
Chin. Ann. Math.
35B(1), 2014, 139–160
DOI: 10.1007/s11401-013-0809-5

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2014

Prescribing Curvature Problems on the Bakry-Emery
Ricci Tensor of a Compact Manifold with Boundary∗

Weimin SHENG1 Lixia YUAN2

Abstract The authors consider the problem of conformally deforming a metric such that
the k-curvature defined by an elementary symmetric function of the eigenvalues of the
Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function.
A consequence of our main result is that there exists a complete metric such that the
Monge-Ampère type equation with respect to its Bakry-Emery Ricci tensor is solvable,
provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
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1 Introduction

Let (Mn, g), n ≥ 3 be a connected Riemannian manifold, and f a smooth function on M .
The Ricci tensor on M is denoted by Ric (or Ricg). In order to study a log Sobolev inequality
of the diffusion operator, Bakry and Emery [1] introduced the following Bakry-Emery Ricci
tensor:

Ricf = Ric + Hess(f).

In fact, the Bakry-Emery Ricci tensor also occurs naturally in many different subjects (see
[12–14]). It has been widely studied recently. Many important geometric results of this tensor
have been obtained, such as the measured Gromov-Hausdorff convergence theorem, volume
comparison theorems, the splitting theorem, the rigidity theorem, etc., see [2, 12, 17, 20] and
the references therein. Moreover, the Bakry-Emery Ricci tensor has a closed relation with Ricci
flow (see [14]). There are some other interesting results (see [2, 8, 13, 16]).

In this paper, we consider the prescribing problems for this tensor. Let σk : R
n → R be the

k-th elementary symmetric function, namely,

σk(λ) =
∑

i1<···<ik
λi1 · · ·λik , ∀λ = (λ1, · · · , λn) ∈ R

n.

Γ+
k = {λ ∈ R

n | σj(λ) > 0, 1 ≤ j ≤ k} is an open convex cone. Let Γ ⊂ R
n be an open convex

symmetric cone with the vertex at the origin satisfying Γ+
n ⊂ Γ ⊂ Γ+

1 . We call a metric g a
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Γ−-metric if it satisfies
−λ(g−1Ricf ) ∈ Γ,

where λ(g−1Ricf ) is an n-vector composed of the eigenvalues of g−1Ricf . Let Γ−[g] denote the
set of all Γ−-metrics that are conformal to g.

Suppose F : R
n → R to be a general smooth symmetric homogeneous function of degree

one with F = 0 on ∂Γ satisfying the following structure conditions in Γ:
(C1) F is positive;
(C2) F is concave

(
i.e., ∂2F

∂λi∂λj
is negative semi-definite

)
;

(C3) F is monotone
(
i.e., ∂F

∂λi
is positive

)
.

It follows from (C2) and F (0) = 0 that there exists some uniform constant Θ > 0 such that

F (λ) ≤ Θ
∑
i

λi in Γ. (S1)

Since F is homogeneous and of degree one, by (C2), we have

∑
i

∂F

∂λi
(λ) ≥ F (e) > 0 in Γ, (S2)

where e is the identity of R
n (see [19]).

Let (M
n
, g), n ≥ 3 be a smooth compact Riemannian manifold with the boundary ∂M , and

f ∈ C∞(M). Given a positive function ψ ∈ C∞(M), we study the problem of finding a smooth
complete metric g̃ ∈ Γ−[g] such that

F (−λ(g̃−1R̃icf )) = ψ(x) in M, (1.1)

where R̃icf = R̃ic + H̃ess(f) and R̃ic (resp. H̃ess) is the Ricci tensor (resp. Hessian) with

respect to g̃. Note that when f = const. and F = σ
1
k

k on Γ+
k , (1.1) reduces to the following

prescribed k-curvature equation:

σ
1
k

k (−λ(g̃−1R̃ic)) = ψ(x) in M. (1.2)

In fact, the equation (1.2) has been extensively studied. Guan [4] and Gursky [5] proved that
if Ricg < 0, there exists a complete conformal metric of the negative Ricci curvature satisfying
(1.2). By a theorem of Lohkamp in [11], there always exist compact smooth metrics on M with
negative Ricci curvature. The results in [4–5] imply that M admits a complete metric g such
that the k-curvature defined by the negative eigenvalues of the Ricci tensor equals any given
positive function. Note that in the case of k = 1 and ψ = const., the equation (1.2) reduces to
the Yamabe equation. If k = n, the equation (1.2) becomes the following Monge-Ampère type
equation:

det(−λ(g̃−1R̃ic)) = ψn(x). (1.3)

He and Sheng [7] solved the following equation:

det(λ(g̃−1R̃ic)) = ψn(x), (1.4)

provided that (M, g) has the semi-positive Ricci curvature with a totally geodesic boundary, and
is not conformal equivalent to a hemisphere. In the case of ∂M = ∅, Gursky and Viaclovsky in
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[6] found the solution metric g̃ satisfying (1.2) with R̃ic < 0. Li and Sheng obtained the same
result in [9] by using a parabolic argument. Trudinger and Wang [18] solved (1.4) by requiring
that (M, g) is not conformally equivalent to the unit sphere and has positive Ricci curvature.

In [21], we solved the equation (1.1) on a closed manifold. In this paper we study the
prescribing curvature problem (1.1) on a compact manifold with boundary. The method we
used here is inspired by [4] and a recent work of Li and Sheng [10], in which they considered
the prescribing problem on the modified Schouten tensor Aτg for τ > n− 1.

Before stating our results, we first write out the corresponding partial differential equation
of the equation (1.1). Let g̃ = e2ug, where u is defined on M. Under this conformal change, we
have

R̃icf = Ricf − (n− 2)∇2u−	u · g + (n− 2)(du⊗ du− |∇u|2g)
− du⊗ df − df ⊗ du+ 〈∇u,∇f〉g,

where the covariant derivative is taken with respect to the background metric g.
Set

Ŵ [u] = ∇2u+
1

n− 2
	ug − (du⊗ du− |∇u|2g) − 1

n− 2
〈∇u,∇f〉g

+
1

n− 2
(du⊗ df + df ⊗ du) − 1

n− 2
Ricf .

For simplicity, we also use the notation F (A) to denote F (λ(g−1A)) for any smooth symmetric
(0,2)-tensor A. Then the equation (1.1) becomes

F (Ŵ [u]) =
ψ(x)
n− 2

e2u. (1.5)

In order to find a complete metric satisfying (1.1), we only need to solve the following Dirichlet
problem with infinite boundary value, i.e.,⎧⎨

⎩F (Ŵ [u]) =
ψ(x)
n− 2

e2u in M,

u = +∞ on ∂M.
(1.6)

More generally, given a positive function Ψ(x, z) ∈ C∞(M
n × R) and a function ϕ ∈

C∞(∂M), we consider the following equation:{
F (W [u]) = Ψ(x, u) in M,
u = ϕ on ∂M,

(1.7)

where

W [u] = ∇2u+ γ	ug +
(
sdu⊗ du− t

2
|∇u|2g

)
+ a(x)〈∇u,∇f〉g

+ b(x)(du ⊗ df + df ⊗ du) + T (1.8)

for γ, s, t ∈ R, γ > 0, T is a smooth symmetric (0,2)-tensor, and a(x), b(x) are two smooth
functions defined on M . Clearly, (1.7) is fully nonlinear and elliptic for the solutions u

with λ(g−1W [u]) ∈ Γ (see [21]). Accordingly, we call a function v ∈ C2(M) admissible if
λ(g−1W [v]) ∈ Γ.

