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non-stationary Gaussian random fields under some mild conditions related to the covariance
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1 Introduction

The almost sure central limit theorem (ASCLT for short) was first introduced independently
by [3] and [17] for the partial sum, and then the concept was started to have applications in
many areas. For example, [4–5] showed applications of ASCLTs for occupation measures of
the Brownian motion on a compact Riemannian manifold and for diffusions and its applica-
tion to path energy and eigenvalues of the Laplacian. His work was also followed up in many
other applied areas, including condensed matter physics, statistical mechanics, ergodic the-
ory, dynamical systems, occupational health psychology, control and information sciences and
rehabilitation counseling and so on.

In its simplest form the ASCLT states that if X1, X2, · · · is an independent and identically
distributed (i.i.d. for short) sequence of random variables with mean 0 and variance 1, then

lim
n→∞

1
log n

n∑
t=1

1
t
I(t−

1
2 St ≤ x) = Φ(x) a.e. x ∈ R,

where Sn =
n∑

t=1
Xt, I is an indicator function and Φ(x) stands for the standard normal distri-

bution function.
Later on, [11] and independently [7] extended this principle by establishing the ASCLT for
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the maxima Mt = max
k≤t

Xk of i.i.d. random variables. They proved that for any x ∈ R,

lim
n→∞

1
log n

n∑
t=1

1
t
I(at(Mt − bt) ≤ x) = G(x) a.e. (1.1)

with real sequences at > 0, bt ∈ R, t ≥ 1 and a non-degenerate distribution G(x). [10] and [6]
extended (1.1) for weakly dependent stationary Gaussian sequences. We refer to [13] for the
non-stationary Gaussian case, [19] for the more general dependent case and [9] for stationary
Gaussian fields. The recent extension is the result of [20].

In this paper, we are interested in the similar problems for extremes of non-stationary
Gaussian random fields. It is well-known that Gaussian random fields play a very important
role in many applied sciences, such as image analysis, atmospheric sciences and geostatistics,
among others. Firstly, we introduce some notations and notions of Gaussian random fields.

Denote the set of all positive integers and the set of all non-negative integers by Z and N,
respectively. Let Z

d and Nd be d-dimensional product spaces of Z and N, respectively, where
d ≥ 2. In this paper, we only consider the case of d = 2 since it is notationally the simplest and
the results for higher dimensions follow analogous arguments. For i = (i1, i2) and j = (j1, j2),
i ≤ j and i − j mean ik ≤ jk, k = 1, 2 and (i1 − j1, i2 − j2), respectively. |i| and n → ∞
mean (|i1|, |i2|) and nk → ∞, k = 1, 2, respectively. Let In = {j ∈ Z2: 1 ≤ ji ≤ ni, i = 1, 2}
and χE be the number of elements in E for any subset E of Z2. Let χk =

∏
i:ki �=0

|ki| for

k = (k1, k2) and χ0 = 1. Note that χk = χIk when k ∈ Z2. Also, let logn and log logn denote
(log n1, log n2) and (log log n1, log log n2), respectively. Let Φ(·) and φ(·) denote the standard
Gaussian distribution function and its density function, respectively.

Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field on R2. Let
rij = Cov(Xi, Xj) be the covariance functions of the Gaussian random field X = {Xn}n≥1.

[14] studied the extremes for non-stationary Gaussian random fields and obtained the fol-
lowing weak convergence result.

Theorem 1.1 Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field.
Assume that the covariance functions rij satisfy |rij| < ρ|i−j| for some sequence {ρn}n∈N2−{0}
such that

lim
n1→∞ ρ(n1,0) log n1 = 0, lim

n2→∞ ρ(0,n2) log n2 = 0, (1.2)

lim
n→∞ ρn log χn = 0 (1.3)

and sup
n∈N2−{0}

|ρn| < 1. Let the constants {un,i, i ≤ n}n≥1 be such that λn = min
i∈In

un,i ≥

c(log χn)
1
2 for some constant c > 0 and lim

n→∞
∑
i∈In

(1 − Φ(un,i)) = τ ∈ [0,∞). Then

lim
n→∞P

( ⋂
i∈In

{Xi ≤ un,i}
)

= exp(−τ). (1.4)

For more detailed limit properties of the extremes and their applications for Gaussian ran-
dom fields, we refer to [8–9, 14–15, 18]. For further results concerning the extremes in Gaussian
random fields we refer the readers to [1–2, 8–9, 14–16].

In this paper, we concentrate on the almost sure limit theorem on extremes of non-stationary
Gaussian random fields. We will extend (1.4) to the almost sure version. As a by-product, we
find that (1.4) still holds under weaker conditions.
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2 Main Results

Now, we state our main results.

