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Abstract In this paper, the relationship between the existence of closed geodesics and the
volume growth of complete noncompact Riemannian manifolds is studied. First the authors
prove a diffeomorphic result of such an n-manifold with nonnegative sectional curvature,
which improves Marenich-Toponogov’s theorem. As an application, a rigidity theorem is
obtained for nonnegatively curved open manifold which contains a closed geodesic. Next
the authors prove a theorem about the nonexistence of closed geodesics for Riemannian
manifolds with sectional curvature bounded from below by a negative constant.
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1 Introduction

Let (M, g) be an n-dimensional complete noncompact Riemannian manifold with sectional
curvature satisfying KM ≥ c, where c ≤ 0 is a constant. Denote by αn(r, c) the volume of a
geodesic ball of radius r in an n-dimensional space form of constant curvature c. The relative
volume comparison theorem (see [1]) implies that the function

r → Vol[B(p, r)]
αn(r, c)

is monotone decreasing, where B(p, r) is the open metric ball with center p and radius r in M .
It is well known that

αn(r, c) = ωn−1

∫ r

0

Sc(t)dt,

where

Sc(t) =

⎧⎪⎨
⎪⎩

tn−1, c = 0,

( sinh(
√−ct)√−c

)n−1

, c < 0,
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and ωm is the volume of Sm(1).
For any p ∈ M , we set

νc(p) = lim
r→∞

Vol[B(p, r)]
αn(r, c)

,

and define
νc(M) = inf

p∈M
νc(p).

One always has

Vol[B(p, r)]
αn(r, c)

≥ νc(p) ≥ νc(M), ∀r > 0, ∀p ∈ M.

Notice that 0 ≤ νc(M) ≤ 1, and M is isometric to an n-dimensional space form of constant
curvature c if and only if νc(M) = 1. Moreover, for c = 0, ν0(p) is independent of the choice of
the base point p, i.e., ν0(M) = ν0(p).

Riemannian manifolds with large volume growth, i.e., νc(M) > 0, have been studied exten-
sively in the last two decades, see for examples [3, 6, 9–10] and the references therein. In this
paper, we shall study the relationship between the existence of closed geodesics and volume
growth.

It is well known that any compact Riemannian manifold contains at least one closed geodesic
(see [5]), but this is not true for an open Riemannian manifold, since there is the following
theorem (see [4, 9]).

Theorem 1.1 If N is a closed minimal k-submanifold of a nonnegatively curved n-manifold
M , then

Vol[B(N, r)] ≤ Vol(N)αn−k(r, 0),

where B(N, r) = {x ∈ M : d(x, N) < r} and αn−k(r, 0) denotes the volume of the r-ball in the
Euclidean space R

n−k.

As an application of Theorem 1.1, we shall prove the following result which improves
Marenich and Toponogov’s theorem (see [7, 9]).

Theorem 1.2 Let M be an n-dimensional complete noncompact Riemannian manifold with
sectional curvature KM ≥ 0. If

lim sup
r→∞

Vol[B(p, r)]
rs

> 0

for some p ∈ M and s > n − 1, then M is diffeomorphic to R
n.

Note that if s = n, then the above theorem is just Marenich and Toponogov’s theorem.
By Theorem 1.2, it is natural to consider Vol[B(p,r)]

ωn−1rn−1 . Thus we set

μ(p) = lim sup
r→∞

Vol[B(p, r)]
ωn−1rn−1

and define
μ(M) = inf

p∈M
μ(p).

Note that, the limit μ(p) may be infinity.
Using Wu’s method in [9], we shall obtain the following rigidity theorem.
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Theorem 1.3 Let M be an n-dimensional complete noncompact Riemannian manifold with
sectional curvature KM ≥ 0. If M contains a closed geodesic σ with length L(σ), then μ(M) ≤
L(σ), and the equality holds if and only if M is isometric to S1 × R

n−1 with flat metric.

Next we discuss a Riemannian manifold with sectional curvature KM ≥ −κ2 and ν−κ2(M) >

0, where κ > 0. For the topology of this kind of manifolds, the reader can refer to [10] for more
details. Here we prove the following theorem about the nonexistence of closed geodesics for this
kind of manifolds.