Our main results can be stated as follows.
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Theorem 1.1 Let (M
n
, g), n ≥ 3 be a smooth compact Riemannian manifold with the

boundary ∂M and f ∈ C∞(M). If T ∈ Γ, ϕ is a smooth function defined on a neighborhood of
∂M , and Ψ(x, z) ∈ C∞(M

n × R) satisfies

Ψ(x, z) > 0, ∂zΨ > 0, lim
z→+∞Ψ(x, z) → +∞, lim

z→−∞Ψ(x, z) → 0, (1.9)

then there exists a unique admissible solution u ∈ C∞(M) of the equation (1.7).

Remark 1.1 Different from the results of [10, 15], in this theorem, we need not add any
restriction on a(x), b(x) and the coefficients γ, s, t ∈ R, and just require γ > 0.

Applying Theorem 1.1 to the quotient of the elementary symmetric functions, i.e., F =(
σk

σl

) 1
k−l on Γ+

k , 0 ≤ l < k ≤ n, and σ0 = 1, we have the following corollary.

Corollary 1.1 Let (M
n
, g), n ≥ 3 be a smooth compact Riemannian manifold with the

boundary ∂M and f ∈ C∞(M). If −λ(g−1Ricf ) ∈ Γ+
k , then for each function ϕ ∈ C∞(∂M)

and a positive function K ∈ C∞(M), there exists a unique smooth metric g̃ satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−λ(g̃−1R̃icf ) ∈ Γ+

k ,(σk
σl

) 1
k−l

(−λ(g̃−1R̃icf )) = K in M,

g̃|∂M = e2ϕg|∂M .
(1.10)

By solving the Dirichlet problem (1.7) with infinite boundary data, we can obtain a complete
metric satisfying (1.6) (compare with [4, 10]).

Theorem 1.2 Let (M
n
, g), n ≥ 3 be a smooth compact Riemannian manifold with the

boundary ∂M and f ∈ C∞(M). Given any smooth positive function ψ(x) ∈ C∞(M), if T ∈ Γ,
then there exists a unique admissible solution u ∈ C∞(M) of the equation⎧⎨

⎩F (W [u]) =
ψ(x)
n− 2

e2u in M,

u = +∞ on ∂M.
(1.10)

Moreover, there exist positive constants C and 0 < θ ≤ 1, depending only on g, γ, s, t, ‖a‖L∞(M),
‖b‖L∞(M), ‖T ‖g(M), ‖ψ‖C2(M) and ‖f‖C2(M) such that

−C − θ log ρ(x) ≤ u(x) ≤ − log ρ(x) + C,

where ρ(x) is the distance function from x to ∂M with respect to the background metric g.

Then we have the following corollary.

Corollary 1.2 Let (M
n
, g), n ≥ 3 be a smooth compact Riemannian manifold with the

boundary ∂M and f ∈ C∞(M). If −λ(g−1Ricf ) ∈ Γ+
k , then there exists a unique smooth

complete metric satisfying −λ(g̃−1R̃icf ) ∈ Γ+
k and(σk

σl

) 1
k−l

(−g̃−1R̃icf ) = const. > 0 for all 0 ≤ l < k ≤ n.

In particular, for k = n and l = 0, we have

det(−λ(g̃−1R̃icf )) = const.
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Remark 1.2 Let (M, g) be a Riemannian manifold and f be a smooth function on M .
By [2, 13], the N -Bakry-Emery Ricci tensor RicNf and the N -Ricci tensor RicN are defined
respectively by

RicNf = Ric − 1
N

df ⊗ df for N > 0,

RicN =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ric + Hess(f), if N = ∞,

Ric + Hess(f) − 1
N − n

df ⊗ df, if n < N <∞,

Ric + Hess(f) −∞(df ⊗ df), if N = n,
−∞, if N < n.

Note that df⊗df is invariant under conformal changes. IfM has a boundary, all the conclusions
above are also valid for its N -Bakry-Emery Ricci tensor and the N -Ricci tensor.

This paper is organized as follows. In Sections 2–3, we establish a priori boundary and
interior estimates of admissible solutions of (1.7). Then we prove Theorem 1.1 in Section 4
by using the a priori estimates and the standard continuity method. In Section 5, we solve
the Dirichlet equation (1.10) by constructing two suitable barrier functions, and then prove
Theorem 1.2.

2 Boundary Estimates

In this section, we establish a priori boundary estimates for the first and second derivatives
of admissible solutions of (1.7) with a smooth Dirichlet data ϕ. We always assume that ϕ ∈
C∞(M) throughout this paper.

2.1 Boundary C1 estimates

For convenience, set

∇2
con fu := ∇2u+ γ	u+

(
sdu⊗ du− t

2
|∇u|2g

)
and

∇u
con ff := a(x)〈∇u,∇f〉g + b(x)(du ⊗ df + df ⊗ du).

Then
W [u] = ∇2

con fu+ ∇u
con ff + T.

A function w is said to be a subsolution of (1.7) if it satisfies the following equation:{
F (W [w]) ≥ Ψ(x,w) in M,
w ≤ ϕ on ∂M.

(2.1)

Changing the direction of the inequalities, one gets the definition of the supsolution of (1.7).
To estimate the gradient on the boundary, we need the following maximum principle for

(1.7).

Proposition 2.1 (Maximum Principle) Suppose that w and v are smooth sub- and
supsolutions of the equation (1.7) with w|∂M ≤ v|∂M , respectively. If ∂zΨ > 0 in M × R, then
w ≤ v on M .
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One may prove this proposition by a contradictory argument. We omit its proof, and see
[10, 21] for details.

By the maximum principle and the boundary distance function ρ(x) := distg(x, ∂M), we
can construct two barrier functions later to control the gradient derivatives. Given any small
positive constant δ, we set

Mδ = {x ∈M | ρ(x) < δ}.
Since ∂M is smooth and |∇ρ| = 1 on ∂M , we may assume that ρ(x) is smooth and 1

2 ≤ |∇ρ| ≤ 2
in Mδ for δ sufficiently small.

For any fixed point x0 ∈ ∂M, we choose a local orthonormal coordinate system {xi}i=1,··· ,n
inMδ, such that ∂M is the plane xn = 0. Let {e1, · · · , en−1, en} be the corresponding coordinate
vector fields, where en is the interior normal vector and eα is the tangential direction vector,
α = 1, 2, · · · , n− 1.

Lemma 2.1 Let u ∈ C2(M) be an admissible solution of (1.7). If min
M

u ≥ −μ for some

constant μ > 0, and ∂zΨ > 0 on M × R, then we have

∂nu|∂M > −C,

where the constant C depends on μ, g, γ, s, t, ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M) and
‖ϕ‖C2(M).

