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Abstract Let S be a hyperbolic Riemann surface with a finite area. Let G be the
covering group of S acting on the hyperbolic plane H. In this paper, the author studies
some algebraic relations in the mapping class group of Ṡ for Ṡ = S\{a point}. The author
shows that the only possible relations between products of two Dehn twists and products
of mapping classes determined by two parabolic elements of G are the reduced lantern
relations. As a consequence, a partial solution to a problem posed by J. D. McCarthy is
obtained.
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1 Statement of Results

Let S be a hyperbolic Riemann surface of type (p, n) with a finite area, where p is the genus
and n is the number of punctures of S. Assume throughout that 3p + n > 3. Let H denote
the hyperbolic plane. By the uniformization theorem (see [8]), there is a holomorphic covering
map � : H → S from which we can obtain a covering group G which acts on H as isometries
and is a torsion free, finitely generated Fuchsian group of the first kind.

Denote by Ṡ the surface obtained from S with one point x removed. Let F denote the
subgroup of the mapping class group on Ṡ that consists of mapping classes isotopic to the
identity as x is filled in. It is well-known (see [3, 5]) that F is the image of G under the so-
called “Bers isomorphism”. In the literature, elements of F are called point-pushing mapping
classes.

Let F0 be the subset of F consisting of elements with forms tat−1
b or t−1

a tb, where a, b are
simple closed geodesics on Ṡ and tc is the positive Dehn twist about a geodesic c. It is clear
that if tat−1

b ∈ F0 and both a, b are non-trivial curves on S, then ã = b̃. Here and hereafter,
we use the symbols ã and b̃ to denote the geodesics on S homotopic to a and b, respectively.
In the case where the pair (a, b) fills Ṡ, that is, a ∪ b intersects every simple closed geodesic on
Ṡ, then by Thurston’s theorem (see [14]), tat−1

b and t−1
a tb are pseudo-Anosov. The element h

of G corresponding to tat−1
b or t−1

a tb is called an essential hyperbolic element (see [10] for more
information).

The main purpose of this article is to clarify the situation when the product of two parabolic
elements of G can be identified with an element of F0 (the product always belongs to F ). To
state our results, we need some geometric and topological terms related to the mapping class
group.

Let D be a thrice punctured disk with three punctures x′, y, z. Denote by D the boundary
of D. Let a, b, c ⊂ D be the boundaries of twice punctured disks enclosing {x′, y}, {x′, z} and
{y, z}, respectively, such that a, b and c pairwisely intersect twice (see Figure 1). Then the
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classical lantern relation (see [6, 11]) is simplified to the relation

tD = tctbta. (1.1)

Usually, if Ṡ contains at least three punctures, D can be embedded into Ṡ in such a way that
x′ is identified with x and {y, z} can be identified with two other punctures of S. Thus a, b, c

and D can be considered simple closed geodesics on Ṡ. In this situation we call these geodesics
a, b, c and D geometrically related in Figure 1.

�
�

�
�

�

� �

Figure 1 A reduced lantern relation
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Assume that S is non-compact. Then G contains infinitely many parabolic elements and Ṡ
contains at least two punctures. For each h ∈ G, let h∗ denote the corresponding element in F .
By Theorem 2 of [10], h∗ is the Dehn twist (positive or negative) along a geodesic e on Ṡ that
is the boundary of a twice punctured disk enclosing x if and only if h is a primitive parabolic
element. In this case, e is a trivial loop on S and is called a preperipheral geodesic.

We first prove the following result.

Theorem 1.1 Let h1, h2 ∈ G be parabolic elements such that h∗
1 = ta and h∗

2 = tb. Assume
that (h2h1)∗ ∈ F0, which allows us to write (h2h1)∗ as tDt−1

c or t−1
c tD for some simple closed

geodesics c, D on Ṡ. Then Ṡ contains at least three punctures (so S contains at least two
punctures) and a, b, c, D are geometrically related in Figure 1.

During a conference hosted by AMS in 2002, J. D. McCarthy asked a question about how
to characterize geometric relations by means of algebraic relations among various Dehn twists.
We use the symbol i(a, b) to denote the geometric intersection number between a and b. To the
best knowledge of the author, only the following relations are well-known (see [9]):

(1) tja = tkb if and only if j = k and a = b,
(2) tjatkb = tkb tja if and only if i(a, b) = 0, and
(3) tjbt

k
atjb = tkatjbt

k
a and a �= b if and only if j = k = ±1 and i(a, b) = 1.

Some results related to the classical lantern relation and the chain relation were found in
Margalit [12] and Hamidi-Tehrani [7]. Their results rely on the strong hypothesis that some
words generated by ta and tb are multi-twists (defined by finite collections of disjoint simple
closed geodesics).

The proof of Theorem 1.1 leads to the following result, which does not impose any condition
on commutativity and disjointness among simple closed geodesics and thereby gives a partial
solution to the problem posed by McCarthy.

Theorem 1.2 Let S be a Riemann surface of type (p, n) with a finite hyperbolic area.
Assume that 3p + n > 3 and n ≥ 1. Let a, b, c and D be simple closed geodesics on S. Then
the relation (1.1) holds if and only if S contains at least three punctures and a, b, c, D are
geometrically related in Figure 1.
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Here is the outline of this paper. Section 2 is dedicated to preliminaries which include
some definitions and well-known facts. In Section 3 we investigate parabolic loops in the
fundamental group of S. In Section 4, we prove several related lemmas. In Section 5, we prove
Theorem 1.1 and Theorem 1.2. Section 6 includes a technical lemma that handles the case
where (h2h1)∗ ∈ F0 is also represented by a product of two Dehn twists along non-preperipheral
geodesics.

