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Abstract The authors introduce and investigate the TC -Gorenstein projective, LC -
Gorenstein injective and HC-Gorenstein flat modules with respect to a semidualizing mod-
ule C which shares the common properties with the Gorenstein projective, injective and
flat modules, respectively. The authors prove that the classes of all the TC -Gorenstein pro-
jective or the HC -Gorenstein flat modules are exactly those Gorenstein projective or flat
modules which are in the Auslander class with respect to C, respectively, and the classes
of all the LC -Gorenstein injective modules are exactly those Gorenstein injective modules
which are in the Bass class, so the authors get the relations between the Gorenstein projec-
tive, injective or flat modules and the C-Gorenstein projective, injective or flat modules.
Moreover, the authors consider the TC(R)-projective and LC(R)-injective dimensions and
TC(R)-precovers and LC(R)-preenvelopes. Finally, the authors study the HC -Gorenstein
flat modules and extend the Foxby equivalences.
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1 Introduction

Semidualizing modules are the common generalizations of dualizing modules and free mod-
ules of rank one. Foxby [4], Vasconcelos [12] and Golod [5] initiated the study of semidualizing
modules under different names. A semidualizing module C induces some interesting classes of
modules, such as the Auslander class AC(R), the Bass class BC(R), the C-projective modules
PC(R), the C-injective modules IC(R) and the C-flat modules FC(R), etc. These classes of
modules were investigated by many authors and the Foxby equivalence between the Auslander
class AD(R) and the Bass class BD(R) with respect to a dualizing module D was also extended
to the semidualizing case (more details can be found in [7, 10]).

Recall that Enochs and Jenda introduced and studied Gorenstein projective R-modules as a
generalization of Auslander’s G-modules to the non-finitely modules. An R-module M is called
Gorenstein projective if there exists an exact sequence

P = · · · ∂P

2→ P1
∂P

1→ P0
∂P

0→ · · · ,

such that the complex Hom(P, Q) is exact for each projective module Q and M ∼= Coker(∂P

1 ).
The class of all Gorenstein projective R-modules, denoted by GP(R) and the class of all Goren-
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stein injective R-modules, denoted by GI(R), are defined dually, while an R-module M is called
Gorenstein flat if there is an exact sequence of flat R-modules,

F = · · · ∂F

2→ F1
∂F

1→ F0
∂F

0→ · · · ,
such that F ⊗ E is exact for any injective R-module E and M ∼= Coker(∂F

1 ). The class of all
Gorenstein flat R-modules is denoted by GF(R).

Recently, Holm, Jørgensen, Sather-Wagstaff, and White extended the Gorenstein projective
(injective, flat) modules to C-Gorenstein projective (injective, flat) modules via the complete
PPC-resolution (FFC -resolution, ICI-resolution). Recall that a complete PPC-resolution is
an exact sequence of R-modules

P = · · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · · ,
where Pi and P i for i ∈ Z are projective, and the complex Hom(P, C ⊗R Q) is exact for each
projective R-module Q. And the complete ICI-resolution is defined similarly. Note that the
complete FFC -resolution is an exact sequence of R-modules

F = · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · · ,
where Fi and F i for i ∈ Z are flat, and the complex Hom(C, E) ⊗ F is exact for all injective
modules E. The class of all C-Gorenstein projective (injective or flat) modules is denoted by
GPC(R) (GIC(R) or GFC(R)). Note that if the semidualizing module C is the regular module R,
then C-Gorenstein projective (injective or flat) modules are just Gorenstein projective (injective
or flat).

Note that the two functors Hom(C,−) and C ⊗− provide equivalences between the class of
projective modules and C-projective modules, injective modules and C-injective modules, and
flat modules and C-flat modules. A natural question arises: Do the functors Hom(C,−) and
C ⊗− provide the equivalence between the classes GP(R) and GPC(R) (GI(R) and GIC(R) or
GF(R) and GFC(R))?

