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Abstract The authors construct a solution Ut(x) associated with a vector field on the
Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow
property where the vector field is a sum of a skew-adjoint operator not necessarily bounded
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1 Introduction

One of the fundamental problems of the theory of dynamical systems concerns the existence
and uniqueness of a global flow Ut generated by a vector field X . To be precise, consider the
following integral equation:

Ut(x) = x+
∫ t

0

X(Us(x))ds,

where X is a measurable vector field on some topological vector space equipped with a positive
Radon measure μ on its Borel σ-algebras. The problem was first treated by Cruzeiro [3–4] and
she established the existence of a flow on the Wiener space associated to a general vector field
valued in the Cameron-Martin space, under exponential integrability of the vector field as well
as its gradient and divergence. Yun [14–15] refined the almost-sure existence to the quasi-sure
existence of flows on the Wiener space associated to weakly differentiable vector fields. It was
shown in [14] that if μ is the Wiener measure on an abstract Wiener space and X is a vector field
taking values in the Cameron-Martin space H of μ, belonging to the Sobolev class W∞

∞ over μ

and satisfying the exponential integrability condition exp
{|δμX | + ‖X‖ +

∞∑
k=1

‖∇kX‖H⊗n

} ∈
Lp(μ) for all p > 1, where H⊗n is the n-fold tensor product of H , then there exists a solution
{Ut} for all initial values except in an (r, p)-polar set for all r ≥ 2 and p > 1. We call this
(r, p)-quasi-sure existence for all r ≥ 2 and p > 1.

Peters [11] obtained the almost-sure existence under some weaker conditions where only one-
fold differentiability of X was required. Therefore, we expect that this situation can be refined
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to (1, p)-quasi-sure existence for any p > 1. Unfortunately, the method used by Yun [14] is
associated with the Ornstein-Uhlenbeck semigroup which acts on the Banach-valued functional.
Since only one-fold differentiability is required, we can not use this method associated with the
Ornstein-Uhlenbeck semigroup to give the (1, p)-quasi-sure existence for any p > 1 through the
procedure (see [14]). In fact, it is well-known that there is no relation between the derivative
operator and the Ornstein-Uhlenbeck operator acting on Banach-valued functionals due to the
lack of Meyer inequality; moreover, the fractional order Ornstein-Uhlenbeck operator is not easy
to deal with. Consequently, we must take another way to construct a solution Ut(x) associated
to a vector field on the Wiener space for all initial values except in a (1, p)-polar set for any
p > 1. After the establishment of (1, p)-quasi-sure existence for any p > 1, we can also obtain
the (1, p)-quasi-sure flow property for any p > 1 and the equivalence of capacities under the
transformations of the Wiener space induced by the solution.

The results in the present paper extend the previous results in [14–15] in the following
way. First of all, we will consider the vector which is the sum of a skew-adjoint operator not
necessarily bounded and a non-linear part. This situation is equivalent to considering a non-
linear perturbation of a semigroup of rotations. Secondly, the condition on X only requires
one-fold differentiability.

This paper is organized as follows. In Section 2, we recall some elements in the Malliavin
calculus and deal with the capacity theory of the Sobolev space W p

1 (B,H). In the last part of
Section 2, we recall some results in [11] for later use. Our main work is in Section 3: We prove
the (1, p)-quasi-sure existence of the solutions associated with the integral equations for any
p > 1, and get the (1, p)-quasi-sure flow property of the solutions for any p > 1. At the end of
Section 3, we also prove the equivalence of capacities under the transformations of the Wiener
space induced by the solutions, which refines the property of mutual absolute continuity.

2 Preliminaries

2.1 Derivatives and Sobolev spaces

Now let us recall and fix some notations and notions. Let (B,H, μ) be an abstract Wiener
space introduced by Gross [6], where

(1) B is a real, separable Banach space with the norm ‖ · ‖,
(2) H is a real, separable Hilbert space densely and continuously imbedded in B with the

inner product 〈x, y〉H ,
(3) μ is the standard Gaussian measure, i.e., the Borel probability measure on B such that∫

B

exp{i(h, x)}dμ = exp
(
− 1

2
〈h, h〉H

)
,

where h ∈ B∗ ⊆ H∗ and (·, ·) is a natural pairing of B∗ and B.
We refer to [10] (see also [7]) for the background in the Malliavin calculus. In the following we

fix an orthonormal basis {hi; i ≥ 1} ofH with hi ∈ B∗ for all i ≥ 1. LetG be a separable Hilbert
space. A G-valued functional F is called a cylindrical if there exists N,M ≥ 1, fi ∈ C∞

b (RM )
and ki ∈ G (1 ≤ i ≤ N), such that

F =
N∑

i=1

Fiki =
N∑

i=1

fi(h1(ω), · · · , hM (ω))ki.

We denote by Cylin(W,G) the space of G-valued cylindrical functions. For F ∈ Cylin(W,G),
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we define

DF =
N∑

i=1

DFi ⊗ ki,

where

DFi =
M∑

j=1

∂jfi(h1(ω), · · · , hM (ω))hj , 1 ≤ i ≤ N.

For any p > 1, we can define the seminorm on Cylin(W,G) as

‖X‖p
W1,p

=
∫

B

||X(x)||pGdμ+
∫

B

||DX(x)||pH⊗Gdμ.

Now for any p > 1, we define W p
1 (B,G) as the completion of a Cylin(W,G) with respect to

the norm ‖ · ‖W1,p . If G = R, we simply write W p
1 (B) and Cylin(W ). Furthermore, a Gaussian

divergence operator δ(X) can be defined as the adjoint in L2(B,G) of the gradient along H :∫
B

〈X,DF 〉Hdμ =
∫

B

Fδ(X)dμ, ∀F ∈ Cylin(W,G).

