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1 Introduction

The description of systems S = (H ;E1, E2, · · · , En) of n subspaces Hi (i = 1, · · · , n),
of a Hilbert space H , which can be finite or infinite dimensional, up to an isomorphism or
the unitary equivalence, is famous as the multi-space theory, and the classification of these
systems is a subject which attracts many mathematicians’ attention. In a finite dimensional
space, the classification of indecomposable systems of n subspaces for n = 1, 2 and 3 is simple.
Jordan blocks give indecomposable systems of 4 subspaces. But there exist many other kinds
of indecomposable systems of 4 subspaces. Therefore, it was surprising that Gelfand and
Ponomarev [1] gave a complete classification of indecomposable systems of four subspaces in a
finite dimensional space.

In this paper, we generalize this theory to the case of A-modules, where A is an involutive
algebra, and we construct a group, called Φ-group, which is a generalization of the K-group
and gives more information of the algebra A than the K-theory. This group, which can be
regarded as the multi-operator edition of the K-group, has essential relations with the problem
of classification of systems of n subspaces when A = C.

2 Preliminaries

We first recall the basic notations of systems of n subspaces.
Let H be a Hilbert space and E1, · · · , En be n subspaces in H . Then we say that S =

(H ;E1, · · · , En) is a system of n subspaces in H or an n subspace system in H . Let T =
(K;F1, · · · , Fn) be another system of n subspaces in a Hilbert space K. Then ϕ : S → T is
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a homomorphism if ϕ : H → K is a bounded linear operator satisfying that ϕ(Ei) ⊆ Fi for
i = 1, · · · , n. Moreover, ϕ is an isomorphism if it is an invertible linear operator and ϕ(Ei) = Fi

for i = 1, · · · , n. We say that systems S and T are isomorphic if there exists an isomorphism
ϕ : S → T . And if ϕ is moreover a unitary operator, we say that the two systems are unitarily
equivalent.

There are notations about direct sum and indecomposable systems (see [2]), and the main
work on multi-subspace systems is about the classification. Many problems of linear algebra
can be reduced to the classification of the systems of subspaces in a finite dimensional vector
space. In a finite dimensional space, the classification of indecomposable systems of n subspaces
for n = 1, 2 and 3 is simple. Gelfand and Ponomarev [1] gave a complete classification of
indecomposable systems of four subspaces in a finite dimensional space.

Proposition 2.1 (see [3]) Let H be a Hilbert space and S = (H ;E) be a system of one
subspace. Then S = (H ;E) is indecomposable if and only if S ∼= (C; 0) or S ∼= (C; C).

Let S = (H ;E1, E2) be a system of two subspace in a Hilbert space H. Then S is indecom-
posable if and only if S is isomorphic to one of the following four commutative systems:

S1 = (C; C, 0), S2 = (C; 0,C), S3(C; C,C), S4 = (C; 0, 0).

Gelfand and Ponomarev [1] claimed that there exist only nine finite-dimensional indecom-
posable systems of three subspaces. But we do not know whether there exists an infinite-
dimensional transitive system of three subspaces.

Proposition 2.2 (see [1]) Let S = (H ;E1, E2, E3) be an indecomposable system of three
subspaces. If H is finite-dimensional, then S is isomorphic to one of the following nine systems:

S1 = (C; 0, 0, 0), S2 = (C; C, 0, 0), S3 = (C; 0,C, 0), S4 = (C; 0, 0,C), S5 = (C; C,C, 0),

S6 = (C; C, 0,C), S7 = (C; 0,C,C), S8 = (C; C,C,C), S9 = (C2; C(1, 0),C(0, 1),C(1, 1)).

One of the main problems to tackle is the classification of indecomposable systems S =
(H ;E1, E2, E3, E4) of four subspaces in a Hilbert space H . In the case when H is finite-
dimensional, Gelfand and Ponomarev completely classified indecomposable systems and gave a
complete list of them in [1].

Now we generalize the former definition to the term of (right) modules.

Definition 2.1 Given an involutive algebra A, let H be a finitely generated free A-module
and E1, · · · , En be n finitely generated projective submodules of H. Then we say that S =
(H;E1, · · · , En) is a system of n-submodules in H.

Let T = (H′;F1, · · · , Fn) be another system of n-submodules. Then ϕ : S → T is called a
homomorphism if ϕ : H → H′ is a module map satisfying that ϕ(Ei) ⊆ Fi for i = 1, · · · , n.
And ϕ : S → T is called an isomorphism if ϕ : H → H′ is an isomorphism satisfying that
ϕ(Ei) = Fi for i = 1, · · · , n. We say that system S and T are isomorphic if there exists an
isomorphism ϕ : S → T .

Let S = (H;E1, · · · , En) and T = (H′;F1, · · · , Fn) be two systems of n submodules in the
module H. Then their direct sum S ⊕ T is defined by

S ⊕ T := (H⊕H′ : E1 ⊕ F1, · · · , En ⊕ Fn).
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Similar to the typical systems of n subspaces, we also have the notation of indecomposability
and irreducibility.