Theorem 1.4 Given ν ∈ (0, 1) and κ > 0, let M be a complete Riemannian n (≥ 2)-
manifold with KM ≥ −κ2, and ν−κ2(M) > ν. Assume that θ0 = θ0(ν, n) ∈ (

0, π
2

)
is the

solution to

2
∫ θ0

0

sinn−2 tdt = (1 − ν)
∫ π

0

sinn−2 tdt.

If r0 = 1
κ tanh−1(cos θ0), then M does not contain any closed geodesic γ with length L(γ) < 2r0.

In Section 2, we shall recall some fundamental facts and several important lemmas. The
main results are proved in Section 3.

2 Lemmas

In this section, we recall some fundamental facts for later use. Throughout this paper, all
geodesics are assumed to have a unit speed.

By the first variation formula of arc length, it is easy to get the following lemma.

Lemma 2.1 Let N be a smooth compact submanifold of a complete Riemannian manifold
M . Assume that q ∈ M , q∈N , and that γ : [0, a] → M is a minimal geodesic from N to q.
Then 〈γ′(0),v〉 = 0 for any v ∈ Tγ(0)N .

Lemma 2.2 Let M be an n-dimensional complete noncompact Riemannian manifold. Given
s > 0, if lim

r→∞
Vol[B(p,r)]

rs = 0 for some p ∈ M , then for any q ∈ M ,

lim
r→∞

Vol[B(q, r)]
rs

= 0.

Proof Let d = d(p, q) be the distance between p and q. For any r > d, one checks that

B(p, r − d) ⊂ B(q, r) ⊂ B(p, r + d).

Then we have

Vol[B(p, r − d)]
(r − d)s

· (r − d)s

rs
≤ Vol[B(q, r)]

rs
≤ Vol[B(p, r + d)]

(r + d)s
· (r + d)s

rs
.

Letting r → ∞, we get the conclusion.

Lemma 2.3 (cf. [2]) Let M be a complete Riemannian manifold with KM ≥ c. Denote
by M2(c) the complete simply connected surface of constant curvature c. Given l1, l2 > 0, let
γ1 : [0, l1] → M, γ2 : [0, l2] → M be two geodesic segments in M such that γ1(l1) = γ2(0) and
∠(−γ′

1(l1), γ′
2(0)) = α. We call such a configuration a hinge and denote it by (γ1, γ2, α). Let
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γ̃1, γ̃2 ⊂ M2(c) be two geodesic segments such that γ̃1(l1) = γ̃2(0), L(γi) = L(γ̃i) = li (i = 1, 2),
and ∠(−γ̃′

1(l1), γ̃
′
2(0)) = α.

Let γ1 be minimal, and if c > 0, L(γ2) ≤ π√
c
, then the following holds

d(γ1(0), γ2(l2)) ≤ dc(γ̃1(0), γ̃2(l2)),

where dc denotes the distance function in M2(c).

3 Proofs of the Main Results

Proof of Theorem 1.2 Here we use a similar method as that of Theorem 3.1 in [8]. First
by Theorem 1.1, if a nonnegatively curved open Riemannian n-manifold M contains a closed
geodesic σ, then

lim
r→∞

Vol[B(p, r)]
rs

= 0

for any p ∈ σ and s > n − 1. Now by Lemma 2.2, the above limit holds for any p ∈ M .
If M is not diffeomorphic to R

n, by Cheeger-Gromoll’s soul theorem, the soul of M is not a
point. Then the soul must contain a closed geodesic σ (since any compact Riemannian manifold
contains at least one closed geodesic). Because the soul is a totally geodesic submanifold, we
have that σ is also a closed geodesic of M , which is a contradiction to the assumption. This
finishes the proof of Theorem 1.2.

Before proving Theorem 1.3, let σ : S1 → M , u → σ(u) be a closed geodesic of M . The
normal space of σ(u) in M is given by

Nσ(u)M = {ξ ∈ Tσ(u)M | 〈ξ, σ′(u)〉 = 0},

where 〈X, Y 〉 = g(X, Y ) is the inner product of vectors X and Y , and g is the Riemannian
metric of M . The corresponding normal bundle is

NσM =
⋃

u∈S1

Nσ(u)M.

We consider the following map

F : NσM → M, (σ(u), ξ) → expσ(u) ξ.