2 Background and Preliminaries

Let G be a Fuchsian group of the first kind that acts on H as a group of isometries so that
H/G ∼= S. Elements of G are either hyperbolic or parabolic, and every hyperbolic element g
keeps invariant a unique oriented geodesic axis(g) called the axis of g.

Let π1(S, x) denote the fundamental group of S. Then π1(S, x) is isomorphic to G. Let
ε : G → π1(S, x) be an isomorphism. An element g ∈ G is hyperbolic if and only if ε(g) is
represented by a non-trivial closed geodesic; g ∈ G is parabolic if and only if ε(g) is represented
by a loop around a puncture of S. More precisely, a hyperbolic element g ∈ G is simple if and
only if �(axis(g)) is a simple closed geodesic; it is essential hyperbolic if and only if �(axis(g)) is
a filling closed geodesic (in the sense that every component of S\�(axis(g)) is either a polygon
or a once punctured polygon); it is non-simple and non-essential if and only if �(axis(g)) is a
non-simple and non-filling closed geodesic.

Let T (S) denote the Teichmüller space of S. That is, T (S) is the space of all conformal
structures μ(S) on S quotient by an equivalent relation, where two conformal structures μ : S →
μ(S) and μ′ : S → μ′(S) are equivalent if and only if there is a conformal map c : μ(S) → μ′(S)
such that (μ′)−1cμ is isotopic to the identity. The equivalence class of μ is denoted by [μ]. It
is well-known that T (S) is a complex manifold of dimension 3p + n − 3.

Let V (S) be the fiber bundle over T (S) so that any fiber of V (S) over [μ] ∈ T (S) is the
Riemann surface representing [μ]. Then V (S) is also a complex manifold of dimension 3p+n−2,
and its universal covering manifold F (S) is called the Bers fiber space. The fiber over [0] ∈ T (S)
(represented by S) is the central fiber which is identified with the hyperbolic plane H. Thus
the covering group G naturally acts on F (S) that preserves each fiber in F (S). A remarkable
result of Bers [3] states that there exists an isomorphism ϕ of F (S) onto T (Ṡ), which induces
(by conjugation) an isomorphism ϕ∗ of G onto F .

By Theorem 2 of [10], g ∈ G is a primitive parabolic element if and only if g∗ is a simple
Dehn twist ta along the boundary a of a twice punctured disk enclosing x; g ∈ G is essential
hyperbolic if and only if g∗ is pseudo-Anosov (in the sense of [14]); g ∈ G is a simple hyperbolic
element if and only if g∗ is a spin map t−k

c1
tkc2

, where k is an integer and {c1, c2} are the boundary
components of an x-punctured cylinder on Ṡ. Finally, g ∈ G is non-simple and non-essential if
and only if g∗ is a pure mapping class that has a unique pseudo-Anosov component on Ṡ that
contains the puncture x.

Let Q(G) denote the group of quasiconformal automorphisms w of H such that wGw−1 = G.
Two such maps w, w′ ∈ Q(G) are said to be equivalent if wgw−1 = w′g(w′)−1 for every g ∈ G.
It is well-known that G can be regarded as a normal subgroup of Q(G)/∼ and ϕ∗ extends to
an isomorphism of Q(G)/∼ onto the x-pointed mapping class group Modx

S of Ṡ. Let [w] denote
the equivalence class of an element w ∈ Q(G) and [w]∗ denote the image of [w] ∈ Q(G)/ ∼
under the isomorphism ϕ∗ : Q(G)/∼ → Modx

S .
Let a ⊂ Ṡ be a simple closed geodesic that is non-trivial on S as x is filled in. Let ã denote

the (non-trivial) simple closed geodesic homotopic to a on S. Thus the positive Dehn twist tã
defines a special non-trivial reducible mapping class. Let â ⊂ H be a geodesic so that �(â) = ã.
Denote by {Δ, Δ′} the components of H\{â}. Then â, Δ and Δ′ are invariants under the action
of a simple hyperbolic element of G. The Dehn twist tã can be lifted to a map τa : H → H
with respect to Δ, say, which satisfies the conditions

(i) τaGτ−1
a = G;

(ii) � ◦ τa = tã ◦ �.
In addition to (i) and (ii) above, τa defines a collection Ua of half planes in H in a partial
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order defined by inclusion. There are infinitely many maximal elements of Ua, all maximal
elements Δi (Δ is one of them) of Ua are mutually disjoint, and the complement

Ωa = H\
⋃
i

Δi ⊂ Δ′

is not empty. In fact, it is a convex region bounded by a collection of disjoint geodesics â with
�(â) = ã. It is clear that Δ′ contains infinitely many maximal elements of Ua and the map τa

constructed above keeps each maximal element invariant and has the property that

τa|Ωa = id.

The map τa so obtained depends on the choice of a geodesic â with �(â) = ã, but it does
not depend on the choice of a boundary component of Ωa. Moreover, τa determines an element
[τa] ∈ Q(G)/∼. By Lemma 3.2 of [15], we can properly choose â (and Δ) so that [τa]∗ ∈ Modx

S
is represented by the Dehn twist ta along a. If we use Δ′ to acquire a lifting map τa′ of tã, we
have [τa′ ]∗ = ta0 , where a0 together with a forms the boundary of an x-punctured cylinder. See
[15, 18] for more details. In the rest of this paper we call the triple (τa, Ωa, Ua) the configuration
corresponding to a.

3 Products of Parabolic Elements

Let x0 = x, x1, · · · , xn denote the punctures of Ṡ. Let T (x, xi) be the set of preperipheral
geodesics enclosing x and xi. Let T (x) =

⋃
i

T (x, xi).

Assume that a, b ∈ T (x). Then a and b are trivial loops on S as the puncture x is filled
in. This is equivalent to that a and b are preperipheral and thus are the boundaries of twice
punctured disks D(a) and D(b) that enclose x.

