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Abstract The authors present the general theory of cleft extensions for a cocommutative
weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre-
spondence between the isomorphisms classes of H-cleft extensions Ay < A, where Ay is
the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over
Ap. Finally, they establish a bijection between the set of equivalence classes of crossed
systems with a fixed weak H-module algebra structure and the second cohomology group
H2 (H,Z(Amn)), where Z(Ag) is the center of Ay.
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1 Introduction

Weak Hopf algebras (or quantum groupoids in the terminology of Nikshych and Vainerman
[21]) were introduced by Béhm, Nill and Szlachdnyi [9] as a new generalization of Hopf algebras
and groupoid algebras. The main differences with other Hopf algebraic constructions, such
as quasi-Hopf algebras and rational Hopf algebras, are the following: Weak Hopf algebras are
coassociative but the coproduct is not required to preserve the unity morphism or, equivalently,
the counity is not an algebra morphism. Some motivations to study weak Hopf algebras come
from their connection with the theory of algebra extensions, the important applications in the
study of dynamical twists of Hopf algebras and their link with quantum field theories and
operator algebras (see [21]). It is well-known that groupoid algebras of finite groupoids provide
examples of weak Hopf algebras. If G is a finite groupoid (a category with a finite number of
objects such that each morphism is invertible) then the groupoid algebra over a commutative
ring R is an example of cocommutative weak Hopf algebra. There are more interesting examples
of cocommutative weak Hopf algebras, for example recently Bulacu [11-12] proved that Cayley-
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Dickson and Clifford algebras provide examples of commutative and cocommutative weak Hopf
algebras in some suitable symmetric monoidal categories of graded vector spaces.

As in the Hopf algebra setting, it is possible to define a theory of crossed products for weak
Hopf algebras. The key to extend the crossed product constructions of the Hopf world to the
weak setting is the use of idempotent morphisms combined with the ideas given in [10]. In
[4, 16], the authors defined a product on A®V, for an algebra A and an object V' both living in
a strict monoidal category C, where every idempotent splits. In order to obtain that product,
we must consider two morphisms ¢{} : V@A — A®@V and 0{ : V@V — A® V which satisfy
some twisted-like and cocycle-like conditions, respectively. Associated to these morphisms, it is
possible to define an idempotent morphism V gy : A® V — A® V, that becomes the identity
in the classical case. The image of this idempotent inherits the associative product from A®@ V.
In order to define a unit for Im (V 4gv ), and hence to obtain an algebra structure, we require the
existence of a preunit v : K — A®V, and, under these conditions, it is possible to characterize
weak crossed products with a unit as products on A ® V' that are morphisms of left A-modules
with preunit. Finally, it is convenient to observe that, if the preunit is a unit, the idempotent
becomes the identity, and we recover the classical examples of the Hopf algebra setting. The
theory presented in [4, 16] contains as a particular instance the one developed by Brzezinski in
[10] as well as all the crossed products constructed in the weak setting, for example the ones
defined in [13, 18, 22]. Recently, Bohm [8] showed that a monad in the weak version of the Lack
and Street’s 2-category of monads in a 2-category is identical to a crossed product system in
the sense of [4], and also in [17] we can find that unified crossed products (see [1]) and partial
crossed products (see [20]) are particular instances of weak crossed products. An interesting
example of weak crossed product comes from the theory of weak cleft extensions associated
to weak Hopf algebras. This notion was introduced in [2], and it provides examples of weak
crossed products satisfying twisted and cocycle conditions (see [4]). These crossed products
are deeply connected with Galois theory as we can see in the intrinsic characterization of weak
cleftness in terms of weak Galois extensions with normal basis obtained in [19]. We want to
point out that, when we particularize this weak cleft theory to the Hopf algebra setting, we
obtain a more general notion than the usual one of cleft extension (see [19, Definition 7.2.1])
because in this case the uniqueness of the cleaving morphism is not guaranteed.