The authors noticed that Sather-Wagstaff, Sharif and White [8] defined the class G(PC(R)),
which is consists of the modules that are built by a complete resolution of PC(R)-modules
and they [10] also proved that the functors C ⊗− and Hom(C,−) provide natural equivalence
between the classes GP(R)∩AC(R) and G(PC(R)), which helps us to answer the above question
significantly.

In this paper, in order to study the relations between the classes of Gorenstein projective
modules and C-Gorenstein projective modules, we define the TC -Gorenstein projective modules.
Similarly, we define the LC -Gorenstein injective and HC -Gorenstein flat modules. And we get
the following Foxby equivalences, in which the first two can be deduced from Theorem 3.1 and
the work of [10] (see Corollary 3.1 and Theorem 5.2).

Corollary A Letting C be a semidualizing R-module, we have the following equivalent
classes provided by the functors C ⊗− and Hom(C,−) :

(1) TC(R) = GP(R) ∩AC(R) ∼
C⊗− �� GPC(R) ∩ BC(R);

HomR(C,−)
��

(2) GIC(R) ∩ AC(R) ∼
C⊗− �� LC(R) = GI(R) ∩ BC(R);

HomR(C,−)
��

(3) HC(R) = GF(R) ∩ AC(R) ∼
C⊗− �� GFC(R) ∩ BC(R),

HomR(C,−)
��

where (3) holds when R is coherent.

In Section 4, we study the TC(R)-projective and LC(R)-injective dimensions, and the TC(R)-
precovers or LC(R)-preenvelopes, which extends the results of Holm [6]. Particularly, we have
(see Theorem 4.1) the following result.

Theorem A Let M be an R-module and n a nonegative integer. Denote P<∞ by the class
of R-modules with finite projective dimensions. The following are equivalent:
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(1) TC(R)-pd(M) = n < ∞.
(2) M admits a special TC(R)-precover: 0 → K → T → M → 0 with T ∈ TC(R) and

pd(K) = n − 1.
(3) M admits a special P<∞-preenvelope: 0 → M → L → T ′ → 0 with pd(L) = n and

T ′ ∈ TC(R).

As an application, we prove that the classical finitistic projective dimension and the injective
dimension are equal to the finitistic TC(R)-projective dimension and the LC(R)-injective di-
mension, respectively (see Proposition 4.1). Moreover, we get the following result (see Theorem
4.3).

Theorem B Let R be a Gorenstein ring and C be a semidualizing module. Then the
Auslander class AC(R) = T̂C(R) and the Bass class BC(R) = L̃C(R).

In Section 5, we define and study the HC -Gorenstein flat modules over a commutative
coherent ring R. We have the following results (see Theorem 5.1 and Proposition 5.1).

Proposition A Let R be coherent and M an R-module. Then M ∈ HC(R) ⇔ M+ ∈
LC(R).

Hence, many properties of the HC -Gorenstein flat modules can be obtained from the LC -
Gorenstein injective modules. Particularly, we extend the Foxby equivalence

P(R)� �

��

∼
C⊗− �� PC(R)� �

��

HomR(C,−)
��

HC(R)� �

��

∼
C⊗− �� GFC(R) ∩ BC� �

��

HomR(C,−)
��

ĤC(R)� �

��

∼
C⊗− �� ̂GFC(R) ∩ BC� �

��

HomR(C,−)
��

AC ∼
C⊗− �� BC

HomR(C,−)
��

.

Notation A Throughout this paper, R is a commutative ring with an identity, all the
modules are unitary, and C is a semidualizing R-module. The class of all the projective, injective
or flat R-modules is denoted by P(R), I(R) or F(R), respectively. For an R-module M , let
pd(M), id(M), Gpd(M) and Gid(M) denote the projective, injective, Gorenstein projective and
Gorenstein injective dimensions of M , respectively. For unexplained concepts and notations,
we refer the readers to [8–10].

2 Preliminaries

In this section, we introduce a number of definitions, notions and facts which will be used
throughout this paper.

