui + C(e).

Py

1 1
d —(2K2 —
ut+/z PR+

0
~rdpe = — (K, Hydpe = —(H, H = V)du, = (—|H[* +

J. Y. Liand L. Q. Yang

Vol
¢

¢P<K V)due.

o

(H,V))dp

¢p<K V)dps < e/ —¢p|K|*dpuy + Cle / —op|V [*dpu

d
/ (%—A) ¢pdut+/ Alaﬁpdum/&%pﬁqs,mduﬁ/ 1¢<§t+A)Pth

—/Et oo(L2L  Zigop o L Xl g, /Z (60~ Top) dp

(4.7)

(4.10)

(4.11)

Using the fact that V| < C, |Vo| < C|Va| < C|VJs,| and Holder’s inequality, we have

/E t<vwv ><z>pdut<c / (v, 53V opap < 0 / Vol gpdp ) / aspdutf

|VJEt| _¢pd,u‘t + C( )
3¢

(4.12)
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Since
— 1 1 1 1 1
2> ZIHP = K2+ = |V + (K, V) > =|K|]? — =|V|?
Vs, 2 SIHP = SIKP + 5IVE+ (K, V) > 7K1 - SVI2
we have

1 — 1
- / 5ol s, P < / L OPIK P+ C. (1.13)

In a way similar to the proof of (13) in [3], we have

F— Xy, 9 zjra BF:’BF”e Ft
= X0 0T o ot By ol gy < ¢, 20 (4.14)
2(to — t) Vio—t
Finally, we need to estimate the term — th %qﬁp%dut We claim that (see [12] for the
proof)
|F‘_AXYO|2 p(F7t)
— () <Ci————=+C, 0 -1 1. 4.15
(to_t)aph)_ o—pp O O<e <pB< (4.15)
Especially, if we choose o = % and 8 = %, then we have
1 <V F— X0> c c
VWL 700, < Ut . 416
Putting (4.9), (4.12)—(4.14) and (4.16) into (4.7), we obtain
0 2V (F — Xo)
—U < — ’K 7’ K|*)d
ot /z:,, v¢p( M +lK] ) pe
T 2 e (4.17)

v+
Vio =T (to —t)3

Rearranging (4.17) yields the desired inequality.

5 No Type-I Singularity

Using (2.3), we can argue in the same way as that of the mean curvature flow (for example,
Lemma 4.6 of [2]) to obtain the lower bound of the blow-up rate of the maximal norm of the

second fundamental form at a finite singular time 7.

Lemma 5.1 Let Uy = max |A|?. If the generalized mean curvature flow (1.1) blows up at a
finite time T > 0, there exists a positive ¢ depending only on M, such that if 0 <T — 32\/2,
then the function U, satisfies

1
U, > —+1—.
" 8VR(T - 1)

According to the lower bound of the blow-up rate, we can classify the singularities of the

generalized symplectic mean curvature flow (1.1) into two types, which is similar to that of the

mean curvature flow defined by Huisken [8]. This definition was given in [12].
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Definition 5.1 We say that the generalized mean curvature flow (1.1) develops type-I sin-
gularity at T > 0, if

limsup (7T — ¢) max |A|2 <C
t—T P

for some positive constant C. Otherwise, we say that the generalized mean curvature flow (1.1)

develops type-I1 singularity.
Arguing as in [2], we have

Theorem 5.1 The generalized symplectic mean curvature flow has no type-1 singularity at

any T > 0.