Let us introduce an important kind of A-module, and thus An, which denotes the direct
sum A⊕A · · ·⊕A of n copies of A, An becomes a module over A with the module action defined
by ⎛

⎜⎝
a1

...
an

⎞
⎟⎠ a =

⎛
⎜⎝
a1a
...

ana

⎞
⎟⎠ .

We are mainly interested in the system of n-submodules in H, which is of this type, denoted
by (Am;E1, E2, · · · , En), where each Ek is a finitely generated projectively submodule of Am.
Then each Ek is isomorphic to pkA

m for some projection pk on Am. Then we can write the
system of n submodules in the form: (p1, p2, · · · , pn), where each pi is a projection, namely

p∗i = pi, p2
i = pi.

In this paper, we construct an Abelian group, namely Φ-group, for systems of n operators
(p1, p2, · · · , pn) to generalize the classical K-group. The Φ-group for systems of one operator
is just the classical K-group, and when n ≥ 2, the Φ-group contains the K-group as a direct
summand, and hence we can see that Φ(A) contains more information of A than that of K(A).

We mainly describe the Φ-group for systems of n operators when n = 2, and it only has some
of the propositions of the classicalK-theory. We compute the Φ-group for multi-operators when
the operators have some relations. In fact, to compute the Φ-group is the process to describe
the structure of multi-operators up to unitary equivalence.

Finally, we remark that the Φ-group has a relationship with the problem of the classification
of systems of n subspaces. The Φ-group can be regarded as a classification theory for systems
of n subspaces up to unitary equivalence when A = C.

We firstly discuss the case when the involutive algebra A is unital. Since every finite size
projection on An is in fact a matrix x ∈Mn(A) such that x2 = x and x∗ = x, then every system
of one submodule corresponds to such a fixed matrix x. Therefore, the Grothendiek group of
stable isomorphism classes of the systems of one submodule is nothing but the K-group K0(A).

In what follows, we will mainly discuss the systems of two submodules, and thus pairs of
projections.

3 Systems of two Submodules and the Group Φ0(A)

In this section, we define the Φ-group for systems of two submodules, and thus pairs of
projections on An, n ≥ 1, for a given involutive algebra A. We begin the procedure from the
unital case.

Definition 3.1 Given a unital involutive algebra A, let X be the set of all the pairs of
projections (p1, p2) and ∼ be the smallest equivalence relation on X, such that

(1) (p1, p2) ∼ (p1 ⊕ 0m, p2 ⊕ 0n) for any m,n in N;
(2) (p1, p2) ∼ u(p1, p2)u∗ for any unitary u;
(3) (p1, p2) ∼ (q1, q2) if there exists a pair (r1, r2) in X and a unitary u such that

(p1 ⊕ r1, p2 ⊕ r2) = u(q1 ⊕ r1, q2 ⊕ r2)u∗.
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Remark 3.1 By (1) of this definition, we can assume that any pair of projections has the
same size. The check of (2) is similar to the check of (3), and the former is much easier. Hence,
from now on, we assume that any pair of projections has the same size, and we use (3) to check
if two pairs of projections are equivalent.

Let [(p1, p2)] denote the equivalence class of (p1, p2), and we denote the set of the class by

Ω2 := {[(p1, p2)] : (p1, p2) ∈ X}.

We define an addition on Ω2 by

[(p1, p2)] + [(q1, q2)] := [(p1 ⊕ q1, p2 ⊕ q2)].

The addition is well-defined as follows.
We firstly fix (q1, q2). If (p1, p2) ∼ (p′1, p′2), by Remark 3.1, we only check (3) in Definition

3.1. Thus there exist a pair (v1, v2) ∈ X and a unitary u such that

u(p1 ⊕ v1, p2 ⊕ v2)u∗ = (p′1 ⊕ v1, p
′
2 ⊕ v2).

Then

(u1 ⊕ 1)(p1 ⊕ v1 ⊕ q1, p2 ⊕ v2 ⊕ q2)(u1 ⊕ 1)∗

= (p′1 ⊕ v1 ⊕ q1, p
′
2 ⊕ v2 ⊕ q2).

Using the procedure of changing orders, we have two unitary x and y such that

(u1 ⊕ 1)x(p1 ⊕ q1 ⊕ v1, p2 ⊕ q2 ⊕ v2)x∗(u1 ⊕ 1)∗

= (u1 ⊕ 1)(p1 ⊕ v1 ⊕ q1, p2 ⊕ v2 ⊕ q2)(u1 ⊕ 1)∗

= (p′1 ⊕ v1 ⊕ q1, p
′
2 ⊕ v2 ⊕ q2)

= y(p′1 ⊕ q1 ⊕ v1, p
′
2 ⊕ q2 ⊕ v2)y∗.

Hence
(p1 ⊕ q1, p2 ⊕ q2) ∼ (p′1 ⊕ q1, p

′
2 ⊕ q2),

and thus
[(p1 ⊕ q1, p2 ⊕ q2)] = [(p′1 ⊕ q1, p

′
2 ⊕ q2)].