Definition 2.1 (cf. [13, 1.8]) An R-module C is called semidualizing if
(1) C admits a degreewise finite generated projective resolution,
(2) the natural homothety map R → HomR(C, C) is an isomorphism, and
(3) Exti

R(C, C) = 0 for any i ≥ 1.

Definition 2.2 (cf. [11]) Let C be a semidualizing R-module. The Auslander class with
respect to C, denoted by AC(R), consists of all the R-modules M satisfying
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(1) TorR
i (C, M) = Exti

R(C, C ⊗ M) = 0 for any i ≥ 1,
(2) the natural map M → Hom(C, C ⊗ M) is an isomorphism.
Dually, the Bass class with respect to C, denoted by BC(R), consists of all the R-modules

M satisfying
(1) Exti

R(C, M) = TorR
i (C, Hom(C, M)) = 0 for any i ≥ 1,

(2) the natural evaluation map C ⊗ Hom(C, M) → M is an isomorphism.

Fact 2.1 Let C be a semidualizing R-module. The classes AC(R) and BC(R) are closed
under extensions, kernels of epimorphisms and Cokernels of monomorphisms (cf. [7, Corollary
3.6]). The class AC(R) contains all the R-modules of finite flat dimensions and those of finite
IC -injective dimensions, and the category BC(R) contains all the R-modules of finite injective
dimensions by [7, Corollaries 6.1–6.2].

Let X be a class of R-modules. We denote by X ⊥ the subcategory of R-modules M such
that Ext1R(X, M) = 0 for all X ∈ X . Similarly, ⊥X denotes the subcategory of modules M
such that Ext1R(M, X) = 0 for all X ∈ X .

Definition 2.3 (cf. [2]) Let X be a class of R-modules and M be any R-module. An
X -precover of M is called special if there is an exact sequence 0 → L → X → M → 0 with
X ∈ X and L ∈ X ⊥. The special preenvelope is defined dually.

3 TC-Gorenstein Projective and LC-Gorenstein Injective Modules

In this section, we give the definitions and some properties of the TC -Gorenstein projective
and LC -Gorenstein injective modules.

Definition 3.1 Let C be a semidualizing R-module. An R-module M is called TC-
Gorenstein projective if there exists an exact complex of projective R-modules

P = · · · → P1 → P0 → P 0 → P 1 → · · · ,

such that the following conditions hold:
(1) The complex C ⊗ P is exact.
(2) The complex Hom(P, Q) is exact for all the projective R-modules Q.
(3) There is an isomorphism M ∼= Coker(P1 → P0).
Denote the class of all TC-Gorenstein projective modules by TC(R).
An R-module M is called LC-Gorenstein injective if there exists an exact complex of injective

R-modules
I = · · · → I1 → I0 → I0 → I1 → · · · ,

such that the following conditions hold:
(1) The complex Hom(C, I) is exact.
(2) The complex Hom(E, I) is exact for all the injective R-modules E.
(3) There exists an isomorphism M ∼= Ker(I0 → I0).
Denote the class of all LC-Gorenstein injective modules by LC(R).

Remark 3.1 Let C be a semidualizing R-module.
(1) When C = R, we have that

TC(R) = GP(R), LC(R) = GI(R).

(2) By symmetry, every kernel or cokernel of the morphisms in the complex P is TC -
Gorenstein projective and every kernel or cokernel of the morphisms in the complex I is LC -
Gorenstein injective.

(3) By definition, we have

P(R) ⊆ TC(R) ⊆ GP(R), I(R) ⊆ LC(R) ⊆ GI(R).
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The following theorem implies that the class of TC -Gorenstein projective modules or the
class of LC -Gorenstein injective modules shares many common properties with the class of
Gorenstein projective or injective modules.

Theorem 3.1 Let C be a semidualizing R-module. Then
(1) TC(R) = GP(R) ∩ AC(R);
(2) LC(R) = GI(R) ∩ BC(R).