Theorem 2.1 Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field.
Assume that the covariance functions rij satisfy |rij| < ρ|i−j| for some sequence {ρn}n∈N2−{0}
such that for some ε > 0,

ρ(n1,0) log n1 = O((log log n1)−(1+ε)), ρ(0,n2) log n2 = O((log log n2)−(1+ε)), (2.1)

ρn log χn = O((χlog log n)−(1+ε)) (2.2)

and sup
n∈N2−{0}

|ρn| < 1 hold. Let the constants {un,i, i ≤ n}n≥1 be such that χn(1 − Φ(λn)) is

bounded, where λn = min
i∈In

un,i. Suppose that lim
n→∞

∑
i∈In

(1 − Φ(un,i)) = τ ∈ [0,∞) holds. Then

lim
n→∞

1
χlog n

∑
k∈In

1
χk

I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)

= exp(−τ) a.e. (2.3)

As a special case, we have the following corollary.

Corollary 2.1 Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field.
Assume that the covariance functions rij satisfy |rij| < ρ|i−j| for some sequence {ρn}n∈N2−{0}
such that (2.1)–(2.2) and sup

n∈N2−{0}
|ρn| < 1 hold. Let the constants {un}n≥1 be such that

lim
n→∞χn(1 − Φ(un)) = τ ∈ [0,∞). Then

lim
n→∞

1
χlog n

∑
k∈In

1
χk

I(Mk(X) ≤ uk) = exp(−τ) a.s., (2.4)

where Mk(X) = max
i∈Ik

Xi.

Further, let an =
√

2 logχn and bn = an − log log χn+log(4π)
2an

, and then

lim
n→∞

1
χlog n

∑
k∈In

1
χk

I(ak(Mk(X) − bk) ≤ x) = exp(−e−x) a.e. x ∈ R. (2.5)

Next, we give a weak convergence result which is an extension of Theorem A.

Theorem 2.2 Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field.
Assume that the covariance functions rij satisfy |rij| < ρ|i−j| for some sequence {ρn}n∈N2−{0}
such that

ρ(n1,0) log n1 and ρ(0,n2) log n2 are bounded. (2.6)

In addition, assume that (1.3) and sup
n∈N2−{0}

|ρn| < 1 hold. Let the constants {un,i, i ≤ n}n≥1 be

such that χn(1−Φ(λn)) is bounded, where λn = min
i∈In

un,i. Suppose that lim
n→∞

∑
i∈In

(1−Φ(un,i)) =

τ ∈ [0,∞) holds. Then (1.4) holds.

Remark 2.1 The assertions of Theorems 2.1–2.2 still hold for stationary Gaussian fields
with the similar conditions on the correlation functions. Note that even for the stationary case,
Theorems 2.1–2.2 are still new results.
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Example 2.1 (1) The assertions of Theorems 2.1–2.2 still hold for independent Gaussian
random fields, and m-dependent Gaussian random fields.

(2) Let Z1 be a Gaussian field with mean 0, variance 1 and Zn = Z(n1,n2) = 1
n1n2

Z(1,1), and
then X = {Zn}n≥1 is a non-stationary Gaussian random field which satisfies the conditions of
Theorems 2.1–2.2, where ρn can be chosen as follows:

ρn = ρ(n1,n2) =
1

n1 + 1
1

n2 + 1
.

Using Theorem 2.2, we extend Theorem 6.2.1 of [12] to Gaussian random fields. The ob-
tained result also tells us how to construct a non-stationary Gaussian random field by a sta-
tionary Gaussian field.

Corollary 2.2 Let Y = {Xn + mn}n≥1, where {Xn}n≥1 is the Gaussian random field
satisfying the conditions of Theorem 2.2 and {mn}n≥1 satisfies

βn = max
k∈In

|mk| = o(
√

χn), (2.7)

and let m∗
n be such that

|m∗
n| ≤ βn (2.8)

and
1

χn

∑
i∈In

exp
(
a∗
n(mi − m∗

n) − 1
2
(mi − m∗

n)2
)
→ 1 (2.9)

as n → ∞, where a∗
n = an − log log χn

2an
. Then

lim
n→∞P (an(Mn(Y ) − bn − m∗

n) ≤ x) = exp(−e−x), (2.10)

where Mn(Y ) = max
i∈In

Yi, and an and bn are defined as in Corollary 2.1.

Using Theorem 2.1, Corollary 2.2 can be extended to the almost sure version.