Next, we fix (p′1, p
′
2), and supposing that (q′1, q

′
2) ∼ (q1, q2), with the same procedure, we

can prove that
[(p1 ⊕ q1, p2 ⊕ q2)] = [(p′1 ⊕ q′1, p

′
2 ⊕ q′2)].

Next we give an important proposition as follows.

Proposition 3.1 Ω2 is an Abelian semi-group with cancellation.

Proof Since the propositions of association and commutation are obvious, we only need to
check the cancellation. If

[(p1, p2)] + [(r1, r2)] = [(q1, q2)] + [(r1, r2)],

then
(p1 ⊕ r1, p2 ⊕ r2) ∼ (q1 ⊕ r1, q2 ⊕ r2).
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By Remark 3.1, there exists a pair (s1, s2) and a unitary u such that

u(p1 ⊕ r1 ⊕ s1, p2 ⊕ r2 ⊕ s2)u∗ = (q1 ⊕ r1 ⊕ s1, q2 ⊕ r2 ⊕ s2).

Hence [(p1, p2)] = [(q1, q2)].
In the end, we note that this simi-group has zero element. Since (p1, p2) ∼ (p1⊕0n, p2⊕0n),

we can see directly that
[(p1, p2)] + [(0n, 0n)] = [(p1, p2)]

for any system (p1, p2) and any natural number n, and therefore [(0n, 0n)] is the zero element
for any natural number n.

Then it is convenient to give our main definition.

Definition 3.2 Φ(A):= the Grothendieck of Ω2.

Remark 3.2 We can only consider the commutative systems of two submodules, and using
the same procedure we get the Φ-group, denoted by Φc(A) which is a subgroup of Φ(A). In
Section 5, we will compute some examples of Φc(A) for different A.

The functor Φ for unital involutive algebras Let A andB be unital involutive algebras,
and let ϕ : A → B be a ∗-homomorphism. Associate to ϕ a group homomorphism Φ(ϕ) :
Φ(A) → Φ(B) as follows. ϕ extends to a ∗-homomorphism ϕ : Mn(A) → Mn(B) for each n.
A unital ∗-homomorphism maps projections to projections and unitaries to unitaries. Then we
can define Φ(ϕ) : Φ(A) → Φ(B) by Φ(ϕ)[(p1, p2)] = [(ϕ(p1), ϕ(p2))]. It is easy to check that it
is a group homomorphism, and therefore we get the following proposition.

Proposition 3.2 (Functoriality of Φ for Unital Involutive Algebras)
(i) For each unital involutive algebra A, Φ(idA) = idΦ(A).
(ii) If A,B and C are unital involutive algebras, and if ϕ : A→ B and ψ : B → C are
∗-homomorphisms, then Φ(ψ ◦ ϕ) = Φ(ψ)Φ(ϕ).

The non-unital case If A is an involutive algebra, unital or non-unital, Ã being its uni-
talization, then

0 → A→ Ã→ C → 0

is a short exact sequence, and we define

Φ0(A) := ker(Φ(Ã) → Φ(C)).

Remark 3.3 In Section 4 of this paper, we will compute Φ(C) and we will see that it is
not trivial.

Proposition 3.3 Φ0 is a covariant functor from the category of involutive algebras to the
category of Abelian groups.

Proof The proof is similar to the case of the usual K-theory. Let ϕ : A → B be a
homomorphism between involutive algebras A and B, and define ϕ̃ : Ã→ B̃ by

ϕ̃(a+ αIA) = ϕ(a) + αIB .
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Then there is a commutative diagram

0 −−−−→ A
lA−−−−→ Ã

πA−−−−→ C −−−−→ 0⏐⏐
ϕ

⏐⏐
ϕ̃

∥∥∥
0 −−−−→ B −−−−→

lB
B̃ −−−−→

πB

C −−−−→ 0

We get the diagram

0 −−−−→ Φ0(A) −−−−→ Φ(Ã)
Φ(πA)−−−−→ Φ(C) −−−−→ 0⏐⏐
Φ(ϕ̃)

∥∥∥
0 −−−−→ Φ0(B) −−−−→ Φ(B̃) −−−−→

Φ(πB)
Φ(C) −−−−→ 0

Then Φ0(ϕ) = Φ(ϕ̃) |Φ0(A), and by the commutativity of the above diagram, we see that
Φ(ϕ̃)Φ0(A) ⊂ Φ0(B), since Φ is a covariant functor from the category of involutive algebras to
the category of Abelian groups, so is Φ0.

4 Propositions of the Group Φ0(A)

The standard picture of the group Φ0(A) If A is an involutive algebra, unital or
non-unital, Ã being its unitalization, then

0 → A→ Ã
π−→ C → 0

is a short exact sequence. Then

Φ0(A) := {[(p1, p2)] − [(q1, q2)] ∈ Φ(Ã) : π∗([(p1, p2)] − [(q1, q2)]) = 0}.

[π(p1, p2)] = [π(q1, q2)] implies that there exists a pair of projections (x, y) and a unitary u such
that

u∗(π(p1) ⊕ x, π(p2) ⊕ y)u = (π(q1) ⊕ x, π(q2) ⊕ y).