Proof We only prove (1). By Fact 2.1, the classes AC(R) and BC(R) are closed under
extensions, kernels of epimorphisms and cokernels of monomorphisms, so GP(R) ∩ AC(R) ⊆
TC(R) is straightforward to prove. On the other hand, by Remark 3.1(3), TC(R) ⊆ GP(R). We
only need to show TC(R) ⊆ AC(R). In fact, for any R-module M , if M ∈ TC(R), then there
exists an exact sequence of projective modules

P = · · · → P1 → P0 → P−1 → · · · ,

such that C ⊗ P is exact and M ∼= Coker(P1 → P0). So Tori(C, M) = 0 for i ≥ 1 and C ⊗ P is
an exact complex of PC(R) and C ⊗M ∼= Coker(C ⊗ P1 → C ⊗ P0). By Fact 2.1, Pi ∈ AC(R)
for i ∈ Z, so Hom(C, C ⊗ Pi) ∼= Pi. Thus Hom(C, C ⊗ M) ∼= M . Clearly, Exti(C, C ⊗ M) = 0
by [9, Lemma 1.9(b)]. Hence M ∈ AC(R) and the result follows.

Following from the well-known properties of the classes GP(R), GI(R), AC(R) and BC(R)
(cf. [6–7]), by Theorem 3.1, we have the following proposition.

Proposition 3.1 Let C be a semidualizing R-module. Then
(1) the class TC(R) is closed under direct sums and the class LC(R) is closed under direct

products;
(2) the class TC(R) is projectively resolving and LC(R) is injectively resolving;
(3) both the classes TC(R) and LC(R) are closed under direct summands.

Sather-Wagstaff, Sharif and White proved that

G(PC(R)) = GPC(R) ∩ BC(R) and G(IC(R)) = GIC(R) ∩ AC(R).

And by Theorem 3.1, we can prove the following equivalence provided by the functors C ⊗ −
and Hom(C,−), which answers partially the question put forward in the introduction. As the
conclusion was also showed by Sather-Wagstaff, Sharif and White [10, Remark 2.11], we omit
the proof.

Corollary 3.1

(1) TC(R) = GP(R) ∩AC(R) ∼
C⊗− �� GPC(R) ∩ BC(R).

HomR(C,−)
��

(2) GIC(R) ∩ AC(R) ∼
C⊗− �� LC(R) = GI(R) ∩ BC(R).

HomR(C,−)
��

4 TC(R)-Precovers and LC(R)-Preenvelopes

In this section we want to study the existence of TC(R)-precovers and LC(R)-preenvelopes.
Moreover, we also study the TC(R) projective dimensions and LC(R) injective dimensions and
we get some good results which extend the results of Holm [6].

Let X be a class of R modules. We denote by ̂X the class of R-modules with finite
X -projective dimensions and by ˜X the class of R-modules with finite X -injective dimensions.

Firstly, we prove the following lemma.
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Lemma 4.1 Let M be an R-module. Denote by TC(R)-pd(M) and LC(R)-id(M), the
TC-Gorenstein projective and LC-Gorenstein injective dimensions of M , respectively.

(1) If TC(R)-pd(M)< ∞, then TC(R)-pd(M)= Gpd(M).
(2) If LC(R)-id(M)< ∞, then LC(R)-id(M)= Gid(M).

In particular, T̂C(R) = ĜP(R) ∩ AC(R) and L̃C(R) = G̃I(R) ∩ BC(R).

Proof We only prove (1) and the proof of (2) is similar. By Remark 3.1(3), we have an
inequality Gpd(M) ≤ TC(R)-pd(M). Next let Gpd(M) = n < ∞. Then there exists an exact
sequence

0 → G → Pn−1 → · · · → P0 → M → 0

with each Pi ∈ P(R) and G ∈ GP(R). By assumption, TC(R)-pd(M) < ∞, so M ∈ AC(R) by
Theorem 3.1 and Fact 2.1. So G ∈ AC(R) also by Fact 2.1. Thus G ∈ GP(R) ∩ AC(R). So
G ∈ TC(R) by Theorem 3.1. Hence TC(R)-pd(M) ≤ n = Gpd(M) and (1) follows.