Corollary 2.3 Let Y = {Xn + mn}n≥1, where {Xn}n≥1 is the Gaussian random field
satisfying the conditions of Theorem 2.1 and {mn}n≥1 satisfies the conditions of Corollary 2.2.
Let m∗

n satisfy (2.8)–(2.9) and

an

(
max
i∈In

mi − m∗
n

)
is bounded. (2.11)

Then

lim
n→∞

1
χlog n

∑
k∈In

1
χk

I(ak(Mk(Y ) − bk − m∗
k) ≤ x) = exp(−e−x) a.e., (2.12)

where Mn(Y ) = max
i∈In

Yi, and an and bn are defined as in Corollary 2.1.

3 Auxiliary Results

In this section, we state and prove several lemmas which will be used in the proofs of our
main results. As usual, an � bn means an = O(bn). Let K denote positive constants whose
values may vary from place to place.

The first lemma is the so-called normal comparison lemma which can be found in [12]. A
simple special form of this theorem is given here.
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Lemma 3.1 (cf. [12]) Let X = {Xn}n≥1 and Y = {Yn}n≥1 be standardized Gaussian
random fields with covariance functions Λ1

ij and Λ2
ij, respectively. Let max

i�=j
|γij| = γ < 1, where

γij = max{Λ1
ij, Λ

2
ij}. Then, for constants {un,i, i ≤ n}n≥1, we have

∣∣∣P
( ⋂

i∈In

{Xi ≤ un,i}
)
− P

( ⋂
i∈In

{Yi ≤ un,i}
)∣∣∣

≤ K
∑

i,j∈In,i≤j,i�=j

|Λ1
ij − Λ2

ij| exp
(
− u2

n,i + u2
n,j

2(1 + |γij|)
)
,

where K is some constant, depending only on γ.

The second lemma is an extension of Lemma 3.1 of [10] from random sequences to random
fields, which will play a crucial role in the proof of Theorem 2.1.

Lemma 3.2 Let {ξk}k≥1, k ∈ Zd, d ≥ 2 be a sequence of uniformly bounded random
variables, i.e., there exists some M ∈ (0,∞), such that |ξk| ≤ M a.s. for all k ∈ Zd. If

Var
( 1

χlog n

∑
k∈In

1
χk

ξk

)
� (χlog log n)−(1+ε)

for some ε > 0, then

lim
n→∞

1
χlog n

∑
k∈In

1
χk

(ξk − Eξk) = 0 a.e.

Proof We only prove the case of d = 2. Setting

μn =
1

χlog n

∑
k∈In

1
χk

(ξk − Eξk)

and nk = (nk1 , nk2) = (exp(exp(kν
1 )), exp(exp(kν

2 ))) for some 1
1+ε < ν < 1, we have

∑
k≥3

Eμ2
nk

�
∑
k2≥3

∑
k1≥3

(k1k2)−ν(1+ε) < ∞.

Thus, by applying the Borel-Cantelli lemma, μnk
→ 0 a.s. Since for ν < 1, (k + 1)ν − kν →

0 as k → ∞ if ν < 1, we have for i = 1, 2,

log(nki+1)
log(nki)

=
exp((ki + 1)ν)

exp(kν
i )

= exp((ki + 1)ν − kν
i ) → 1

as ki → ∞. Obviously for any given n ∈ Z2, there exists an integer k ∈ Z2, such that
nk < k ≤ nk+1. Therefore

|μn| ≤ 1
χlog n

∣∣∣
∑
j∈In

1
χj

(ξj − Eξj)
∣∣∣

≤ 1
χlog nk

∣∣∣
∑

j∈Ink

1
χj

(ξj − Eξj)
∣∣∣ +

1
χlog nk

∑
j∈Ink+1−Ink

1
χj

|(ξj − Eξj)|

� |μnk
| + 1

χlog nk

∑
j∈Ink+1−Ink

1
χj
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≤ |μnk
| +

( log nk1+1

log nk1

− 1
) log nk2+1

log nk2

+
( log nk2+1

log nk2

− 1
)
,

and thus
lim

n→∞μn = 0 a.s.

The proof is complete.

In the following lemmas, we will intensively use the following notations and facts. By the
assumption on λn, we have χn(1 − Φ(λn)) < K, for a constant K and λn → ∞ as n → ∞.
Since Φ(·) is continuous, there exists ωn, such that χn(1 − Φ(ωn)) = K, which combining with
the fact that 1 − Φ(x) ∼ φ(x)

x as x → ∞ implies

ωn ≤ λn, exp
(
− ω2

n

2

)
� Kωn

χn
, ωn �

√
2 logχn (3.1)

for large n. Let δ = max
i�=j

|rij| < 1 and θn = exp(ηω2
n), where η is a positive constant satisfying

η <
1 − δ

4(1 + δ)
.