Let {V n}∞n=1 be an increasing sequence of a finite dimensional subspace of B∗, such that
the projection PV n ↑ Id|H strongly. We denote by μn the Gaussian measure on V n associated
to the restriction of the inner product 〈·, ·〉H to V n. Also denote by σn ⊆ BB the σ-algebra
consisting of cylindrical sets based on V n. Obviously, {σn}∞n=1 is a filtration of sub σ-algebras

of BB , where BB is a σ-algebra generated by
∞⋃

n=1
σn. The Ornstein-Uhlenbeck semigroup Tε

on B is defined by the Mehler formula

TεX(x) =
∫

B

X(e−εx+
√

1 − e−2εy)dμ(y).

This semigroup provides us with smooth approximations of a vector field X .

Definition 2.1 For X ∈ L(B,H), the finite dimensional approximations of X w.r.t.
{V n}∞n=1 are defined as

Xn = PV n ◦ E[TτnX |σn], n = 1, · · · ,∞,

where {τn}∞n=1 is a sequence of positive numbers converging to zero.

The following results are due to G. Peters [11].

Proposition 2.1 Let 1 < p < ∞, and {Xn}∞n=1 be the finite dimensional approximations
of an X ∈W p

1 (B,H) defined in Definition 2.1. Then Xn are C∞ cylindrical functionals based
on the subspace V n such that

‖Xn −X‖W1,p → 0, as n→ ∞.

2.2 Capacity theory on Wiener spaces
We fix p > 1. Given an open set O in B, its (1, p)-capacity is defined by

C1,p(O) = inf{‖f‖W1,p : f ∈W p
1 , f ≥ 1 a.e. on O},
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and for any subset A ⊆ B, its (1, p)-capacity is defined by

C1,p(A) = inf{C1,p(O) : O is open and A ⊆ O}.

If C1,p(A) = 0, then A is called a (1, p)-polar set. If some properties hold except on a (1, p)-
polar set, then we say that it holds (1, p)-quasi-everywhere. A subset A will be called 1-slim
if C1,p(A) = 0 for any p > 1. We also say that it holds 1-quasi-everywhere if some properties
hold except on a 1-slim set.

For any H-valued Wiener functional f : B → H , if for any ε > 0, there exists an open set
O with C1,p(O) < ε such that f : B\O → H is continuous, then we call this H-valued Wiener
functional (1, p)-quasi-continuous. An H-valued Wiener functional f is said to possess a (1, p)-
quasi-continuous modification f̃ if among the equivalence classes of μ-measurable functions of
f , we can choose a (1, p)-quasi-continuous function f̃ . An H-valued Wiener functional f is said
to be 1-quasi-continuous if it is (1, p)-quasi-continuous for all p > 1.

We note that the following property holds for Sobolev spaces on an abstract Wiener space:

W p
1 (B,H) ∩ Cb(B;H) is dense in W p

1 (B,H) and 1 ∈W p
1 (B,H).

By Meyer inequality, we can get the equivalence between Sobolev spacesW p
1 (B,H) and F p

1 (B,H),
which is defined through the Ornstein-Uhlenbeck operator. Then it has been proved by Shigekawa
[13] (see also Denis [5]) that any f ∈ W p

1 (B,H) admits a (1, p)-quasi-continuous modification
and this is denoted by f̃ , and the following Chebyshev type inequality holds:

C1,p(||f̃ ||H ≥ λ) ≤ 1
λp

||f ||W1,p .

Moreover, we can get a capacity version of Kolmogorov’s criterion for path continuity. We refer
the readers to Shigekawa [13] for a proof.

Theorem 2.1 Let X = {X(t), t ∈ D} be an H-valued process on a domain D of R
d and

p > 1. Suppose that X(t) ∈ W p
1 (B,H). Further, suppose that there exist constants α > 0 and

c > 0 such that for all (s, t) ∈ D ×D,

‖X(t) −X(s)‖p
W1,p

≤ c|t− s|d+α.

Then X(t) admits a (1, p)-quasi-continuous modification X̃(t) for each t ∈ D, and for (1, p)-
quasi-every x ∈ B, the sample paths of X̃(t) are continuous.

2.3 Anticipating flows on the Wiener space
Now we turn to the integral equation on the Wiener space and recall some results related

to this article. We denote by L (H,H) the Banach space of a linear continuous operator
L : H → H equipped with the norm

‖L‖L (H,H) = sup
v∈H

‖v‖H=1

‖L(v)‖H .

We also define a nice strongly continuous semigroup on H as follows.

Definition 2.2 A strongly continuous semigroup Qt of linear operators on H is said to be
nice if there exists a measurable norm ‖x‖B1 and a constant CT such that

‖x‖B + ‖Qtx‖B ≤ CT ‖x‖B1 , x ∈ H, t ∈ [−T, T ].
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Proposition 2.2 summarizes the results of Peters in [11].

Proposition 2.2 Let X ∈ ⋂
p>1

Lp(B,H) be a vector field on B, Qt be a nice strongly

continuous semigroup of a unitary operator on H, and Q̃t : B → B denote the measurable
linear extension of Qt to B. Suppose that the vector field X satisfies the following conditions:

∃λ0,

∫
B

exp(λ0|δX |)dμ <∞,

∀λ,
∫

B

exp(λ‖DX‖L (H,H))dμ <∞.

Then there exists a solution Ut(x) of the integral equation

Ut(x) = Q̃t(x) +
∫ t

0

Qt−sX(Us(x))ds for μ-a.e. x ∈ B,

for all t ∈ R.
Also, the image of Gaussian measure μ under Ut has the Radon-Nikodym density

JUt(x) = exp
(∫ t

0

δX(U−s(x))ds
)
,

and for T > 0, there exist p̃T > 1 and C(p̃T , T ) > 0 such that

‖JUt‖Lp̃T ≤ C(p̃T , T ), |t| ≤ T.

The solution Ut enjoys the crude flow property, i.e., for every s ∈ R there exists a set
Es ⊆ B such that μ(Es) = 1 and

Ut ◦ Us(x) = Ut+s(x), ∀x ∈ Es, ∀t ∈ R.

Remark 2.1 The measurable linear extension Q̃t always exists and preserves the Gaussian
measure μ (see [8]). As in [11, Section 4], under the condition that Qt is nice, Q̃t can be consid-
ered as a (possibly unbounded) linear operator on B with a domain in D(Q̃t) of full measure,
where D(Q̃t) does not depend on t. Since Q̃t is a linear operator and is H-differentiable, we
obtain DQ̃t(x) = Qt, x ∈ B, for each t ∈ R.