Since u, x and y are scalar matrices, we have

π(u∗(p1 ⊕ x, p2 ⊕ y)u) = π(q1 ⊕ x, q2 ⊕ y).

As [(p1 ⊕x, p2 ⊕ y)]− [(q1⊕x, q2 ⊕ y)] = [(p1, p2)]− [(q1, q2)], we replace p1 with p1⊕x, p2 with
p2 ⊕ y, q1 with q1 ⊕ x and q2 with q2 ⊕ y, then we have

π(u∗(p1, p2)u) = π(q1, q2).

As [u∗(p1, p2)u] = [(p1, p2)], we replace p1 with u∗p1u and p2 with u∗p2u, and then we have

π(p1, p2) = π(q1, q2).

Conversely, given [(p1, p2)] − [(q1, q2)] ∈ Φ(Ã) such that π(p1, p2) = π(q1, q2), and then
obviously we get π∗([(p1, p2)] − [(q1, q2)]) = 0, and hence

[(p1, p2)] − [(q1, q2)] ∈ Φ0(A).
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Then we get the standard picture of Φ0(A):

Φ0(A) := {[(p1, p2)] − [(q1, q2)] ∈ Φ(Ã) : π(p1, p2) = π(q1, q2)}.

By the standard picture of Φ0(A), we can demonstrate that Φ0(A) ∼= Φ(A) for the unital
involutive algebra A. This is an important fact since it ensures that we can denote by Φ0(A)
whether A is unital or not.

Proposition 4.1 (Direct Sums) For every pair of involutive algebras A and B, we have

Φ0(A⊕B) ∼= Φ0(A) ⊕ Φ0(B).

Proof Let ιA : A→ A⊕B and ιB : B → A⊕B be the canonical inclusion maps, and they
induce a homomorphism

Φ0(ιA) ⊕ Φ0(ιB) : Φ0(A) ⊕ Φ0(B) → Φ0(A⊕B),

which maps (g, h) in Φ0(A) ⊕ Φ0(B) to Φ0(ιA)(g) + Φ0(ιB)(h). We have the commutative
diagram

0 −−−−→ Φ0(A) ⊕ Φ0(B) −−−−→ Φ(Ã) ⊕ Φ(B̃) −−−−→ Φ(C) ⊕ Φ(C) −−−−→ 0⏐⏐
Φ0(ιA)⊕Φ0(ιB)

⏐⏐
Φ(ιÃ)⊕Φ(ιB̃)

⏐⏐
Φ(ιC)⊕Φ(ιC)

0 −−−−→ Φ0(A⊕B) −−−−→ Φ(Ã⊕ B̃) −−−−→ Φ(C ⊕ C) −−−−→ 0

By 5-lemma, we only have to show the case when A and B are both unital. This is obvious,
since every element in the matrix Mn(A⊕B) is of the form (a, b) for a ∈ A and b ∈ B, and the
product and addition of matrices happen on each component independently.

In the K-theory, the Morita invariance K0(A) ∼= K0(Mn(A)) is a well-known result. The
key point of the proof is to show the unital case, and thus K(A) ∼= K(Mn(A)) when A is a
unital involutive algebra, and the general case is got by 5-lemma (see [4]). Unfortunately in the
case of Φ0-group, since the functor Φ0 does not preserve the split exact sequence, we can not
use 5-lemma. But we can still show the unital case in a direct way.

Proposition 4.2 (Morita Invariance) Let A be a unital involutive algebra and let n be a
natural number. Then Φ(A) is isomorphic to Φ(Mn(A)).

Proof We will show that the ∗-homomorphism

λA : A→Mn(A), a �→
(
a

0n−1

)

induces an isomorphism α : Φ(A) → Φ(Mn(A)) with α[(p1, p2)] = [((λA)m(p1), (λA)m(p2))],
where p1, p2 are the sizes of m and (λA)m is the ∗-homomorphism Mm(A) →Mmn(A) induced
by λA.

We should check that this definition is well given. If [(q1, q2)] = [(p1, p2)], then by Remark
3.2, there exists a pair (r1, r2) and a unitary u such that (q1⊕r1, q2⊕r2) = u(p1⊕r1, p2⊕r2)u∗.
Without lost of generalization, we assume that pi, qi, ri (i = 1, 2) are all of size m.

Let {e1, e2, · · · , e2mn} be the standard basis for C2mn, and let v be a permutation unitary
in M2mn(C) that fulfills

vei = en(i− 1) + 1, i = 1, 2, · · · , 2m.
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Then
(q1 ⊕ r1 ⊕ 02m(n−1), q2 ⊕ r2 ⊕ 02m(n−1)) = v∗((λA)2m(q1 ⊕ r1, q2 ⊕ r2))v

and
(p1 ⊕ r1 ⊕ 02m(n−1), p2 ⊕ r2 ⊕ 02m(n−1)) = v∗((λA)2m(p1 ⊕ r1, p2 ⊕ r2))v.