It is easy to show that, when ‖ξ‖ =
√〈ξ, ξ〉 is sufficiently small, the tangent map F∗|(σ(u),ξ)

is a linear map of full rank.
The closed geodesic σ is of course a smooth compact submanifold of M , so by Lemma 2.1,

we know that F is a surjective map.

Proof of Theorem 1.3 Assume that σ = σ(u), and u ∈ [0, L(σ)] is the unit speed closed
geodesic. Let

Drσ = {(σ(u), ξ) ∈ NσM | u ∈ S1, ‖ξ‖ < r},
and we have

F (Drσ) = {q ∈ M | d(σ, q) < r},
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where d(σ, q) is the distance from q to σ. For any u0 ∈ u, we have B(σ(u0), r) ⊂ F (Drσ), and
then

Vol[B(σ(u0), r)] ≤ Vol[F (Drσ)].

Let E(u, t) = expσ(u)(tξ(u)), where ξ(u) is a parallel vector field along σ, and ξ(u) ∈
Sn−2(1) ⊂ Nσ(u)M . Set γ(t) = E(u0, t) = expσ(u0)(tξ(u0)) and let {e1, e2, · · · , en−2} be an
orthonormal basis of Tξ(u0)S

n−2(1).
We consider the following n − 1 Jacobi fields {J1(t), J2(t), · · · , Jn−1(t)} along γ(t)

Ji(t) = (expσ(u0))∗tξ(u0)(tei), 1 ≤ i ≤ n − 2

and
Jn−1(t) = E∗

( ∂

∂u

) ∣∣∣
u=u0

.

Then we derive

Ji(0) = 0, J ′
i(0) = ei, 〈J ′

i(0), ξ(u0)〉 = 0, ‖J ′
i(0)‖ = 1, 1 ≤ i ≤ n − 2 (3.1)

and
Jn−1(0) = σ′(u0), J ′

n−1(0) = 0, 〈Jn−1(0), ξ(u0)〉 = 0, ‖Jn−1(0)‖ = 1. (3.2)

Now

Vol[F (Drσ)] =
∫

σ(u0)∈σ

∫
ξ(u0)∈Sn−2(1)

∫ min{c(ξ(u0)),r}

0

√
det(F∗(t))dtdξ(u0)du0, (3.3)

where
F∗(t) = F∗|(σ(u0),tξ(u0)) = (gij(t))(n−1)×(n−1), gij(t) = 〈Ji(t), Jj(t)〉,

and c(ξ(u0)) denotes the distance to the cut points of σ(u0) along the geodesic

γ(t) = expσ(u0)(tξ(u0)).

Notice that
t ≤ min{c(ξ(u0)), r} ≤ c(ξ(u0)),

so by (3.1)–(3.2) and the Rauch comparison theorem, we get

‖Ji(t)‖ ≤ t for 1 ≤ i ≤ n − 2 and ‖Jn−1(t)‖ ≤ 1. (3.4)

Since F∗(t) is a positive definite symmetric matrix, we then have

det(F∗(t)) ≤
∏

1≤i≤n−1

gii(t).

From (3.4) we obtain √
det(F∗(t)) ≤ tn−2,

and by (3.3) we know

Vol[B(σ(u0), r)] ≤ Vol[F (Drσ)]

≤ L(σ)Vol[Sn−2(1)]
∫ r

0

tn−2dt

= L(σ)ωn−1r
n−1. (3.5)
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It is clear by (3.5) that μ(σ(u0)) ≤ L(σ), so μ(M) ≤ L(σ).
If μ(M) = L(σ), then

gij(t) = 〈Ji(t), Jj(t)〉 = t2δij for 1 ≤ i ≤ n − 2

and
〈Jn−1(t), Jn−1(t)〉 = 1, gi(n−1)(t) = 〈Ji(t), Jn−1(t)〉 = 0 for 1 ≤ i ≤ n − 2.

By the Gaussian lemma, we have

〈Ji(t), γ′(t)〉 = 0 for 1 ≤ i ≤ n − 1.

Therefore the metric on M is of the following form

g = du2 + dt2 + t2dξ2, u ∈ [0, L(σ)], t ≥ 0, ξ ∈ Sn−2(1),

which implies that M is isometric to S1 × R
n−1 with flat metric. This completes the proof of

Theorem 1.3.

We use a similar method as that of Theorem 2 in [3] to prove Theorem 1.4.

