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Closed Geodesics and Volume Growth of Open Manifolds
with Sectional Curvature Bounded from Below*
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Abstract In this paper, the relationship between the existence of closed geodesics and the
volume growth of complete noncompact Riemannian manifolds is studied. First the authors
prove a diffeomorphic result of such an n-manifold with nonnegative sectional curvature,
which improves Marenich-Toponogov’s theorem. As an application, a rigidity theorem is
obtained for nonnegatively curved open manifold which contains a closed geodesic. Next
the authors prove a theorem about the nonexistence of closed geodesics for Riemannian
manifolds with sectional curvature bounded from below by a negative constant.
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1 Introduction

Let (M, g) be an n-dimensional complete noncompact Riemannian manifold with sectional
curvature satisfying Kps > ¢, where ¢ < 0 is a constant. Denote by «,(r, ¢) the volume of a
geodesic ball of radius r in an n-dimensional space form of constant curvature c. The relative
volume comparison theorem (see [1]) implies that the function

- Vol[B(p, )]
ay, (1, ¢)

is monotone decreasing, where B(p, ) is the open metric ball with center p and radius r in M.

It is well known that
an(r,c) = wn,l/ Se(t)dt,
0

where

-l c=0,

3

Se(t) = (SR,

V—c
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and wy, is the volume of S™(1).
For any p € M, we set
1[B
velp) = tim YA
r—o0 Qi (7“, C)

and define
ve(M) = inf v.(p).

pEM

One always has

Vol[B(p. )] > v.(p) > v.(M), Vr>0,Vpe M.
ay, (1, ¢)

Notice that 0 < v.(M) < 1, and M is isometric to an n-dimensional space form of constant
curvature ¢ if and only if v.(M) = 1. Moreover, for ¢ = 0, vy(p) is independent of the choice of
the base point p, i.e., vo(M) = vo(p).

Riemannian manifolds with large volume growth, i.e., v.(M) > 0, have been studied exten-
sively in the last two decades, see for examples [3, 6, 9-10] and the references therein. In this
paper, we shall study the relationship between the existence of closed geodesics and volume
growth.

It is well known that any compact Riemannian manifold contains at least one closed geodesic
(see [5]), but this is not true for an open Riemannian manifold, since there is the following
theorem (see [4, 9]).

Theorem 1.1 If N is a closed minimal k-submanifold of a nonnegatively curved n-manifold
M, then
Vol[B(N,r)] < Vol(N)ca,—x(r,0),
where B(N,r) ={x € M :d(z,N) <r} and an—x(r,0) denotes the volume of the r-ball in the
Euclidean space R"~*.

As an application of Theorem 1.1, we shall prove the following result which improves
Marenich and Toponogov’s theorem (see [7, 9]).

Theorem 1.2 Let M be an n-dimensional complete noncompact Riemannian manifold with
sectional curvature Ky > 0. If

Vol[B(p, )]

TS

lim sup >0

T—00

for some p e M and s >n — 1, then M 1is diffeomorphic to R™.

Note that if s = n, then the above theorem is just Marenich and Toponogov’s theorem.
Vol[B(p,r)]
1

Wy 17"

By Theorem 1.2, it is natural to consider . Thus we set

1u(p) = lim sup Vol[B(p, )]

r—00 Wn—lrn_l
and define
p(M) = inf p(p).

peEM
Note that, the limit x(p) may be infinity.
Using Wu’s method in [9], we shall obtain the following rigidity theorem.
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Theorem 1.3 Let M be an n-dimensional complete noncompact Riemannian manifold with
sectional curvature Kpr > 0. If M contains a closed geodesic o with length L(c), then pu(M) <
L(0), and the equality holds if and only if M is isometric to S* x R™™1 with flat metric.

Next we discuss a Riemannian manifold with sectional curvature Ky > —x2 and v_ 2 (M) >
0, where x > 0. For the topology of this kind of manifolds, the reader can refer to [10] for more
details. Here we prove the following theorem about the nonexistence of closed geodesics for this
kind of manifolds.

Theorem 1.4 Given v € (0,1) and k > 0, let M be a complete Riemannian n (> 2)-
manifold with Ky > —k2, and v_,2(M) > v. Assume that 6y = 6o(v,n) € (0,5) is the
solution to

6o T
2/ sin" 2 tdt = (1 — 1/)/ sin” "2 tdt.
0 0
Ifrg = % tanhfl(cos 0o), then M does not contain any closed geodesic vy with length L(y) < 2r¢.

In Section 2, we shall recall some fundamental facts and several important lemmas. The
main results are proved in Section 3.

2 Lemmas

In this section, we recall some fundamental facts for later use. Throughout this paper, all
geodesics are assumed to have a unit speed.
By the first variation formula of arc length, it is easy to get the following lemma.

