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Prescribing Curvature Problems on the Bakry-Emery
Ricci Tensor of a Compact Manifold with Boundary*
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Abstract The authors consider the problem of conformally deforming a metric such that
the k-curvature defined by an elementary symmetric function of the eigenvalues of the
Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function.
A consequence of our main result is that there exists a complete metric such that the
Monge-Ampere type equation with respect to its Bakry-Emery Ricci tensor is solvable,
provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
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1 Introduction

Let (M™,g),n > 3 be a connected Riemannian manifold, and f a smooth function on M.
The Ricci tensor on M is denoted by Ric (or Ricy). In order to study a log Sobolev inequality
of the diffusion operator, Bakry and Emery [1] introduced the following Bakry-Emery Ricci
tensor:

Ricy = Ric + Hess(f).

In fact, the Bakry-Emery Ricci tensor also occurs naturally in many different subjects (see
[12-14]). Tt has been widely studied recently. Many important geometric results of this tensor
have been obtained, such as the measured Gromov-Hausdorff convergence theorem, volume
comparison theorems, the splitting theorem, the rigidity theorem, etc., see [2, 12, 17, 20] and
the references therein. Moreover, the Bakry-Emery Ricci tensor has a closed relation with Ricci
flow (see [14]). There are some other interesting results (see [2, 8, 13, 16]).

In this paper, we consider the prescribing problems for this tensor. Let o : R™ — R be the
k-th elementary symmetric function, namely,

o) = D A, YA=(A,e M) RN

iy <o <ip

If ={AeR"| o;(\) >0, 1 <j <k} isan open convex cone. Let I' C R" be an open convex
symmetric cone with the vertex at the origin satisfying I'') € T' C I‘f‘. We call a metric g a
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' -metric if it satisfies
~A(g 'Ricy) €T,

where A(g~1'Ricy) is an n-vector composed of the eigenvalues of g~ 'Rics. Let I'"[g] denote the
set of all I'"-metrics that are conformal to g.

Suppose F': R" — R to be a general smooth symmetric homogeneous function of degree
one with F' = 0 on JI" satisfying the following structure conditions in I':

C1) F is positive;

9%2F . . . . .
» anon; 1 negative seml-deﬁmte),
C3) F is monotone (i.e., % is positive).

(C1

(C2) F is concave (i.e.
(C3

I

t follows from (C2) and F'(0) = 0 that there exists some uniform constant © > 0 such that

F(A)<©) A\ inT. (S1)
Since F' is homogeneous and of degree one, by (C2), we have
F
g)\' (A)>F(e)>0 inT, (S2)

where e is the identity of R™ (see [19]).

Let (Mn, g), n > 3 be a smooth compact Riemannian manifold with the boundary 0M, and
f € C>=(M). Given a positive function ) € C°>° (M), we study the problem of finding a smooth
complete metric g € I'"[g] such that

F(=A\(§'Ricy)) = ¢(z) in M, (1.1)

where ﬁch = Ric + ﬁégs(f) and Ric (resp. Hess) is the Ricci tensor (resp. Hessian) with
1

respect to g. Note that when f = const. and F' = o} on Fg, (1.1) reduces to the following
prescribed k-curvature equation:

o} (~AF'Rie)) = ¥(z) in M. (1.2)

In fact, the equation (1.2) has been extensively studied. Guan [4] and Gursky [5] proved that
if Ricgy < 0, there exists a complete conformal metric of the negative Ricci curvature satisfying
(1.2). By a theorem of Lohkamp in [11], there always exist compact smooth metrics on M with
negative Ricci curvature. The results in [4-5] imply that M admits a complete metric g such
that the k-curvature defined by the negative eigenvalues of the Ricci tensor equals any given
positive function. Note that in the case of k = 1 and 1) = const., the equation (1.2) reduces to
the Yamabe equation. If k = n, the equation (1.2) becomes the following Monge-Ampere type
equation:

det(—=A(g~'Ric)) = ¢" (). (1.3)
He and Sheng [7] solved the following equation:
det(\(§'Ric)) = " (x), (1.4)

provided that (M, ¢g) has the semi-positive Ricci curvature with a totally geodesic boundary, and
is not conformal equivalent to a hemisphere. In the case of 0M = @, Gursky and Viaclovsky in
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[6] found the solution metric g satisfying (1.2) with Ric < 0. Li and Sheng obtained the same
result in [9] by using a parabolic argument. Trudinger and Wang [18] solved (1.4) by requiring
that (M, g) is not conformally equivalent to the unit sphere and has positive Ricci curvature.

In [21], we solved the equation (1.1) on a closed manifold. In this paper we study the
prescribing curvature problem (1.1) on a compact manifold with boundary. The method we
used here is inspired by [4] and a recent work of Li and Sheng [10], in which they considered
the prescribing problem on the modified Schouten tensor A7 for 7> n — 1.

Before stating our results, we first write out the corresponding partial differential equation
of the equation (1.1). Let g = e?“g, where u is defined on M. Under this conformal change, we
have

/f—{\igf = Ricy — (n — 2)V2u — Au- g+ (n — 2)(du ® du — |Vu|?g)
—du®@df —df @ du+ (Vu,Vf)g,

where the covariant derivative is taken with respect to the background metric g.
Set

—

1
Wlu] = Vu + mAug — (du ® du — |Vul?g) (Vu,Vf)g

1
)
+L(du®df+df®du)—LRicf.

n—2 n—2

For simplicity, we also use the notation F'(A) to denote F(\(g~1A)) for any smooth symmetric
(0,2)-tensor A. Then the equation (1.1) becomes

F(Wu]) = = (1.5)

In order to find a complete metric satisfying (1.1), we only need to solve the following Dirichlet
problem with infinite boundary value, i.e.,

F(Wu)) = :f(_”””;e% in M,
U = +00 on OM.