Proof Suppose that the generalized mean curvature flow develops a type-I singularity at a

finite time tg > 0. Assume that
A = AP (z, th) = IIiaX|A|2 — 00 ask — oo.
t<ty

As Y is closed, we may assume that xx; — p € X and tx — tg as kK — oo. We choose a
local coordinate system on (M,g) around F(p,tg) such that F(p,tg) = 0. Then we rescale the

generalized mean curvature flow to have
Fi(z,t) = Mo (F(, ty + A\ 2t) — Fp,tg)), t € [=Aity, 0]
Denote by XF the scaled surface Fy(-,t). Then the induced metric satisfies
g5 = Agiss (657 = A9V,

The scaled surface satisfies

OF] — <
a_tk =K, = H, — 2)‘19 lﬂqu(vw)'
By Lemma 5.1, we have
C &
> A (zg, tr) >
to — t 2[4 te) 2 to = tx

for some uniform constants ¢ and C' independent of k. We then have
| A2 (24, 0) = )\%|A|2(a:k,tk) _1 (5.1)
and
A (0,0 = AP A 1) <1

so there exists a subsequence of Fj which we also denote by Fj, such that Fj, — F, in any ball
Bgr(0) C R*, and F., satisfies

0F

o e =l
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with
[Asc?(p,0) =1, |A]> < 1. (5.2)

Set vg (Fy(2,t)) = v(F(x, A\, %t + t)) and ¢x(Fi(z,t)) = ¢(F(x, A\, %t + t)). It is easy to see
that

1 |Fe + M F(p, te)2 g
/Ek a(bk( ) teXP(_ 400 — 1) )dﬂt

=[S e (-

Euﬁ-*;:zf tk a (tk + )\k ¢

|F (2, t) + A, %t)[?
—9 ) ot
4(tk — (tk + )‘k t))

where ¢ is the function defined in the definition of W. Notice that ¢ + /\;21& — tg for any fixed
t. By Proposition 4.1,

VO (B Xy, 1, 10)) < 22

- +C eclx/to t
ot (to— 1)1

and it then follows that tlintl eVt exists. This implies that, for any fixed s; and s, with
—lo

—00 < 81 < 89 < 0, we have

ciy/t—(te+Ag s2)

F F 2
ox (_| K+ A E(p, ) )d k

Ek ’Uk — 89 4(0 — 82) 52
1Vttt Ay, 251 / eXp(_ |Fk+)\kF(patk)|2)d k
Ek ’Uk — 51 4(0 — 81) 1
—0 ask — oo. (5.3)

Integrating (4.5) from s; to s2, we obtain

SN 1 1 EFyp + M\ F(p,t
_ et f)\k282/k — 826xp<—| E+ Ak (pa k)| )duk

ko Uk 0— 4(0_52) >
Clm i 1 B |Fk+>\kF(patk)| duF
e ) /zk w0 eXp< 40— 1) ) B
— (Fi + M\ F(p,t
> [Fe T [ Sonptrn|in+ BRI Fayta

/ o / Q'W’“' 2L prp(Fr, Hydulat

S2 —
+/ eV —Ak t/k E(bkp(Fk,f,)C;llKdeufdt
s1 P

_4—\/6%«—51)%—(—52)%) NV e\ (s — sy et M VI (5.4)

Since the singularity is of type I and the vector field V = 27,5(V1)) is bounded, we know that

there exists a constant C' > 0 such that for ¢ closed to to,

C
K| <|H V< .
K| < 1HI+ V] <~y
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Therefore,

to
F(p,ty)] < /
tr

F fo
Q{a:/|mwga%—m§£,
ot th Ak

where the last inequality follows from the type-I singularity assumption. Without loss of gen-
erality, we can assume that A\ F'(p,tr) — Q as k — oco. Letting k — oo in (5.4) and using (5.3),
we get that

Hy = Ko =0,
(Fuo + Q) =0.

That is,

(Fo + Q,e0) = 0.
It follows that for o = 3,4,

det((hoo)2;) = 0.

)

Since Ho = 0, we also have for a = 3, 4,

tr((heo)fy) = 0.
Thus, (heo)f; = 0 for all i, j = 1,2, a = 3, 4, which yields that |A.| = 0. This contradicts (5.2).
This finishes the proof of the theorem.