Since

(q1 ⊕ r1 ⊕ 02m(n−1), q2 ⊕ r2 ⊕ 02m(n−1))

= (u⊕ 12m(n−1))(p1 ⊕ r1 ⊕ 02m(n−1), p2 ⊕ r2 ⊕ 02m(n−1))(u⊕ 12m(n−1))∗,

then

v∗((λA)mq1 ⊕ (λA)mr1, (λA)mq2 ⊕ (λA)mr2)v

= (u⊕ 12m(n−1))v∗((λA)mp1 ⊕ (λA)mr1, (λA)mp2 ⊕ (λA)mr2)v(u ⊕ 12m(n−1))∗.

Therefore,
[((λA)mq1, (λA)mq2)] = [((λA)mp1, (λA)mp2)].

For each natural number k, let γk : Mk(Mn(A)) → Mkn(A) be the ∗-isomorphism given by
viewing each element of Mk(Mn(A)) as one big matrix in Mkn(A). Define β : Φ(Mn(A)) →
Φ(A) by β[(p1, p2)] = [γk(p1, p2)] for p1, p2 ∈Mk(Mn(A)).

We should show that this definition is well given. In fact, given a pair (q1, q2) such that
(q1, q2) ∼ (p1, p2), by Remark 3.1, there exists a pair (x, y) and a unitary u such that u∗(p1 ⊕
x, p2⊕ y)u = (q1 ⊕x, q2⊕ y). Suppose that pi, qi are in Mk(Mn(A)) and x, y are in Ml(Mn(A)),
so u is in Mk+l(Mn(A)). Then

γk+l(q1 ⊕ x, q2 ⊕ y) = γk+l(u∗(p1 ⊕ x, p2 ⊕ y)u),

(γk(q1) ⊕ γl(x), γk(q2) ⊕ γl(y)) = (γk+lu)∗(γk(p1) ⊕ γl(x), γk(p2) ⊕ γl(y))(γk+lu).

Since γk+lu is also a unitary element, we have

γk(q1, q2) ∼ γk(p1, p2),

and thus
[γk(q1, q2)] = [γk(p1, p2)].

We claim that β is the inverse to α. To prove this claim it suffices to show that

(λA)kn(γk(p1, p2)) ∼ (p1, p2), p1, p2 ∈Mk(Mn(A)),

γk((λA)k(q1, q2)) ∼ (q1, q2), q1, q2 ∈Mk(A),

where (λA)m is the ∗-homomorphism Mm(A) → Mm(Mn(A)) induced by λA. We prove the
second claim, and the proof of the first claim is similar.

Let {e1, e2, · · · , ekn} be the standard basis for C
kn, and let u be a permutation unitary in

Mkn(C) that fulfills
uei = en(i−1)+1, i = 1, 2, · · · , k.

Then
(q1, q2) ∼ (q1 ⊕ 0(n−1)k, q2 ⊕ 0(n−1)k) = u∗(γk((λA)k(q1, q2)))u.
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Therefore
γk((λA)k(q1, q2)) ∼ (q1, q2).

The direct system and the direct limit

Recall that the direct limit (A,ϕi) of the direct system of involutive algebras

{Ai
ϕji−−→ Aj : i ≤ j; i, j ∈ J}

is characterized by (i) A =
⋃

i∈J

ϕi(Ai) and (ii) ker(ϕi) =
⋃
j≥i

ker(ϕji).

Theorem 4.1 Suppose that (A,ϕi) is the direct limit of the direct system of involutive

algebras {Ai
ϕji−−→ Aj | i ≤ j; i, j ∈ J}, and then {Φ0(Ai)

ϕ∗
ji−−→ Φ0(Aj) | i ≤ j} is a direct system

of Abelian groups with a direct limit {Φ0(Ai)
ϕ∗

i−−→ Φ0(A) | i ∈ J}.

Proof We have a diagram

0 −−−−→ Φ0(Ai) −−−−→ Φ(Ãi) −−−−→ Φ(C) −−−−→ 0⏐⏐
ϕ∗
i

⏐⏐
ϕ̃i
∗

∥∥∥
0 −−−−→ Φ0(A) −−−−→ Φ(Ã) −−−−→ Φ(C) −−−−→ 0

Since the direct limit preserves exactness, by 5-lemma, we may assume that all Ai and A

are unital and that ϕi and ϕji preserve units. It suffices to show that Φ(A) = lim−→Φ(Ai). We
prove it by two steps.

(1) Φ(A) =
⋃

i∈J

ϕ∗
i (Φ(Ai)).

For any projections p, q ∈ Mn(A), there are i, j ∈ J and pi ∈ Mn(Ai), qj ∈ Mn(Aj)
such that ϕi(pi) = p, ϕj(qj) = q, so ϕi(p2

i − pi) = 0, ϕi(pi)∗ = ϕi(p∗i ) = ϕi(pi). Thus
ϕki(p2

i − pi) = 0, ϕki(pi)∗ = ϕki(pi) for some k ≥ i, and then ϕki is a projection in Mn(Ak).
Similarly, there is some l ≥ j such that ϕlj(qj) is a projection in Mn(Al). Let t ≥ k, l. Then
ϕti(pi) and ϕtj(qj) are projections in Mn(At) such that

ϕ∗
t [(ϕti(pi), ϕtj(qj))] = [(ϕtϕki(pi), ϕtϕtj(qj))] = [(ϕi(pi), ϕj(qj))] = [(p, q)].