(1.6)

More generally, given a positive function ¥(z,z) € C™ (Hn x R) and a function ¢ €
C>(0M), we consider the following equation:

(R = 0
where
W] = V2u 4+ 70ug + (sdu ® du - %|Vu|29> +a(2)(Vu, Vg
1+ b(@)(du®df +df ®du) + T (1.8)

for v,s,t € R, v > 0, T is a smooth symmetric (0,2)-tensor, and a(z), b(z) are two smooth
functions defined on M. Clearly, (1.7) is fully nonlinear and elliptic for the solutions u
with AM(g7'W(u]) € T (see [21]). Accordingly, we call a function v € C?(M) admissible if
Mg~ 'Wv]) €T,

Our main results can be stated as follows.
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Theorem 1.1  Let (H”,g), n > 3 be a smooth compact Riemannian manifold with the
boundary OM and f € C®(M). If T €T, ¢ is a smooth function defined on a neighborhood of
OM, and U(z,z) € C°(M" x R) satisfies

U(x,2) >0, 9,¥>0, lim ¥(zr,z)— 400, lim ¥(x,z)— 0, (1.9)

z——+00 z——00

then there exists a unique admissible solution uw € C°(M) of the equation (1.7).

Remark 1.1 Different from the results of [10, 15], in this theorem, we need not add any
restriction on a(z), b(z) and the coefficients v, s,t € R, and just require v > 0.

Aplplying Theorem 1.1 to the quotient of the elementary symmetric functions, ie., F =
("—’“) =1 on Fg, 0<Il<k<n,and op = 1, we have the following corollary.

ay
Corollary 1.1  Let (Mn,g), n > 3 be a smooth compact Riemannian manifold with the
boundary OM and f € C>°(M). If —\(g~'Ricy) € I‘;, then for each function p € C*°(OM)
and a positive function K € C°°(M), there exists a unique smooth metric § satisfying
— (g 'Ricy) € I,

Ok

; —_—
(Z)7 A" Riep) =K in M, (1.10)
1
glorr = €*?glanr.
By solving the Dirichlet problem (1.7) with infinite boundary data, we can obtain a complete
metric satisfying (1.6) (compare with [4, 10]).

Theorem 1.2  Let (H”,g), n > 3 be a smooth compact Riemannian manifold with the
boundary OM and f € C*(M). Given any smooth positive function (x) € C<(M), if T €T,

then there exists a unique admissible solution u € C*(M) of the equation

F(Wlu]) = %62“ in M, (1.10)

U = 400 on OM.

Moreover, there exist positive constants C' and 0 < 0 < 1, depending only on g,~, s, t, HaHLx(M),

181l oo iy > 1T Ml ggazy» 19l o2azy and [ flloz(ary such that
—C —flogp(z) < u(x) < —logp(z) + C,
where p(x) is the distance function from x to OM with respect to the background metric g.
Then we have the following corollary.

Corollary 1.2 Let (M”,g), n > 3 be a smooth compact Riemannian manifold with the
boundary OM and f € C=(M). If —X(g~'Ricy) € I}, then there exists a unique smooth
complete metric satisfying —\(g~'Ricy) € '} and

L ——
(%) k—1 (_g—lRin) = const. >0 fOT all 0 S 1<k S n.
gl

In particular, for k =n and [ = 0, we have

det(—)\('gblf{\igf)) = const.
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Remark 1.2 Let (M, g) be a Riemannian manifold and f be a smooth function on M.
By [2, 13], the N-Bakry-Emery Ricci tensor RiC]fV and the N-Ricci tensor Ricy are defined
respectively by

1
Ric} = Ric — Ndf@df for N > 0,

Ric + Hess(f), if N =o0,

1
Ric + Hess(f) — N_ndf®df, if n <N < oo,

Ric + Hess(f) — co(df @ df), if N=n,
—00, if N <n.

RiCN =

Note that d f®d f is invariant under conformal changes. If M has a boundary, all the conclusions
above are also valid for its N-Bakry-Emery Ricci tensor and the N-Ricci tensor.

This paper is organized as follows. In Sections 2-3, we establish a priori boundary and
interior estimates of admissible solutions of (1.7). Then we prove Theorem 1.1 in Section 4
by using the a priori estimates and the standard continuity method. In Section 5, we solve
the Dirichlet equation (1.10) by constructing two suitable barrier functions, and then prove
Theorem 1.2.

2 Boundary Estimates

In this section, we establish a priori boundary estimates for the first and second derivatives
of admissible solutions of (1.7) with a smooth Dirichlet data ¢. We always assume that ¢ €
C°°(M) throughout this paper.

2.1 Boundary C?! estimates

For convenience, set
2 2 . E 2
Veon U :=V7u+yAu+ (sdu® du 2|Vu| g

and
Veon ff 1= a(@)(Vu,Vf)g +b(z)(du @ df + df  du).

Then
W[U] = vgon fu + vgon ff +T.

A function w is said to be a subsolution of (1.7) if it satisfies the following equation:

{F(W[w]) > ¥(z,w) in M, (2.1)

w< @ on OM.

Changing the direction of the inequalities, one gets the definition of the supsolution of (1.7).
To estimate the gradient on the boundary, we need the following maximum principle for
(1.7).

Proposition 2.1 (Maximum Principle)  Suppose that w and v are smooth sub- and
supsolutions of the equation (1.7) with w|gp < vlgn, respectively. If 9,V > 0 in M x R, then
w < v on M.



144 W. M. Sheng and L. X. Yuan

One may prove this proposition by a contradictory argument. We omit its proof, and see
[10, 21] for details.

By the maximum principle and the boundary distance function p(x) := disty(z,0M), we
can construct two barrier functions later to control the gradient derivatives. Given any small
positive constant d, we set

Ms={xe M| p(x)<d}.

Since OM is smooth and |[Vp| = 1 on M, we may assume that p(z) is smooth and § < [Vp| < 2
in My for ¢ sufficiently small.