By Theorem 2 of [10] and Theorem 2 of [13], there exist primitive parabolic elements Ta, Tb ∈
G such that T ∗

a = ta and T ∗
b = tb. Under the isomorphism ε : G → π1(S, x), Ta and Tb

correspond to parabolic loops ea and eb passing through x, respectively, such that ea goes
around x1, and eb also goes around a puncture xi. Note that ea, eb go around the same
puncture if and only if Ta and Tb are conjugate to each other in G.

Let d(a) be the deformation retract of D(a), that is, d(a) is a path on S connecting x and
x1 so that D(a) can be reconstructed from fattening d(a). Likewise, let d(b) be the deformation
retract of D(b). Clearly, d(a) and d(b) determine the parabolic loops ea and eb on S passing
through x, respectively. Assume that d(a) and d(b) intersect in a minimum number of points.
We say d(a) and d(b) are disjoint if they only meet at x. In this case, (d(a), d(b)) forms a binary
tree with two leaves x1 and xi. If D(a) and D(b) share both punctures, then by our convention,
d(a) intersects d(b).

Lemma 3.1 Let [σ′] ∈ π1(S, x) correspond to the product TbTa. Then any representative
of [σ′] is freely homotopic to a trivial or simple closed geodesic σ if and only if d(a) and d(b)
are disjoint.

Proof Obviously, if d(a) and d(b) are disjoint, i.e., (d(a), d(b)) forms a binary tree with two
leaves x1 and xi, then ea · eb is homotopic to the boundary of a twice punctured disk enclosing
x1 and xi. The converse can be proved by a geometric argument. Suppose that d(a) and d(b)
intersect at a minimum number of intersection points S = {ui; 1 ≤ i ≤ k}. Figures 2(a)–(b)
show the first two such points u1 and u2 in two different situations.

Note that each ui contributes four intersection points between ea and eb which form vertices
of a quadrilateral Qi. Figure 3 illustrates some details of the curve concatenation ea · eb at u1

and u2, and at x based on Figure 2(a). Vertices uij , 1 ≤ j ≤ 4, of each quadrilateral Qi are
labeled counterclockwise.
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Figure 2 Paths d(a) and d(b) and their intersection points
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Figure 3 Fattenings of d(a) and d(b) produce D(a) and D(b) as well as the product ea · eb
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Since σ is freely homotopic to ea · eb, if σ is a simple closed geodesic, then during the
deformation, the points in S0 = {uij; 1 ≤ i ≤ k and 1 ≤ j ≤ 4} are canceled in pairs, where at
least one pair, according to the so-called bigon principle, constitutes vertices of a bigon. So it
suffices to check if there exists a point uij in S0 together with its neighboring point that forms
vertices of a bigon. This can be done by examining each point ui for 1 ≤ i ≤ k. The case where
i = 1 and j = 4, is slightly different. If u14 is the vertex of a monogon R, then u1 is not in S ,
which contradicts that d(a) and d(b) intersect at a minimum number of intersection points.

In the cases where i > 1, or i = 1 and j �= 4, each vertex uij , 1 ≤ j ≤ 4, of the quadrilateral
Qi obtained from ui can not be canceled with any other vertex of Qi. If ui2 and u(i+1)1 are
also vertices of a bigon, then ui and ui+1 are vertices of a bigon formed by d(a) and d(b). In
this case, ui and ui+1 can be removed from S . This contradicts that d(a) and d(b) intersect
at a minimum number of intersection points. After a finite number of steps, we see that there
is no bigon in the complement of ea · eb, that is to say, no points in S0 can be deleted. This
leads to a contradiction. The case of Figure 2(b) can be handled in the same way.

Let za, zb denote the fixed points of Ta and Tb, respectively. Conjugating by a Möbius
transformation if necessary, we may assume without loss of generality that za and zb are south
and north poles on S1, respectively. Let L and R denote the left and right components of
S1\{za, zb}, respectively. See Figure 4.

For each point z ∈ R, one checks that TbTa(z) �= z. Hence there are no fixed points of TbTa

on R. So the fixed point(s) of TbTa must lie on L. The following lemma shows that there are
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actually two fixed points of TbTa on L.

Lemma 3.2 If 3p + n > 3, then TbTa ∈ G is hyperbolic.

Proof By assumption, a, b ∈ T (x). If d(a) and d(b) intersect, then by Lemma 3.1, TbTa

is not parabolic. If d(a) and d(b) are disjoint, then by Lemma 3.1 again, [σ′] is represented
by a trivial or simple closed geodesic σ. Note that (p, n) �= (0, 3), which implies Ṡ is not of
type (0, 4). Thus σ is not trivial, which says that σ is a non-trivial simple geodesic. So TbTa is
hyperbolic.

Figure 4 The product of Ta and Tb gives a hyperbolic element
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By Lemma 3.2, g := TbTa ∈ G is hyperbolic, whose axis axis(g) meets S1 on the left
component L of S1\{za, zb}. We also know that the orientation of the axis is as shown in
Figure 4. Otherwise, suppose that axis(g) takes an opposite orientation to the one shown in
Figure 4. Then g and T−1

b have the same relative motion direction. By the same proof of
Lemma 7.1 of [16], T−1

b g is hyperbolic, which would contradict that Ta = T−1
b g and Ta is a

parabolic element of G.

4 Lantern Relation in a Reduced Form

In this section, we assume that a, b, c and D are simple closed geodesics on Ṡ, such that

tbta = t−1
c tD, (4.1)

where a, b ∈ T (x) (in the case where tbta = tDt−1
c , the discussion is the same). As usual, we

let ã, b̃, c̃ and D̃ denote the geodesics homotopic to a, b, c, D on S, respectively.

Lemma 4.1 With the above conditions, either D̃ and c̃ are trivial, or D̃ and c̃ are non-
trivial.

