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Asymptotics for the Tail Probability of Random Sums

with a Heavy-Tailed Random Number and Extended
Negatively Dependent Summands∗

Fengyang CHENG1 Na LI2

Abstract Let {X, Xk : k ≥ 1} be a sequence of extended negatively dependent random
variables with a common distribution F satisfying EX > 0. Let τ be a nonnegative
integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the

authors obtain the necessary and sufficient conditions for the random sums Sτ =
τ∑

n=1

Xn

to have a consistently varying tail when the random number τ has a heavier tail than the
summands, i.e.,

P (X > x)

P (τ > x)
→ 0

as x → ∞.
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1 Introduction

Let {X, Xk : k ≥ 1} be a sequence of random variables with a common distribution F and let
τ be a nonnegative integer-valued random variable with a distribution Fτ . For any distribution
G and real number x, we let G(x) = G((−∞, x]) and denote its tail by G(x) = G((x,∞)). The
aim of the present paper is to investigate the asymptotic behavior of the tail probability of a

random sum Sτ =
τ∑

k=1

Xk when the random number τ has a heavier tail than the summands,

i.e., lim
x→∞

F (x)

F τ (x)
= 0. Random sums play important roles in many applied probability fields such

as financial insurance, risk theory, teletraffic, queueing theory and so on. Generally speaking,
it is hard to obtain the precise distribution of Sτ , so one possible approach is to discuss the
asymptotic behavior of the tail probability P (Sτ > x) as x → ∞.

Hereafter, all limit relationships are for x → ∞ unless otherwise stated. For two positive
functions a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)

b(x) = 1 and write a(x) = o(b(x)) if

lim a(x)
b(x) = 0.
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Next, we introduce some common distribution classes. A random variable X or its distri-
bution F is said to be heavy-tailed if

EetX =
∫ ∞

−∞
etxF (dx) = ∞

for any positive number t, and is otherwise light-tailed. Below we list some of the commonly
used subclasses of heavy-tailed distributions.

A random variable X or its distribution F is said to be long-tailed (denoted by X ∈ L or
F ∈ L) if lim

x→∞
F (x+y)

F (x)
= 1 for any fixed y > 0; to have a consistently varying tail (denoted

by X ∈ C or F ∈ C) if lim
y↗1

lim sup
x→∞

F (xy)

F (x)
= 1; to have a dominatedly varying tail (denoted by

X ∈ D or F ∈ D) if lim sup
x→∞

F (xy)

F (x)
< ∞ for any fixed y ∈ (0, 1); to have a regularly varying

tail with an index α for some α > 0 (denoted by X ∈ R−α or F ∈ R−α), if lim
x→∞

F (xy)

F (x)
= y−α

for any fixed y > 0; and to be subexponential (denoted by X ∈ S or F ∈ S) if F ∈ L and

lim
x→∞

F∗2(x)

F (x)
= 2, where F ∗2 = F ∗ F denotes the convolution of F with itself.

It is well-known that R−α ⊂ C ⊂ L ∩ D ⊂ S ⊂ L
for any α ≥ 0.
In many areas of applied probability, it is found that random sums often have a heavy tail.

Many researchers are interested in the questions of what causes the heavy tail of a random sum
and what is the relationship among the tail probabilities of Sτ , X and τ . In one case where the
summands have a heavier tail than τ (i.e., Fτ (x) = o(F (x))), it is found that the tail behavior
of a random sum Sτ is decided by the tail of X and the mean of τ , and that Sτ and X belong
to the same subclass of heavy-tailed distributions (see [4–5, 8, 10, 13–14] etc.).

Recently, other cases in which the tail of X is not heavier than that of τ have attracted
a lot of academic attention. Faÿ et al. [7] gave sufficient conditions for Sτ ∈ R−α when X

has a lighter tail than τ (i.e., F (x) = o(Fτ (x))), and gave necessary conditions for Sτ ∈ R−α

when X has a lighter tail than Sτ . It states that the tail behavior of a random sum Sτ is
decided by the tail of τ and the mean of X , and that Sτ and τ belong to the same class R−α

if F (x) = o(Fτ (x)). Some sufficient conditions for Sτ ∈ C have been obtained by many authors
(see [1, 11, 15] etc.).