For any fixed point 2o € M, we choose a local orthonormal coordinate system {z'};—; ... ,,
in M, such that 0M is the plane ™ = 0. Let {e1,- - , €,_1, €, } be the corresponding coordinate
vector fields, where e, is the interior normal vector and e, is the tangential direction vector,
a=1,2,---,n—1.

Lemma 2.1 Let u € C?(M) be an admissible solution of (1.7). If minu > —u for some
M

constant ;1 > 0, and 0, >0 on M x R, then we have
3nu|aM > —C,

where the constant C' depends on i, 9,7, s,t, llall @), [1lpe@r, 1fllerary, 1T1,q7 and
el ar)-
Proof If there exists a local subsolution u~ € C®(Ms) of the equation (1.7), i.e.,

{F_(W[u_]) > V(z,u™), x€Ms, (2.2)

u (x) < ¢, r € OMs,

then we complete the lemma. In fact, the maximum principle implies that ™ (z) < u(z) on
M. Consequently, for any zq € OM, we have

u(@) = ulwo) _ u~ () = u(wo)
) —  plerwo)

)

which implies that Onulonr > Ot o
Now, we construct a local subsolution ™~ of (1.7) by using the method which is similar to
that of [4, 10]. Set

2

— 2.
et (23)

u~ = p+6log
where 6 is a positive constant to be fixed. Then u™|op = ¢ = u, and

) _
<p+1og§ < U |pzy=s < @+ logo.

—p—max [¢|

Choosing 6 < e o we get u (2) < wu(xz) on OMs\OM. Thus, v (x) < u(z) on OMs.
It remains to verify F(W[u~]) > ¥(x,u™) in Mj;. Since

u = — Opi P 0pij Opip;
T pkar VT p 0 (pt62)Y
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we have
) 0 O\ o O(1+s0) 0
= (== e T (i Apdyi
fs Os Oloipr 9 fibss — Obpif;  Obp;fi
p_’_(sgpzspj p+6291801 p+52 1y T +52Pl l p+52 p+52

t
+ (pi; +7Dp0s5) + spipj — 58012513' +ap fidi + b(x)(pif; + @i fi) + Tij

4 t0 2 0(1 4 s0) 0
Z ot o (7 - ?)'vm O+ (o melits — gt = Ol (24)

where the constants €’ and C” depend on |lall o7y 16l oo 37 1l o1 iy |1 Tl y37)> 2nd

el 2 an)-
Choose 671 > max{l,—s, %} Then v —t0 > 0 and 1 + s6 > 0. By |Vp| > % in My and
(2.4), we have

1
i 5ij+9( + 59) o 5. — C"5.

-1.. > 0.
W[U ]’Lj (p+62)2 PiPj +52

~ 8(p+62)?

Note that p + 62 < 26 and (p + 6%)? < 462 < 4. By choosing § < min {1, %62—3,,}, we have

0 c'o ~0 .
> C
B2+ 82 ~ p+e 16(p+ 602
which implies that
0 O(1 + sb)

—1..> - 0.

Wiu™]i; = 32(p +02)2° " + (p+52)2pzpj
Hence, W[u~] € T and u~ is admissible. Denote F% = d‘?,[l,? (W[u~]). We know that {F¥}
is positive definite (see [3]), and > F* > F(e) (by (S2)). Note that F is homogeneous and of

degree one. Then F(W[u~]) = F¥W[u~];;. Thus, by (2.5), we have

~0
F(W[u_]) P+ (52 ) Z = WF(G)

Since 0,V > 0 for ¢ sufficiently small, we obtain

0
FWuT)) > - F(e) > max  U(z,2) > Uz, u).
3262 W [ mi ]
min ¢, max
M M
Similarly, we can get the upper bound of 0,,u on IM.
Lemma 2.2 Let u € C*(M) be an admissible solution of (1.7). If maxu < u for some
M
constant p > 0, and 9,V > 0 on M x R, then we have

8nu|3M S 07

where the constant C' depends on p,g,7,s,t, llall p @y, 10 p<@rn, 1fleiar, 1Tl @7 and
el s ary -
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Proof Since u is admissible and I' C T'f, we have
t
0 < tr(Wlu]) = (ny + 1) Au + (5 - 7”) IVul? + (an + 20)(Vu, V) +tr T (2.6)

Now, we construct a local supsolution u* € C3(Mj;) of (2.6), that is, the function ut satisfies

{tr(W[u"’]) <0, xe Ms,

ut(z) > u, x € OMs. (27)

Let 7 be a small positive constant to be decided. Define

52
ut = <p+710gp;—2
A direct calculation shows that
e _iny 2
wWt] = (T(s : ) (ny + 1))|vp|
T tn
+ m{(nv +DH)Ap+ 2(8 - 7) (Vo, Vp) + (an +20)(Vp, Vf}}

t
+ (ny+1)Ap+ (s - §>|V<p|2 + (an+2b)(Vp, V) +trT.

Choose 7, such that 7(s — %) < 1. By |Vp| > 1, we have

_ ™7y
4(p+6)?

where the constants C" and C"" depend on the [|a|| 1 77), |l < @7)> | fllor @y 1T Wl g 77 - 110l o2 a7y

+ T C/ + C«/l7

+
trWiu™] < Py

and other known data. Then for § sufficiently small, we have
tr Wut] <0 on Ms.
Note that u*|opr = ¢ = u, and maxu < p. For a small §, we have
M

5+ 62 ) 1
w5 = ¢+ 7log 5 > I%nswrrlogg > [

Hence, u™ satisfies (2.7). By the maximum principle, we have u+|ﬁé > ulzz,- Therefore, for
any xo € OM,
u(x) —u(wo) _ u'(z) —u' (o)

plz,zo)  —  plx,x0)

which implies that
8nu|8M < 8n'U/JrlaM-
Combining the above two lemmas, we obtain the following proposition.
Proposition 2.2 Suppose that u € C?(M) is an admissible solution of (1.7). If sup |u| < p
M

for some constant ;> 0, and 0, ¥ > 0, then we have

sup |Vyu| < C, (2.8)
oM

where the constant C' depends on g,7,s,t, 1, |lallpe@ry 1l L@y [ fleranys 1Tl ar and

el car)-
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2.2 Boundary C? estimates

The method we use here to derive the second derivative estimates is similar to that of [4-5,
10]. For any fixed point xg € 9M, define a half ball B;’ centered at x( of radius J by

BY ={z e M: r(z) = disty(z,z0) < §}.