The strategy for proving this proposition is to find a solution to approximate integral equa-
tions

Un
t (x) = Q̃t(x) +

∫ t

0

Qt−sX
n(Un

s (x))ds, x ∈ B,

where {Xn}∞n=1 are approximations of X which are defined as in Definition 2.1, and then to
show that the limit lim

n→∞Un
t (x) exists μ-a.e. in x ∈ B and prove the theorem. More details of

the proof can be found in [11].
We give the following result from [11] which will be used later.

Proposition 2.3 For T > 0, we can choose pT > 1 and constants C(pT , T ), that are
independent of n, such that the finite dimensional flow Un

t is a Radon-Nikodym derivative that
satisfies

‖JUn
t
‖pT ≤ C(pT , T ), t ∈ [−T, T ].

Also, for each s ∈ R there exists a set Es such that μ(Es) = 1 and

Un
t+s(x) = Un

t ◦ Un
s (x), ∀x ∈ Es, ∀t ∈ R.
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3 1-Quasi-sure Analysis of Integral Equations on the Wiener Space

We now give the main result concerning the 1-quasi-sure flows associated with a vector field
of low regularity.

Theorem 3.1 Let X ∈ ⋂
p>1

Lp(B,H) be a vector field on B, Qt be a nice strongly continuous

semigroup of a unitary operators on H, and Q̃t : B → B denote the measurable linear extension
of Qt to B. Further, let the vector field X fulfill the following conditions:

∃λ0,

∫
B

exp(λ0|δX |)dμ <∞,

∀λ,
∫

B

exp(λ‖DX‖H⊗H)dμ <∞.

Then we can choose a 1-quasi-continuous modification X̃(x) of X(x) defined everywhere on B,
and we can construct Ut(x), t ∈ R and x ∈ B, satisfying the following integral equation:

Ut(x) = Q̃t(x) +
∫ t

0

Qt−sX̃(Us(x))ds for 1-quasi-every x ∈ B (3.1)

for all t ∈ R.
Moreover, the solution Ut has the 1-quasi-sure flow property, i.e., for all s ∈ R,

Ut ◦ Us(x) = Ut+s(x) for 1-quasi-every x ∈ B

for all t ∈ R.
Finally, the mapping x→ Ut(x) preserves the class of 1-slims set for all t ∈ R.

Remark 3.1 Thanks to the following lemma which shows that bounded continuous op-
erators from B to H are of the Hilbert-Schmidt class when restricted to H , our results also
hold under exponential integrability assumptions exp{‖DX(x)‖L (H,H)} ∈ Lp(μ) for all p > 1.
Hence our results refine the almost-sure existence in [11] to 1-quasi-sure existence.

Lemma 3.1 (see [2, Theorem 3.5.10]) Let (B,H, μ) be an abstract Wiener space, and then
one can find an orthonormal basis {en} in H such that

∞∑
n=1

‖en‖2
B <∞.

We also need the following lemma (see [1]), and for the convenience of the readers, we include
the proof.

Lemma 3.2 Let DX(x) ∈ L (H,H) be a linear continuous operator, and then we have

‖DX(x)‖H⊗H ≤ C‖DX(x)‖L (H,H),

with C depending only on B and μ.

Proof By the above lemma, we can find a complete orthonormal system {en}∞n=1 of H

such that
∞∑

n=1
‖en‖2

B =: C < +∞. Then we obtain

‖DX(x)‖2
H⊗H =

∞∑
i=1,j=1

(〈DX(x)(ei), ej〉H)2 =
∞∑

i=1

‖DX(x)(ei)‖2
H

≤ ‖DX(x)‖L (H,H)

∞∑
i=1

‖ei‖2
B = C‖DX(x)‖L (H,H).
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The rest of this article is devoted to proving Theorem 3.1. For convenience, we fixed T > 0.
If we obtain the desired results, then since T > 0 is arbitrary, the results can also be extended
to the case when t ∈ R.

3.1 Existence

We divide the proof of existence into four steps. As before, we define Xn as Xn = PV n ◦
E[TτnX |σn], where {τn}∞n=1 is a sequence of positive numbers converging to zero.

Step 1 First we note that if Vt(x) solves the integral equation:⎧⎪⎨⎪⎩Vt(x) =
∫ t

0

Q−sX(Q̃s ◦ (Vs(x) + x))ds,

V0(x) = 0,
(3.2)

then Ut(x) = Q̃t ◦ (Vt(x) + x) solves the original equation (3.1). By the results in [11], we can
deduce that Vt(x) ∈ H . Therefore, we can use the theory of the Malliavin calculus and the
capacity version of Kolmogorov’s criterion to investigate the 1-quasi-sure property.

Step 2 We introduce the following process parameterized by [0, 1]× [0, T ]:

Z(s, t) =

{
Vt(x), if s = 0,

V n
t (x) + (s− 1

n )V n+1
t (x)−V n

t (x)
(n+1)−1−n−1 , if 1

n+1 < s ≤ 1
n ,

where V n
t solves the following approximating integral equation:⎧⎪⎨⎪⎩V

n
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (V n

s (x) + x))ds,

V n
0 (x) = 0.

We have the following proposition.

Proposition 3.1 Z(s, t) has a 1-quasi-continuous modification Z̃(s, t) for each (s, t) ∈
[0, 1]× [0, T ]. Moreover, the sample paths of Z̃(s, t) are continuous for 1-quasi-every x ∈ B.

To prove this proposition, we need some lemmas. The following lemma can be found in [11].

Lemma 3.3 For all p > 1, we have

sup
0≤t≤T

E[‖V n
t − Vt‖p

H⊗H ] → 0, as n→ ∞.

We also need the following simple lemma.

Lemma 3.4 For all p > 1, we have

sup
0≤t≤T

sup
n≥1

E[‖DV n
t (x)‖p

H⊗H ] <∞.