The purpose of this paper is to give necessary and sufficient conditions for Sτ ∈ C when
F (x) = o(F τ (x)) in which the summands Xk (k ≥ 1) are extended negatively dependent
random variables (see Definition 2.1 below) defined on (−∞,∞).

We will introduce some definitions of the dependence structure and give the main results of
this paper in Section 2. The proofs of the theorems are given in Section 3.

2 Main Results

First, we give some definitions of the dependence structure, which are introduced by Chen
et al. [3] and Liu [9].

Definition 2.1 (see [3, 9]) A finite family of random variables {Xk : 1 ≤ k ≤ n} is said
to be
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(1) lower extended negatively dependent (LEND for short) if there exists a constant M ≥ 1,
such that for all real numbers x1, x2, · · · , xn,

P (X1 ≤ x1, · · · , Xn ≤ xn) ≤ M

n∏
k=1

P (Xk ≤ xk); (2.1)

(2) upper extended negatively dependent (UEND for short) if there exists a constant M ≥ 1,
such that for all real numbers x1, x2, · · · , xn,

P (X1 > x1, · · · , Xn > xn) ≤ M

n∏
k=1

P (Xk > xk); (2.2)

(3) extended negatively dependent (END for short) if there exists a constant M ≥ 1, such
that both (2.1) and (2.2) hold for all real numbers x1, x2, · · · , xn, · · · .

The constant M in equations (2.1)–(2.2) is said to be dominating constant. A sequence of
random variables {Xk : k ≥ 1} is said to be END (LEND, UEND) if each of its finite subfamilies
is END (LEND, UEND) for some common dominating constant M .

The END structure covers many negative dependence structures and, more interestingly, it
covers certain positive dependence structures. More detailed discussions and some examples
can be found in Chen et al. [3] and Liu [9].

Now, we give the main results of this paper as follows.

Theorem 2.1 Let {X, Xk : k ≥ 1} be a sequence of END random variables with a common
distribution F satisfying EX > 0. Let τ be a nonnegative integer-valued random variable with
a distribution Fτ , independent of {X, Xk : k ≥ 1}. Suppose that one of the following two
conditions holds:

(i) Eτ < ∞ and

P (X > x) = o(P (τ > x)), (2.3)

or
(ii) Eτ = ∞ and

lim
x→∞(xr ∨ x lnδ x)P (X > x) = 0 (2.4)

for some r ≥ 1 and δ > 1 and

lim sup
x→∞

E[τI(τ ≤ x)]
(xr ∨ x lnδ x)P (τ > x)

< ∞. (2.5)

Then the following two assertions are equivalent:
(a) τ ∈ C;
(b) Sτ ∈ C.

Furthermore, each of them implies that

P (Sτ > x) ∼ P
(
τ >

x

EX

)
. (2.6)

Remark 2.1 The following question naturally occurs: Can (2.6) imply (a) or (b)?
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The following example gives a negative answer.

Example 2.1 Let X be degenerate at p > 0 (so F �∈ C) and let τ be any nonnegative
integer-valued random variable. Obviously, we have

P (Sτ > x) = P (pτ > x) = P
(
τ >

x

EX

)
.

This shows that (2.6) may not imply (a) or (b).

Remark 2.2 If Fτ ∈ R−α for some α ∈ (0, 1), then (2.5) holds for any r ≥ 1 by Karamata’s
theorem (see [2, Propositions 1.5.8 and 1.5.9a]) and Eτ = ∞. Remark 4.5 of Faÿ et al. [7] gave
an example in which Sτ ∈ R−1 and F (x) = o(F τ (x)) can not imply (2.6) if Eτ = ∞. Hence,
some extra conditions are needed if Eτ = ∞. It is obvious that both (1.4) in [15] and (3.11) in
[11] are stronger than (2.5) when Eτ = ∞.

Remark 2.3 If Eτ < ∞, then (2.3) implies that EXI(X > 0) < ∞, where I(·) is the
indicator function of a set. If Eτ = ∞, then (2.5) implies that EXI(X > 0) < ∞. Hence, the
conditions of Theorem 2.1 always imply that E|X | < ∞ since EX > 0.

3 Proof of Theorem 2.1

Before giving the proof of the main results, we first give several lemmas. The first lemma is
a direct consequence of Definition 2.1 and was mentioned by Chen et al. [3].