Lemma 3.3 Let X = {Xn}n≥1 be a non-stationary standardized Gaussian random field
with covariance functions rij satisfying δ = max

i�=j
|rij| < 1. Let the constants {un,i, i ≤ n}n≥1 be

such that χn(1 − Φ(λn)) is bounded, where λn = min
i∈In

un,i. Then, we have

∑
i,j∈In,i≤j,i�=j

χ|i−j|≤θn

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)
� (χn)−σ1 (3.2)

with the constant σ1 > 0.

Proof Using the facts in (3.1), it is easy to see that

∑
i,j∈In,i≤j,i�=j

χ|i−j|≤θn

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)

≤ δ
∑

i,j∈In,i≤j,i�=j
χ|i−j|≤θn

exp
(
− ω2

n

1 + δ

)
≤ δθ2

nχn exp
(
− ω2

n

1 + δ

)

≤ δχn

(
exp

(
− ω2

n

2

)) 2
1+δ −2η

� δχn

( ωn

n1n2

) 2
1+δ −2η

� δ(χn)1−
2

1+δ +2η
(

log χn

) 1
1+δ −η

.

Since η < 1−δ
4(1+δ) and 0 < δ < 1, we have 1 − 2

1+δ + 2η < 0. Hence, there exists a constant
σ1 > 0, such that (3.2) holds.

Lemma 3.4 Under the conditions of Theorem 2.2, we have

∑
i,j∈In,i≤j,i�=j

χ|i−j|>θn

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)

= o(1) (3.3)
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as n → ∞. Under the conditions of Theorem 2.1, we have

∑
i,j∈In,i≤j,i�=j

χ|i−j|>θn

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)
� (χlog log n)−(1+ε). (3.4)

Proof Denote the sum in (3.3) and (3.4) by Sn and split it into three parts, the first for
i < j, the second for i1 = j1 ∧ i2 < j2, and the third for i2 = j2 ∧ i1 < j1. We will denote them
by Sn,i, i = 1, 2, 3, respectively. By (3.1), for large n, there exists a constant c > 0, such that
ωn > c

√
log(χn), and hence

θn = exp(ηω2
n) > exp(c2η log(χn)) = χα

n,

where α = c2η, and
∑

i,j∈In,i≤j,i�=j
χ|i−j|>θn

|rij| ≤
∑

i,j∈In,i≤j,i�=j
χ|i−j|>χα

n

|rij| ≤ sup
i,j∈In,i<j
χ|i−j|>χα

n

ρ|i−j| := δ
(1)
θn

.

For the first term Sn,1, applying the facts in (3.1), we get

Sn,1 ≤ δ
(1)
θn

∑
i,j∈In,i<j
χ|i−j|>θn

exp
(
− ω2

n

1 + δ
(1)
θn

)

≤ δ
(1)
θn

χ2
n exp

(
− ω2

n

1 + δ
(1)
θn

)

≤ δ
(1)
θn

χ2
n exp(−ω2

n) exp(δ(1)
θn

ω2
n)

� (χn(1 − Φ(ωn))ωn)2δ(1)
θn

exp(δ(1)
θn

ω2
n)

� log(χn)δ(1)
θn

exp(δ(1)
θn

ω2
n)

≤ sup
i,j∈In,i<j
χ|i−j|>χα

n

ρ|i−j| log(χ|i−j|) exp(δ(1)
θn

ω2
n).

Now, using the conditions (1.3) and (2.2), we obtain the desired bounds on the right-hand sides
of (3.3) and (3.4), respectively. For the second term, note that

sup
i,j∈In,i1=j1
|i2−j2|>θn

|rij| ≤ sup
i,j∈In,i1=j1
|i2−j2|>χα

n

|rij| ≤ sup
i,j∈In

|i2−j2|>χα
n

ρ(0,|i2−j2|) := δ
(2)
θn

.

Similarly, applying the facts in (3.1) again, we have

Sn,2 ≤ δ
(2)
θn

∑
i,j∈In,i1=j1
|i2−j2|>θn

exp
(
− ω2

n

1 + δ
(2)
θn

)

≤ δ
(2)
θn

χnn2 exp
(
− ω2

n

1 + δ
(2)
θn

)

≤ n−1
1 δ

(2)
θn

χ2
n exp(−ω2

n) exp(δ(2)
θn

ω2
n)

� n−1
1 log(χn)δ(2)

θn
exp(δ(2)

θn
ω2

n)

≤ n−1
1 sup

i,j∈In
|i2−j2|>χα

n

ρ(0,|i2−j2|) log(|i2 − j2|) exp(δ(2)
θn

ω2
n).
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Now, using the condition (2.6) we get Sn,2 = o(1) as n → ∞. Using the condition (2.1), we get

Sn,2 � n−1
1 (log log n2)−(1+ε) � (χlog log n)−(1+ε).