(2) kerϕ∗
i =

⋃
j≥i

kerϕ∗
ji.

Letting ϕ∗
i ([(pi, qi)] − [(ri, si)]) = 0, thus [(ϕi(pi), ϕi(qi))] = [(ϕi(ri), ϕi(si))]. Then by

Remark 3.1 there are some unitary u in Mn(A) and some projections x, y ∈Mn(A) such that

u(ϕi(pi) ⊕ x, ϕi(qi) ⊕ y)u∗ = (ϕi(ri) ⊕ x, ϕi(si) ⊕ y).

There exists a j such that u = ϕj(uj), x = ϕj(xj), y = ϕj(yj), where uj is a unitary, and thus

ϕj(uj)(ϕi(pi) ⊕ ϕj(xj), ϕi(qi) ⊕ ϕj(yj))ϕj(uj)∗ = (ϕi(ri) ⊕ ϕj(xj), ϕi(si) ⊕ ϕj(yj)).

Let k ≥ i, j, and then

ϕk(ϕkj(uj)(ϕki(pi) ⊕ ϕkj(xj), ϕki(qi) ⊕ ϕkj(yj))ϕkj(uj)∗)

= ϕkϕkj(uj)(ϕkϕki(pi) ⊕ ϕkϕkj(xj), ϕkϕki(qi) ⊕ ϕkϕkj(yj))ϕkϕkj(uj)∗



110 D. Li, X. M. Chen and S. Z. Xu

= ϕj(uj)(ϕi(pi) ⊕ ϕj(xj), ϕi(qi) ⊕ ϕj(yj))ϕj(uj)∗

= (ϕi(ri) ⊕ ϕj(xj), ϕi(si) ⊕ ϕj(yj))

= (ϕkϕki(ri) ⊕ ϕkϕkj(xj), ϕkϕki(si) ⊕ ϕkϕkj(yj))

= ϕk(ϕki(ri) ⊕ ϕkj(xj), ϕki(si) ⊕ ϕkj(yj)).

Enlarge k if necessary, and we can get

ϕkj(uj)(ϕki(pi) ⊕ ϕkj(xj), ϕki(qi) ⊕ ϕkj(yj))ϕkj(uj)∗

= (ϕki(ri) ⊕ ϕkj(xj), ϕki(si) ⊕ ϕkj(yj)).

Therefore,

[(ϕki(pi), ϕki(qi))] = [(ϕki(ri), ϕki(si))],

and thus
ϕ∗

ki([(pi, qi)] − [(ri, si)]) = 0.

The relationship between Φ-groups and K-groups We firstly study the unital case.
Suppose that A is a unital involutive algebra, andX is the corresponding set in Definition 3.1. If
we only consider the subset ofX consisting of pairs with the form (p, 0), we get a direct summand
of Φ(A) and thus {[(p, 0)] − [(q, 0)] : (p, 0), (q, 0) ∈ X}, which obviously is isomorphic to the
typical K(A). Similarly, we have another direct summand {[(0, p)]− [(0, q)] : (0, p), (0, q) ∈ X}
which is also isomorphic to K(A). Hence, we get that

K(A) ⊕K(A) ⊆ Φ(A),

and Φ(A)/(K(A) ⊕K(A)) is an Abelian group.
For the general involutive algebra A, unital or not unital, by the standard picture of Φ0(A)

and K0(A), we also have that
K0(A) ⊕K0(A) ⊆ Φ0(A).

5 The Computation of Φ-Groups

The computation of Φ-groups is in fact the description of the structure theory of pairs up to
unitary equivalence, and it is a subproblem to study the pairs of self-adjoint operators. Even for
a pair of projections acting on Hilbert spaces, the problem of describing, up to unitary equiv-
alence, irreducible (undecomposible) pairs without any relation is very difficult. For example,
let p, q be projections acting on C2. To simplify the problem, we fix p as ( 1

0 ) and q as any
projection on C2. By the equations q∗ = q and q2 = q, we see that q has the forms of ( 1

1 ) or(
λ

√
λ(1−λ)eiθ√

λ(1−λ)e−iθ 1−λ

)
, where 0 ≤ λ ≤ 1, 0 ≤ θ < 2π. Consider the unitary matrix u which

is commutative with p, and thus u is of the form
(

eiα

eiβ

)
, where 0 ≤ α, β < 2π. Acting on

(p, q) by this kind of u, we get

u(p, q)u∗ = u
((

1
0

)
,

(
λ

√
λ(1 − λ)eiθ√

λ(1 − λ)e−iθ 1 − λ

) )
u∗

=
((

1
0

)
,

(
λ

√
λ(1 − λ)ei(θ+α−β)√

λ(1 − λ)e−i(θ+α−β) 1 − λ

) )
,
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where 0 ≤ λ ≤ 1, 0 ≤ θ, α, β < 2π and q is of the nontrivial kind. Then for different λ1 and λ2

in [0, 1], ( (
1

0

)
,

(
λ1

√
λ1(1 − λ1)ei(θ+α−β)√

λ1(1 − λ1)e−i(θ+α−β) 1 − λ1

) )
and ( (

1
0

)
,

(
λ2

√
λ2(1 − λ2)ei(θ+α−β)√

λ2(1 − λ2)e−i(θ+α−β) 1 − λ2

) )
can not be unitarily isomorphic. Therefore, the unitarily isomorphism classes for the kind of
pairs (p, q), where

p =
(

1
0

)
is of the card ℵ. So we only consider the pairs of projections that satisfy an algebraic relation.