Proof If there exists a local subsolution u− ∈ C3(M δ) of the equation (1.7), i.e.,{
F (W [u−]) ≥ Ψ(x, u−), x ∈Mδ,
u−(x) ≤ ϕ, x ∈ ∂Mδ,

(2.2)

then we complete the lemma. In fact, the maximum principle implies that u−(x) ≤ u(x) on
Mδ. Consequently, for any x0 ∈ ∂M, we have

u(x) − u(x0)
ρ(x, x0)

≥ u−(x) − u−(x0)
ρ(x, x0)

,

which implies that ∂nu|∂M ≥ ∂nu
−|∂M .

Now, we construct a local subsolution u− of (1.7) by using the method which is similar to
that of [4, 10]. Set

u− = ϕ+ θ log
δ2

ρ+ δ2
, (2.3)

where θ is a positive constant to be fixed. Then u−|∂M = ϕ = u, and

ϕ+ log
δ

2
≤ u−|ρ(x)=δ ≤ ϕ+ log δ.

Choosing δ < e
−μ−max

M
|ϕ|

, we get u−(x) ≤ u(x) on ∂Mδ\∂M . Thus, u−(x) ≤ u(x) on ∂Mδ.

It remains to verify F (W [u−]) ≥ Ψ(x, u−) in Mδ. Since

u−i = ϕi − θρi
ρ+ δ2

, u−ij = ϕij − θρij
ρ+ δ2

+
θρiρj

(ρ+ δ2)2
,
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we have

W [u−]ij =
θ

(ρ+ δ2)2
(
γ − tθ

2

)
|∇ρ|2δij +

θ(1 + sθ)
(ρ+ δ2)2

ρiρj − θ

ρ+ δ2
(ρij + γ	ρδij)

− θs

ρ+ δ2
ρiϕj − θs

ρ+ δ2
ρjϕi +

θtϕlρl
ρ+ δ2

δij − θa

ρ+ δ2
ρlflδij − θbρifj

ρ+ δ2
− θbρjfi
ρ+ δ2

+ (ϕij + γ	ϕδij) + sϕiϕj − t

2
ϕ2
l δij + aϕlflδij + b(x)(ϕifj + ϕjfi) + Tij

≥ θ

(ρ+ δ2)2
(
γ − tθ

2

)
|∇ρ|2δij +

θ(1 + sθ)
(ρ+ δ2)2

ρiρj − C′ θ

ρ+ δ2
δij − C′′δij , (2.4)

where the constants C′ and C′′ depend on ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M), and
‖ϕ‖C2(M).

Choose θ−1 ≥ max
{
1,−s, tγ

}
. Then γ − tθ > 0 and 1 + sθ > 0. By |∇ρ| ≥ 1

2 in Mδ and
(2.4), we have

W [u−]ij ≥ γθ

8(ρ+ δ2)2
δij +

θ(1 + sθ)
(ρ+ δ2)2

ρiρj − C′ θ

ρ+ δ2
δij − C′′δij .

Note that ρ+ δ2 ≤ 2δ and (ρ+ δ2)2 ≤ 4δ2 < 4δ. By choosing δ < min
{
1, γ

64C′
γθ

64C′′
}
, we have

γθ

32(ρ+ δ2)2
≥ C′θ
ρ+ δ2

,
γθ

16(ρ+ δ2)2
> C′′,

which implies that

W [u−]ij ≥ γθ

32(ρ+ δ2)2
δij +

θ(1 + sθ)
(ρ+ δ2)2

ρiρj .

Hence, W [u−] ∈ Γ and u− is admissible. Denote F ij = ∂F
∂Wij

(W [u−]). We know that {F ij}
is positive definite (see [3]), and

∑
i

F ii ≥ F (e) (by (S2)). Note that F is homogeneous and of

degree one. Then F (W [u−]) = F ijW [u−]ij . Thus, by (2.5), we have

F (W [u−]) ≥ γθ

32(ρ+ δ2)2
∑
i

F ii ≥ γθ

32(ρ+ δ2)2
F (e).

Since ∂zΨ > 0 for δ sufficiently small, we obtain

F (W [u−]) ≥ γθ

32δ2
F (e) ≥ max

M×
[

min
M

ϕ,max
M

ϕ
]Ψ(x, z) ≥ Ψ(x, u−).

Similarly, we can get the upper bound of ∂nu on ∂M.

Lemma 2.2 Let u ∈ C2(M) be an admissible solution of (1.7). If max
M

u ≤ μ for some

constant μ > 0, and ∂zΨ > 0 on M × R, then we have

∂nu|∂M ≤ C,

where the constant C depends on μ, g, γ, s, t, ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M) and
‖ϕ‖C3(M).
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Proof Since u is admissible and Γ ⊂ Γ+
1 , we have

0 < tr(W [u]) = (nγ + 1)	u+
(
s− tn

2

)
|∇u|2 + (an+ 2b)〈∇u,∇f〉 + trT. (2.6)

Now, we construct a local supsolution u+ ∈ C3(M δ) of (2.6), that is, the function u+ satisfies{
tr(W [u+]) ≤ 0, x ∈Mδ,
u+(x) ≥ u, x ∈ ∂Mδ.

(2.7)

Let τ be a small positive constant to be decided. Define

u+ = ϕ+ τ log
ρ+ δ2

δ2
.

A direct calculation shows that

trW [u+] =
τ

(ρ+ δ2)2
(
τ
(
s− tn

2

)
− (nγ + 1)

)
|∇ρ|2

+
τ

ρ+ δ2

{
(nγ + 1)	ρ+ 2

(
s− tn

2

)
〈∇ϕ,∇ρ〉 + (an+ 2b)〈∇ρ,∇f〉

}
+ (nγ + 1)	ϕ+

(
s− tn

2

)
|∇ϕ|2 + (an+ 2b)〈∇ϕ,∇f〉 + trT.

Choose τ , such that τ
(
s− tn

2

)
< 1. By |∇ρ| ≥ 1

2 , we have

trW [u+] ≤ − τnγ

4(ρ+ δ2)2
+

τ

ρ+ δ2
C′ + C′′,

where the constants C′ andC′′ depend on the ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M), ‖ϕ‖C2(M)

and other known data. Then for δ sufficiently small, we have

trW [u+] ≤ 0 on Mδ.

Note that u+|∂M = ϕ = u, and max
M

u ≤ μ. For a small δ, we have

u+|ρ=δ = ϕ+ τ log
δ + δ2

δ2
≥ min

M
ϕ+ τ log

1
δ
≥ μ.

Hence, u+ satisfies (2.7). By the maximum principle, we have u+|Mδ
≥ u|Mδ

. Therefore, for
any x0 ∈ ∂M,

u(x) − u(x0)
ρ(x, x0)

≤ u+(x) − u+(x0)
ρ(x, x0)

,

which implies that
∂nu|∂M ≤ ∂nu

+|∂M .

Combining the above two lemmas, we obtain the following proposition.