Proof If D̃ is trivial and c̃ is non-trivial, or D̃ is non-trivial and c̃ is trivial, then it quickly
leads to a contradiction by filling in the puncture x in (4.1).

Lemma 4.2 Assume that a, b ∈ T (x) and satisfy (4.1). Then either D̃ or c̃ is non-trivial.

Proof Suppose that both D̃ and c̃ are trivial. Then a, b, c, D ∈ T (x) satisfy (4.1). We
claim that this does not occur, and the contradiction will complete the proof of the lemma.

Indeed, there are primitive parabolic elements Ta, Tb, Tc, TD ∈ G such that T ∗
a = ta, T ∗

b = tb,
T ∗

c = tc and T ∗
D = tD. Denote ε(Ta) = ea, ε(Tb) = eb, ε(Tc) = ec and ε(TD) = eD. These loops

are parabolic in π1(S, x).
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By Lemma 3.2, TbTa ∈ G is a hyperbolic element. Thus the curve concatenation

ε(TbTa) = ea · eb

is homotopic to a non-trivial closed geodesic σ. As discussed in the proof of Lemma 3.1, during
the homotopy from ea ·eb to σ, intersection points can be canceled only in pairs. Note that every
interior intersection point between d(a) and d(b) contributes four intersection points between
a and b; near x, a and b intersect twice. In addition, if d(a) and d(b) intersect at the other
endpoint y, then a and b intersect twice near y. We conclude that a and b intersect in an even
number of points. So σ has an even number of self-intersection points.

On the other hand, since c, D ∈ T (x), we have i(c, D) > 0. Thus from the above argument,
c = ∂D(c) and D = ∂D(D) have an even number of intersection points, but the curve concate-
nation eD · e−1

c has an additional self-intersection point at x. So the number of self-intersection
points of eD · e−1

c is odd. During the homotopy from ε(T−1
c TD) = eD · e−1

c to the geodesic σ,
the self-intersection points could cancel only in pairs. We conclude that the number of self-
intersection points of σ is odd. It follows that TbTa �= T−1

c TD. Thus via the Bers isomorphism,
tbta �= t−1

c tD. Similarly, we can prove tbta �= tDt−1
c .

From Lemmas 4.1–4.2, we conclude that both c̃ and D̃ are non-trivial. As a matter of fact,
more is true.

Lemma 4.3 With the same conditions as in Lemma 4.2, c and D are disjoint, and hence
c and D are the boundary components of an x-punctured cylinder on Ṡ.

Proof By Lemma 6.1, we assert that i(c, D) = 0. So either c = D or c and D are disjoint.
If c = D, then from (4.1), tbta is trivial. But this is impossible since a, b ∈ T (x) and thus a
and b intersect. We assume that c and D are disjoint. By filling the puncture x, from (4.1),
we see that t−1

c tD projects to the trivial mapping class on S. But we know that c̃ and D̃

are non-trivial geodesics. So c̃ = D̃. It follows that c and D are boundary components of an
x-punctured cylinder on Ṡ.

Lemma 4.4 Under the same notations and conditions as above, D is disjoint from a and
b, or equivalently, D is disjoint from d(a) ∪ d(b).

Proof Let Δ denote the component of H\axis(TbTa) that does not include za and zb (as
shown in Figure 4). Note that (TbTa)∗ = t−1

c tD. With the help of Δ one can construct a map
τ ∈ Q(G), which is a lift of the Dehn twist tD̃ = tc̃, where in fact D̃ = c̃ = �(axis(TbTa)). From
Lemma 3.2 of [15], [τ ]∗ = tD or tc (see Section 2 for more details).

Let (τ, Ω, U ) be the configuration obtained from τ . By construction, Δ ∈ U . Note that
TbTa keeps the set of maximal elements of U invariant. If there is a maximal element Δ0 ∈ U
that covers za but not zb, then Ta(Δ∗

0) ⊂ Δ0 and thus TbTa(Δ∗
0) ⊂ Δ∗

0, which says that Δ0 is
not a maximal element of U . If Δ0 covers both za and zb, then either (i) Ta(Δ∗

0) is disjoint from
zb or (ii) Ta(Δ∗

0) covers zb. When (i) occurs, TbTa(Δ∗
0) is disjoint from Δ∗

0; when (ii) occurs,
we have TbTa(Δ0) ⊂ Δ0. All these would imply that Tb(Ta(Δ0)) is not a maximal element of
U . This contradiction tells us that za can not belong to any maximal element of U .

Now by considering the inverse T−1
a T−1

b of TbTa, one can show that zb can not belong to
any maximal element of U . Hence both za and zb ∈ Ω ∩ S1. It follows that both Ta and Tb

commute with τ . If [τ ]∗ = tc, then tc commutes with ta and tb, and so tc commutes with tbta.
But we have tctbta = tD, which implies that c intersects a ∪ b. This is absurd. We conclude
that [τ ]∗ �= tc. So [τ ]∗ = tD. Thus both ta and tb commute with tD (but ta and tb do not
commute with each other). That is, D does not intersect a ∪ b.

We now proceed to study the properties of conjugate parabolic elements and their products.
Assume that a, b ∈ T (x, x1), which is equivalent to that Ta and Tb are conjugate in G.



86 C. H. Zhang

Lemma 4.5 If Tb is conjugate to Ta in G, then TbTa ∈ G is hyperbolic but not a simple
hyperbolic element unless a = b.

Proof From Lemma 3.2, TbTa is hyperbolic. If a �= b and TbTa is simple hyperbolic, then
TbTa corresponds to a simple closed geodesic γ in π1(S, x).