We may assume that r(z) is smooth in Bf for small §. Then |Vr| = 1 in Bf. Choose a
local orthonormal frame eq,---,e, at xg, where e, is the inward unit normal vector. Since
Viir?(z0) = 26;5, we also assume that {d;;} < {V;7?} < 3{6;;} in Bf.

Let u € C3(M) be an admissible solution of (1.7). Define a linearized operator L by

Lv= Fij'l)ij +yAvF + 23Fijviuj — toyu F + av fLrF + 2bFijvifj, Yo € CQ(M), (2.9)

where F = (;%,—FJ(W[u]) and F = tr(F7) = g;; F.

In order to get the estimates of the normal and tangential derivatives of mixed type, we
need the following two lemmas.

Lemma 2.3 For any constant 3 > 0, there exist positive constants § sufficiently small and
N sufficiently large such that the barrier function

N
w(z) =p—5p°

satisfies
Lw < —BF inMs, w>0 on Ms,

where § and N depend on (3, sup |Vu| and other known data.
M

Proof It is easy to check that
\Lpl = |F¥pij +yApF + 25FY pruj — tprunF + api i +20F p, f;] < C*F,

where the constant C* depends on v, [s|, [t[, n, g,sup [Vul, |la|| < az): [0l oo a7y 20d [1f [ 1 (a7)-
Y
Since {F"} is positive definite and [Vp| > 1 in Ms, we have

Lw(z) = Lp— NpLp— NF7p,p; — N|Vp|*F

1
<1+ Np)C*F— ZN'y}'.

By choosing § <z — + and N > max {g, %}, we obtain

Lw(z) < —éN'y}' < —-fgF.

Finally, for the fixed N, we can choose § < % to ensure that w > 0 on Mj.

Lemma 2.4 Let h € C*(Mg). If h <0 on OM, h(xg) =0 and

—Lh<D(1+F) in M;
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for some positive constant D, then we have
Vah(zo) < C,

where the constant C depends on D, 3, Htho(Méy sup |Vu| and other known data, and (3 is
M
the same constant as in Lemma 2.3.

Proof By Lemma 2.3, we can choose A > 3 > 1 such that Aw(z) + 3r?(z) — h(z) > 0
on OBf. It is clear that |Lr?| = |2rLr + 2F9r;r; + 2|Vr|2F| < C'F, where C’ depends on
sup |Vul, v and §. Note that F > F(e). By choosing A > max {ZC", %, 4D }, we have
M

BF(e)
L(Aw+ 8r? —h) < —ABF + BC'F+ D+ DF <0 in M.
It follows from the maximum principle that Aw + $r? —h > 0 in Bgr. Since
(Aw + Br? — h)(z0) = 0,
Vo (Aw + Br? — h)(zg) > 0,
which implies that V,h(zg) < C.
Now, we can get the following boundary estimates for the second derivatives.

Proposition 2.3 Suppose that u(x) € C3(M) is an admissible solution of (1.7). Then

sup |V?u| < C, (2.10)
oM

where the constant C depends on ||ullcyxz) 1Vl or@zs s 19llcs @), the geometric quan-
tities of (M, g) and other known data.

Proof Since u— ¢ =0 on dM, for any point ¢y € IM, we have

Vap(u = ¢)(x0) = =Va(u = ¢)(zo)(ea; ),

where 1 < o, 6 < n — 1 and II denotes the second fundamental form of 0M. Then one can get
[Vapu(zo)| < C, (2.11)

where C' depends on sup |V2¢p|, sup |Vu| and the geometric quantities of (M, g).
oM oM

To get the estimates of the normal and tangential derivatives of mixed type V,nu, we
differentiate the equation (1.7) with respect to ey, that is,

Vi = FY (uij + yuundij) + 2sF 9 uuy — twpue F+aw iF + alw fi + wifu) F
+2bkFijuifi + 2h LY ('U,ikfj + uifjk) + FijTiLk. (2.12)

By the Ricci identities upij = uiji + Riijup, (2.9) and (2.12), we have

L(u— @) = ViV — (apw fi + aw fir) F — 2F (bpus f; + bu fi1)
+ FYR} up + Y REyupF — FITy 5 — F7
— YA F — 25F priuj + toruF — apr fiF — 2bF 9o, f;.
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Then, for each k =1,--- ,n, we obtain that
|L(u— @)l < C(1+F),

where C' depends on n, g,7, [s], [t], ||u||cl(ﬁ)a ||50||c3(ﬁ)a ”\I/Hcl(ﬂx[_u,u])a ||THcl(M)a Hchl(M)a
||b||cl(ﬁ) and HfHCZ(M)-
Applying Lemma 2.4 to h = £V, (u — ¢), we immediately get the estimates

IV ant(zo)| < C. (2.13)

It remains to estimate the bound of V,,,u. Since u is admissible, by (2.6), we have Au(zg) >
—C. Thus, V,,u(xo) has a lower bound by (2.11). Without loss of generality, we can assume
Unn(xg) > 0 (otherwise we have done). Orthogonally decomposing the matrix Wu] at g € OM
in terms of e, and e, and using the known bounds in (2.11) and (2.13), we have

t
Wulij(wo) = uij +yAugij + (Suz‘uj - §|VU|29U> + a(x)(Vu, V f)gi
+0(x)(ui f5 + fiug) + Ty

’Yunnln—l 0 o =
> (M 1 ) )~

> ('Yunn(xo) - C)‘Sijv

where the constant C' also depends only on [s|, [¢[, sup [Vul, [la]| e az): [0l o a7y and |7 ;77)-
oM

Then, we have

(Yunn(zo) — C)F

IA

F(Wu])(zo)
U (0, u(z))

max U(xz,u).
M x [an @Y, max cp}
M M

IA

Since F > F(e), we then obtain the upper bound of V,,u(z).