The theory of crossed products in the Hopf setting arises as a generalization of the classical
smash products, and by the results obtained by Doi and Takeuchi [15], we know that every
cleft extension D < A with cleaving morphism f, such that f(1y) = 14 induces a crossed
product D, H, where 0 : H® H — D is a suitable convolution invertible morphism (a normal
2-cocycle). Conversely, in [7] we can find the reverse result, that is, if Df,H is a crossed
product, the extension D — D4, H is cleft. On the other hand, Sweedler [23] introduced the
cohomology of a cocommutative Hopf algebra H with coefficients in a commutative H-module
algebra A. We will denote these cohomology groups as H, ,(H®, A), where ¢4 is a fixed action
of H over A. In [23], we can find an interesting interpretation of the second cohomology group
HZ,(H,A) in terms of extensions: This group classifies the set of equivalence classes of cleft
extensions, i.e., classes of equivalent crossed products determined by a 2-cocycle. This result
was extended by Doi [14] proving that, in the noncommutative case, there exists a bijection
between the isomorphism classes of H-cleft extensions D of A and equivalence classes of crossed
systems for H over A with a fixed action. If H is cocommutative, the equivalence is described
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by Hizw (H, Z(A)), where Z(A) is the center of A.

The aim of this paper is to extend the preceding results to cocommutative weak Hopf
algebras completing the program initiated in [5]. To do that, in the second section, we introduce
the notion of H-cleft extension for a weak Hopf algebra H, and we prove that this kind of
extensions are examples of weak cleft extensions as the ones introduced in [2] and satisfying that
the classical notion used in the papers of Doi and Takeuchi is obtained when we particularize
to the Hopf setting. We also prove that, under cocommutative conditions, we can assume
without loss of generality that the associated cleaving morphism is a total integral. In the third
section, assuming that H is cocommutative, we prove that it is possible to identify the set of
crossed systems in a weak setting as the set of weak crossed products induced by a weak left
action and a convolution invertible twisted normal 2-cocycle. As a consequence, we obtain the
main result of this section that assures the following: If (A4, pa) is a right H-comodule algebra,
there exists a bijective correspondence between the equivalence classes of H-cleft extensions
Apg — A and the equivalence classes of crossed systems for H over Ay, where Ay denotes the
subalgebra of coinvariants in the weak setting. Finally, in the fourth section, we generalize the
result obtained by Doi and Takeuchi about the characterization of equivalence classes of crossed
systems using the second Sweedler cohomology group. To obtain this generalization, we must
use the cohomology theory of algebras over commutative weak Hopf algebras developed in [5].
The main result contained in [5, Theorem 3.11] asserts that if (A, p4) is a commutative left
H-module algebra, there exists a bijection between the second cohomology group, denoted by
H;A (H, A), and the equivalence classes of weak crossed products A®, H, where « : HQ H — A
is a morphism satisfying normal and 2-cocycle conditions. Then, by this bijection and using
the results of the previous sections, we obtain the description of the bijection between the
isomorphism classes of H-cleft extensions Ay < B and the equivalence classes of crossed

systems for H over Ay in terms of H H,Z(Ap)).

Z(AH)(

2 Integrals over Weak Hopf Algebras

From now on, C denotes a strict symmetric category with tensor product denoted by ®
and unit object K. With ¢, we will denote the natural isomorphism of symmetry, and we
also assume that C has equalizers. Then, under these conditions, every idempotent morphism
q:Y — Y splits, i.e., there exist an object Z and morphisms ¢ : Z — Y and p : Y — Z, such
that ¢ = iop and poi = idz. We denote the class of objects of C by |C| and for each object
M € |C|, the identity morphism by idy; : M — M. For simplicity of notation, given objects
M, N, Pin C and a morphism f: M — N, we write P® f for idp ® f and f® P for f ®idp.

An algebrain C is a triple A = (A, 94, 11a), where A is an object in C and n4 : K — A (unit),
pa: A® A — A (product) are morphisms in C, such that pso(A®na) =ida = pao(na® A),
pao(A@pa) =pao(pa®A). We will say that an algebra A is commutative if paoca a4 = pa.
Given two algebras A = (A,na,na) and B = (B,nB,us), [ : A — B is an algebra morphism,
if upo(f® f)=fopaand fong =np. If A, B are algebras in C, the object A ® B is an
algebra in C, where nagp =14 @ np and pagp = (ta @ up) o (A® cp,.a ® B).