Theorem 4.1 Let M be an R-module and n a nonegative integer. Denote by P<∞ the
class of R-modules with finite projective dimensions. The following are equivalent.

(1) TC(R)-pd(M) = n < ∞.

(2) M admits a special TC(R)-precover: 0 → K → T → M → 0 with T ∈ TC(R) and
pd(K) = n − 1.

(3) M admits a special P<∞-preenvelope: 0 → M → L → T ′ → 0 with pd(L) = n and
T ′ ∈ TC(R).

Proof (1)⇒(2). By Lemma 4.1, GpdR(M) = TC(R)-pd(M) = n. So M admits a surjective
Gorenstein projective precover: 0 → K → G

Φ→ M → 0 with G being Gorenstein projective
and pd(K) = n − 1 by [6, Theorem 2.1]. Since pd(K) = n − 1 < ∞, K ∈ GP(R)⊥. So the
Gorenstein projective precover Φ is special by Definition 2.3. We claim that G ∈ TC(R). In
fact, as TC(R)-pd(M) = n, M ∈ AC(R) by Theorem 3.1 and Fact 2.1. Clearly, K ∈ AC(R),
and thus G ∈ AC(R) also by Fact 2.1. So G ∈ TC(R) by Theorem 3.1. Hence let T = G, and
then Φ : T → M → 0 is the desired special TC(R)-precover of M .

(2)⇒ (3). Consider the exact sequence 0 → K → T → M → 0 with T ∈ TC(R) and
pd(K) = n − 1. Since T ∈ TC(R), there is an exact sequence 0 → T → P → T ′ → 0 with
P ∈ P(R) and T ′ ∈ TC(R). Thus we have the following pushout diagram:

0

��

0

��
0 �� K �� T ��

�� �

M ��

��

0

0 �� K �� P ��

��

L ��

��

0

T ′

��

T ′

��
0 0

.

Since pd(K) = n − 1, pd(L) = n < ∞ by the exact sequence in the middle row of the above
pushout diagram. By Definition 3.1, T ′ ∈ ⊥P<∞, so the exact sequence 0 → M → L → T ′ → 0
with T ′ ∈ TC(R) is a special P<∞-preenvelope of M by Definition 2.3 and [6, Proposition 2.3].

(3)⇒ (1). Since pd(L) = n, there exists an exact sequence 0 → L′ → P0 → L → 0 with P0
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projective and pd(L′) = n − 1. Consider the following commutative diagram with exact rows:

0 �� T ′′ ��

��

P0
��

��

T ′ �� 0

0 �� M �� L ��

��

T ′ ��

��

0

0 0

.

Since TC(R) is projectively resolving, T ′′ ∈ TC(R). Moreover, by the Snake lemma, we get an
exact sequence

0 → L′ → T ′′ → M → 0.

As pd(L′) = n − 1, TC(R)-pd(M) = n. And the theorem follows.

Similarly we have the following result.

Theorem 4.2 Let M be an R-module and n a nonegative integer. Denote by I<∞ the class
of R-modules with finite injective dimensions. The following are equivalent.

(1) LC(R)-id(M) = n < ∞.
(2) M admits a special LC(R)-preenvelope: 0 → M → L → K → 0 with L ∈ LC(R) and

id(K) = n − 1.
(3) M admits a special I<∞-precover: 0 → L → K → M → 0 with id(K) = n and

L ∈ LC(R).

The next proposition is an application of Theorems 4.1–4.2.
Recall that the finitistic projective dimension FPD(R) is defined as FPD(R) = sup{pd(M) |

pd(M) < ∞} and the finitistic injective dimension FID(R) = sup{id(M) | id(M) < ∞}.
Holm [6] defined the finitistic Gorenstein projective dimension FGPD(R) and the finitistic
Gorenstein injective dimension FGID(R), and he proved the equalities FGPD(R) = FPD(R)
and FGID(R) = FID(R) (cf. [6, Theorems 2.28 and 2.29]). Similarly, we prove the following
equalities and note that we use a different way from Holm’s.