Likewise we can bound the third term.

Lemma 3.5 Under the conditions of Theorem 2.1, for k,n ∈ N2 such that k �= n and
uk,i ≤ un,j, we have

∑
i∈Ik,j∈In−Ik

i≤j

|rij| exp
(
− u2

k,i + u2
n,j

2(1 + |rij|)
)
� (χlog log n)−(1+ε). (3.5)

Proof Split the sum into two parts:
∑

i∈Ik,j∈In−Ik,i≤j

χ|i−j|≤θn

+
∑

i∈Ik,j∈In−Ik,i≤j
χ|i−j|>θn

=: T (1)
n + T (2)

n .

For the first term, it follows from the facts in (3.1) that

T (1)
n ≤ δ

∑
i∈Ik,j∈In−Ik,i≤j

χ|i−j|≤θn

exp
(
− ω2

k

2(1 + δ)

)
exp

(
− ω2

n

2(1 + δ)

)

≤ δχkθ2
n exp

(
− ω2

k

2(1 + δ)

)
exp

(
− ω2

n

2(1 + δ)

)

≤ δχk exp
(
− ω2

k

2(1 + δ)

)
exp

(
−

( 1
2(1 + δ)

− 2η
)
ω2

n

)

� δχk

(ωk

χk

) 1
1+δ

(ωn

χn

) 1
1+δ −4η

� δχ
1− 1

1+δ

k (log χk)
1

2(1+δ) χ
4η− 1

1+δ
n (log χn)

1
2(1+δ)−2η

≤ χ
4η− 1

1+δ +1− 1
1+δ

n (log χk)
1

2(1+δ) (log χn)
1

2(1+δ)−2η.

Since η < 1−δ
4(1+δ) and 0 < δ < 1, we have 4η− 1

1+δ +1− 1
1+δ < 0. Hence, there exists a constant

σ2 > 0, such that T
(1)
n � χ−σ2

n .
As in the proof of Lemma 3.4, split T

(2)
n into three parts, the first for i < j, the second for

i1 = j1 ∧ i2 < j2, and the third for i2 = j2 ∧ i1 < j1 and denote them by T
(2)
n,i , i = 1, 2, 3,

respectively.
For the first term T

(2)
n,1, in view of the facts (3.1), we have

T
(2)
n,1 ≤ δ

(1)
θn

∑
i∈In,j∈In−Ik,i<j

χ|i−j|>θn

exp
(
− ω2

k

2(1 + δ
(1)
θn

)

)
exp

(
− ω2

n

2(1 + δ
(1)
θn

)

)

≤ δ
(1)
θn

χkχn exp
(
− ω2

k

2(1 + δ
(1)
θn

)

)
exp

(
− ω2

n

2(1 + δ
(1)
θn

)

)

≤ δ
(1)
θn

χk exp
(
− 1

2
ω2

k

)
exp

(1
2
δ
(1)
θn

ω2
k

)
χn exp

(
− 1

2
ω2

n

)
exp

(1
2
δ
(1)
θn

ω2
n

)

� ωkωnδ
(1)
θn

exp
(1

2
δ
(1)
θn

ω2
k

)
exp

(1
2
δ
(1)
θn

ω2
n

)
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≤ log(χn) sup
i,j∈In,i<j
χ|i−j|>χα

n

ρ|i−j| exp
(1

2
δ
(1)
θn

ω2
k

)
exp

(1
2
δ
(1)
θn

ω2
n

)

� sup
i,j∈In,i<j
χ|i−j|>χα

n

ρ|i−j| log(χ|i−j|)

� (χlog log n)−(1+ε),

where we have used the condition (2.2) in the last step.
Similarly, taking into account the facts in (3.1), we get

T
(2)
n,2 ≤ δ

(2)
θn

∑
i∈Ik,j∈In−Ik,i1=j1

|i2−j2|>θn

exp
(
− ω2

k

2(1 + δ
(2)
θn

)

)
exp

(
− ω2

n

2(1 + δ
(2)
θn

)

)

≤ δ
(2)
θn

χkn2 exp
(
− ω2

k

2(1 + δ
(2)
θn

)