Proposition 2.2 Suppose that u ∈ C2(M) is an admissible solution of (1.7). If sup
M

|u| ≤ μ

for some constant μ > 0, and ∂zΨ > 0, then we have

sup
∂M

|∇nu| ≤ C, (2.8)

where the constant C depends on g, γ, s, t, μ, ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M) and
‖ϕ‖C2(M).
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2.2 Boundary C2 estimates

The method we use here to derive the second derivative estimates is similar to that of [4–5,
10]. For any fixed point x0 ∈ ∂M, define a half ball B+

δ centered at x0 of radius δ by

B+
δ = {x ∈M : r(x) = distg(x, x0) < δ}.

We may assume that r(x) is smooth in B+
δ for small δ. Then |∇r| = 1 in B+

δ . Choose a
local orthonormal frame e1, · · · , en at x0, where en is the inward unit normal vector. Since
∇ijr

2(x0) = 2δij , we also assume that {δij} ≤ {∇ijr
2} ≤ 3{δij} in B+

δ .

Let u ∈ C3(M) be an admissible solution of (1.7). Define a linearized operator L by

Lv = F ijvij + γ	vF + 2sF ijviuj − tvlulF + avlflF + 2bF ijvifj, ∀v ∈ C2(M), (2.9)

where F ij = ∂F
∂Wij

(W [u]) and F = tr(F ij) = gijF
ij .

In order to get the estimates of the normal and tangential derivatives of mixed type, we
need the following two lemmas.

Lemma 2.3 For any constant β > 0, there exist positive constants δ sufficiently small and
N sufficiently large such that the barrier function

w(x) = ρ− N

2
ρ2

satisfies
Lw ≤ −βF in Mδ, w ≥ 0 on Mδ,

where δ and N depend on β, sup
M

|∇u| and other known data.

Proof It is easy to check that

|Lρ| = |F ijρij + γ	ρF + 2sF ijρiuj − tρlulF + aρlflF + 2bF ijρifj | ≤ C∗F ,

where the constant C∗ depends on γ, |s|, |t|, n, g, sup
M

|∇u|, ‖a‖L∞(M), ‖b‖L∞(M) and ‖f‖C1(M).

Since {F ij} is positive definite and |∇ρ| ≥ 1
2 in Mδ, we have

Lw(x) = Lρ−NρLρ−NF ijρiρj −Nγ|∇ρ|2F
≤ (1 +Nρ)C∗F − 1

4
NγF .

By choosing δ < γ
8C∗ − 1

N and N > max
{

8C∗
γ , 8β

γ

}
, we obtain

Lw(x) ≤ −1
8
NγF ≤ −βF .

Finally, for the fixed N , we can choose δ ≤ 2
N to ensure that w ≥ 0 on Mδ.

Lemma 2.4 Let h ∈ C2(M δ). If h ≤ 0 on ∂M , h(x0) = 0 and

−Lh ≤ D(1 + F) in Mδ
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for some positive constant D, then we have

∇nh(x0) ≤ C,

where the constant C depends on D, β, ‖h‖C0(Mδ), sup
M

|∇u| and other known data, and β is

the same constant as in Lemma 2.3.

Proof By Lemma 2.3, we can choose A � β � 1 such that Aw(x) + βr2(x) − h(x) ≥ 0
on ∂B+

δ . It is clear that |Lr2| = |2rLr + 2F ijrirj + 2γ|∇r|2F| ≤ C′F , where C′ depends on
sup
M

|∇u|, γ and δ. Note that F ≥ F (e). By choosing A ≥ max
{
2C′, 4D

β ,
4D
βF (e)

}
, we have

L(Aw + βr2 − h) ≤ −AβF + βC′F +D +DF ≤ 0 in Mδ.

It follows from the maximum principle that Aw + βr2 − h ≥ 0 in B+
δ . Since

(Aw + βr2 − h)(x0) = 0,

∇n(Aw + βr2 − h)(x0) ≥ 0,

which implies that ∇nh(x0) ≤ C.

Now, we can get the following boundary estimates for the second derivatives.

Proposition 2.3 Suppose that u(x) ∈ C3(M) is an admissible solution of (1.7). Then

sup
∂M

|∇2u| ≤ C, (2.10)

where the constant C depends on ‖u‖C1(M), ‖Ψ‖C1(M×[−μ,μ]), ‖ϕ‖C3(M), the geometric quan-
tities of (M, g) and other known data.

Proof Since u− ϕ = 0 on ∂M, for any point x0 ∈ ∂M, we have

∇αβ(u− ϕ)(x0) = −∇n(u− ϕ)(x0)Π(eα, eβ),

where 1 ≤ α, β ≤ n− 1 and Π denotes the second fundamental form of ∂M. Then one can get

|∇αβu(x0)| ≤ C, (2.11)

where C depends on sup
∂M

|∇2ϕ|, sup
∂M

|∇u| and the geometric quantities of (M, g).

To get the estimates of the normal and tangential derivatives of mixed type ∇αnu, we
differentiate the equation (1.7) with respect to ek, that is,

∇kΨ = F ij(uijk + γullkδij) + 2sF ijuikuj − tululkF+akulflF + a(ulkfl + ulflk)F
+2bkF ijuifi + 2bF ij(uikfj + uifjk) + F ijTij,k. (2.12)

By the Ricci identities ukij = uijk +Rpkijup, (2.9) and (2.12), we have

L(u− ϕ)k = ∇kΨ − (akulfl + aulflk)F − 2F ij(bkuifi + buifjk)

+ F ijRpkijup + γRpkllupF − F ijTij,k − F ijϕkij

− γ	ϕkF − 2sF ijϕkiuj + tϕklulF − aϕklflF − 2bF ijϕkifj .
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Then, for each k = 1, · · · , n, we obtain that

|L(u− ϕ)k| ≤ Ĉ(1 + F),

where Ĉ depends on n, g, γ, |s|, |t|, ‖u‖C1(M), ‖ϕ‖C3(M), ‖Ψ‖C1(M×[−μ,μ]), ‖T ‖C1(M), ‖a‖C1(M),

‖b‖C1(M) and ‖f‖C2(M).

Applying Lemma 2.4 to h = ±∇α(u − ϕ), we immediately get the estimates

|∇αnu(x0)| ≤ C. (2.13)

It remains to estimate the bound of ∇nnu. Since u is admissible, by (2.6), we have 	u(x0) ≥
−C. Thus, ∇nnu(x0) has a lower bound by (2.11). Without loss of generality, we can assume
unn(x0) ≥ 0 (otherwise we have done). Orthogonally decomposing the matrix W [u] at x0 ∈ ∂M

in terms of eα and en, and using the known bounds in (2.11) and (2.13), we have

W [u]ij(x0) = uij + γ	ugij +
(
suiuj − t

2
|∇u|2gij

)
+ a(x)〈∇u,∇f〉gij

+ b(x)(uifj + fiuj) + Tij

≥
(
γunnIn−1 0

0 (1 + γ)unn

)
(x0) − Cδij

≥ (γunn(x0) − C)δij ,

where the constant C also depends only on |s|, |t|, sup
∂M

|∇u|, ‖a‖L∞(M), ‖b‖L∞(M) and ‖T ‖g(M).