Proposition 4.1 Let FTPD(R) = sup{TC(R)-pd(M) | TC(R)-pd(M) < ∞} and FLID(R)
= sup{LC(R)-id(M) | LC-id(M) < ∞} denote the finitistic TC(R)-Gorenstein projective and
LC(R)-Gorenstein injective dimensions of the base ring R, respectively. Then FPD(R) =
FTPD(R) and FID(R) = FLID(R).

Proof We only prove FPD(R) = FTPD(R). Clearly FPD(R) ≤ FTPD(R). On the other
hand, if M is a module with 0 ≤ TC(R)-pd(M) ≤ n, where n is a nonegative integer, then there
exists a module L with pd(L) = n by Theorem 4.1. Hence, if we assume that 0 ≤ FTPD(R) = n,
then we can find an R-module L with pd(L) = n, so FPD(R) ≥ n, and FPD(R) = FTPD(R).

Enochs, Jenda and Xu [3, Corollaries 2.4 and 2.6] showed that when R is a local Cohen-
Macaulay ring with a dualizing module D, the Auslander classes with respect to D are exactly
the R-modules with finite Gorenstein projective (flat) dimensions and the Bass classes with
respect to D are exactly the R-modules with finite Gorenstein injective dimensions. While the
Gorenstein ring is always a local Cohen-Macaulay ring, in this case, R is the only dualizing
module (cf. [2, Remark 9.5.15]). Enochs and Jenda [2, Theorem 12.3.1] proved that every
R-module has finite Gorenstein projective dimensions, if and only if every R-module has finite
Gorenstein flat dimensions, if and only if every R-module has finite the Gorenstein injective
dimensions over Gorenstein ring R. Hence we have the following result, noting that when
C = R, the result is exactly the [3, Corollaries 2.4 and 2.6]:
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Theorem 4.3 Let R be a Gorenstein ring and C be a semidualizing module. Then the
Auslander class AC(R) = T̂C(R) and the Bass class BC(R) = L̃C(R).

Proof By Lemma 4.1, we know that T̂C(R) = ĜP(R) ∩ AC(R) and L̃C(R) = G̃I(R) ∩
BC(R). Moreover, R is Gorenstein, so every R-module has a finite Gorenstein projective and

Gorenstein injective dimension. Hence we have that AC ⊆ ĜP(R) and BC ⊆ G̃I(R). So

ĜP(R) ∩ AC(R) = AC(R), G̃I(R) ∩ BC(R) = BC(R).

5 HC(R)-Gorenstein Flat Modules

In this section, we will give the definition of HC(R)-Gorenstein flat modules which share
the common properties with the Gorenstein flat R-modules.

Definition 5.1 Let C be a semidualizing R-module. An R-module M is called HC-
Gorenstein flat if there is an exact complex of flat R-modules

F = · · · → F1 → F0 → F 0 → F 1 → · · · ,

such that the following conditions hold:
(1) The complex C ⊗ F is exact.
(2) The complex I ⊗ F is exact for any injective R-module I.
(3) There exists an isomorphism M ∼= Coker(F1 → F0).

Denote the class of all HC -Gorenstein flat modules by HC(R).
Clearly, any flat module is HC -Gorenstein flat, and any HC -Gorenstein flat module is Goren-

stein flat. Moreover, when C = R, HC(R) is exactly the class of Gorenstein flat modules.

Theorem 5.1 HC(R) = GF(R) ∩ AC(R). Particularly, an R-module M is in GF(R) ∩
AC(R), if and only if there exists an exact sequence

F = · · · → F1 → F0 → F 0 → F 1 → · · ·

such that both C⊗F and I⊗F are exact for any injective R-module I and M ∼= Coker(F1 → F0).