Proof of Theorem 1.4 Assume that there is a normal closed geodesic γ with length
L(γ) = 2r1 < 2r0 on M , and let p = γ(0) and q = γ(r1). Denote by γ1 the part of γ from
p to q with γ′

1(0) = γ′(0), and γ2 the part of γ from p to q with γ′
2(0) = −γ′(0), and then

L(γ1) = L(γ2) = r1 < r0. Let Γ = {γ′(0),−γ′(0)} be the set of two unit vectors in TpM . For
any θ ∈ [

0, π
2

]
, let

Γ(θ) = {u ∈ SpM | ∠(u, Γ) ≤ θ}.
So

Vol[Γ(θ0)] = 2V (θ0) = (1 − ν)ωn−1,

where V (θ0) denotes the volume of a geodesic ball of radius θ0 in an (n − 1)-unit sphere and
ωm is again the volume of Sm(1).

For each u ∈ SpM , let c(u) denote the distance to the cut points of p along the geodesic
expp(tu). We claim that for any u ∈ Γ(θ0),

c(u) ≤ R0 :=
1
κ

tanh−1
(tanh κr1

cos θ0

)
. (3.6)

In fact, let u ∈ Γ(θ0) and set r = c(u). Then σ1(t) = expp(tu), and t ∈ [0, r] is a minimal
geodesic. Without loss of generality, we can take γ′

1(0) = γ′(0) ∈ Γ with β = ∠(u, γ′
1(0)) ≤ θ0.

Let z = expp(ru) and t = d(q, z). Lemma 2.3 applies to the hinge (σ1, γ1, β) to give

coshκt ≤ coshκr1 coshκr − sinh κr1 sinh κr cosβ

≤ coshκr1 coshκr − sinh κr1 sinh κr cos θ0.

Take a minimal geodesic σ joining q with z. Since γ′
1(r1) = −γ′

2(r1) and

∠(γ′
1(r1), σ′(0)) + ∠(γ′

2(r1), σ′(0)) = π,
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we can assume that β1 = ∠(γ′
1(r1), σ′(0)) ≤ π

2 . Lemma 2.3 applies to the hinge (σ, γ1, β1) to
give

coshκr ≤ coshκr1 coshκt − sinh κr1 sinh κt cosβ1

≤ coshκr1 coshκt.

Thus,
coshκr ≤ cosh2 κr1 coshκr − coshκr1 sinh κr1 sinh κr cos θ0.

Simplifying the above inequality, we get

tanh κr cos θ0 ≤ tanh κr1.

This proves our claim.
Let

dV (expp(tξ)) =
√

g(t; ξ)dtdμp(ξ)

be the volume form in the geodesic spherical coordinates around p, where dμp(ξ) is the Rieman-
nian measure on SpM induced by the Euclidean Lebesgue measure on TpM . Since KM ≥ −κ2,
we get from the Bishop-Gromov comparison theorem (cf. [1]) that

√
g(t; ξ) ≤ S−κ2(t) (see

Section 1 for the definition of S−κ2(t)), ∀t > 0. Thus, for any r ≥ R0, we have from (3.6) that

Vol[B(p, r)] =
∫

SpM

dμp(ξ)
∫ min(c(ξ),r)

0

√
g(t; ξ)dt

=
∫

Γ(θ0)

dμp(ξ)
∫ min(c(ξ),r)

0

√
g(t; ξ)dt

+
∫

SpM−Γ(θ0)

dμp(ξ)
∫ min(c(ξ),r)

0

√
g(t; ξ)dt

≤
∫

Γ(θ0)

dμp(ξ)
∫ R0

0

S−κ2(t)dt

+
∫

SpM−Γ(θ0)

dμp(ξ)
∫ r

0

S−κ2(t)dt

≤ Vol[B(R0)] + νωn−1

∫ r

0

S−κ2(t)dt

= Vol[B(R0)] + ναn(r,−κ2),

where B(R0) denotes the R0-ball in the space form of constant curvature −κ2.
Dividing both sides of the above inequality by αn(r,−κ2) and letting r → ∞, we obtain

lim
r→∞

Vol[B(p, r)]
αn(r,−κ2)

≤ ν < ν−κ2(M).

This is a contradiction, completing the proof of Theorem 1.4.
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