Lemma 3.1 If {Xk : 1 ≤ k ≤ n} are UEND (or LEND) random variables for some
dominating constant M and {hk(·) : 1 ≤ k ≤ n} are non-decreasing functions, then {hk(Xk) :
1 ≤ k ≤ n} are still UEND (or LEND) random variables for the same dominating constant M .

Lemma 3.2 Let {Xk : 1 ≤ k ≤ n} be UEND (or LEND) random variables for some
dominating constant M . Let {Yk : 1 ≤ k ≤ n} be independent random variables, independent
of {Xk : 1 ≤ k ≤ n}. Let

Zk = Xk + Yk, k = 1, 2, · · · , n.

Then, {Zk : 1 ≤ k ≤ n} are UEND (or LEND) random variables for the same dominating
constant M .

Proof We only prove the case that {Xk : 1 ≤ k ≤ n} are UEND. For any real numbers
x1, x2, · · · , xn,

P (Z1 > x1, · · · , Zn > xn)

=
∫

Rn

P (X1 > x1 − y1, · · · , Xn > xn − yn)P (Y1 ∈ dy1, · · · , Yn ∈ dyn)

≤ M

∫
Rn

P (X1 > x1 − y1) · · ·P (Xn > xn − yn)P (Y1 ∈ dy1) · · ·P (Yn ∈ dyn)

= MP (Z1 > x1) · · ·P (Zn > xn).

The next lemma is a slight adjustment of Corollary 3.1 of Tang [12].
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Lemma 3.3 Let {X, Xk : k ≥ 1} be a sequence of UEND random variables with a common
distribution F ∈ D and a mean μ = EX. Then for each fixed γ > 0 and some C = C(γ)
irrespective to x and n, the inequality

P (Sn − nμ > x) ≤ CnF (x + μ)

holds uniformly for all x ≥ γn and n = 1, 2, · · · .

Proof The proof is just similar to that of Corollary 3.1 of Tang [12] and hence is omitted.

The following three lemmas play key roles in the proof of Theorem 2.1.

Lemma 3.4 Let {X, Xk : k ≥ 1} be a sequence of END random variables with a common
distribution F satisfying EX ∈ (0, ∞). Let τ be a nonnegative integer-valued random variable
with a distribution Fτ , independent of {X, Xk : k ≥ 1}. Then

lim inf
x→∞

P (Sτ > x)

P
(
τ >

cx

EX

) ≥ 1 (3.1)

for any c > 1.

Proof For any c > 1 and x > 0, we have

P (Sτ > x) =
∞∑

n=1

P (Sn > x)P (τ = n) ≥
∑

n> cx
EX

P (Sn > x)P (τ = n).

For any fixed ε > 0, by Theorem 1 in [3], there exists x1 > 0, such that

P
(Sn

n
− EX > − (c − 1)EX

c

)
> 1 − ε

holds for all x > x1 and n ≥ cx
EX . Consequently, for any x > x1, it follows that

P (Sτ > x) ≥
∑

n> cx
EX

P
(Sn

n
>

EX

c

)
P (τ = n)

=
∑

n> cx
EX

P
(Sn

n
− EX > − (c − 1)EX

c

)
P (τ = n)

> (1 − ε)P
(
τ >

cx

EX

)
.

By the arbitrariness of ε, (3.1) holds for any c > 1.

Lemma 3.5 Under the conditions of Theorem 2.1, if Sτ ∈ L ∩D, then we have

lim sup
x→∞

P (Sτ > x)

P
(
τ >

vx

EX

) ≤ 1 (3.2)

for any v < 1.

Proof Obviously, (3.2) holds if v ≤ 0, so we suppose v ∈ (0, 1) in the later discussion. By
Remark 2.3, it follows that E|X | < ∞. It is easy to see that

P (Sτ > x) ≤
∑

n≤ vx
EX

P (Sn > x)P (τ = n) + P
(
τ >

vx

EX

)
. (3.3)
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If we can prove that

p(x) �
∑

n≤ vx
EX

P (Sn > x)P (τ = n) = o(P (Sτ > x)), (3.4)

then from (3.3) and (3.4), it immediately follows that

lim inf
x→∞

P
(
τ >

vx

EX

)
P (Sτ > x)

≥ 1,

which is equivalent to (3.2). So we only need to prove (3.4).
First we discuss case (i) where Eτ < ∞: By Lemma 3.4 and v ∈ (0, 1), it follows that

lim sup
x→∞

P (τ > x)
P (Sτ > (vEX)x)

≤ 1.