Proof Clearly HC(R) ⊆ GF(R). Assume M ∈ HC(R), so there exists an exact complex of
flat modules F such that C ⊗ F is exact. Thus Tori(C, M) = 0 for i ≥ 1. As F ∈ AC(R) for
every flat module F , Hom(C, C ⊗ F) ∼= F. Hence the exact complex C ⊗ F is Hom(C,−)-exact
and Hom(C, C ⊗ M) ∼= M . Moreover, by [9, Lemma 1.9], we get that Exti(C, C ⊗ M) = 0
for i ≥ 1. Thus M ∈ AC(R) by Definition 2.2 and HC(R) ⊆ GF(R) ∩ AC(R). The converse
containment follows from Fact 2.1 and Definition 5.1.

Hence, following the properties of the classes GF(R) and AC(R) (cf. [6–7]), we know that
the class of HC(R) is projective resolving. Furthermore, HC(R) is closed under direct sums
and direct summands.

When R is coherent, Holm [6, Theorem 3.6] showed that M is a Gorenstein flat module if and
only if the Pontryagin dual M+ = HomZ(M, Q/Z) is Gorenstein injective, and Sather-Wagstaff,
Sharif and White [9, Lemma 4.2] proved that M is GC -flat, if and only if the Pontryagin dual
M+ is GC -injective.

By Theorem 5.1, we have the extension result.

Proposition 5.1 Let R be coherent and M an R-module. Then M ∈ HC(R) ⇔ M+ ∈
LC(R).

Proof On one hand, M ∈ AC(R) ⇔ M+ ∈ BC(R) by [1, (3.2.9)]. On the other hand,
M ∈ GF(R) ⇔ M+ ∈ GI(R) by [6, Theorem 3.6]. Hence the result follows from Theorem 5.1.

Based on Proposition 5.1, we can easily get the following result.
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Theorem 5.2 The functors C ⊗ − and Hom(C,−) provide the equivalence between the
classes HC(R) and GFC(R) ∩ BC(R)

HC(R) ∼
C⊗− �� GFC(R) ∩ BC(R).

HomR(C,−)
��

Proof On one hand, by Proposition 5.1, M ∈ HC(R) ⇔ M+ ∈ LC(R). Moreover, by
Corollary 3.1,

M+ ∈ LC(R) ⇔ Hom(C, M+) ∈ GIC(R) ∩ AC(R).

But Hom(C, M+) ∼= (C ⊗ M)+, so

(C ⊗ M)+ ∈ GIC(R) ∩ AC(R) ⇔ C ⊗ M ∈ GFC(R) ∩ BC(R)

by [9, Lemma 4.2] and [1, (3.2.9)]. On the other hand, by [9, Lemma 4.2] and [1, (3.2.9)],
M ∈ GFC(R)∩BC(R) ⇔ M+ ∈ GIC(R)∩AC(R). By Corollary 3.1, M+ ∈ GIC(R)∩AC(R) ⇔
C ⊗ M+ ∈ LC(R). As C ⊗ M+ ∼= (Hom(C, M))+, by Proposition 5.1, we have that

M ∈ GFC(R) ∩ BC(R) ⇔ Hom(C, M)) ∈ HC(R).

As any projective module is HC -Gorenstein flat, every R-module has an HC(R)-projective
dimension. By Fact 2.1 and Theorem 5.1, we can easily get that

ĤC(R) = ĜF(R) ∩ AC(R).

Hence we have the extended Foxby equivalence

P(R)� �

��

∼
C⊗− �� PC(R)� �

��

HomR(C,−)
��

HC(R)� �

��

∼
C⊗− �� GFC(R) ∩ BC� �

��

HomR(C,−)
��

ĤC(R)� �

��

∼
C⊗− �� ̂GFC(R) ∩ BC� �

��

HomR(C,−)
��

AC ∼
C⊗− �� BC

HomR(C,−)
��

.
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