Then, we have

(γunn(x0) − C)F ≤ F (W [u])(x0)

= Ψ(x0, u(x0))

≤ max
M×

[
min
M

ϕ,max
M

ϕ
]Ψ(x, u).

Since F ≥ F (e), we then obtain the upper bound of ∇nnu(x0).

3 Global Estimates

In this section, we first calculate the local interior estimates for admissible solutions of
(1.7). By combining the local interior estimates and the boundary estimates in Section 2, we
will derive a priori global C2 estimates. Now, we divide the procedure into three steps.

3.1 Global C0 estimate

Since the manifold is compact, we can get a global C0 estimate easily.

Proposition 3.1 Let T ∈ Γ, ϕ ∈ C∞(∂M) and Ψ(x, z) ∈ C∞(M
n×R). If Ψ(x, z) satisfies

(1.9), then for any admissible solution u ∈ C2(M) of (1.7), we have

sup
M

|u| ≤ C0, (3.1)

where the constant C0 only depends on ‖Ψ‖L∞(M), ‖ϕ‖L∞(∂M) and ‖T ‖g(M).
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Proof Let xmin be the minimum point of the function u on M. If xmin ∈ ∂M, then the
lower bound of u can be obtained by

u(x) ≥ u(xmin) = ϕ(xmin) ≥ min
∂M

ϕ(x).

If xmin is an interior point of M, then at xmin, we have ∇u(xmin) = 0, ∇2u(xmin) ≥ 0. Note
that γ > 0 and T ∈ Γ. Then

Ψ(xmin, umin) = F (∇2u(xmin) + γ	u(xmin)g + T (xmin))

≥ F (T )(xmin) ≥ min
M

F (T ) > 0.

Hence, we can get the lower bound of u by the condition lim
z→−∞Ψ(x, z) → 0.

Similarly, we can get the upper bound of u by considering its maximum and using the fact
that lim

z→+∞Ψ(x, z) → +∞.

3.2 Global C1 estimate

Let Br ⊂M be a geodesic ball of radius r > 0. There exists a cutoff function ζ(x) ∈ C∞
0 (Br)

such that ζ|B r
2

= 1, ζ|M\Br
= 0, and

0 ≤ ζ ≤ 1, |∇ζ| ≤ b0ζ
1
2 , |∇2ζ| ≤ b0 (3.2)

for some constant b0 > 0.

Lemma 3.1 Let T ∈ Γ, Ψ(x, z) ∈ C∞(M × R), and u ∈ C3(Br) be an admissible solu-
tion of (1.7). Then there exists a constant C depending only on g, b0, γ, r

−1, |s|, |t|, ‖T ‖C1(M),
‖a‖C1(M), ‖b‖C1(M), ‖f‖C2(M), ‖Ψ‖C1(M) and C0 such that

sup
B r

2

|∇u| ≤ C. (3.3)

Proof Consider the following auxiliary function:

G = ζωeη(u),

where ω = 1
2 |∇u|2 and η is a function to be chosen later. Suppose that G attains its maximum

at an interior point x0 ∈ Br. Choose a local normal coordinate frame ei, i = 1, · · · , n at x0

with respect to g such that W [u](x0) is diagonal. Then at x0 we have

0 = (logG)i =
ωi
ω

+ η′ui +
ζi
ζ
, (3.4)

that is

ωi = −ω
(
η′ui +

ζi
ζ

)
(3.5)

and

0 ≥ F ij(logG)ij = F ij
(ωij
ω

− ωiωj
ω2

)
+ F ij(η′′uiuj + η′uij) + F ij

(ζij
ζ

− ζiζj
ζ2

)
. (3.6)
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By (3.5) and the Schwarz inequality, we have

F ij
ωiωj
ω2

≤ (1 + α)η′2F ijuiuj +
(
1 +

1
α

)
F ij

ζiζj
ζ2

, (3.7)

where α is any positive constant and we will choose a suitable one later. Note that

ωi = ukuki, ωij = ukiukj + ukukij . (3.8)

Substituting (3.7)–(3.8) into (3.6), we have

1
ω
F ij

(
δkl − ukul

2ω

)
ukiulj +

1
ω
F ijukukij + η′F ijuij

+ F ij
(
η′′ − 1 + α

2
η′2

)
uiuj + F ij

(ζij
ζ

− (1 + 3α)ζiζj
2αζ2

)
≤ 0.

Note that the first term of the inequality above is non-negative, then by (3.2) and the Ricci
identities, we have

1
ω
F ijukuijk + η′F ijuij + F ij

(
η′′ − 1 + α

2
η′2

)
uiuj ≤ C

(
1 +

1
ζ

)
F , (3.9)

where the constant C depends on n and b0. Similarly, we can get

1
ω

∑
k,i

ukuiik + η′	u+
(
η′′ − 1 + α

2
η′2

)
|∇u|2 ≤ C

(
1 +

1
ζ

)
. (3.10)

By (3.9)–(3.10), we have

1
ω
ukF

ij(uijk + γullkδij) + η′F ij(uij + γ	uδij)

+
(
η′′ − 1 + α

2
η′2

)
F ijuiuj + γ

(
η′′ − 1 + α

2
η′2

)
|∇u|2F ≤ C

(
1 +

1
ζ

)
F . (3.11)

It follows from (3.5), (3.8) and (2.12) that

uk(F ijuijk + γullkδij) = uk∇kΨ + 2ωsη′F ijuiuj − 2tω2η′F + 2bωη′F ijuifj

+ aωη′〈∇u,∇f〉F − aukulflkF − 2bF ijuiukfjk

− akuk〈∇u,∇f〉F − 2bkukF ijuifj − ukF
ijTij,k

+
ω

ζ
(2sF ijujζi − t〈∇ζ,∇u〉F+a〈∇ζ,∇f〉F+2bF ijζifj).

By (3.2), the equality above implies

uk(F ijuijk + γullkδij) ≥ uk∇kΨ + 2ωsη′F ijuiuj − 2tω2η′F
+ 2bωη′F ijuifj + aωη′〈∇u,∇f〉F − CωF
− C|∇u|F − C

1
ζ
ω(1 + |∇u|)F , (3.12)

where the constant C depends only on g, b0, |s|, |t|, ‖a‖C1(M), ‖b‖C1(M), ‖T ‖C1(M) and ‖f‖C2(M).

Since F is homogeneous and of degree one, then

F ij(uij + γ	uδij) = Ψ − F ij
(
suiuj − t

2
|∇u|2δij + a〈∇u,∇f〉δij + 2buifj + Tij

)
. (3.13)
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Note that ∇kΨ = Ψk + Ψuuk. It follows from (3.11)–(3.13) that(
η′′ − 1 + α

2
η′2 + sη′

)
F ijuiuj +

[
2γ

(
η′′ − 1 + α

2
η′2

)
− tη′

]
ωF

≤ C
(
1 +

1
|∇u|

)
+ C

( 1
|∇u| +

1
ζ

+
1
ζ
|∇u|

)
F , (3.14)

where C also depends on γ, g, ‖T ‖g(M) and ‖Ψ‖C1(M×[−C0,C0])
.