Proof Since

d
dt
DV n

t (x) = Q−t ·DXn(Q̃t ◦ (V n
t (x) + x)) ·Qt ·DV n

t (x)

+Q−t ·DXn(Q̃t ◦ (V n
t (x) + x)) ·Qt,
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we have

DV n
t (x) =

∫ t

0

Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qs ·DV n

s (x)ds

+
∫ t

0

Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qsds.

Therefore,

‖DV n
t (x)‖H⊗H ≤

∫ t

0

‖DXn(Q̃s ◦ (V n
s (x) + x))‖H⊗H(‖DV n

s (x)‖H⊗H + 1)ds.

By Gronwall’s lemma,

‖DV n
t ‖H⊗H ≤ exp

(∫ t

0

‖DXn(Q̃s ◦ (V n
s (x) + x))‖H⊗Hds

)
− 1.

Thus using Proposition 2.3, we have∫
B

‖DV n
t ‖p

H⊗Hdμ ≤
∫

B

exp(T ‖DXn(x)‖H⊗H)JUn
t
(x)dμ + C0

≤ C(pT , T )
(∫

B

exp(p · qT · T · ‖DX(x)‖H⊗H)dμ
) 1

qT + C0,

where pT is as in Proposition 2.3 and 1
pT

+ 1
qT

= 1. By the assumptions of Theorem 3.1 we can
conclude that

sup
0≤t≤T

sup
n≥1

E[‖DV n
t (x)‖p

H⊗H ] <∞.

The following two lemmas will play a crucial role.

Lemma 3.5 For all p > 1, we have

sup
0≤t≤T

E[‖DV n
t −DVt‖p

H⊗H ] → 0, as n→ ∞.

Proof Since

d
dt
DV n

t (x) = Q−t ·DXn(Q̃t ◦ (V n
t (x) + x)) ·Qt ·DV n

t (x)

+Q−t ·DXn(Q̃t ◦ (V n
t (x) + x)) ·Qt

and

d
dt
DVt(x) = Q−t ·DX(Q̃t ◦ (Vt(x) + x)) ·Qt ·DVt(x) +Q−t ·DX(Q̃t ◦ (Vt(x) + x)) ·Qt,

we put

αn
t = Q−t ·DXn(Q̃t ◦ (V n

t (x) + x)) ·Qt,

αt = Q−t ·DX(Q̃t ◦ (Vt(x) + x)) ·Qt.

We have

DV n
t (x) −DVt(x) =

∫ t

0

(αn
s − αs) · (1 +DV n

s (x))ds+
∫ t

0

αs · (DV n
s −DVs)ds.
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For fixed t, 0 ≤ t ≤ T , we have

‖DV n
t (x) −DVt(x)‖H⊗H

≤
∫ T

0

‖αn
s − αs‖H⊗H · (1 + ‖DV n

s ‖H⊗H)ds+
∫ t

0

‖αs‖H⊗H · ‖DV n
s −DVs‖H⊗Hds.

Then by Gronwall’s lemma,

‖DV n
t (x) −DVt(x)‖H⊗H

≤
( ∫ T

0

‖αn
s − αs‖H⊗H · (1 + ‖DV n

s ‖H⊗H)ds
)
· exp

(∫ t

0

‖αs‖H⊗Hds
)
.

By Jensen’s inequality

‖DV n
t (x) −DVt(x)‖p

H⊗H

≤
(
T

∫ T

0

‖αn
s − αs‖H⊗H · (1 + ‖DV n

s ‖H⊗H)
ds
T

)p

· exp
(
p

∫ t

0

‖αs‖H⊗Hds
)

≤ T p−1

∫ T

0

‖αn
s − αs‖p

H⊗H · (1 + ‖DV n
s ‖H⊗H)pds · exp

(
p

∫ t

0

‖αs‖H⊗Hds
)
.

Thus

E[‖DV n
t (x) −DVt(x)‖p

H⊗H ]

≤ T p−1E
[( ∫ T

0

‖αn
s − αs‖p

H⊗H · (1 + ‖DV n
s ‖H⊗H)pds

)2] 1
2 ·E

[
exp

(
2p

∫ t

0

‖αs‖H⊗Hds
)] 1

2

≤ T p− 1
2E

[ ∫ T

0

‖αn
s − αs‖2p

H⊗H · (1 + ‖DV n
s ‖H⊗H)2pds

] 1
2 ·

(∫ t

0

E[exp(2p · t · ‖αs‖H⊗H)]
ds
t

) 1
2

≤ T p− 1
2

(∫ T

0

E[‖αn
s − αs‖2p

H⊗H · (1 + ‖DV n
s ‖H⊗H)2p]ds

) 1
2 ·

(∫ t

0

E[exp(2p · t · ‖αs‖H⊗H)]
ds
t

) 1
2
.

Note that by the assumptions of Theorem 3.1, we have

E[exp(2p · t · ‖αs‖H⊗H)] = E[exp(2p · t · ‖DX(x)‖H⊗H)JUt(x)]

≤ E[exp(2p · q̃T · t · ‖DX(x)‖H⊗H)]1/q̃T · ‖JUt‖p̃T

< +∞,

where p̃T is as in Proposition 2.2 and 1
p̃T

+ 1
q̃T

= 1, and

E[‖αn
s − αs‖2p

H⊗H · (1 + ‖DV n
s ‖H⊗H)2p] ≤ E[‖αn

s − αs‖4p
H⊗H ]

1
2E[(1 + ‖DV n

s ‖H⊗H)4p]
1
2 .

Thus it remains to show that

sup
0≤s≤T

E[‖αn
s − α‖4p

H⊗H ] → 0, n→ 0.

Since

E[‖αn
s − αs‖4p

H⊗H ]

≤ 24p−1(E[‖Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qs −Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p

H⊗H ]

+ E[‖Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs −Q−s ·DX(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p
H⊗H ]), (3.3)
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for the second term in (3.3) we have

E[‖Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs −Q−s ·DX(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p
H⊗H ]

= E[‖DXn(x) −DX(x)‖4p
H⊗HJUt(x)]

≤ C(p̃T , T )E[‖DXn(x) −DX(x)‖4pq̃T

H⊗H ]1/q̃T → 0, n→ ∞,

where p̃T is as in Proposition 2.2 and 1
p̃T

+ 1
q̃T

= 1. The first term in (3.3) is handled as follows.
First by [11, Section 7], taking a subsequence if necessary we obtain that there exists a subset
A ∈ B such that μ(A) = 1, and Un

t (x) → Ut(x), x ∈ A. Thus from the smoothness of DXn,
we know that

DXn(Un
t (x)) → DXn(Ut(x)), x ∈ A.