Next, we give the general theory of self-adjiont operators by [5].
Let H be a separable complex (finite or infinite-dimensional) Hilbert space. We consider

the pairs A and B of self-adjiont operators which are solutions of the equation

P2(A,B) = αA2 + β1AB + β2BA+ γB2 + δA+ εB + χI = 0,

where α, β1, β2, γ, δ, ε, χ ∈ C. Suppose that

P ∗
2 (A,B) = αA2 + β1BA+ β2AB + γB2 + δA+ εB + χI = P2(A,B).

So we can write this equation as

P2 = αA2 + β{A,B} + iη[A,B] + γB2 + δA+ εB + χI = 0, (5.1)

where α, β, η, γ, δ, ε, χ ∈ R, [A,B] = AB − BA is the commutator, and {A,B} = AB + BA is
the anticommutator. We also have that β = 1

2 (β1 + β2) and η = 1
2i (β1 − β2).

By using an affine change of variables, (5.1) can be divided into four groups:
(a) Wild relations: 0 = 0 or A2 = I.
(b) Binormal relations: A2 +B2 = I or A2 = B2 or A2 −B2 = I.
(c) Lie algebras and their non-linear transformations: [A,B] = 0 or 1

i [A,B] = I or
1
i [A,B] = A or 1

i [A,B] = A2 or 1
i [A,B] = A2+I or 1

i [A,B] = A2−I or 1
i [A,B] = A2+B.

(d) Quantum relations: 1
i [A,B] = q(A2 + B2) (q > 0) or 1

i [A,B] = q(A2 + B2) + I(q ∈
R, q �= 0) or 1

i [A,B] = q(A2 −B2) (q > 0) or 1
i [A,B] = q(A2 −B2) + I(q ∈ R, q �= 0).

In what follows, we study each of these groups of the relations for projections A and B.
(a) Wild relations. The relation 0 = 0 means that A and B do not satisfy any relation. For

projection A, A2 = I means A = I, and therefore AB = BA.
(b) Binormal relations. For projections A and B, the relation A2 + B2 = I implies that

A = I − B, and hence AB = BA. For the relation A2 = B2, A = B for projections A and B,
and therefore AB = BA. The third relation A2 − B2 = I holds only when A = I and B = 0,
which also implies that AB = BA.

(c) Lie algebras and their non-linear transformation. In this group of relations, the first six
relations are partial cases of the relation

[A,B] = iP2(A), (5.2)
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where P2(A) is a real quadratic polynomial. Even for bounded self-adjoint pairs, (5.2) implies
that [A,B] = 0 by Proposition 1.19 in [5]. For the last relation 1

i [A,B] = A2 + B, we can
transform it into [A, (A2 +B)] = i(A2 +B), and then it is converted to the form in (5.2), so we
get [A, (A2 +B2)] = 0, and thus [A,B] = 0.

(d) Quantum relations. By Proposition 1.13 in [5], the pair of bounded self-adjoint operators
A,B satisfies 1

i [A,B] = q(A2 +B2) (q > 0) and then A = B = 0, so AB = BA. For the second
relation 1

i [A,B] = q(A2 + B2) + I (q ∈ R, q �= 0), we can transform it into the relation
[A,A + B] = iq(A + B) + iI for a pair of projections A and B, and then it becomes the form
of (5.2) in case (c), so we have [A,B] = 0. For the next two relations, [A,B] = 0 also holds for
bounded self-adjoint operators A and B.

In summary, given a pair of projections which satisfy the relation (5.1), they either have no
relation, or satisfy

[A,B] = 0.

We consider the case where the pairs of projections have commutative relations. Thus we
consider the commutative systems and give some examples of the computations of Φc(A). It is
not hard to see that Φc(A), as a subgroup of Φ(A), inherits all the propositions of Φ(A).

Example 5.1 Φc(A) for A = C,Mn(C), C(S1).

For commutative projections p1, p2 in Mn(C), they can be simultaneously diagonalized, and
thus there is a unitary u in Mn(C) such that up1u

∗ and up2u
∗ are diagonal matrices and the

elements in the diagonal are 0 or 1 since both up1u
∗ and up2u

∗ are projections. Then we get
a couple (diag(i1, i2, · · · , in), diag(j1, j2, · · · , jn)) with is and jt being 0 or 1 for 1 ≤ s, t ≤ n.
Therefore, each couple of (is, js) is an element of the set {(1, 0), (0, 1), (1, 1)}. Although the
relative position of the couples (is, js) may change for different unitary matrices, the number of
times each element in the set {(1, 0), (0, 1), (1, 1)} appears will be unchanged, and thus if (1, 0),
(0, 1) and (1, 1) appear n1, n2, n3 times respectively in the set {(i1, j1), (i2, j2), · · · (in, jn)}, then
n1, n2, n3 are constant for different unitary transformations.