Lemma 2.1 Let N be a smooth compact submanifold of a complete Riemannian manifold
M. Assume that ¢ € M, gEN, and that vy : [0,a] — M is a minimal geodesic from N to q.
Then (7'(0),v) = 0 for any v € T, )N

Lemma 2.2 Let M be an n-dimensional complete noncompact Riemannian manifold. Given

Vol|

s >0, if lim %zOforsomepeM, then for any q € M,
T—00

lim Vol[B(q, r)]

r—00 rs

=0.
Proof Let d = d(p,q) be the distance between p and ¢. For any r > d, one checks that
B(p,r —d) C B(q,r) C B(p,r + d).

Then we have

Vol[B(p,r —d)] (r—d)° - Vol[B(q, )] - Vol[B(p,r +d)] (r+d)°
(r —d)s rs = rs - (r +d)s rs

Letting r — oo, we get the conclusion.

Lemma 2.3 (cf. [2]) Let M be a complete Riemannian manifold with Ky; > c. Denote
by M2(c) the complete simply connected surface of constant curvature c. Given ly,la > 0, let
v1:[0,lh] = M, v2:[0,l2] — M be two geodesic segments in M such that v1(l1) = v2(0) and
Z(=v1(l1),7%(0)) = a. We call such a configuration a hinge and denote it by (y1,72, ). Let
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1,52 C M?(c) be two geodesic segments such that 31(l1) = 72(0), L(vi;) = L(%) = 1; (i = 1,2),
and Z(=71(l),75(0)) = o
Let v1 be minimal, and if ¢ > 0, L(v2) < %, then the following holds

d(71(0),72(l2)) < de(71(0),72(12)),

where d. denotes the distance function in M?(c).

3 Proofs of the Main Results

Proof of Theorem 1.2 Here we use a similar method as that of Theorem 3.1 in [8]. First
by Theorem 1.1, if a nonnegatively curved open Riemannian n-manifold M contains a closed

geodesic o, then

r—00 rs

=0

for any p € o and s > n — 1. Now by Lemma 2.2, the above limit holds for any p € M.

If M is not diffeomorphic to R™, by Cheeger-Gromoll’s soul theorem, the soul of M is not a
point. Then the soul must contain a closed geodesic o (since any compact Riemannian manifold
contains at least one closed geodesic). Because the soul is a totally geodesic submanifold, we
have that o is also a closed geodesic of M, which is a contradiction to the assumption. This
finishes the proof of Theorem 1.2.

Before proving Theorem 1.3, let o : S* — M, u — o(u) be a closed geodesic of M. The
normal space of o(u) in M is given by

No’(u)M = {§ € TU(u)M | <§aal(u)> - 0}’

where (X,Y) = ¢g(X,Y) is the inner product of vectors X and Y, and g is the Riemannian
metric of M. The corresponding normal bundle is

NoM = |} NowM.
ueS?!

We consider the following map
F:NoM — M, (0(u),§) — exp, &

It is easy to show that, when ||¢]| = \/(&, &) is sufficiently small, the tangent map Fil(o(u),¢)
is a linear map of full rank.

The closed geodesic o is of course a smooth compact submanifold of M, so by Lemma 2.1,
we know that F' is a surjective map.

Proof of Theorem 1.3 Assume that 0 = o(u), and u € [0, L(0)] is the unit speed closed
geodesic. Let
Dyo = {(o(u),§) € NoM |u €S, [[¢]| <r},

and we have
F(Dyo)={qe M |d(o,q) <r},
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where d(o, q) is the distance from ¢ to o. For any ug € u, we have B(o(ug),r) C F(D,o), and
then
Vol[B(o(ug), )] < Vol[F(D,0o)].

Let E(u,t) = exp,(,)(t{(u)), where {(u) is a parallel vector field along o, and {(u) €
S""2(1) C NywyM. Set y(t) = E(ug,t) = €XPy(uo) (t§(u0)) and let {e1,e2, -, en_2} be an
orthonormal basis of T¢(,,,)S™ %(1).

We consider the following n — 1 Jacobi fields {J1(t), J2(t), - , Jo—1(t)} along ~(¥)

Ji(t) = (eXDy(ug) st (uo) (tei);, 1 <i<n—2

and

Then we derive

Ji(0) =0, Ji(0) =ei, (J;(0),&(uo)) =0, [IJj(0)[[ =1, 1<i<n-—2 (3.1)

and
Jn-1(0) = 0" (uo), Jp_1(0) =0, (Jn-1(0),&(u0)) =0, [[Jn1(0)] = 1. (3.2)
Now
min {e(€(u0)).}
Vol[F(D,0)] = / / / AR D) (uo)duo,  (3.3)
o(uo)€o JE(uo)eS™=2(1) JO
where

Fo(t) = Fil(o(uo) te(uo)) = (965 (0)) (n-1)x(n—1)» 935 (t) = (Ji(t), J;(1)),
and ¢(&(up)) denotes the distance to the cut points of o(ug) along the geodesic
V() = €xPgy () (€ (10))-

Notice that
t < min{c(&(uo)), 7} < ¢(&(uo)),

so by (3.1)-(3.2) and the Rauch comparison theorem, we get
[J:(t)]] <t forl1<i<n—2 and ||J,—1(t)] <1 (3.4)
Since Fi(t) is a positive definite symmetric matrix, we then have

det(F(t) < [ gu(®.