6 The Graph Case

In this section we study the generalized symplectic mean curvature flow (1.1) in a special
case. Suppose that M is a product of compact Riemann surfaces M; and M, ie. (M,q) =
(My x Ms,G,® g,). We denote by r1 and ro the average scalar curvature of M; and Mo,
respectively. We assume that ry = ro. Suppose that X is a graph in M = M; x M5. Recall the
definition of the graph in [4]. A surface ¥ is a graph in My x Ms if v = (e A ea,w1) > ¢o > 0,
where wy is a unit Kéhler form on My, and {ej,e2} is an orthonormal frame on X. In this

section, we use some ideas in [4, 7, 13]. We first prove a proposition.

Proposition 6.1 Fach Riemann surface (N,g,w) is an almost Einstein curve with p =

rw + dd°p for some smooth function ¢ on N, where r is the average scalar curvature of N.

Proof Since r = m Sy du, [y(r— R)dp = 0. By the Hodge theorem, there exists a
smooth function ¢ such that R = r + Ag. Since the complex dimension of N is 1, we have

p = rw + dd°p. This finishes the proof of the proposition.

Then we can get the following theorem.
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Theorem 6.1 Let (My,G;,w1) and (Ma, gy, w2) be Riemann surfaces which have the same
average scalar curvature. Suppose that X evolves along the generalized mean curvature flow in

My x Ms. If v(-,0) > @, then the generalized mean curvature flow exists for all time.

Proof Set r =r; = ry. By the above proposition, there exist smooth functions ¢; on My
and 12 on My such that p; = rwy + 2dd®); and by = rws + 2ddpy. For each point (p1,p2) on
My x Ma, let (p1,p2) = ¥1(p1) + ¥2(p2). It follows that 4 is a smooth function on My x Ma,
and p = rw + 2dd“y, which means that M; x M is an almost Einstein surface.

Choose an orthonormal basis {e1, e, e3,e4} on M along ¥; such that {e1,e2} is the basis
of ¥, Set u; = (€1 Aeg,wy +ws) and ug = (e1 A e2,w1 — wa), where wy is a unit Kéhler form
on M. Since both wi + wo and wy — wo are parallel Kéhler forms on My x My, we see that

Theorem 3.1 is applicable. Therefore,
0 9 =
(— — A>u1 = Jiuy + (1 —uf)us — 2(Vp, Vuq)

ot
+24y/1—u? ul[—v2w(61, Jes) + va(eg, Jey)]
Z J1U1 — 2<vw, V’U,1> — CilU1, (61)

where
J1 = by + hiyl* + [hay + hs|* + [hly — hiy[* + A3 — h3, [
By switching e3 and e4, we get that
0 9 =
(— — A)uz = Joug + (1 — uz)us — 2(Vp, Vus)

ot
+24/1—u3 us[~Vowp(er, Jes) + V 1(ea, Jes)]
2 JQUQ - 2<VQ/J, VUQ> — C2U32, (62)

where
Jo = by = hisl® + [h3y — h3y|* + [hls + hiy[* + [h3s + hiy [°.
It is clear that
(e1 A eg,w1>2 +{e1 A eg,w2>2 <1.

The initial condition v(z,0) > ¥%2 implies that u;(z,0) > v(z,0) — X2 > ¢y > 0, i = 1,2. By
(6.1)-(6.2),

(2 - ) (tu) > 2T, V(e ).

Applying the maximum principle for parabolic equations, we obtain that u;(z, t) have positive
lower bounds at any finite time. Suppose that u; > § for 0 <t < ¢3. Then we claim that the

flow F' can be extended smoothly to ¢y + € for some .
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Set u = uy + ug. Adding (6.1) to (6.2), we get

(% - A)u > ulAP? + 2(uy — us)hhd, — 2(ur — up)R3 b, — 2(Vp, V) — Cu. (6.3)

Since u > 2§ + |uy — ug|, using the Cauchy-Schwarz inequality, we get

Pl _
(E - A)u > 26| A2 — 2(V, V) — C. (6.4)

Assume that (Xo,to) is a singularity point As in the proof of Proposition 4.1, we can derive
a weighted monotonicity formula for fz: (F Xo, t,to)dps, where ¢ is the cut-off function in
Proposition 4.1.