In fact, if there are two unitary matrices u1 and u2 such that u1(p1, p2)u∗1 and u2(p1, p2)u∗2
correspond to (n1, n2, n3) and (m1,m2,m3) respectively, and that (n1, n2, n3) �= (m1,m2,m3),
then (u1p1u

∗
1)(u1p2u

∗
1) and (u2p1u

∗
2)(u2p2u

∗
2) will have different ranks, so u1(p1p2)u∗1 and

u2(p1p2)u∗2 have different ranks, which is impossible since unitary transformation dose not
change a matix’s rank. Then we can give a definition of the rank for commutative pairs of
projections, which is a generalization of the rank of one matrix.

Definition 5.1 (Rank for Commutative Pairs of Projections) Given two projections p, q ∈
Mn(C), suppose that u(p, q)u∗ is the simultaneously diagonalized form. Let r1, r2, r3 be the
times (1, 0), (0, 1), (1, 1) appearing in the diagonalized form respectively, and then we call the
triple (r1, r2, r3) the rank of the pair (p, q).

In what follows, we claim that the rank (r1, r2, r3) is invariant under the equivalent relation
∼.

Proposition 5.1 Suppose that (r1, r2, r3) is the rank of a pair of projections p1, p2 ∈
Mn(C), and then (r1, r2, r3) is invariant under the equivalence relation ∼.

Proof We show the case (3) in Definition 3.1.
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Give another pair of projections q1, q2 ∈ Mn(C) for which there exists a unitary u and a
pair of projections (x, y) such that

u(p1 ⊕ x, p2 ⊕ y)u∗ = (q1 ⊕ x, q2 ⊕ y).

Hence the pair (p1⊕x, p2⊕y) and the pair (q1⊕x, q2⊕y) have the same rank (k1, k2, k3). Suppose
that (p1, p2), (q1, q2), (x, y) can be diagonalized by unitary matrices u1, u2, u3 respectively, and
then (p1 ⊕ x, p2 ⊕ y) can be diagonalized by the unitary (u1 ⊕ u3) and (q1 ⊕ x, q2 ⊕ y) can be
diagonalized by the unitary (u2 ⊕u3). If the rank of (q1, q2) is (s1, s2, s3) and the rank of (x, y)
is (l1, l2, l3), then we have

(k1, k2, k3) = (r1, r2, r3) + (l1, l2, l3) = (s1, s2, s3) + (l1, l2, l3).

Since the addition is the canonical one for vectors, we have that

(r1, r2, r3) = (s1, s2, s3).

By Proposition 5.1, we have
Ω2 = N ⊕ N ⊕ N,

and hence
Φc(C) = Z ⊕ Z ⊕ Z.

By Proposition 4.2 for the commutative case, we have Φc(Mk(C)) = Φc(C) = Z ⊕ Z ⊕ Z.
Since two commutative matrices in Mn(C(S1)) can also be diagonalized to the constant

matrices simultaneously, we have

Φc(C(S1)) = Z ⊕ Z ⊕ Z.

Remark 5.1 By the same procedure, we can also construct the Φ-theory for n submodules,
denoted by Φn(A), and we can also compute the Φ-group for the commutative systems for

Hilbert subspaces, which in general, is Φn
c (C) =

2n−1⊕
i=1

Z.

The relationship between the Φ-group and the problem of classification of sys-
tems of n-subspaces

In the computation of Φ-groups, we see that it is the process to describe the unitary equiv-
alence class for multi-operator, and we should find the irreducible form of the operators as a
base for the Φ-group. When A = C, it is the problem of classification of systems of n-subspaces
in a finite dimensional Hilbert space which we have introduced in the second section of this
paper. In fact Φ(C) describes the stable unitary equivalence class for the systems of n subspaces
in a finite dimensional Hilbert space, but in the case of finite dimensions, the stable unitary
equivalence class is almost the unitary equivalence class.

When n = 1, Φ1(C) = Z, there is only one direct summand that corresponds to the non-
trivial indecomposable systems of one subspaces up to unitary equivalence, namely (C; C).

When n = 2, Φ2
c(C) = Z ⊕ Z ⊕ Z, there are three direct summands that correspond to the

non-trivial indecomposable commutative systems of two subspaces up to unitary equivalence,
namely

S1 = (C; C, 0), S2 = (C; 0,C), S3 = (C; C,C).
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When n = 3, Φ3
c(C) =

7⊕
i=1

Z, there are seven direct summands that correspond to the

non-trivial indecomposable commutative systems of three subspaces up to unitary equivalence,
namely

S1 = (C; C, 0, 0), S2 = (C; 0,C, 0), S3 = (C; 0, 0,C),

S4 = (C; C,C, 0), S5 = (C; C, 0,C), S6 = (C; 0,C,C), S7 = (C; C,C,C).
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