3 Global Estimates

In this section, we first calculate the local interior estimates for admissible solutions of
(1.7). By combining the local interior estimates and the boundary estimates in Section 2, we
will derive a priori global C? estimates. Now, we divide the procedure into three steps.

3.1 Global C° estimate

Since the manifold is compact, we can get a global C° estimate easily.

Proposition 3.1 Let T €T, ¢ € C(OM) and ¥(z,z) € C(M" xR). If U(x, z) satisfies
(1.9), then for any admissible solution u € C%(M) of (1.7), we have

sup |u| < Co, (3.1)
M

where the constant Co only depends on ||| pap): @l L@y and [T,z
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Proof Let Zyni, be the minimum point of the function v on M. If 2., € OM, then the
lower bound of u can be obtained by

u(x) Z u(@min) = ¢(Tmin) = %1]}/}1 o().

If Zmi, is an interior point of M, then at T, we have Vu(omin) = 0, VZu(2min) > 0. Note
that v > 0 and T € I'. Then

\Il(xmin; umin) = F(VQU(xmin) + 'YAu(xmin)g + T(xmin))
> F(T)(@mm) > min F(T) > 0.
M

Hence, we can get the lower bound of u by the condition lim ¥(z,z) — 0.
Z—>—00

Similarly, we can get the upper bound of u by considering its maximum and using the fact
that lim ¥(z,z) — +o0.
z—+00

3.2 Global C! estimate

Let B, C M be a geodesic ball of radius > 0. There exists a cutoff function ((z) € C§°(B;)
such that C|B% =1, ¢lanm, =0, and

0<¢<1, V¢ <hoC?, |V <bo (3.2)

for some constant by > 0.

Lemma 3.1 Let T € T, ¥(z,2) € C°(M x R), and u € C*(B,) be an admissible solu-
tion of (1.7). Then there exists a constant C' depending only on g,bo, v, %, |s|, |t], HT||01(M),
||a||cl(ﬁ)7 ||b||cl(ﬁ)v Hf”cz(ﬁ): ||‘I’Hcl(ﬁ) and Co such that
sup |Vu| < C. (3.3)
By
Proof Consider the following auxiliary function:

G= Qwe"("),

where w = £|Vu[? and 7 is a function to be chosen later. Suppose that G attains its maximum
at an interior point o € B,. Choose a local normal coordinate frame e;, i = 1,--- ,n at xg
with respect to g such that Wiu|(zo) is diagonal. Then at x( we have

0= (logG); = % +nu; + %, (3.4)
that is
Wi = —w (n’ui + 9) (3.5)
¢
and
0> Fi(log Q). — i (Lid _ “iY F9 (0 s 4 ') 4 F Gj GG 3.6
Z (log G)i; = o w2 + (" wguy +n'uiz) + ¢ ) (3.6)
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By (3.5) and the Schwarz inequality, we have

Wi i 1Y i GG
Fii —w2J < (1+a)n?Fliumu; + (1 + E)F J%, (3.7)

where « is any positive constant and we will choose a suitable one later. Note that
Wi = UgUki, Wij = UkiUkj + UkUkij- (3.8)

Substituting (3.7)—(3.8) into (3.6), we have

1 .. URU, 1 .. -
ZF” (5191 — %)ukiuu + ;F”ukuklj + 77/F”uij

Gji (14 3a)G(;
S -at) <o

Note that the first term of the inequality above is non-negative, then by (3.2) and the Ricci

4 F (77// . %U'Q)Uiuj + F’L](

identities, we have

[y I i il l1+a o 1
— . . - - s < - .
wF uptije + 0 FPu; + F (n 51 )uzuij(l—l—C)}", (3.9)
where the constant C' depends on n and by. Similarly, we can get
1 1 1
» Zukuiik + 1 Au+ (77” - %na) |Vul? < C(l + E) (3.10)
ki
By (3.9)-(3.10), we have
1 5 y
;ukF” (uijk —+ 'yu”kéij) —+ U,F” (uij —+ ’)/A’U,(Sij)
1 iy 1 1
+ (n" - %n’Q)F”uiuj + 7(7)" - %na) |Vu|>F < C(l + Z)}' (3.11)

It follows from (3.5), (3.8) and (2.12) that

up(F 9w + yunrdij) = up ViV + 2wsn' Fluu; — 2tw?n’' F + 2bwn’ Fu, f;
+ awn’(Vu, Vf>f — aupu f1.F — 2bFijuiukfjk
- akuk<Vu, Vf>.7: - QbkukFijuifj - ukFijTi%k
+ %(%Fiﬂ'ujgi — H(VC, V) F+a(VC, V) F+2bFC,f;).