By assumption, there is an element h ∈ G such that Tb = hTah
−1. Thus TbTa = hTah

−1Ta.
Note that d(b) = h∗(d(a)) determines a parabolic loop eb, but eb is also defined by hTah−1. We
see that hTah

−1Ta determines a loop ea · eb ∈ π1(S, x). Since d(b) = h∗(d(a)), d(a) and d(b)
share both endpoints {x, x1}. This implies that the curve concatenation ea · eb is homotopic to
a geodesic with at least two self-intersection points (two of which are near the puncture x1).
In other words, the axis of hTah−1Ta projects to a non-simple closed geodesic. It follows from
the definition that TbTa is not a simple hyperbolic element.

A mapping class M is called a multi-twist if M is represented by a finite product of Dehn
twists about disjoint simple closed geodesics.

Lemma 4.6 If Tb is conjugate to Ta in G, then (TbTa)∗ is not a multi-twist unless a = b,
in which case Tb = Ta and (TbTa)∗ is a power of a Dehn twist.

Proof Assume that b �= a and (TbTa)∗ = M is a multi-twist. Since TbTa ∈ G, by Theorem
2 of [10], if TbTa is an essential hyperbolic element, or a non-simple non-essential hyperbolic
element, then (TbTa)∗ can never be multi-twist. It follows that (TbTa)∗ is either parabolic
or simple hyperbolic. By Lemma 3.2, (TbTa)∗ is not parabolic. So (TbTa)∗ must be simple
hyperbolic. But this again contradicts Lemma 4.5. If a = b, then Ta = Tb. So TbTa = T 2

a and
hence (TbTa)∗ = (T ∗

a )2 = t2a.

5 Proof of Theorems

Proof of Theorem 1.1 We only handle the case where (TbTa)∗ is of the form (4.1).
Suppose that Ṡ contains only two punctures x and x1. Then a, b ∈ T (x, x1), and thus Ta, Tb

are conjugate in G. Since a �= b, by Lemma 4.6, (TbTa)∗ is not a multi-twist, which implies
that c and D are not disjoint. On the other hand, since (TbTa)∗ ∈ F0 is of the form of (4.1),
by Lemmas 4.1–4.2 and Lemma 6.1 in Appendix, we conclude that c and D do not intersect.
This contradiction proves that Ṡ contains at least three punctures.

Assume that a ∈ T (x, x1) and b ∈ T (x). By Lemmas 4.1–4.2, both D̃ and c̃ are non-trivial.
Lemma 4.4 then asserts that c is disjoint from D and {c, D} actually bounds an x-punctured
cylinder on S. This implies that tbta = t−1

c tD is a multi-twist. By Theorem 2 of [10] and
Theorem 2 of [13], there exists a simple hyperbolic element h ∈ G such that h∗ = t−1

c tD.
But (TbTa)∗ = tbta = t−1

c tD. It follows that h = TbTa, which tells us that TbTa is a simple
hyperbolic element of G. Hence by Lemma 4.5, Ta is not conjugate (in G) to Tb. As it turns
out, b ∈ T (x, xi) for some xi �= x1. Moreover, by Lemma 3.1, d(a) and d(b) are disjoint, which
says that (d(a), d(b)) forms a binary tree with two leaves x1 and xi.

By Lemma 4.4, D is disjoint from d(a) ∪ d(b). This means that D is disjoint from a ∪
b. Finally, to see that D bounds a thrice punctured disk on S, we observe that the curve
concatenation ea · eb is homotopic to D̃. But since (d(a), d(b)) forms a binary tree with leaves
{x1, xi}, it is obvious that ea · eb bounds a twice punctured disk on S which encloses {x1, xi}.
From the above argument, D is disjoint from a ∪ b. If D does not bound a thrice punctured
disk, then D̃ is not the boundary of any twice punctured disk, which leads to a contradiction.

We conclude that D bounds a thrice punctured disk. Since {c, D} bounds an x-punctured
cylinder on S, c bounds a twice punctured disk enclosing {x1, xi}. Thus Figure 1 has been
reconstructed. This proves that a, b, c and D are geometrically related by Figure 1.

To prove Theorem 1.2, we need some preliminary results.
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Lemma 5.1 Let a, b, c ⊂ Ṡ be simple closed geodesics. We have the following claims:
(1) If tatb is trivial, then both a and b are trivial.
(2) If tat−1

b is trivial, then either a and b are trivial, or a = b.
(3) If tatb = tc, then either a, b and c are trivial, or a is trivial and b = c, or b is trivial and

a = c.
(4) If tat−1

b = tc, then either a, b and c are trivial, or a and b are non-trivial and c is trivial,
or b is trivial and a = c, and

(5) If tatb = t−1
c , then a, b and c are trivial.

Proof (1) If a and b are non-trivial, then ta �= t−1
b . If a is trivial and b is non-trivial, or a

is non-trivial and b is trivial, then tatb is a simple Dehn twist that is also non-trivial.
(2) If tat−1

b is trivial, then ta = tb, which implies that a = b or both a and b are trivial.
(3) Suppose that not all a, b and c are trivial. If a is trivial, then tb = tc and thus b = c;

otherwise a is non-trivial. If b is non-trivial, then tatb can not be a single Dehn twist. It follows
that b is trivial. Thus ta = tc and so a = c.

(4) Suppose that not all a, b and c are trivial. If b is trivial, then ta = tc, which says a = c.
Otherwise, b is non-trivial. If a is also non-trivial, the only possibility is that c is trivial and
a = b. If a is trivial, then t−1

b = tc, which is impossible.
(5) If only one of a, b and c is trivial, then tatb �= t−1

c . If any two of a, b and c are trivial,
the other one must also be trivial. If all a, b and c are non-trivial and a and b are disjoint, then
tatb is multi-twist while t−1

c is a single Dehn twist. So tatb �= t−1
c . If a and b intersect, then tatb

can not be a single Dehn twist either.