Using Egoroff’s theorem, for every ε > 0, there exists a measurable subset Kε such that
μ(Kc

ε) < ε and DXn(Un
t (x)) converges to DXn(Un

t ) uniformly on Kε. Thus we have

E[‖Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qs −Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p

H⊗H ]

=
( ∫

Kε

+
∫

Kc
ε

)
‖Q−s ·DXn(Q̃s ◦ (V n

s (x) + x)) ·Qs

−Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p
H⊗Hdμ. (3.4)

Since DXn(Un
t (x)) converges to DXn(Ut(x)) uniformly on Kε, the first part in (3.4) converges

to zero as n tends to infinity. The second part is dealt with as follows:∫
Kc

ε

‖Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qs −Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p

H⊗Hdμ

≤ 24p−1
(∫

Kc
ε

(‖Q−s ·DXn(Q̃s ◦ (V n
s (x) + x)) ·Qs‖4p

H⊗H

+ ‖Q−s ·DXn(Q̃s ◦ (Vs(x) + x)) ·Qs‖4p
H⊗H)dμ

)
= 24p−1

(∫
Kc

ε

‖DXn(x)‖4p
H⊗HJUn

t
(x)dμ +

∫
Kc

ε

‖DXn(x)‖4p
H⊗HJUt(x)dμ

)
≤ 24p−1(‖DXn‖4p

8pqT
· μ(Kc

ε)
1

2qT ‖JUn
t
‖pT + ‖DXn‖4p

8pq̃T
· μ(Kc

ε)
1

2q̃T ‖JUt‖p̃T
)

≤ C(p, pT , p̃T )(ε
1

2qT + ε
1

2q̃T ),

where pT is as in Proposition 2.3 and 1
pT

+ 1
qT

= 1, and p̃T is as in Proposition 2.2 and
1

p̃T
+ 1

q̃T
= 1. Thus we have

sup
0≤t≤T

E[‖DV n
t −DVt‖p

H⊗H ] → 0, n→ ∞.

Lemma 3.6 For any t, s ∈ [0, T ] and all p > 1, we have

E[‖DV n
t −DV n

s ‖2p
H⊗H ] ≤ C(p, T )(t− s)2p.
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Proof Since

E[‖DV n
t −DV n

s ‖2p
H⊗H ]

= E
[∥∥∥ ∫ t

s

(Q−u ·DXn(Q̃u ◦ (V n
u (x) + x)) ·Qu ·DV n

u (x)

+Q−u ·DXn(Q̃u ◦ (V n
u (x) + x)) ·Qu)du

∥∥∥2p

H⊗H

]
≤ (t− s)2p−1

∫ t

s

duE[‖Q−u ·DXn(Q̃u ◦ (V n
u (x) + x)) ·Qu ·DV n

u (x)

+Q−u ·DXn(Q̃u ◦ (V n(x) + x)) ·Qu‖2p
H⊗H ]

= (t− s)2p−1

∫ t

s

duE[‖Q−u ·DXn(Q̃u ◦ (V n
u (x) + x)) ·Qu · (1 +DV n

u (x))‖2p
H⊗H ]

≤ (t− s)2p−1

∫ t

s

duE[‖Q−u ·DXn(Q̃u ◦ (V n
u (x) + x)) ·Qu‖4p

H⊗H ]
1
2E[1 + ‖DV n

u (x)‖2p
H⊗H ]

1
2

≤ (t− s)2p−1

∫ t

s

duE[‖DXn(x)‖4p
H⊗HJUn

t
(x)]

1
2E[1 + ‖DV n

u (x)‖2p
H⊗H ]

1
2 ,

then from the assumptions of Theorem 3.1, Proposition 2.3 and Lemma 3.4, we deduce that

E[‖DV n
t −DV n

s ‖2p
H⊗H ] ≤ C(p, T )(t− s)2p.

Proof of Proposition 3.1 First by Lemma 3.3, we have

E[‖V n
t − Vt‖2p

H ] → 0, n→ ∞ uniformly for t ∈ [0, T ].

Therefore, extracting a subsequence still denoted by {n}, we have

E[‖V n
t − Vt‖2p

H ] ≤ C1(p, T )2−2np. (3.5)

On the other hand, together with the assumptions of Theorem 3.1 and Proposition 2.3, we have

E[‖V n
t − V n

s ‖2p
H ] = E

[∥∥∥ ∫ t

s

(Q−uX
n(Q̃u ◦ (V n

u (x) + x)))ds
∥∥∥2p

H

]
≤ (t− s)2p−1

∫ t

s

duE[‖Q−uX
n(Q̃u ◦ (V n

u (x) + x))‖2p
H ]

= (t− s)2p−1

∫ t

s

duE[‖Q−uX
n(x)‖2pqT

H ]
1
2 ‖JUn

u
‖pT

≤ C2(p, T )(t− s)2p, (3.6)

where pT is as in Proposition 2.3 and 1
pT

+ 1
qT

= 1. Then from inequalities (3.5)–(3.6), taking
further subsequence if necessary, for all p > 1, we have

E[‖Z(s, t1) − Z(s, t2)‖2p
H ] ≤ C3(p, T )|t1 − t2|2p,

E[‖Z(s1, t) − Z(s2, t)‖2p
H ] ≤ C4(p, T )|s1 − s2|2p.