By (3.2), the equality above implies

uk(Fijuijk + yurdij) > up Vi ¥ + 2ws77'Fijuiuj — 2tw?n' F
+ 2bwn’ F9u; f; + awn (Vu, Vf)F — CwF
1
—C|Vu|.7~"—CZw(1+ |Vul|)F, (3.12)

where the constant C' depends only on g, b, [s], [t], [|all o177y, 1lcr @7y, 1Tl o1 77y 20d || fll o2 (37)-
Since F' is homogeneous and of degree one, then

.. .. t
FY (uij + 'yAuéij) = - Y (suiuj - §|V’U,|25U + G<VU,, Vf>5z] + QbUifj + Tz]> (313)
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Note that Vi ¥ = Wy, + U, uy. It follows from (3.11)—(3.13) that

(77" - H—an/Q + sn')Fijuiuj + [27(7)" - HTan'Q) - tn’}w}"
<c(1+ m) + C(ﬁ tot C|Vu|) (3.14)

where C' also depends on v, g, | Tllyary and ¥l cr wrx—cy,c0))-
Let n(u) = , where N is a large positive constant to be determined later and

v=1+wu— inf wu.
{¢>0}

Since 0 < < 1,7 =—N2Z <0and n’ = XZ(N +1) > 0, then

1 N 1 N -
n”—%# ~F(N+1- J;O‘Nn) (14 —5N).
U

Then for any fixed a € (0,1), we have

" 1+« 2 (1 - O‘)NQU (1 - a)N /|

" 5 202 TR

Note that 1 < v < 2Cy. We may choose a = % and N large enough such that

1+a 1
= ey > <4—N - ISI) 'l >0,
1+a SN N (3.15)
" 2 ! / /
I E?) SR —I7|.
29(n" = =) — ' > (G — )| > ol
Therefore, by (3.14)—(3.15),
N, 1 1
SlwF<c(1+ =)+ c(— Vul) F.
4U|77|u) < +|V| |V|+ + - | ul
We can assume |Vu(zg)| > 1 (otherwise we have done). Then
Nin'| 2 1
—C= < Nl
( qo Vel = C2 (vl + 1))]—‘ <, (3.16)

which implies that
V| Vul(z) < C,

where the constant C' also depends on N and Cj, from which it is easy to derive (3.3).
Choosing ¢ = 1, we obtain the following global gradient estimates by (2.8) and (3.3).

Proposition 3.2 Let T € T and ¥(z,2) € C°(M x R). Then for any admissible solution
u € C3(M) of (1.7), we have

sup |Vu| < Ch, (3.17)
M

where the constant Cy depends on g, 7, |s|, [t], Tl c1az): llallcr @z [10llcrgrys 1l c2ary ¥ e an
and max |u|.
M
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3.3 Global C? estimate

As in Section 3.2, we first establish the interior second derivative estimates.

Lemma 3.2 Let T € T, U(x,2) € C°(M x R), and u € C*(B,.) be an admissible solu-
tion of (1.7). Then there exists a constant C depending only on g,bo,v,7 1, |s|,|t|, 1Tl o277y
lallc2zy: W0llczary: 1 fllea@ry: 1®llceary and |[ullcrs,) such that

sup |V2u| < C. (3.18)
Br

2

Proof Consider the following auxiliary function:
H = ((2)e") (Veeu + 5|Veul?),

where ¢ € T, M is a unit vector, w = 2|Vul?, ¢ € C§°(B,) satisfies §|B§ =1, ¢lmp, =0
and (3.2), and the function 7 is chosen later. Suppose that H attains its maximum at a point
xg € B, and £ € T,, M. Choose a local orthnormal frame {e;,i = 1,--- ,n} at xp with respect
to g such that e (xo) = & and {Wu];;}(z0) is diagonal. Denote K = Vi1u + s|Viul?. Without
loss of generality, we can assume K (xo) > 1. Then at xg, we have

Gi

K.
0=(10gH)i=fz+m+? (3.19)
that is
and
0> F'(lo Ijr).A—z«”‘i(@—K?qL ~+@—C—i2) (3.21)
= g M K K Nii C (: . .
By (3.20)-(3.21), we have
ii i 2 i ( Gii ¢
0> FiK; + KF"(n; —2%) + KF (? - 3?). (3.22)
Note that
K; = uq14 + 2suruyy, Ky = w114 + QSU%Z' + 25U U145- (323)
By (3.22)-(3.23) and the Ricci identities, we have
0> Flujnq + QSF“u%i + 25uy F i + KF”(mi — 27)1-2)
C
- ZK}" — C(1+ |V2u|)F, (3.24)

where the constant C' depends only on g, by and max |Vu|. Similarly, we have
0> (Au)ir +2s Y ud; + 2sus (Aw)y + K (An — 2|Vn|?)

— %K—C(1+ |VZ2ul). (3.25)
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By (3.24)-(3.25), we have
0> F¥(ugnn 4+ v(Au)1165) + 25Fu?, + 2syu?, F + 2sui F* (uiin + v(Au)16:)

+ KF%(ny — 202) + vK (An — 2|Vn|*)F — %K}' — C(1 + |V2u|)F. (3.26)
By (2.12), we have

2su1 F™ (uipn + v(Au)16i;)
> 25u1 V10 — 4s%uy Fuqu; + 2stugugup F
— 2sujaup fiF — dsbui Fu; f; — CF, (3.27)

where the constant C' depends on g,7,|s|, |t|,r%aX|Vu|, |||y, llallerarys 10llcrary and
[ fllc=(ary-
Differentiating the equation (1.7) twice, by the concavity of F, we obtain
Vil < Funn + y(Auw)116:) + 28F " (winnu; + udy) — (bwgwnn + tufy)F
+ aupy iF + 26F ugy fi + C(1 4 |V2ul)F, (3.28)
where the constant C' depends only on g,7,[sl, [t], [[Tllc2(ar), llallczanys [0llczan, [1fllesan
and max [Vul.
Substituting (3.27)—(3.28) into (3.26) , we have
0>V +2s5u1 ViU + (287 + t)u%i]: — 25 F %110y 4+ twu F — awgy i F
— 2bF 11 fi — 482uy FPu1u; + 2stugwgup F—2asuquy fiF —4Asbuyus FP f;

+ KF%(ny; — 20?) + yK (An — 2|Vn|*)F — %K}' — C(1 4+ |V2u|)F. (3.29)