Proof of Theorem 1.2 We first assume that ã and b̃ are non-trivial (this is automatically
true when n = 1; that is, S contains only one puncture). If c̃ or D̃ is trivial, then from (4.1),
Lemma 5.1 (3) and (5), we assert that ã or b̃ or both are trivial. This is contradiction. If
c̃ and D̃ are non-trivial, there are four subcases to consider: (i) i(c, D) = 0, i(a, b) = 0, (ii)
i(c, D) > 0, i(a, b) > 0, (iii) i(c, D) = 0, i(a, b) > 0, and (iv) i(c, D) > 0, i(a, b) = 0.

If i(c, D) = 0, then tbta is either the square of a positive Dehn twist or a multi-twist with two
positive components. Clearly, (i) does not hold (since t−1

c tD is either trivial or a multi-twist with
one positive and one negative components). (iv) says that c and D intersect. From Thurston’s
theorem [14], we see that on the surface supported by c and D, t−1

c tD is pseudo-Anosov. So
(iv) can not happen either.

C

D

A

B

C′ D′

A′

B′

�
Q

Δb

Δ∗
b

Δ∗
a

Δa

	

�

τb

τa

Figure 5 Ωa ∩ Ωb = ∅


QΔD

Δ∗
D

�

τD

Figure 6 Ωc ∩ ΩD = ∅

Δc

Δ∗
c

τ−1
c




C

To handle the other two cases, we let (τa, Ωa, Ua), (τb, Ωb, Ub), (τc, Ωc, Uc) and (τD, ΩD, UD)
be the configurations corresponding to a, b, c and D, respectively.
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Suppose (ii) occurs with Ωa∩Ωb �= ∅. Note that τbτa has no fixed points on S1, while τ−1
c τD

has two or infinitely many fixed points on S1. We see that τbτa �= τ−1
c τD on S1. Now assume

that Ωa ∩Ωb = ∅. There are maximal elements Δa ∈ Ua and Δb ∈ Ub such that Δa ∪Δb = H.
We refer to Figure 5 where Δ∗

b = H\Δb and τa(Δ∗
b ) ∩ S1 = (A′B′); likewise, Δ∗

a = H\Δa and
τb(Δ∗

a) ∩ S1 = (C′D′) (here and hereafter we denote by (AB) the minor arc on S1 connecting
two non-antipodal points A and B on S1).

By examining the action of τbτa on S1, we see that the fixed points for τbτa (if exist) must
lie on the arc (D′C). Let Q be the fixed point of τbτa that is closest to C. Then Q is also a
fixed point of τ−1

c τD. If Ωc ∩ΩD = ∅, there are maximal elements Δc ∈ Uc and ΔD ∈ UD such
that Δc ∪ ΔD = H. We have Q ∈ (Δc ∩ ΔD) ∩ S1. See Figure 6.

For any z ∈ S1, let d(τbτa(z), z) denote the Euclidean length of the arc of S1\{z, τbτa(z)}
determined by the motion direction of τbτa at z. Then z is a fixed point of τbτa if and only if
d(τbτa(z), z) = 2kπ for an integer k. Similarly, we use d(τ−1

c τD(z), z) to denote the Euclidean
length of the arc of S1\{z, τ−1

c τD(z)} determined by the motion direction of τ−1
c τD at z. Since

the motion directions of τ−1
c and τD are opposite, z is a fixed point of τ−1

c τD if and only if
d(τ−1

c τD(z), z) = 0. Now we choose a sequence {zn} ⊂ S1 with z0 = C, and zn → Q from right.
Notice that 0 < d(τbτa(C), C) < 2π and d(τbτa(zn), zn) > L (where L is the arc length of

(C′D′)). We conclude that d(τbτa(zn), zn) → 2π and d(τ−1
c τD(zn), zn) → 0. It follows that

τbτa �= τ−1
c τD on S1.

Similarly, we can handle the case where Ωc ∩ ΩD �= ∅.
Suppose that (iii) occurs with Ωa ∩ Ωb �= ∅. In this case, Ωc ∩ ΩD �= ∅. It is clear that τbτa

has no fixed points on S1, while there are infinitely many fixed points for τ−1
c τD. This is a

contradiction. If Ωa ∩ Ωb = ∅, a contradiction can also be derived by the similar argument as
above (in this case, z is a fixed point of τ−1

c τD if and only if d(τ−1
c τD(z), z) = 0).

Note that for a surface with one puncture, ã, b̃ are automatically non-trivial. We conclude
that there is no relation (4.1) on S when n = 1.

It remains to consider the case where S contains two or more punctures and ã or b̃ or both
are trivial. Suppose that a ∈ T (x, x1). Our first claim is that c /∈ T (x, x1). For otherwise, tc
is conjugate to ta in F and from (4.1), we obtain

tctbtat−1
b = tDt−1

b .

Hence

tcttb(a) = tDt−1
b . (5.1)

Since a ∈ T (x, x1), we have tb(a) ∈ T (x, x1). This implies that c and tb(a) intersect. So if
i(b, D) = 0, then the right side of (5.1) is a multi-twist or the identity, while the left side of
(5.1) is neither the identity nor a multi-twist. This leads to a contradiction. We conclude that
i(b, D) > 0. But since c, tb(a) ∈ T (x), by Lemma 5.1, either D̃ and b̃ are trivial, or both D̃

and b̃ are non-trivial and D̃ = b̃. The former would contradict Lemma 4.2, and the latter would
contradict Lemma 6.1.

Our next claim is b ∈ T (x). Indeed, by assumption, a ∈ T (x, x1). There are four cases to
be considered.

Case 1 D̃ and c̃ are both non-trivial. By filling the puncture x, from (4.1) we obtain
tb̃ = t−1

c̃ tD̃. By Lemma 5.1, D̃ = c̃ and b̃ is trivial. That is, b ∈ T (x).
Case 2 D̃ is trivial and c̃ is non-trivial. By filling the puncture x, from (4.1) we obtain

tb̃ = t−1
c̃ . This means that tb̃tc̃ = id. By Lemma 5.1, this is impossible unless b̃ = c̃ is trivial.