0
ot

a 1 1 1
:/ (E - A)—qbpdut + /Et Aa¢ﬁdﬂt + /Zt E<V¢7 K)pdpuy

¢P(F Xo,t,to)dpu

0 1 1
4 [ vol+ ) o~ [ Lonpdu— [ Lopta + VK
Zf Ef P u

AP 9 |H|2 ‘ (F—Xo)* 12 2[Vu?
2,2 K
/ (6 u? + L u + 2(tg — t) ‘ + u? )d'ut

1 — C
+n / (T Tulgpd+ [ opdn
Zt’U; u

Py

1 1 (g¥T,, 9298 ¢ | | F — Xo)
— K d _ - PO dx x d
+/Ztu<w, )pd /E Lo o e

1 V,F — X, 1 1 1
- [ Lot =g~ [ Lopta v+ / A6 pdp +2 / L (96,9 p)du
U 2(to — 1) U u v, U

A2 SIKPR 2|Vul? K[
S—/ ¢p(u+——| ° Vel u' )d +5/ K |q5pdut+
bR ’u >, u

1
—ppd

2 \/0 t Ztu

C2
Tt
(to —t)3

< 5/ ¢p—dut+

¢p e+ + c3.

(o—t)%

Vio—1Jx,
It follows that

2 c1vto—t
|— e + L + czectVioTt, (6.5)

9 ( B =
(to — )%

o ¢pdut) < —gerrVioTt o

5 U

From this we see that tlintl fz L bpdpuy exists.
—to t U
Let 0 < A\; — oo and let F; be the blow-up sequence:

Fi(x,s) = Ni(F(z,t0 + A™%s) — Xo).
Let du’ denote the induced volume form on X% by F;. It is obvious that

1
a¢p(F7X07tat0)d/j/t :/ _¢1p(FZLaO S O)d/'[/57
I 7
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where
t=to+ 1?2

Therefore we get that

-1 1 .
D (et —¢p(Fi,o,s,0>du;)
Ei
0
=)\ 2 (e Viom qsp F, Xo,t,to)dp
8t( 5, U ( ) t)
é _ 1) C1w/t0 ¢p| 2 t+ Cz el to— _ + C_?;eclx/tl)*t
)\i A (tg—t)T A
AT/ —s
e Ay 1\/* ¢| | (F“O s O)d i 02e01 i \/7+ Cc3 v 1S

RV ER

Note that to + )\i s — to for any fixed s as i — oo and that lim e®1Vio~ fEt 1¢pdut exists.

t—to
By the above monotonicity formula, we have, for any fixed s; and so,

- 1 . 1 .
0 — &N VY / L pip(F,0, 51,00yl — / L ip(F,0, 59, 0) s,
i Uj i U

i i
EDY

S2 d . — 1 i
:_/ E(em"’ r/ fqbip(Fi,o,s,o)dus)ds

S1

>5/g X Vs ¢|A|2 p(F;,0,,0)duld
= i iy teds

s1 b33 Uu;
-4 YT (o) (o)) = S Y g - o)
T
Since u; is bounded below, we have
S2
Ai|*p(F;,0,5,0) = 0 asi— oo.
) ¢| zl P, Y, S,

s1 3t

Therefore, for any ball B(0) C R*,
/ |A;|?p(F;,0,5,0) — 0 asi— oo. (6.6)
i NBr(0)

Because u has a positive lower bound, we see that ¥; can locally be written as the graph of a

map f; : Q C My — Ms with uniformly bounded |df;|. Consider the blow up of ft0+%, as
A<

fily) = AftJr)\ (>‘ y)

It is clear that |df;| is also uniformly bounded and lim f;(0) = 0. By the Arzela’s theorem,
fi = foo in C* on any compact set. By the inequality (29) in [10], we have

|[Ai] < [Vdfi] < C(1+[dfil*)] Al
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where Vdf; is measured with respect to the induced metric on 2; From (6.6) it follows that,
for any ball Br(0) C R,