)
exp

(
− ω2

n

2(1 + δ
(2)
θn

)

)

≤ n−1
1 δ

(2)
θn

χkχn exp
(
− 1

2
ω2

k

)
exp

(1
2
δ
(2)
θn

ω2
k

)
exp

(
− 1

2
ω2

n

)
exp

(1
2
δ
(2)
θn

ω2
n

)

≤ n−1
1

(
χk exp

(
− 1

2
ω2

k

))(
χn exp

(
− 1

2
ω2

n

))
δ
(2)
θn

exp
(1

2
δ
(2)
θn

ω2
k

)
exp

(1
2
δ
(2)
θn

ω2
n

)

� n−1
1 ωkωnδ

(2)
θn

exp
(1

2
δ
(2)
θn

ω2
k

)
exp

(1
2
δ
(2)
θn

ω2
n

)

� n−1
1 log(χn) sup

i,j∈In
|i2−j2|>χα

n

ρ(0,|i2−j2|) exp
(1

2
δ
(2)
θn

ω2
k

)
exp

(1
2
δ
(2)
θn

ω2
n

)

≤ n−1
1 sup

i,j∈In
|i2−j2|>χα

n

ρ(0,|i2−j2|) log(|i2 − j2|)

� (χlog log n)−(1+ε),

where we have used the condition (2.1) in the last step. Likewise, we can bound the third term.

Lemma 3.6 Under the conditions of Theorem 2.1, for k,n ∈ N2 such that k �= n and
uk,i ≤ un,j, we have

(i)
∣∣∣P

( ⋂
i∈Ik

{Xi ≤ uk,i},
⋂

j∈In−Ik

{Xj ≤ un,j}
)

− P
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
P

( ⋂
j∈In−Ik

{Xj ≤ un,j}
)∣∣∣ � (χlog log n)−(1+ε),

(ii) E
∣∣∣I

( ⋂
i∈In

{Xi ≤ un,i}
)
− I

( ⋂
i∈In−Ik

{Xi ≤ un,i}
)∣∣∣

� χn − χIn−Ik

χn
+ (χlog log n)−(1+ε).

Proof For part (i), using Lemmas 3.1 and 3.5, we have
∣∣∣P

( ⋂
i∈Ik

{Xi ≤ uk,i},
⋂

j∈In−Ik

{Xj ≤ un,j}
)
− P

( ⋂
i∈Ik

{Xi ≤ uk,i}
)
P

( ⋂
j∈In−Ik

{Xj ≤ un,j}
)∣∣∣

≤ K
∑

i∈Ik,j∈In−Ik
i≤j

|rij| exp
(
− u2

k,i + u2
n,j

2(1 + |rij|)
)
� (χlog log n)−(1+ε).
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For part (ii), we have

E
∣∣∣I

( ⋂
i∈In

{Xi ≤ un,i}
)
− I

( ⋂
i∈In−Ik

{Xi ≤ un,i}
)∣∣∣

= P
( ⋂

i∈In−Ik

{Xi ≤ un,i}
)
− P

( ⋂
i∈In

{Xi ≤ un,i}
)

≤
∣∣∣P

( ⋂
i∈In−Ik

{Xi ≤ un,i}
)
−

∏
i∈In−Ik

Φ(un,i)
∣∣∣ +

∣∣∣P
( ⋂

i∈In

{Xi ≤ un,i}
)
−

∏
i∈In

Φ(un,i)
∣∣∣

+
∣∣∣

∏
i∈In−Ik

Φ(un,i) −
∏
i∈In

Φ(un,i)
∣∣∣

=: Rn,1 + Rn,2 + Rn,3.

Using Lemmas 3.1 and 3.3–3.4, we know that Rn,1 and Rn,2 are both bounded by

K
∑

i,j∈In,i≤j,i�=j

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)
� (χlog log n)−(1+ε).

Using the fact that χn(1 − Φ(λn)) is bounded, we have

Rn,3 =
∏

i∈In−Ik

Φ(un,i) −
∏
i∈In

Φ(un,i)

≤ 1 −
∏

i∈In\(In−Ik)

Φ(un,i)

≤
∑

i∈In\(In−Ik)

(1 − Φ(un,i))

≤ (χn − χIn−Ik)(1 − Φ(λn))

=
χn − χIn−Ik

χn
χn(1 − Φ(λn))

� χn − χIn−Ik

χn
.

This completes the proof of the lemma.

4 Proof of Main Results

In this section, we give the proofs of our main results.