Combining with (2.3) and Sτ ∈ D yields that

P (X > x) =
P (X > x)
P (τ > x)

· P (τ > x)
P (Sτ > (vEX)x)

· P (Sτ > (vEX)x)
P (Sτ > x)

· P (Sτ > x)

= o(P (Sτ > x)).

Let {Y, Yk : k ≥ 1} be a sequence of independent identically distributed random variables
with a common distribution V , where V is the uniform distribution on the interval [0, 1],
independent of {X, Xk : k ≥ 1} and τ . Let Z = X +Y, Zk = Xk +Yk, k ≥ 1. Then, by Lemma
2.2, {Z, Zk : k ≥ 1} is a sequence of END random variables with a common distribution F ∗V .
By Sτ ∈ L ∩ D and (2.3), it is easy to see that P (Z > x) = o(P (Sτ > x)). By Lemma 4.4 in
[7], there exists a nondecreasing slowly varying function L(x) satisfying

L(x) → ∞ and
P (Z > x)
P (Sτ > x)

L(x) → 0.

Hence there exists x′ > 0, such that

P (Z > x) ≤ P (Sτ > x)
L(x)

≤ 1

holds for all x ≥ x′. Define a distribution G as follows:

G(x) = G((−∞, x]) =

⎧⎪⎨
⎪⎩

0, x < x′,

1 − P (Sτ > x)
L(x)

, x ≥ x′,

and let

X ′ = G−1(F ∗ V (Z)), X ′
k = G−1(F ∗ V (Zk)), k = 1, 2, · · · ,

where

G−1(y) = inf{t ∈ R : G(t) ≥ y}, 0 ≤ y ≤ 1.
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It is easy to see that P (X ′ ≤ x) = G(x) for all real number x and

P (X ′ > x) = o(P (Sτ > x)). (3.5)

By Proposition A.16(d) in [6], it follows that G(X ′
k) ≥ F ∗ V (Zk) for all k ≥ 1, which implies

that X ′
k ≥ Zk ≥ Xk a.s. for all k ≥ 1 since G(x) ≤ F ∗V (x) for all real numbers x. Moreover, it

follows that EX ≤ EX ′ < ∞ by the definition of X ′ and Eτ < ∞. Write S′
n =

n∑
k=1

X ′
k, n ≥ 1.

Then P (Sn > x) ≤ P (S′
n > x) holds for all x ≥ 0 and n ≥ 1 since Sn ≤ S′

n a.s. holds for all
n ≥ 1.

For all x > 0, we split p(x) into two parts as

p(x) ≤
∑

n≤ vx
EX′

P (S′
n > x)P (τ = n) +

∑
vx

EX′ <n≤ vx
EX

P (Sn > x)P (τ = n)

� p1(x) + p2(x). (3.6)

Note that Sτ ∈ L ∩ D implies G ∈ L ∩ D. By Lemma 3.3, there exists a positive constant
C = C(v) independent of x and n, such that

P (S′
n > x) ≤ P (S′

n − nEX ′ > (1 − v)x) ≤ CnG((1 − v)x + EX ′)

holds for all n ≤ vx
EX′

(
x ≥ EX′

v n
)
. Combining with (3.5) we have

p1(x) ≤ C
∑

n≤ vx
EX′

nP (τ = n)G((1 − v)x + EX ′)

≤ CEτG((1 − v)x + EX ′)

= o(P (Sτ > x)). (3.7)

On the other hand, by Theorem 1 in [3], we have

lim
n→∞ P

(Sn

n
− EX >

(1 − v)EX

v

)
= 0.