Let η(u) = v−N , where N is a large positive constant to be determined later and

v = 1 + u− inf
{ζ>0}

u.

Since 0 < η < 1, η′ = −N η
v < 0 and η′′ = Nη

v2 (N + 1) > 0, then

η′′ − 1 + α

2
η′2 =

Nη

v2

(
N + 1 − 1 + α

2
Nη

)
>
Nη

v2

(
1 +

1 − α

2
N

)
.

Then for any fixed α ∈ (0, 1), we have

η′′ − 1 + α

2
η′2 >

(1 − α)N2η

2v2
=

(1 − α)N
2v

|η′|.

Note that 1 ≤ v < 2C0. We may choose α = 1
2 and N large enough such that⎧⎪⎨

⎪⎩
η′′ − 1 + α

2
η′2 + sη′ >

( 1
4v
N − |s|

)
|η′| > 0,

2γ
(
η′′ − 1 + α

2
η′2

)
− tη′ >

(γN
2v

− |t|
)
|η′| > N

4v
|η′|.

(3.15)

Therefore, by (3.14)–(3.15),

N

4v
|η′|ωF ≤ C

(
1 +

1
|∇u|

)
+ C

( 1
|∇u| +

1
ζ

+
1
ζ
|∇u|

)
F .

We can assume |∇u(x0)| ≥ 1 (otherwise we have done). Then

(N |η′|
4v

|∇u|2 − C
1
ζ
(|∇u| + 1)

)
F ≤ C, (3.16)

which implies that √
ζ|∇u|(x0) ≤ C,

where the constant C also depends on N and C0, from which it is easy to derive (3.3).

Choosing ζ ≡ 1, we obtain the following global gradient estimates by (2.8) and (3.3).

Proposition 3.2 Let T ∈ Γ and Ψ(x, z) ∈ C∞(M × R). Then for any admissible solution
u ∈ C3(M) of (1.7), we have

sup
M

|∇u| ≤ C1, (3.17)

where the constant C1 depends on g, γ, |s|, |t|, ‖T ‖C1(M), ‖a‖C1(M), ‖b‖C1(M), ‖f‖C2(M), ‖Ψ‖C1(M)

and max
M

|u|.
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3.3 Global C2 estimate

As in Section 3.2, we first establish the interior second derivative estimates.

Lemma 3.2 Let T ∈ Γ, Ψ(x, z) ∈ C∞(M × R), and u ∈ C4(Br) be an admissible solu-
tion of (1.7). Then there exists a constant C depending only on g, b0, γ, r

−1, |s|, |t|, ‖T ‖C2(M),
‖a‖C2(M), ‖b‖C2(M), ‖f‖C3(M), ‖Ψ‖C2(M) and ‖u‖C1(Br) such that

sup
B r

2

|∇2u| ≤ C. (3.18)

Proof Consider the following auxiliary function:

H = ζ(x)eη(ω)(∇ξξu+ s|∇ξu|2),

where ξ ∈ TxM is a unit vector, ω = 1
2 |∇u|2, ζ ∈ C∞

0 (Br) satisfies ζ|B r
2

= 1, ζ|M\Br
= 0

and (3.2), and the function η is chosen later. Suppose that H attains its maximum at a point
x0 ∈ Br and ξ ∈ Tx0M. Choose a local orthnormal frame {ei, i = 1, · · · , n} at x0 with respect
to g such that e1(x0) = ξ and {W [u]ij}(x0) is diagonal. Denote K = ∇11u+ s|∇1u|2. Without
loss of generality, we can assume K(x0) > 1. Then at x0, we have

0 = (logH)i =
Ki

K
+ ηi +

ζi
ζ
, (3.19)

that is

Ki = −Kηi − ζi
ζ
K (3.20)

and

0 ≥ F ii(logH)ii = F ii
(Kii

K
− K2

i

K
+ ηii +

ζii
ζ

− ζ2
i

ζ

)
. (3.21)

By (3.20)–(3.21), we have

0 ≥ F iiKii +KF ii(ηii − 2η2
i ) +KF ii

(ζii
ζ

− 3
ζ2
i

ζ

)
. (3.22)

Note that

Ki = u11i + 2su1u1i, Kii = u11ii + 2su2
1i + 2su1u1ii. (3.23)

By (3.22)–(3.23) and the Ricci identities, we have

0 ≥ F iiuii11 + 2sF iiu2
1i + 2su1F

iiuii1 +KF ii(ηii − 2η2
i )

− C

ζ
KF − C(1 + |∇2u|)F , (3.24)

where the constant C depends only on g, b0 and max
Br

|∇u|. Similarly, we have

0 ≥ (	u)11 + 2s
∑
i

u2
1i + 2su1(	u)1 +K(	η − 2|∇η|2)

− C

ζ
K − C(1 + |∇2u|). (3.25)
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By (3.24)–(3.25), we have

0 ≥ F ii(uii11 + γ(	u)11δii) + 2sF iiu2
1i + 2sγu2

1iF + 2su1F
ii(uii1 + γ(	u)1δii)

+KF ii(ηii − 2η2
i ) + γK(	η − 2|∇η|2)F − C

ζ
KF − C(1 + |∇2u|)F . (3.26)

By (2.12), we have

2su1F
ii(uii1 + γ(	u)1δii)

≥ 2su1∇1Ψ − 4s2u1F
iiui1ui + 2stu1ulul1F

− 2su1aul1flF − 4sbu1F
iiui1fi − CF , (3.27)

where the constant C depends on g, γ, |s|, |t|,max
Br

|∇u|, ‖T ‖C1(M), ‖a‖C1(M), ‖b‖C1(M) and

‖f‖C2(M).
Differentiating the equation (1.7) twice, by the concavity of F , we obtain

∇11Ψ ≤ F ii(uii11 + γ(	u)11δii) + 2sF ii(ui11ui + u2
i1) − (tulul11 + tu2

l1)F
+ aul11flF + 2bF iiui11fi + C(1 + |∇2u|)F , (3.28)

where the constant C depends only on g, γ, |s|, |t|, ‖T ‖C2(M), ‖a‖C2(M), ‖b‖C2(M), ‖f‖C3(M)

and max
Br

|∇u|.
Substituting (3.27)–(3.28) into (3.26) , we have

0 ≥ ∇11Ψ + 2su1∇1Ψ + (2sγ + t)u2
1iF − 2sF iiui11ui + tulul11F − aul11flF

− 2bF iiui11fi − 4s2u1F
iiui1ui + 2stu1ulul1F−2asu1u1lflF−4sbu1ui1F

iifi

+KF ii(ηii − 2η2
i ) + γK(	η − 2|∇η|2)F − C

ζ
KF − C(1 + |∇2u|)F . (3.29)

By (3.20), (3.23) and the Ricci identities, we have

ui11 = −2su1u1i −Kη′ulu1l − ζi
ζ
K + upR

p
11i. (3.30)