Hence we can take p large enough such that

E[‖(Z(s1, t1) − Z(s2, t2)‖2p
H ] ≤ C5(p, T )(|t1 − t2|2+ε + |s1 − s2|2+ε)
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for some ε > 0 and (s1, s2) ∈ [0, 1] × [0, 1], (t1, t2) ∈ [0, T ]× [0, T ].
It remains to show that for some p, we have

E[‖D(Z(s1, t1) − Z(s2, t2))‖2p
H⊗H ] ≤ C6(p, T )(|t1 − t2|2+ε + |s1 − s2|2+ε)

for some ε > 0 and (s1, s2) ∈ [0, 1] × [0, 1], (t1, t2) ∈ [0, T ]× [0, T ].
By Lemmas 3.5–3.6, taking further subsequence if necessary, we obtain

E[||DV n
t −DVt||2p

H⊗H ] ≤ C7(p, T )2−2np,

E[‖DV n
t −DV n

s ‖2p
H⊗H ] ≤ C8(p, T )(t− s)2p.

Then by the same procedure we can get that

E[‖D(Z(s1, t1) − Z(s2, t2))‖2p
H⊗H ] ≤ C9(p, T )(|t1 − t2|2+ε + |s1 − s2|2+ε)

for some ε > 0 and (s1, s2) ∈ [0, 1] × [0, 1], (t1, t2) ∈ [0, T ]× [0, T ].
Therefore, the conclusion follows from Proposition 2.1.

We deduce from this proposition immediately the following proposition.

Proposition 3.2 For each t ∈ [0, T ], Vt(x) and V n
t (x) have a 1-quasi-continuous modifica-

tion Ṽt(x) and Ṽ n
t (x), respectively.

Proposition 3.3 There exists a 1-slim set A such that lim
n→∞V n

t (x) = Ṽt(x) for all x ∈ Ac

and all t ∈ [0, T ].

Step 3 Since X ∈ ⋂
p>1

W p
1 (B,H), we can take a 1-quasi-continuous modification X̃ of X

by

X̃(x) =

{
lim

n→∞Xn(x), if it converges,

0, otherwise.

Then for fixed s, there exists a subsequence still denoted by {n} such that Q−sX
n(Q̃s ◦

(Ṽ n
s (x) + x)) converges to Q−sX̃(Q̃s ◦ (Ṽ n

s (x) + x)), 1-quasi-every x ∈ B and the limit is
1-quasi-continuous. Repeating the same argument as in Lemma 3.3 and Lemma 3.5, we can
deduce the following lemma.

Lemma 3.7 For all p > 1,

sup
0≤s≤T

‖Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x)) −Q−sX̃(Q̃s ◦ (Ṽs(x) + x))‖W1,p → 0, as n→ ∞.

We denote

Fn
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x))ds

and

Ft(x) =
∫ t

0

Q−sX̃(Q̃s ◦ (Ṽs(x) + x))ds.

By Lemma 3.7, for fixed t we have

‖Fn
t − Ft‖p

W1,p

≤ tp−1 ·
∫ t

0

‖Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x)) −Q−sX̃(Q̃s ◦ (Ṽs(x) + x))‖p
W1,p

ds

≤ tp · sup
0≤s≤t

‖Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x)) −Q−sX̃(Q̃s ◦ (Ṽs(x) + x))‖p
W1,p

→ 0, n→ ∞.
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Then we can deduce that {Fn
t (x)}∞n=1 is a Cauchy sequence in W p

1 (B,H) and therefore, we
can take a subsequence {nk}∞k=1 such that for any ε > 0, there exists a closed set A with
C1,p(Ac) < ε and Fnk

t (x) converges to Ft(x) uniformly in x ∈ A. Thus we can deduce that
Ft(x) is 1-quasi-continuous. Therefore for fixed t ∈ [0, T ], we have

lim
n→∞Fn

t (x) = Ft(x) for 1-quasi-every x ∈ B, (3.7)

and the limit is 1-quasi-continuous.
However, this is not our purpose because for different s ∈ [0, T ] we have different 1-slim

sets. Thus we still need to show that there exists a common set A with C1,p(A) = 0 for any
p > 1, such that for all x ∈ Ac and t ∈ [0, T ], lim

n→∞Fn
t (x) = Ft(x). For this purpose, we need

the following lemma.

Lemma 3.8 For any s, t ∈ [0, T ] and all p > 1, taking further subsequence if necessary, we
have

E[‖Fn
t − Ft‖2p

H ] → 0, as n→ 0,

E[‖Fn
t − Fn

s ‖2p
H ] ≤ C1(p, T )(t− s)2p,

E[‖DFn
t −DFt‖2p

H⊗H ] → 0, as n→ 0,

E[‖DFn
t −DFn

s ‖2p
H⊗H ] ≤ C2(p, T )(t− s)2p.

(3.8)

Proof The proof of the first formula can be seen in [11]. The proof of the other formulas
is just a repetition of Lemma 3.5 and Lemma 3.6.

Hence using the same skills, we have the following proposition.

Proposition 3.4 For each t ∈ [0, T ], Ft(x) has a 1-quasi-continuous modification F̃t.

Proposition 3.5 There exist a 1-slim set A such that lim
n→∞Fn

t (x) = F̃t(x) for all x ∈ Ac

and t ∈ [0, T ].

Though we obtain Fn
t (x) → F̃t(x) as n tends to infinity for 1-quasi-every x ∈ B, we don’t

know the expression of F̃t(x). For this, we proceed as follows. By (3.7), we know that for each
t ∈ [0, T ], there exists a 1-slim set At such that for all x ∈ Ac

t , F̃t(x) = Ft(x). However, both
F̃t(x) and Ft(x) have continuous sample paths, and hence there exists a common 1-slim set A
such that for all x ∈ Ac, F̃t(x) = Ft(x) =

∫ t

0 Q−sX̃(Q̃s ◦ (Ṽs(x) + x))ds for all t ∈ R.
Therefore, we conclude that there exists a subsequence still denoted by {n} and a 1-slim set

A, such that

Fn
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x))ds → Ft(x) =
∫ t

0

Q−sX̃(Q̃s ◦ (Ṽs(x) + x))ds

for all x ∈ Ac and all t ∈ [0, T ].
Step 4 We first note that by Peters [11] there exists a solution V n(x) satisfying the following

integral equation:

V n
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (V n

s (x) + x))ds, ∀x ∈ A0,

where μ(A0) = 1. Thus by Proposition 3.2, there exists a 1-quasi-continuous modification
Ṽ n

t (x) of V n
t (x) and

Ṽ n
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (V n

s (x) + x))ds, ∀x ∈ A0. (3.9)
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Since Qt : H → H leaves the subspace V n invariant, from (3.9), we know Ṽ n
t (x) : V n → V n.