Proof of Theorem 2.1 First, note that conditions (2.1) and (2.2) imply (2.6) and (1.3),
respectively, and hence (1.4) holds under the conditions of Theorem 2.1. Then we have

lim
n→∞

1
χlog n

∑
k∈In

1
χk

P
( ⋂

i∈Ik

{Xi ≤ uk,i}
)

= exp(−τ) a.s.

Therefore, it suffices to prove that

lim
n→∞

1
χlog n

∑
k∈In

1
χk

{
I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
− P

( ⋂
i∈Ik

{Xi ≤ uk,i}
)}

= 0 a.s.

Let
ξk = I

( ⋂
i∈Ik

{Xi ≤ uk,i}
)
− P

( ⋂
i∈Ik

{Xi ≤ uk,i}
)
.



Almost Sure Asymptotics for Extremes of Gaussian Fields 135

Note that |ξk| ≤ 1 for all k ∈ Z2. By Lemma 3.2, we only need to show that

Var
( 1

χlog n

∑
k∈In

1
χk

I
( ⋂

i∈Ik

{Xi ≤ uk,i}
))

� (χlog log n)−(1+ε). (4.1)

Now, we have

Var
( 1

χlog n

∑
k∈In

1
χk

I
( ⋂

i∈Ik

{Xi ≤ uk,i}
))

=
1

(χlog n)2
{ ∑

k∈In

1
χ2

k

Eξ2
k +

∑
k �=l

1
χkχl

Eξkξl

}

= A1 + A2.

Since |ξk| ≤ 1, it follows that

A1 ≤ 1
(χlog n)2

∑
k∈In

1
χ2

k

≤ K

(χlog n)2
. (4.2)

Note that for k �= l such that uk,i ≤ ul,j,

|Eξkξl| =
∣∣∣Cov

(
I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
, I

( ⋂
j∈Il

{Xi ≤ ul,j}
))∣∣∣

≤
∣∣∣Cov

(
I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
, I

( ⋂
j∈Il

{Xi ≤ ul,j}
)
− I

( ⋂
j∈Il−Ik

{Xi ≤ ul,j}
))∣∣∣

+
∣∣∣Cov

(
I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
, I

( ⋂
j∈Il−Ik

{Xi ≤ ul,j}
))∣∣∣

≤ E
∣∣∣I

( ⋂
j∈Il

{Xi ≤ ul,j}
)
− I

( ⋂
j∈Il−Ik

{Xi ≤ ul,j}
)∣∣∣

+
∣∣∣Cov

(
I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
, I

( ⋂
j∈Il−Ik

{Xi ≤ ul,j}
))∣∣∣

� χl − χIl−Ik

χl
+

1
(χlog log l)(1+ε)

,

where we have used Lemma 3.6 in the last step. Now, we have

A2 ≤ 2
1

(χlog n)2
∑

k �=l,uk,i≤ul,j

1
χkχl

Eξkξl

� 1
(χlog n)2

∑
k �=l

1
χkχl

{χl − χIl−Ik

χl
+

1
(χlog log l)(1+ε)

}

= A21 + A22.

In order to estimate A21, we define Am = {(k, l) ∈ In × In : (2mj − 1)(kj − lj) ≥ 0, k �= l} for
m ∈ Λ ≡ {(m1, m2) : mj = 0, 1, j = 1, 2, m �= 1}. Let am denote (am1

1 , am2
2 ) for a ∈ R2 and

m ∈ Λ. Then, we have

A21 =
1

(χlog n)2
∑
m∈Λ

∑
(k,l)∈Am

1
χkχl

χl − χIl−Ik

χl
.

Since χl−χIl−Ik

χl
becomes χk1−m

χl1−m
for (k, l) ∈ Am, it follows that

A21 =
1

(χlog n)2
∑
m∈Λ

∑
(k,l)∈Am

χk1−m

χkχlχl1−m
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� 1
(χlog n)2

∑
m∈Λ

χlog nχ(log n)m

� (χlog n)−ν

for some ν > 0. For A22, we have

A22 =
1

(χlog n)2
∑
k �=l

1
χkχl

1
(χlog log l)(1+ε)

� 1
(χlog n)2

1
(χlog log n)(1+ε)

∑
k �=l

1
χkχl

� 1
(χlog log n)(1+ε)

.

Therefore,

A2 � 1
(χlog log n)(1+ε)

.

This and (4.2) together establish (4.1).