1<i<n—1

From (3.4) we obtain
det(F,(t)) < t"2,

and by (3.3) we know
Vol[B(o(ug),r)] < Vol[F(D,o)]
< L(o)Vol[S"2(1)] / " p-2qy

0
= L(o)wp_17" L. (3.5)
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It is clear by (3.5) that pu(o(uo)) < L(o), so u(M) < L(o).
If u(M) = L(o), then
gij(t) = (Ji(1), J;(t)) = t%0;; for1 <i<mn—2
and
(Jn—1(t), Jno1(t) =1, gign—1)(t) = (Ji(t), Jn—1(t)) =0 for1 <i<n—2.

By the Gaussian lemma, we have
(Ji(t),y'(t)) =0 forl1<i<n-—1.
Therefore the metric on M is of the following form
g=du®+dt* +1?d¢?, we0,L(0)], t >0, £€S" (1),

which implies that M is isometric to S* x R®~! with flat metric. This completes the proof of
Theorem 1.3.

We use a similar method as that of Theorem 2 in [3] to prove Theorem 1.4.

Proof of Theorem 1.4 Assume that there is a normal closed geodesic v with length
L(y) = 2r < 2r¢g on M, and let p = v(0) and ¢ = 7(r1). Denote by 71 the part of v from
p to g with v{(0) = 4/(0), and 2 the part of v from p to ¢ with v5(0) = —+/(0), and then
L(v1) = L(y2) =71 < ro. Let T' = {+/(0), —+'(0)} be the set of two unit vectors in T,,M. For
any 6 € [0, g], let

') ={ue SyM | ZL(u,T') < 60}.
So
Vol[['(6y)] =2V (0y) = (1 — v)wp—1,

where V() denotes the volume of a geodesic ball of radius 6y in an (n — 1)-unit sphere and
Wy, is again the volume of S™(1).

For each u € S, M, let ¢(u) denote the distance to the cut points of p along the geodesic
exp,,(tu). We claim that for any u € T'(6p),

1 _1 /tanh kr
C(U) < R() = ; tanh ! (Weol) (36)

In fact, let u € T'(6p) and set r = c(u). Then o1(t) = exp,(tu), and ¢ € [0,7] is a minimal
geodesic. Without loss of generality, we can take v;(0) = ~/(0) € T’ with 8 = Z(u,~1(0)) < 6.
Let z = exp,(ru) and t = d(q, 2). Lemma 2.3 applies to the hinge (01,71, 3) to give

cosh kt < cosh krq cosh kr — sinh kry sinh k7 cos 3

< cosh kr; cosh kr — sinh k71 sinh k7 cos 6.
Take a minimal geodesic o joining ¢ with z. Since v{(r1) = —7v4(r1) and

£(71(r1),07(0)) + £(73(r1), 0"(0)) =,
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we can assume that #; = Z(7{(r1),0'(0)) < §. Lemma 2.3 applies to the hinge (0,71, 1) to

give

cosh kr < cosh kry cosh kt — sinh krq sinh st cos 31

< cosh k1 cosh kt.
Thus,
2 . .
cosh kr < cosh” kry cosh kr — cosh kry sinh krq sinh k7 cos .

Simplifying the above inequality, we get
tanh kr cos 0y < tanh kr.

This proves our claim.
Let

dV (exp,(t€)) = v/ g(t; )dtdp,(€)

be the volume form in the geodesic spherical coordinates around p, where du, () is the Rieman-
nian measure on S, M induced by the Euclidean Lebesgue measure on T, M. Since Ky > —r2,
we get from the Bishop-Gromov comparison theorem (cf. [1]) that \/g(t;€) < S_,.2(t) (see
Section 1 for the definition of S_,2(t)), ¥Vt > 0. Thus, for any r > Ry, we have from (3.6) that

min(c(§),r)
Vol[B(p, )] = / () / Vet et

Sp

min(c(€),r)
:/ dup(é“)/ Vgt €)dt
I'(00) 0
min(c(§),r)
+/ dup(f)/ Vg(t; §)dt
Sy M—T(6) 0

Ro
< / dup(©) [ St
T(00) 0

d S_,2(t)d
4 /SPMF<90> 1y (6) / (H)dt

< Vol[B(Ryp)] + vwn—1 /T S_2(t)dt
0
= Vol[B(Ro)] + van(r, —/@2)7

where B(Ry) denotes the Ro-ball in the space form of constant curvature —x?2.

Dividing both sides of the above inequality by «,,(r, —x?) and letting r — oo, we obtain

o VOB

< .
Rk Sy e v<v_.2(M)

This is a contradiction, completing the proof of Theorem 1.4.
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