The fact that in finite dimensions the embedding W p
1 (Rn) ⊂ Cb(Rn) for p > n generates

the implication: If C1,p(A) = 0, then A is empty. This implies that Ṽ n
t (x) is a continuous

modification of V n
t (x).

For any y ∈ B, there exists a sequence {xh} ⊆ A0 converging to y. Since Ṽ n
t (x) is continuous,

Ṽ n
t (xh) converges to Ṽ n

t (y) as h converges to infinity. By Proposition 2.1, we know that
Xn are C∞ cylindrical functionals based on the subspace V n. Then together with the fact
V n

s (x) = Ṽ n
s (x), if x ∈ A0, we have∫ t

0

Q−sX
n(Q̃s ◦ (V n

s (xh) + xh))ds =
∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (xh) + xh))ds

→
∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (y) + y))ds.

Therefore we have

Ṽ n
t (y) =

∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (y) + y))ds,

and this implies that V n
t (x) exists for all x ∈ B and satisfies

V n
t (x) =

∫ t

0

Q−sX
n(Q̃s ◦ (Vs(x) + x))ds, ∀t ∈ R. (3.10)

As in Step 3, we see that there is a subset A1 with C1,p(A1) = 0 for any p > 1, such that
for all x ∈ Ac

1,∫ t

0

Q−sX
n(Q̃s ◦ (Ṽ n

s (x) + x))ds →
∫ t

0

Q−sX̃(Q̃s ◦ (Ṽs(x) + x))ds, ∀t ∈ R.

Proposition 3.3 implies that there exists a subset A2 with C1,p(A2) = 0 for any p > 1, such
that for all x ∈ Ac

2 and all t ∈ R, V n
t (x) → Ṽt(x). Thus combining this with (3.10), for all

x ∈ (A1 ∩A2)c with C1,p(A1 ∩A2) = 0 for any p > 1, we have

Ṽt(x) =
∫ t

0

Q−sX̃(Q̃s ◦ (Ṽs(x) + x))ds, ∀t ∈ R.

Hence Ṽt(x) satisfies the integral equation (3.2) for 1-quasi-every x ∈ B and for all t ∈ R.
Then Ũt(x) = Q̃t ◦ (Ṽt(x) + x) satisfies the following integral equation:

Ũt(x) = Q̃t(x) +
∫ t

0

Qt−sX̃(Ũs(x))ds for1-quasi-every x ∈ B

and for all t ∈ R, and the 1-quasi-sure existence is established.

3.2 Quasi-sure flow property
Now we show that the solution Ũt(x) has the 1-quasi-sure flow property, i.e., for each s ∈ R

it satisfies

Ũt ◦ Ũs(x) = Ũt+s(x)

for 1-quasi-every x ∈ B and for all t ∈ R.
First we need the following lemma.
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Lemma 3.9 For every s ∈ R, we have that for all p > 1,

sup
0≤t≤T

‖V n
t ◦ Ũs − Ṽt ◦ Ũs‖W1,p → 0, as n→ ∞.

Proof Since Ũt(x) = Q̃t ◦ (Ṽt(x) + x), we have

D(V n
t ◦ Q̃t ◦ (Ṽs(x) + x))

= DV n
t ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt ·DṼs(x) +DṼ n

t ◦ (Q̃t · (Ṽs(x) + x)) ·Qt.

Also we have

D(Vt ◦ Q̃t ◦ (Ṽs(x) + x))

= DVt ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt ·DṼs(x) +DVt ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt.

Thus by Lemma 3.5 we have

E[‖D(V n
t ◦ Ũs(x)) −D(Ṽt ◦ Ũs(x))‖p

H⊗H ]

= E[‖(DV n
t ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt −DṼt ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt)(1 +DṼs(x)))‖p

H⊗H ]

≤ E[‖DV n
t ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt −DṼt ◦ Q̃t ◦ (Ṽs(x) + x) ·Qt‖2p

H⊗H ]
1
2E[‖1 +DṼs(x))‖2p

H⊗H ]
1
2

≤ E[‖DV n
t (x) −DṼt(x)‖2p

H⊗HJŨn
t
(x)]

1
2E[1 + ‖DṼs(x)‖2p

H⊗H ]
1
2

≤ C(pT , T )E[‖DV n
t (x) −DṼt(x)‖2pqT

H⊗H ]
1

2qT E[1 + ‖DṼs(x)‖2p
H⊗H ]

1
2 → 0, n→ ∞,

where pT is as in Proposition 2.3 and 1
pT

+ 1
qT

= 1, and the lemma established.

Proposition 3.6 The solution Ũt(x) constructed in Subsection 3.1 enjoys the 1-quasi-sure
flow properties, i.e., for every s ∈ R, it satisfies

Ũt ◦ Ũs(x) = Ũt+s(x) for 1-quasi-every x ∈ B

and for all t ∈ R.

Proof We denote by Ut(x) the solution constructed by Peters [11]. First note that by
Proposition 3.2 Ṽt(x) is 1-quasi-continuous. Then, Ũt(x) is also 1-quasi-continuous and Ut(x) =
Ũt(x) for almost-every x ∈ B. By the almost-everywhere flow property of Ut(x), we have
Ũt ◦ Ũs(x) = Ut ◦ Ũs(x) = Ut+s(x) = Ũt+s(x) for almost-every x ∈ B. But Ũt+s(x) is 1-
quasi-continuous and hence, if we can show that Ũt ◦ Ũs(x) is 1-quasi-continuous, we have
Ũt ◦ Ũs(x) = Ũt+s(x) for 1-quasi-every x ∈ B.