By (3.20), (3.23) and the Ricci identities, we have

w11 = —2suiuy; — Kn'upuy — %K +up R, (3.30)
Note that
Vl\If = \I/l —+ \I/zul 2 —C, (3 31)
Vi =Wy + 200 + U uf + Uouyg > —C(K + 1), '
where the constant C' depends only on |s|, [|¥| oo q7x(—cy,cop) 20D max [Vul.
Substituting (3.30)—(3.31) into (3.29), we have
0> —C(K + 1) + (257 + t)ui, F + KF" (i — 207) + vK (An = 2|Vn*) F
1
- C(|V2u| + E)K]—' — C(1 + |V2ul)F. (3.32)
Since {Wul;j(xo)} is diagonal, |u;;| = | — susuj — 2bu; f; — T;;5| < C for i # j. Hence,
Zu%i:ufl—f—ZuiﬁKQ—i—CK-l-C. (3.33)
i i#1
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Note that 1 < K < C(|V?u| + 1). Then by (3.32)—(3.33), we have

. 1
i = 202) + 7(n = 2|V F < C+C(14]V2u] + £ ) F.

¢
Since
ni = n'wi =N urlps, N = 0" upurivug + n'uii + 1 wptkis,
we have
FP(nis — 207) + ~v(Ln — 2| V) F
= (" = 20)(F" + 76:F ) urupswgws
+ n/Fiiuii + 77/’Y|V2’U,|2.7: + n/ukF” (u;m- + ’yukuéii).
Let

n(w) = (1 - %)w, we {o, %M}

where M = 2supw and « is a small positive constant to be chosen later. Then we have

M

s n,:M(l w)>0
M
If we chooseaﬁ%,then
77// ) /2704(6“"_1_2@77377 >0
w(i-3)

Then by (2.12) and (3.35), we have

Fii(ni — 207) +v(On = 2|Vn|HF > o'y |V2u|?F — C — C(1 + |V2ul|)F.

Combining (3.34) and (3.36), we have
1

0| V2ulPF < C + 0(1 +3

+ |V2u|>.7-" .
Multiplying ¢ on both sides of (3.37), we obtain

V¢V (z0) < C.

Hence, /(K (zo9) < C. This implies that

VCVeeu < C, Vxe{¢>0}, VEeTM, [¢=1.
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(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Since A(g7'W[u]) € T C T'], Au has a lower bound by Lemma 3.2. Then by (3.39), we get

VCVeu > —C, Vo e{(>0}, Ve T, M, | =1.

Thus, (3.18) follows from (3.39)—(3.40).

(3.40)

Let ¢ = 1. By (3.18) and (2.10), we derive the following global estimate for the second

derivatives.
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Proposition 3.3 Let T € T and ¥(z,2) € C°(M x R). Then for any admissible solution
u € C*(M) of (1.7), we have

sup |V2u| < Cy, (3.41)
M

where the constant Ca depends only on g, |s|, [t|, | Tllczar)» lallczar, 10lc2ans 1flles @

||‘I’HC2(M) and ||U||cl(ﬁ)-

4 Proof of Theorem 1.1

For any function i on M, define
P[h] := F(WIh]) — ¥ (z, h).

Then any solution u of (1.7) satisfies Plu] = 0. Let up, = u + pv for p € R. The linearized
operator of equation (1.7) is

d
Lo:= gp[usﬂgzo

= (Fij + 67 F)vij + 2sFijviuj — (tvuyg — av fi)F + 2bFijvifj — 0,V (z,u)v. (4.1)

Lemma 4.1 Let u € C?(M) be an admissible solution of equation (1.7). If 8,V is positive
on M x R, then L : C**(M) — C*>*(M) (0 < a < 1) is invertible.

Proof Since 0,V is positive on M x R, the coefficient of the zero order term in (4.1) is

strictly negative. Hence, £ is invertible in the Holder space C%%(M).

Proof of Theorem 1.1 Note that the maximum principle in Proposition 2.1 ensures the
uniqueness of solutions of (1.7). Now, we complete the proof by using the continuity method.
Consider the following equation:

F(vzonfu+ vgonff + Tﬁ) = \I/g(x,u), B e [07 1]7 (42)
where 15
Ts =0T + mg, Ug(z,u) = (1— B)e? + B (z,u).

Clearly, Tj3 and Vg satisfy the following conditions:

(1) Tg €I and [|Ts||ca(ary < C, where the constant C' is independent of f3;

(2) $g(z,u) >0,0,¥g >0, zgrfoollfg(at, z) — +oo and Zlir_noo\llg(x,z) — 0;

(3) 1Vsllc2(mrx[—c,cp < O, where C'is independent of (3.
It follows from Section 2 and Section 3 that for each 3, the admissible solution of (4.2) has
uniform a priori C? estimates (independent of 3). Then we obtain the uniform C*“ estimates
by the Evans-Krylov’s theory. Define

I={B€][0,1]| (4.2) has an admissible solution}.

Clearly, v = 0 is the unique admissible solution of (4.2). Hence, I # @. Then by Proposition
2.1, I C [0,1] is open. By the uniform a priori C%® estimates and the standard degree theory,
we conclude that I is also closed. For 8 = 1, the equation (1.7) is solvable.
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5 Proof of Theorem 1.2

The argument of the proof is similar to the one in [4, 10]. To solve the infinite boundary
data Dirichlet problem (1.10), we consider a family of equations below
F(Wlu]) = oot n M, (5.1)
u = 0logm on OM,

where m is any positive integer and 6 is a positive constant which will be chosen later.
For any fixed m, it follows from Theorem 1.1 that (5.1) has a unique admissible solution

Uy € C°°(M). The maximum principle implies that
U < Umt1, mMm=1,2,---. (5.2)

Next, for any m and a small § > 0, define a local barrier function by

mo?