Note that {∇1Ψ = Ψ1 + Ψzu1 ≥ −C,
∇11Ψ = Ψ11 + 2Ψ1zu1 + Ψzzu

2
1 + Ψzu11 ≥ −C(K + 1), (3.31)

where the constant C depends only on |s|, ‖Ψ‖C2(M×[−C0,C0])
and max

Br

|∇u|.
Substituting (3.30)–(3.31) into (3.29), we have

0 ≥ −C(K + 1) + (2sγ + t)u2
1iF +KF ii(ηii − 2η2

i ) + γK(	η − 2|∇η|2)F
− C

(
|∇2u| + 1

ζ

)
KF − C(1 + |∇2u|)F . (3.32)

Since {W [u]ij(x0)} is diagonal, |uij | = | − suiuj − 2buifj − Tij | ≤ C for i �= j. Hence,∑
i

u2
1i = u2

11 +
∑
i�=1

u2
1i ≤ K2 + CK + C. (3.33)
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Note that 1 < K < C(|∇2u| + 1). Then by (3.32)–(3.33), we have

F ii(ηii − 2η2
i ) + γ(	η − 2|∇η|2)F ≤ C+C

(
1+|∇2u| + 1

ζ

)
F . (3.34)

Since
ηi = η′ωi = η′ukuki, ηii = η′′ukukiululi + η′u2

ki + η′ukukii,

we have

F ii(ηii − 2η2
i ) + γ(	η − 2|∇η|2)F

= (η′′ − 2η′2)(F ii + γδiiF)u1ukiululi

+ η′F iiu2
ki + η′γ|∇2u|2F + η′ukF ii(ukii + γukllδii). (3.35)

Let
η(ω) =

(
1 − ω

M

)−α
, ω ∈

[
0,

1
2
M

]
,

where M = 2 sup
M

ω and α is a small positive constant to be chosen later. Then we have

1 ≤ η ≤ 2α, η′ =
αη

M
(
1 − ω

M

) > 0.

If we choose α ≤ 1
2 , then

η′′ − 2η′2 =
α(α+ 1 − 2αη)η

M2
(
1 − ω

M

)2 > 0.

Then by (2.12) and (3.35), we have

F ii(ηii − 2η2
i ) + γ(	η − 2|∇η|2)F ≥ η′γ|∇2u|2F − C − C(1 + |∇2u|)F . (3.36)

Combining (3.34) and (3.36), we have

η′γ|∇2u|2F ≤ C + C
(
1 +

1
ζ

+ |∇2u|
)
F . (3.37)

Multiplying ζ on both sides of (3.37), we obtain√
ζ|∇2u|(x0) ≤ C. (3.38)

Hence,
√
ζK(x0) ≤ C. This implies that√

ζ∇ξξu ≤ C, ∀x ∈ {ζ > 0}, ∀ξ ∈ TxM, |ξ| = 1. (3.39)

Since λ(g−1W [u]) ∈ Γ ⊂ Γ+
1 , 	u has a lower bound by Lemma 3.2. Then by (3.39), we get√

ζ∇ξξu ≥ −C, ∀x ∈ {ζ > 0}, ∀ξ ∈ TxM, |ξ| = 1. (3.40)

Thus, (3.18) follows from (3.39)–(3.40).

Let ζ ≡ 1. By (3.18) and (2.10), we derive the following global estimate for the second
derivatives.



156 W. M. Sheng and L. X. Yuan

Proposition 3.3 Let T ∈ Γ and Ψ(x, z) ∈ C∞(M × R). Then for any admissible solution
u ∈ C4(M) of (1.7), we have

sup
M

|∇2u| ≤ C2, (3.41)

where the constant C2 depends only on g, γ, |s|, |t|, ‖T ‖C2(M), ‖a‖C2(M), ‖b‖C2(M), ‖f‖C3(M),
‖Ψ‖C2(M) and ‖u‖C1(M).

4 Proof of Theorem 1.1

For any function h on M , define

P [h] := F (W [h]) − Ψ(x, h).

Then any solution u of (1.7) satisfies P [u] = 0. Let up = u + pv for p ∈ R. The linearized
operator of equation (1.7) is

Lv : =
d
ds

P [us]|s=0

= (F ij + δijγF)vij + 2sF ijviuj − (tvlul − avlfl)F + 2bF ijvifj − ∂zΨ(x, u)v. (4.1)

Lemma 4.1 Let u ∈ C2(M) be an admissible solution of equation (1.7). If ∂zΨ is positive
on M × R, then L : C2,α(M) → C2,α(M) (0 < α < 1) is invertible.

Proof Since ∂zΨ is positive on M × R, the coefficient of the zero order term in (4.1) is
strictly negative. Hence, L is invertible in the Hölder space C2,α(M).

Proof of Theorem 1.1 Note that the maximum principle in Proposition 2.1 ensures the
uniqueness of solutions of (1.7). Now, we complete the proof by using the continuity method.
Consider the following equation:

F (∇2
con fu+ ∇u

con ff + T β) = Ψβ(x, u), β ∈ [0, 1], (4.2)

where
Tβ = βT +

1 − β

F (e)
g, Ψβ(x, u) = (1 − β)e2u + βΨ(x, u).

Clearly, Tβ and Ψβ satisfy the following conditions:
(1) Tβ ∈ Γ and ‖Tβ‖C4(M) ≤ C, where the constant C is independent of β;
(2) Ψβ(x, u) > 0, ∂zΨβ > 0, lim

z→+∞Ψβ(x, z) → +∞ and lim
z→−∞Ψβ(x, z) → 0;

(3) ‖Ψβ‖C2(M×[−C,C]) ≤ C, where C is independent of β.
It follows from Section 2 and Section 3 that for each β, the admissible solution of (4.2) has
uniform a priori C2 estimates (independent of β). Then we obtain the uniform C2,α estimates
by the Evans-Krylov’s theory. Define

I = {β ∈ [0, 1] | (4.2) has an admissible solution}.

Clearly, u ≡ 0 is the unique admissible solution of (4.2). Hence, I �= ∅. Then by Proposition
2.1, I ⊂ [0, 1] is open. By the uniform a priori C2,α estimates and the standard degree theory,
we conclude that I is also closed. For β = 1, the equation (1.7) is solvable.
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5 Proof of Theorem 1.2

The argument of the proof is similar to the one in [4, 10]. To solve the infinite boundary
data Dirichlet problem (1.10), we consider a family of equations below⎧⎨

⎩F (W [u]) =
ψ(x)
n− 2

e2u in M,

u = θ logm on ∂M,
(5.1)

where m is any positive integer and θ is a positive constant which will be chosen later.
For any fixed m, it follows from Theorem 1.1 that (5.1) has a unique admissible solution

um ∈ C∞(M). The maximum principle implies that

um ≤ um+1, m = 1, 2, · · · . (5.2)

Next, for any m and a small δ > 0, define a local barrier function by

u−m = θ log
mδ2

mρ+ δ2
,

where ρ(x) = distg(x, ∂M), x ∈M . Then u−m|∂M = um|∂M , and

θ log
δ

2
≤ u−m|{ρ(x)=δ} ≤ θ log δ.

Therefore, we can choose δ small enough such that u−m ≤ min
M

um on the boundary of Mδ in M .