By Lemma 3.9, {V n
t ◦ Ũs(x)}∞n=1 is a Cauchy sequence in W p

1 (B,H) and therefore, we can
take a subsequence {nk}∞k=1 such that for any ε > 0, there exists a closed setA with C1,p(Ac) < ε

and V nk
t ◦ Ũs(x) converges to Ṽt ◦ Ũs(x) uniformly in x ∈ A. Hence from the smoothness of

the solution V nk
t (x) and 1-quasi-continuous of Ũs(x), we can deduce that Ũt ◦ Ũs(x) is 1-quasi-

continuous.

3.3 Equivalence of capacities
Let Ũt(x) be the solution constructed in Subsection 3.1.

Lemma 3.10 For any 1 < p < p1 and all t ∈ [0, T ], there exists a constant C such that

sup
0≤t≤T

‖ψ ◦ Ũt‖p
W1,p

≤ C‖ψ‖p
W1,p1

for all ψ ∈ W p
1 (B,R).
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Proof Combining Proposition 2.3 with Lemma 3.4, we obtain∫
B

‖D(ψ ◦ Q̃t ◦ (V n
t (x) + x))‖p

H⊗Hdμ

=
∫

B

‖Dψ ◦ Q̃t ◦ (V n
t (x) + x) ·Qt ·D(V n

t (x) + x)‖p
H⊗Hdμ

≤
(∫

B

‖Dψ ◦ Q̃t ◦ (V n
t (x) + x)‖pq

H⊗Hdμ
) 1

q ·
(∫

B

(‖DV n
t (x)‖pq′

H⊗H + 1)dμ
) 1

q′

≤
(∫

B

‖Dψ(x)‖pq
OpJUn

t (x)(x)dμ
) 1

q ·
( ∫

B

(‖DV n
t (x)‖pq′

H⊗H + 1)dμ
) 1

q′

≤ C(pT , T )
(∫

B

‖Dψ(x)‖pqqT

H⊗H(x)dμ
) 1

qqT ·
(∫

B

(‖DV n
t (x)‖pq′

H⊗H + 1)dμ
) 1

q′

≤ C(p, T )‖Dψ(x)‖p
p1
,

where pT is as in Proposition 2.3, 1
q + 1

q′ = 1, 1
pT

+ 1
qT

= 1 and qT q = p1
p . Thus we have

‖ψ ◦ Un
t ‖p

W1,p
≤ C‖ψ‖p

W1,p1

for some constant C. Therefore, the proof is completed if we prove that ψ ◦ Un
t converges to

ψ ◦ Ũt in W p
1 (B,R).

Since

D(ψ(Q̃t ◦ (V n
t (x) + x))) = Dψ ◦ Q̃t ◦ (V n

t (x) + x)DV n
t (x) +Dψ ◦ Q̃t ◦ (V n

t (x) + x),

we can prove that

‖ψ ◦ Un
t − ψ ◦ Ũt‖W1,p → 0, n→ ∞,

by the same method as in the proof of Lemma 3.5.

To show the equivalence, we need another lemma which has been proved by Yun [15].

Lemma 3.11 There exists an increasing sequence {Fn}∞n=1 of compact sets such that for
all p > 1,

lim
n→∞C1,p(B\Fn) = 0,

and Ũt|Fn , the restriction of Ũt to Fn, is a homeomorphism.

With the above preparations, now we can show the equivalence of capacities between a set
A in B and Ut(A).

Proposition 3.7 For 1 < p2 < p < p1 and r ≥ 0, there exist constants C1 > 0 and C2 > 0
such that

C2 · (C1,p2(D))
p

p2 ≤ C1,p(Ũt(D)) ≤ C1 · (C1,p1)
p

p1 , ∀D ∈ B. (3.11)

Proof By Lemma 3.11, there exists an increasing sequence {Fn}∞n=1 of compact sets such
that Ũt|Fn is a homeomorphism. Let O be an open set in B. Then O ∩ Fn is open in Fn and
Ũt(O ∩ Fn) is open in Ũt(Fn). Thus there exists an open set O′ in B such that

Ut(O ∩ Fn) = O′ ∩ Ũt(Fn).
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We can show that

Ũt(O) ⊆ [O′ ∩ Ũt(Fn)] ∪ Ut(F c
n),

and [O′ ∩ Ũt(Fn)] ∪ Ũt(F c
n) is an open set. Then we have

C1,p(Ũt(O)) ≤ C1,p([O′ ∩ Ũt(Fn)] ∪ Ũt(F c
n))

= inf{‖f‖p
W1,p

; f ∈ W p
1 (B; R), f ≥ 1 a.e. on [O′ ∩ Ũt(Fn)] ∪ Ũt(F c

n)}
≤ inf{‖f‖p

W1,p
; f ∈ W p

1 (B; R), f ◦ Ũt ≥ 1 a.e. on O ∪ F c
n}

= inf{‖ψ ◦ Ũ−t‖p
W1,p

;ψ ◦ Ũ−t ∈W p
1 (B; R), ψ ≥ 1 a.e. on O ∪ F c

n}.
By Lemma 3.10, we have

C1,p(Ũt(O)) ≤ C1 inf{‖ψ‖p
W1,p1

;ψ ∈W p1
1 (B; R), ψ ≥ 1 a.e. on O ∪ F c

n}
= C1 · (C1,p1(O ∪ F c

n))
p

p1

≤ C1 · (C1,p1(O)
p

p1 + C1,p1(F
c
n)

p
p1 )

→ C1 · (C1,p1(O))
p

p1 , as n→ ∞.

Therefore, for an open set O in B, C1,p(Ũt(O)) ≤ C1 · (C1,p1(O))
p

p1 for some constant C1. Then
for an arbitrary set A ⊆ B, it is easy to show

C1,p(Ũt(A)) ≤ C1 · (C1,p1(A))
p

p1 .

We note that for an arbitrary set A,

C1,p2(A) = C1,p2(Ũ−t ◦ Ũt(A)).

Thus we can easily get the first inequality of (3.11).

Corollary 3.1 The flow Ũt(x) constructed in Theorem 3.1 preserves the class of 1-slim
sets, that is, if A ⊆ B is a 1-slim set, then Ũt(A) is also a 1-slim set for every t ∈ R.
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