U’;I = 910gm,

where p(z) = disty(x,0M), € M. Then u,,|om = tm|on, and
o _
0log B < U | 1p(a)=sy < Ologd.

Therefore, we can choose § small enough such that u,, < minw,, on the boundary of M; in M.
M
By a direct calculation, we have

2 Om?(1 + s6) , Om

(mp + 52)° pip; —C m%’ - C"(T)by;,

_ om to
Wi ig > (v -5 ) IVl +

~ (mp+6%)?
where the constants C" and C” depend only on ||a|| 77, [0l 1 @7): [ fllcr @) 1T1lya7) and
other known data.

Choose 1 > max{l7 —s, %} and 0 < min{l, %61—3,,}. By |Vp| > % in Ms and (5.3),
we have

_ yOm? Om?(1 + s0)
1%%4 > . o
mbis 2 B3 32299+ T 1 522 4P

(n=2070F(e) 3

If we require 6 < 32max ¢ (z) ’
M

2

() = 2L pie). o™ > ) 2ur gy

_ ~yOm
> pr— m
E(Wlu,,)) €)= 3952 n—29

~ 32(mp 4+ 62)?

Therefore, the maximum principle implies that
U > U, on Ms. (5.4)
In order to control the upper bound of u,,, we consider the following equation:

A(v) := AAv + B|Vv|]? + C|Vu| + D = e, (5.5)
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where
A= O(ny+1)(n—2) B O(2s —tn)(n —2)
T e 0 0T T 2mme
M M
¢ = Slall= +2[pllrx)n=2) 5, O(n = 2)|tr Tz~

IVl miny min g
M M
By (5.1), every u,, is a subsolution of (5.5). Thus, we only need to construct a local supsolution
of (5.5). For any fixed point yo € M%, let 29 be the nearest point of 1y on dM. Choose the
geodesic from xg to yo, passing through yy and going out a small distance to another point zg.
Denote pg = disty(z0, o), R = disty (20, z0) and r(z) = dist, (20, z) for any point € M. When
po and ¢ are small enough, we can assume that r(z) is smooth in the ball B,,(R). Choose a
local orthonormal frame {e;,i = 1,--- ,n} at zo. Note that A, C and D are positive constants.
Case (a) If 2s —nt > 0, then B > 0. Consider the function v € B,,(R) defined by

R? —r2(x) +¢
€

T = —log(R* — r2(x)) + 7 log + log 2

1
t3 log((n+1)A+ B+ RC) + log R,

where 7 and € are two positive constants to be chosen later. By a direct calculation, we have

2rVr T2rVr 1 T
T = — —9 _
Vo R2Z—1r2 R2Z—1r2+¢ TVT(RQ—T2 R2—r2+5)

and

Ar® o TAr? ar?|Vr? Are?|Vrf?
R?—r2 R2—-1r24¢ (R?—1r2)2 (R?—r2+¢)?
Note that [Vr| = 1. Then we have
_AAP? +2rC - TANY? + 27rC n 4(A + B)r? n 4713 (Bt — A)
T T R2_ 2 RZ 12 +¢ (R2—72)2 " (R?—12 +¢)2

87Br?
— D. 5.6
Rt o) —r2) (56)

Since Ar?(29) = 2n, we can assume n < Ar? < 3n in B,,(R). Also note that B > 0, and then
by (5.6) we obtain

- 3nA+2rC  TAn+21rC  A(A+ B)r?  4mr?(Bt — A)

AT =

A(D)

AT - D
() < RZ _ ;2 R2_r2+€+(RQ_T2)2+(R2_T2+5)2+
~ (3nA+2rC)(R?* — r?) + 4(A + B)r? _ 7(An+2rC) 47r?(Bt — A) D
B (R? —12)2 R2—1r24¢  (R?—r2+4¢)?
< [BnA+2rC+4(A+ B)R*  71An . 47r3(Bt — A) D (5.7)
(R? —1r2)? R2—124¢  (R?—r24¢)?

Choose 7 < %, e< R?and R < %. It follows from (5.7) that

2

A@) < ~[3nA +2rC + 4(A + B)]

4R?
e

2v

A

n+1)A+ B + RC|

<
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Note that 7 is infinite on 0B,,(R). For any m > 1, applying the maximum principle on this
ball, we conclude that u,, <7 on B, (R). Thus,

_ 2R — +e
um(Yo) <0(yo) = —logpo(2R — po) + 7 log w +log?2

1
t3 log((n+1)A+ B+ RC) +1og R

(2R — po) po(2R — po) + ¢
e

= —log po —1ogT + 7 log

+ % log((n +1)A+ B+ RC).
So
U < —logp+ C. (5.8)
By (5.2), (5.4) and (5.8), we have

u(z) == lim wupy(x) forallze M

m—00

and
—C —0logp <u(x) <—logp+C (5.9)

near the boundary dM.
For any compact subset K C M, by the boundary control (5.9) and the a priori estimates
in Section 2 and Section 3, we obtain

umllc2.exy < C,

where 0 < a < 1, and C = C(K) is independent of m. Hence, the standard compactness
argument and the Schauder regularity theory imply that u € C°°(M) is an admissible solution
of (1.10).

Case (b) If 2s —nt < 0, then B < 0. This case is much simpler than Case (a). Set U
€ B,,(R) defined by

R? —r? 1
P FE L oga s 5log((n+1)4 + RC) + log R,

v = —log(R? —r*(z)) + log
where ¢ is a positive constant to be decided. Then

AW) < AANY+ C|VoU|+ D
B ANr? + 2rC - ANr? +2rC 4 Ar? 4 Ar?

- D
RZ_ ,2 R2_T2+€+(R2_T2)2 (RQ_T2+E)2+
R? An

Choose ¢ and R as above, i.e., ¢ < R? and R < %. Thus, we obtain

2 2

The remaining argument is similar to the part in Case (a), and we omit it here.
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