By a direct calculation, we have

W [u−m]ij ≥ θm2

(mρ+ δ2)2
(
γ − tθ

2

)
|∇ρ|2δij +

θm2(1 + sθ)
(mρ+ δ2)2

ρiρj − C′ θm

mρ+ δ2
δij − C′′(T )δij ,

where the constants C′ and C′′ depend only on ‖a‖L∞(M), ‖b‖L∞(M), ‖f‖C1(M), ‖T ‖g(M) and
other known data.

Choose θ−1 ≥ max
{
1,−s, tγ

}
and δ < min

{
1, γ

64C′
γθ

64C′′
}
. By |∇ρ| ≥ 1

2 in Mδ and (5.3),
we have

W [u−m]ij ≥ γθm2

32(mρ+ δ2)2
gij +

θm2(1 + sθ)
(mρ+ δ2)2

ρiρj .

If we require δ < (n−2)γθF (e)
32max

M
ψ(x) , then

F (W [u−m]) ≥ γθm2

32(mρ+ δ2)2
F (e) =

γθ

32δ2
F (e) · e 2u−

m
θ ≥ maxψ(x)

n− 2
e2u−

m in Mδ.

Therefore, the maximum principle implies that

um ≥ u−m on Mδ. (5.4)

In order to control the upper bound of um, we consider the following equation:

Λ(v) := A	v +B|∇v|2 + C|∇v| +D = e2v, (5.5)
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where

A =
Θ(nγ + 1)(n− 2)

min
M

ψ
, B =

Θ(2s− tn)(n− 2)
2 min

M
ψ

,

C =
Θ(n‖a‖L∞ + 2‖b‖L∞)(n− 2)

‖∇f‖−1
L∞ min

M
ψ

, D =
Θ(n− 2)‖trT ‖L∞

min
M

ψ
.

By (5.1), every um is a subsolution of (5.5). Thus, we only need to construct a local supsolution
of (5.5). For any fixed point y0 ∈ M δ

2
, let x0 be the nearest point of y0 on ∂M. Choose the

geodesic from x0 to y0, passing through y0 and going out a small distance to another point z0.
Denote ρ0 = distg(x0, y0), R = distg(z0, x0) and r(x) = distg(z0, x) for any point x ∈M . When
ρ0 and δ are small enough, we can assume that r(x) is smooth in the ball Bz0(R). Choose a
local orthonormal frame {ei, i = 1, · · · , n} at z0. Note that A, C and D are positive constants.

Case (a) If 2s− nt > 0, then B > 0. Consider the function v̂ ∈ Bz0(R) defined by

v = − log(R2 − r2(x)) + τ log
R2 − r2(x) + ε

ε
+ log 2

+
1
2

log((n+ 1)A+B +RC) + logR,

where τ and ε are two positive constants to be chosen later. By a direct calculation, we have

∇v =
2r∇r
R2 − r2

− τ2r∇r
R2 − r2 + ε

= 2r∇r
( 1
R2 − r2

− τ

R2 − r2 + ε

)
and

	v =
	r2

R2 − r2
− τ	r2
R2 − r2 + ε

+
4r2|∇r|2

(R2 − r2)2
− 4τr2|∇r|2

(R2 − r2 + ε)2
.

Note that |∇r| = 1. Then we have

Λ(v) =
A	r2 + 2rC
R2 − r2

− τA	r2 + 2τrC
R2 − r2 + ε

+
4(A+B)r2

(R2 − r2)2
+

4τr2(Bτ − A)
(R2 − r2 + ε)2

− 8τBr2

(R2 − r2 + ε)(R2 − r2)
+D. (5.6)

Since 	r2(z0) = 2n, we can assume n ≤ 	r2 ≤ 3n in Bz0(R). Also note that B > 0, and then
by (5.6) we obtain

Λ(v) ≤ 3nA+ 2rC
R2 − r2

− τAn+ 2τrC
R2 − r2 + ε

+
4(A+B)r2

(R2 − r2)2
+

4τr2(Bτ −A)
(R2 − r2 + ε)2

+D

=
(3nA+ 2rC)(R2 − r2) + 4(A+B)r2

(R2 − r2)2
− τ(An + 2rC)

R2 − r2 + ε
+

4τr2(Bτ −A)
(R2 − r2 + ε)2

+D

≤ [3nA+ 2rC + 4(A+B)]R2

(R2 − r2)2
− τAn

R2 − r2 + ε
+

4τr2(Bτ −A)
(R2 − r2 + ε)2

+D. (5.7)

Choose τ ≤ A
B , ε < R2 and R ≤

√
τnA
2D . It follows from (5.7) that

Λ(v) ≤ R2

(R2 − r2)2
[3nA+ 2rC + 4(A+B)]

<
4R2

(R2 − r2)2
[(n+ 1)A+B +RC]

≤ e2v.
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Note that v is infinite on ∂Bz0(R). For any m ≥ 1, applying the maximum principle on this
ball, we conclude that um ≤ v on Bz0(R). Thus,

um(y0) ≤ v(y0) = − log ρ0(2R− ρ0) + τ log
ρ0(2R− ρ0) + ε

ε
+ log 2

+
1
2

log((n+ 1)A+B +RC) + logR

= − log ρ0 − log
(2R− ρ0)

2R
+ τ log

ρ0(2R− ρ0) + ε

ε

+
1
2

log((n+ 1)A+B +RC).

So

um ≤ − log ρ+ C. (5.8)

By (5.2), (5.4) and (5.8), we have

u(x) := lim
m→∞um(x) for all x ∈M

and

−C − θ log ρ ≤ u(x) ≤ − log ρ+ C (5.9)

near the boundary ∂M.

For any compact subset K ⊂ M, by the boundary control (5.9) and the a priori estimates
in Section 2 and Section 3, we obtain

‖um‖C2,α(K) ≤ C,

where 0 < α < 1, and C = C(K) is independent of m. Hence, the standard compactness
argument and the Schauder regularity theory imply that u ∈ C∞(M) is an admissible solution
of (1.10).

Case (b) If 2s − nt ≤ 0, then B ≤ 0. This case is much simpler than Case (a). Set v̂
∈ Bz0(R) defined by

v̂ = − log(R2 − r2(x)) + log
R2 − r2(x) + ε

ε
+ log 2 +

1
2

log((n+ 1)A+RC) + logR,

where ε is a positive constant to be decided. Then

Λ(v̂) ≤ A	v̂ + C|∇v̂| +D

=
A	r2 + 2rC
R2 − r2

− A	r2 + 2rC
R2 − r2 + ε

+
4Ar2

(R2 − r2)2
− 4Ar2

(R2 − r2 + ε)2
+D

≤ R2

(R2 − r2)2
(3nA+ 2rC + 4A) − An

R2 − r2 + ε
+D. (5.10)

Choose ε and R as above, i.e., ε < R2 and R ≤
√

nA
2D . Thus, we obtain

Λ(v̂) ≤ R2

(R2 − r2)2
(3nA+ 2rC + 4A) <

4R2

(R2 − r2)2
((n+ 1)A+RC) ≤ e2v̂.

The remaining argument is similar to the part in Case (a), and we omit it here.
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