/ VASPp(F,0,5,0) = 0 asi— oo,
i NBr(0)

which implies that f; — fao in C* N W;=? and the second derivative of fa is 0. It is then clear

loc

that E; — 3 and X*° is the graph of a linear function. Therefore,
700 ) By, (Xo)NB, oo

We therefore have

lim p(F, Xo,t,to)dpu, = lim p(F;, 0, si,O)duii =1
t=to J B, (Xo)nS: 1T By (X0)NTY,

By [14, Theorem 4.1] (note that (M) in this theorem for our flow is B(M)(X, V) = nmy 1 (Vo)) —
trace I1(z)|V, where X = (z,t) and II(x) is the second fundamental form of M in RV at x),

we know that (Xo,to) is a regular point. This proves the theorem.

Now we consider the convergence of the generalized mean curvature flow. We follow the
idea in [4]. We do not require the ambient space M to have a product structure in the following
Theorem 6.2.

Theorem 6.2 Let M be a Kdihler surface. Suppose that the smooth solution of the gen-
eralized mean curvature flow (1.1) exists on [0,00). Then there exists a finite set of points S
and a sequence of t; — oo such that ¥y, converges to a surface satisfying H = 27,5 (V4), and
the convergence is in C? outside S. In particular, if (M,g) is an almost Einstein surface with

P = A& + 2dd°ip, then the limit surface is a minimal surface in (M,e?Vg).

Proof By the Gauss equation, we have
/ |A?dug < / |HPdpg + Cig (X)) +4g — 4
¢ ¢

< |K Pdug + Clie(Se) + 4g — 4,
po

where g is the genus of the initial surface ¥y. Because Y; is a continuous deformation of ¥, so

its genus is also g. Define two conformally rescaled Riemannian metrics g and g on M by
g=¢e*g and §=e'g.
Proposition 2 in [1] gives
0
= [ dpz=— [ |K|3dyg,
(’% 5, M!] s, | |g M.‘]

from which we get

o0
(=) < fo(S0) and [ [ K Bdugdt < (o),
t
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So,
[ 1P < [ 1KPag .
oM 3
and there exists a sequence t; — oo such that

/ |K|§du§—>0 as i — oc.

t;

Hence,
/ |K 2dpg = / e*w|K|§ed’du§ = / |K|§du§ —0 asi— o0. (6.7)
S, T, T,
It follows that

/ |A|2dﬁh < Ca
S,

and then
[ 1aPa = [ e iapam, <0 [ 1apa, <c. (6.5)
T, S, T,
Suppose that ¥, blows up around a point p € M. We have
M= max |A]® — .
Ztimgﬁd(iﬂ)

Assume that \; = |A|(z;) and that F(z;,t;) — p as i — oco. Considering the blow-up sequence
Fy = N(F(x 4 4, t;) — F(xi,t5)),

we can see that F; — F as i — oo and Fi is a minimal surface in R* with |4] < |A(0)| = 1.

By [4, Lemma 5.3], we have

o< [ P | Ald,.
B10)nz; BY_, (0)N%;

-
By (6.8), one can see that the blow-up set is at most a finite set of points which we denote by
S. We can see from (6.7) that Yo, is a surface with K = 0, i.e., H = 27,5 (V). As mentioned
in [1], given a surface ¥ in (M,g), H = e 2/(H — 27,5 (V1)) = e 2K, where H is the mean
curvature vector field on ¥ with respect to the metric on ¥ which is induced by § = e?¥3.

Consequently, K = 0 is equivalent to H = 0. This proves the theorem.
Combining Theorem 6.1 and Theorem 6.2, we have the following corollary.

Corollary 6.1 Assume that M = My x My, My and My are Riemann surfaces with the
same average scalar curvature r. Then M is an almost Finstein surface with p = rio + 2dd°i).
Let 3¢ be a graph in M. Ifv(x,0) > vg > \/Li’ then the glabal solution F(-,t) of (1.1) exists and
sub-converges to F, in C? ast — 0o, possibly outside a finite set of points, and Lo = Foo (%)

is @ minimal surface in (M,e?¥g).
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