Proof of Theorem 2.2 Let Y = {Yn}n≥1 be an independent standardized Gaussian
random field. It is easy to see that

∣∣∣P
( ⋂

i∈In

{Xi ≤ un,i}
)
− exp(−τ)

∣∣∣ ≤
∣∣∣P

( ⋂
i∈In

{Xi ≤ un,i}
)
−

∏
i∈In

P
(
{Yi ≤ un,i}

)∣∣∣

+
∣∣∣
∏
i∈In

P
(
{Yi ≤ un,i}

)
− exp(−τ)

∣∣∣.

By Lemmas 3.1 and 3.3–3.4, we have
∣∣∣P

( ⋂
i∈In

{Xi ≤ un,i}
)
−

∏
i∈In

P ({Yi ≤ un,i})
∣∣∣

≤ K
∑

i,j∈In,i≤j,i�=j

|rij| exp
(
− u2

n,i + u2
n,j

2(1 + |rij|)
)

= o(1).

By Lemma 6.1.1 in [12] and the condition that lim
n→∞

∑
i∈In

(1 − Φ(un,i)) = τ ∈ [0,∞), the second

sum is also o(1). The proof is complete.

Proof of Corollary 2.2 Let un,i = un + m∗
n − mi, where un = x

an
+ bn. Then the

probability on the left-hand side of (2.10) can be written as

P
( ⋂

i∈In

{Yi ≤ un + m∗
n}

)
= P

( ⋂
i∈In

{Xi ≤ un,i}
)
.

Since |m∗
n| < βn for sufficiently large n, and un ∼ √

2 log χn, it follows that

min
i∈In

un,i =
√

2 logχn(1 + o(1)).

Thus if it is shown that

lim
n→∞

∑
i∈In

(1 − Φ(un,i)) = e−x, (4.3)
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the result will follow from Theorem 2.2. To see that (4.3) holds, we note that λn = min
i∈In

un,i → ∞
as n → ∞,

∑
i∈In

(1 − Φ(un,i)) ∼ 1√
2π

∑
i∈In

exp(−u2
n,i)

2
un,i

∼ 1√
2π

exp(−u2
n)

2
un

∑
i∈In

exp
(
un(mi − m∗

n) − 1
2
(mi − m∗

n)2
)

(4.4)

and ∣∣∣un,i

un
− 1

∣∣∣ =
∣∣∣mi − m∗

n

un

∣∣∣ ≤ Kβn√
log χn

→ 0

uniformly in i ≤ n. Clearly, we also have
∣∣∣un(mi − m∗

n) − 1
2
(mi − m∗

n)2
∣∣∣ ≤ 2|un − a∗

n|βn ≤ Kβn√
log χn

.

Therefore, according to (2.7), (2.9) and (4.4), we have

∑
i∈In

(1 − Φ(un,i)) ∼ χn(1 − Φ(un))
1

χn

∑
i∈In

exp
(
a∗
n(mi − m∗

n) − 1
2
(mi − m∗

n)2
)

→ e−x

since χn(1 − Φ(un)) → e−x by a direct calculation. Hence (4.3) holds and the proof of the
corollary is complete.

Proof of Corollary 2.3 As in the proof of Corollary 2.2, let un,i = un + m∗
n − mi, where

un = x
an

+ bn. Then, by Corollary 2.2 we have

P (an(Mn(Y ) − bn − m∗
n) ≤ x) = P

( ⋂
i∈In

{Xi ≤ un,i}
)
→ exp(−e−x)

as n → ∞. Hence, it suffices to prove that

1
χlog n

∑
k∈In

1
χk

I
( ⋂

i∈Ik

{Xi ≤ uk,i}
)
→ exp(−e−x) a.s.

as n → ∞, which will be done by showing that

χn(1 − Φ(λn)) is bounded, (4.5)

due to Theorem 2.1, where λn = min
i∈In

un,i = un + m∗
n − max

i∈In
mi. By the definitions of βn and

m∗
n, we have

un

(
max
i∈In

mi − m∗
n

)
− 1

2

(
max
i∈In

mi − m∗
n

)2

= o(1) +
√

2 logχn

(
max
i∈In

mi − m∗
n

)(
1 − log log χn + log 4π

4 logχn
−

max
i∈In

mi − m∗
n

2
√

2 logχn

)

≤ o(1) + K
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for large n. Hence

χn(1 − Φ(λn)) ∼ χnλ−1
n exp

(
− 1

2

(
un + m∗

n − max
i∈In

mi

)2)

∼ χn(1 − Φ(un)) exp
(
− un

(
m∗

n − max
i∈In

mi

)
− 1

2

(
m∗

n − max
i∈In

mi

)2)

� χn(1 − Φ(un))

for large n. Hence (4.5) holds and the proof of the corollary is complete.
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