It follows that b ∈ T (x).
Case 3 D̃ is non-trivial and c̃ is trivial. Again by filling in the puncture x, we see that

tb̃ = tD̃. Thus b̃ = D̃. Let a, b, c and D denote the geodesics on Ṡ ∪ {x1} homotopic to a, b, c
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and D on Ṡ ∪ {x1}, respectively. By filling in the puncture x1, from (4.1) and a ∈ T (x, x1),
we obtain

tb = t−1
c tD. (5.2)

If c is trivial, then b = D and c ∈ T (x, x1). This contradicts the fact that c /∈ T (x, x1).
Assume that c is non-trivial. Then by Lemma 5.1 and (5.2), c = D and thus b is trivial.

This says b ∈ T (x1, x2) (b /∈ T (x, x1) since b̃ by assumption is non-trivial). Since a ∈ T (x, x1),
we have a, b ∈ T (x1). By switching the roles of x and x1 and by Lemma 6.1, we conclude that
tbta �= t−1

c tD.
Case 4 Both D̃ and c̃ are trivial. In this case, by filling the puncture x once again, from

(4.1) we deduce that tb̃ is trivial. Thus b ∈ T (x). We are done.

We now use the same argument of Theorem 1.1 to complete the proof of Theorem 1.2.

6 Appendix

This section is devoted to the proof of a lemma which plays a key role in the proof of
Theorem 1.1. With the same notations and terminology as in Section 4, we have the following
Lemma.

Lemma 6.1 Let a, b, c, D ⊂ Ṡ be simple closed geodesics. Assume that a, b ∈ T (x),
i(c, D) > 0 and c̃, D̃ are non-trivial on S as x is filled in. Then tbta �= t−1

c tD and tbta �= tDt−1
c .

Proof We only prove that tbta �= t−1
c tD. Suppose tbta = t−1

c tD. By assumption, a, b ∈
T (x). Hence by filling the puncture x, we deduce that t−1

c̃ tD̃ is the identity. Since c̃ and D̃

are non-trivial, by Lemma 5.1(2), we have c̃ = D̃. Now tc̃ and tD̃ are well-defined non-trivial
mapping classes on S. Let (τc, Ωc, Uc) and (τD, ΩD, UD) be the configurations corresponding
to c and D, respectively (see Section 2 for an exposition).

Since c̃ = D̃, all boundary geodesics of elements of Uc and UD are disjoint. Hence by
Theorem 1.2 of [19], there exist maximal elements Δc ∈ Uc and ΔD ∈ UD such that Δc∪ΔD =
H, ∂Δc ∩ ∂ΔD = ∅ and Δc ∩ ΔD �= ∅. Denote Δ∗

c = H\Δc and Δ∗
D = H\ΔD. By Theorem

1.2 of [19], τ−1
c τD is a hyperbolic element of G whose axis axis(τ−1

c τD) separates Δ∗
c from Δ∗

D

(see Figure 7).

Figure 7 Both za and zb are outside of ΔD
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By assumption, the equality (4.1) holds. This particularly implies that axis(τ−1
c τD) =

axis(TbTa) (which is also denoted by AB). Since ∂Δc and ∂ΔD project (under ρ) to the simple
closed geodesic c̃ = D̃, τ−1

c τD(Δ∗
D) is disjoint from Δ∗

D. By hypothesis, tbta = t−1
c tD. We

conclude that axis(τ−1
c τD) = axis(TbTa) = geodesic AB connecting A and B.

By combining Figure 4 and the remark thereafter, we deduce that za and zb must lie on the
right component R of S1\{A, B} and furthermore, zb is closer to A than za is. In what follows,
we denote by (P, Q) the minor on S1 connecting two non-antipodal labeling points P and Q on
S1. There are several cases to be considered.

Case 1 Both za and zb lie in the arc (UW ) (see Figure 8). In this case, if Ta(ΔD) covers
zb, then TbTa(Δ∗

D) is not disjoint from Δ∗
D. But we know that τ−1

c τD(Δ∗
D) is disjoint from

Δ∗
D. This is a contradiction. If Ta(ΔD) ∩ S1 ⊂ (Uzb), then TbTa(ΔD) ⊂ Δ∗

D. Again this
contradicts that τ−1

c τD(Δ∗
D) is disjoint from Δ∗

D. If Ta(ΔD)∩S1 ⊂ (zazb), then one easily sees
that TbTa(ΔD) ⊂ ΔD or TbTa(ΔD) ⊂ Δ∗

D, both of which would imply that TbTa(Δ∗
D) is not

disjoint from Δ∗
D.

Case 2 zb ∈ (AU) and za ∈ (UW ) (see Figure 8). Then Ta(ΔD) ∩ S1 ⊂ (Uza). Hence
TbTa(ΔD) ⊂ ΔD. This implies that TbTa(Δ∗

D) is not disjoint from Δ∗
D. If zb ∈ (UW ) and

za ∈ (BW ), by considering the inverse T−1
a T−1

b of TbTa and by the same argument as above,
we see that this case does not occur.

Case 3 za, zb ∈ (AU) (see Figure 9). Noting that b is preperipheral, so b bounds a twice
punctured disk E containing x. This implies that Ṡ\E is not of type (0, 3). We can choose a
non-trivial simple closed geodesic γ on Ṡ\E , which can also be viewed as a geodesic on Ṡ that
satisfies the conditions: (i) γ is not preperipheral, (ii) γ is disjoint from b, and (iii) γ intersects
D and a. Let (τγ , Ωγ , Uγ) be the configuration corresponding to γ. By Lemma 2.2 of [19],
zb ∈ Ωγ ∩ S1, and there exists a maximal element Δ ∈ Uγ so that ∂Δ crosses UW . It could
be the case that Δ covers za, as shown in Figure 9. But it could also be the case that Δ does
not cover za. Since zb ∈ Ωγ ∩ S1, there exists a maximal element, and call it Δ too, such that
za ∈ Δ ∩ S1. In any case, zb is not contained in Δ ∩ S1 and Δ is disjoint from AB.