It follows that

p2(x) ≤
∑

vx
EX′ <n≤ vx

EX

P
(Sn

n
− EX >

(1 − v)EX

v

)
P (τ = n)

≤ o(1)F τ

( vx

EX ′
)

= o(P (Sτ > x)). (3.8)

Hence (3.4) follows for the case Eτ < ∞.
Now we discuss the case (ii) where Eτ = ∞: Let

gr(x) =
{

xr, x ≥ 1,
0, x < 1,

if r > 1; and let

gr(x) =
{

x lnδ x, x > 1,
0, x ≤ 1,
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if r = 1. The assumption (2.4) implies that

P (X > x) = o
( 1

gr(x)

)
.

By Lemma 4.4 in [7], there exists a nondecreasing slowly varying function L(x) satisfying

L(x) → ∞ and P (X > x) = o
( 1

gr(x)L(x)

)
.

Thus there exists x′ > 1, such that

P (X > x) ≤ 1
gr(x)L(x)

≤ 1

holds for all x ≥ x′. Define a distribution G as follows:

G(x) = G((−∞, x]) =

⎧⎨
⎩

0, x < x′,

1 − 1
gr(x)L(x)

, x ≥ x′.

It is obvious that G ∈ R−r ⊂ L∩D. Without loss of generality, we assume that F is absolutely
continuous, otherwise F can be replaced by F ∗ V , where V is the uniform distribution on the
interval [0, 1], so then F ∗ V is absolutely continuous and F ∗ V (x) = o(P (Sτ > x)). Let

X ′
k = G−1(F (Xk)), k = 1, 2, · · ·

and

S′
n =

n∑
k=1

X ′
k, n ≥ 1.

Similarly to the proof of (3.7), there exists a positive constant C = C(v) independent of x and
n, such that

p1(x) ≤ C
∑

n≤ vx
EX′

nP (τ = n)G((1 − v)x + EX ′)

= CEτI
(
τ ≤ vx

EX ′
)
G((1 − v)x + EX ′).

Hence, for sufficiently large x, we have

p1(x) ≤ 2CEτI
(
τ ≤ vx

EX ′
)
G((1 − v)x)

=
C

L((1 − v)x)

EτI
(
τ ≤ vx

EX ′
)

gr

( vx

EX ′
)
P

(
τ >

vx

EX ′
) gr

( vx

EX ′
)

gr

((1 − v)x
EX ′

)
P

(
τ >

vx

EX ′
)

P (Sτ > x)
P (Sτ > x)

= o(P (Sτ > x).

Combining with (3.6) and (3.8), (3.4) is obtained.

Lemma 3.6 Under the conditions of Theorem 2.1, if τ ∈ L ∩ D, then (3.2) holds for any
v < 1.
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Proof The proof is similar to Lemma 3.5 and hence is omitted.

Proof of Theorem 2.1 Obviously, (a) and (2.6) imply (b); and (b) and (2.6) imply (a).
Therefore, we need only to prove that either (a) or (b) implies (2.6). We first prove that (b)
implies (2.6). It suffices to prove that

lim inf
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) ≥ 1 (3.9)

and

lim sup
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) ≤ 1. (3.10)

By Lemma 3.4, (3.1) holds for any c > 1. It follows that

lim inf
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) = lim
c↓1

lim inf
x→∞

P (Sτ > x)

P
(
Sτ >

x

c

) P
(
Sτ >

x

c

)

P
(
τ >

x

EX

) ≥ 1

since Sτ ∈ C. (3.9) is obtained.
The proof of (3.10) is similar to that of (3.9). By Lemma 3.5, (3.2) holds for all v < 1. It

follows that

lim sup
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) = lim
v↑1

lim sup
x→∞

P (Sτ > x)

P
(
Sτ >

x

v

) P
(
Sτ >

x

v

)

P
(
τ >

x

EX

) ≤ 1.

The proof of the fact that (a) implies (2.6) is quite similar to the above. By Lemma 3.4, Lemma
3.6 and Fτ ∈ C, it follows that

lim inf
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) = lim
c↓1

lim inf
x→∞

P (Sτ > x)

P
(
τ >

cx

EX

) P
(
τ >

cx

EX

)

P
(
τ >

x

EX

) ≥ 1

and

lim sup
x→∞

P (Sτ > x)

P
(
τ >

x

EX

) = lim
v↑1

lim sup
x→∞

P (Sτ > x)

P (τ >
vx

EX
)

P
(
τ >

vx

EX

)

P
(
τ >

x

EX

) ≤ 1.

This finishes the proof of Theorem 2.1.
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