Now we have Ta(H\Δ) ⊂ Δ, and thus TbTa(Δ) ∩ Δ �= ∅. But τ−1
c τD(Δ) ∩ Δ = ∅. We

conclude that

TbTa(Δ) �= τ−1
c τD(Δ).

So TbTa �= τ−1
c τD.

Case 4 za ∈ (BW ) and zb ∈ (AU) (see Figure 10). Assume without loss of generality that
both a∪b and c∪D fill Ṡ. Since c̃ = D̃, there exists h ∈ G sending U0W0 = ∂Δc to UW = ∂ΔD.
Hence h is hyperbolic and its axis axis(h) separates za from zb. By assumption, c ∪ D fills Ṡ.
From Lemma 2.2 of [21], axis(h) intersects at least one geodesic U1W1 in {�−1(c̃)} = {�−1(D̃)}
between U0W0 and UW . In general, we let U1W1, · · · , UkWk ∈ {�−1(c̃)} be the geodesics
between U0W0 and UW , where k ≥ 1. We redraw Figure 10 as Figure 11 and Figure 12.

Let Rc̃ denote the collection of components of H\{�−1(c̃)}. Then there exists a bijection χ
between Rc̃ and the set of geodesics c0 ⊂ Ṡ with c̃0 = c̃.

Let Ω0 ∈ Rc̃ be contained in the region bounded by U0W0 and be disjoint from AB. For
1 ≤ j ≤ k, we let Ωj ∈ Rc̃ be contained in the region bounded by Uj−1Wj−1 and UjWj . Finally,
denote by Ωk+1 ∈ Rc̃ the component contained in the region bounded by UW and UkWk.

It is clear that A ∈ (U0U1) and B ∈ (WkW ). From Figure 4, we have za ∈ (BW ) and
zb ∈ (AU). If zb ∈ (AU1) (see Figure 11), we consider the component Δ1 of H\U1W1 containing
UW . Then T−1

b (Δ1) ∩ S1 ⊂ (zbU1). Write Δ∗ = T−1
a T−1

b (Δ1). If Δ∗ �= τ−1
D τc(Δ1), we are

done. So we assume that Δ∗ = τ−1
D τc(Δ1).



On Reduced Lantern Relations in Mapping Class Groups 91

� �

� �
� �

B B

A A

Δγ Δγ

Δ∗
γ

Δ∗
γ

τ−1
γ

τ−1
γτδ τδ

Δδ Δδ

Δ∗
δ

Δ∗
δ

W W

U U��
��
��
��� �

� � ��
��

��
��

�

�

�

�

Δ

zb za

W0

U0

W0

U0

zb

za

��
�� ��

��

�
Δ∗

Δ

zb

za

zb

za

U

W

U1

W1

U0

W0

B

A

B

W0

U0
U

W

Uk

Wk

W1

U1

h�

�� ��

τ−1
cτ−1

c

τD
τD

Δ1

�
�

�

�
Δ1

Uk

Wk

�
Δ∗

Δ

�

A

Figure 9 Both za, zb are inside of Δc ∩ ΔD Figure 10 za, zb ∈ Δc are separated by Δ∗
D

Figure 11 zb ∈ (AU1) and za ∈ (BW ) Figure 12 zb ∈ (U1U) and za ∈ (BW )

By construction za /∈ Δ∗ ∩ S1 and Δ∗ covers the repelling fixed point B (otherwise, we
immediately see that TbTa �= τ−1

c τD). Δ∗ is shown as a shaded region in Figure 11. Let
(τ, Ω, U ) be the configuration defined by Δ∗.

Let c′ ⊂ S denote the simple closed geodesic corresponding to Ω1. By Lemma 2.1 of [20], c′

is disjoint from c. Since za ∈ Δ1 ∩S1, by Lemma 2.2 of [19], c′ intersects a. Since b ∈ T (x), by
construction we know that c′ intersects tb(a), i.e., t−1

b (c′) intersects a. It follows that t−1
a t−1

b (c′)
intersects a. This tells us that U contains a maximal element Δ which covers za (Lemma 2.2
of [19]). But since za is disjoint from Δ∗, Δ is disjoint from Δ∗.

We claim that Δ does not cross axis(h). Otherwise, we note that ∂Δ ∈ {�−1(c̃)}. This
implies that UkWk would not be the last geodesic in {�−1(c̃)} that lies in between U0W0 and
UW , and crosses axis(h). Therefore, Δ is disjoint from both Δ∗ and axis(h). Δ is shown
in Figure 11 too. Since τc(Δ1) ∩ S1 ⊂ (W0W1), it is disjoint from (U0W0). But we know
that τ−1

D τc(Δ1) = Δ∗. We conclude that τD(Δ) ∩ S1 is disjoint from (U0W0). It follows that
TbTa(Δ) �= τ−1

c τD(Δ), which in turn implies that TbTa(Δ) �= τ−1
c τD.

If zb ∈ (U1U) (see Figure 12), again, we let Δ1 be the component of H\U1W1 that
contains UW (as shown in Figure 12). Let Δ∗ = τ−1

D τc(Δ1). We may also assume that
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Δ∗ = T−1
a T−1

b (Δ1). Let Δ be shown as in Figure 12. Then by the same argument as above,
we conclude that T−1

a T−1
b (Δ) �= τ−1

D τc(Δ), which implies that TbTa �= τ−1
c τD.

This completes the proof of Lemma 6.1.
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