For an algebra A, we define the center of A as a subalgebra Z(A) of A with inclusion algebra
morphism iz(4) : Z(A) — A satisfying pa o (A ®iza)) = paocano (A®izgy), and such
that if f: B — A is a morphism with g4 0 (A® f) = paoca a0 (A® f), there exists a unique
morphism f’: B — Z(A) satisfying iza) o f' = f. Trivially Z(A) is a commutative algebra.
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A coalgebra in C is a triple D = (D,ep,dp), where D is an object in C and ep : D — K
(counit), ép : D — D ® D (coproduct) are morphisms in C, such that (ep ® D) odp =idp =
(D®ep)odp, (0p®D)odp = (D ®dp)odp. We will say that D is cocommutative, if
¢p,podp =0dp holds. If D = (D,ep,dp) and E = (E,cp,dg) are coalgebras, f: D — E is a
coalgebra morphism, if (f ® f)odp =dgo fand ego f =ep. When D, E are coalgebras in C,
D ® E is a coalgebra in C, where epgr = ep ®ep and dpgr = (D ® ¢cp,r @ E) o (dp Q@ dg).

If A is an algebra, B a coalgebra and o : B — A, 3 : B — A are morphisms, we define the
convolution product by a A 8 = ps o (a® ) o dp.

Let A be an algebra. The pair (M, par) is a left A-module, if M is an object in C and
oM A® M — M is a morphism in C satisfying @p 0 (na @ M) = idy, om0 (A® o) =
wnm o (ua ® M). Given two right A-modules (M, par) and (N, on), f: M — N is a morphism
of right A-modules if oy o (AR f) = fopum.

Let C be a coalgebra. The pair (M, pys) is a right C-comodule, if M is an object in C and
pym 2 M — M ® C is a morphism in C satisfying (M ® e¢) o par = idpyr, (M @ par) © pu =
(M ®dc)opar. Given two right C-comodules (M, par) and (N, pn), f: M — N is a morphism
of right C-comodules, if (f ® C') o ppr = py o f.

By weak Hopf algebras, we understand the objects introduced in [9] as a generalization of
ordinary Hopf algebras. Here we recall the definition of these objects in a monoidal symmetric

setting.

Definition 2.1 A weak Hopf algebra H is an object in C with an algebra structure (H,ng,
wr) and a coalgebra structure (H,ep,0m), such that the following axioms hold:

(1)

dmopun = (ur @ um)odugH.
(2)

egopgo(pg @H)=(eg®en)o(ug @pup)o(HRog @ H)
=(en®en)o (@ pm)o (H @ (cuuodn)® H).

(bg@H)odgony =(H®uy ®H)o (0 ®0u)o (N @nm)
=H&@(puocyn)®@H)o (0 @)oo (nu @nm).

(4) There exists a morphism Mg : H — H in C (called the antipode of H) satisfying:
(i) idg Ay = ((eg o pn) @ H) o (H @ cuyr) © (0m ©ne) @ H),

(11) Ag ANidy = (H® (EH OMH)) o (CHJ-[ (9 H) o (H® (51-[ 077]_1))7

(iii) Ag ANidyg A g = Mg

It is easy to see that a weak Hopf algebra is a Hopf algebra if and only if the morphism g
is unit-preserving or if and only if the counit is a homomorphism of algebras.
If H is a weak Hopf algebra in C, the antipode is unique, antimultiplicative, anticomulti-

plicative and leaves the unit and the counit invariant as follows:

Agopr =proAg ®Ag)ocua, 0o m =cuuo(Ag ®Ag)odm, (2.1)

AH ©1NH = NH, EHONH = EH. (2.2)
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If we define the morphisms 1% (target), 1%
I = ((em o p) © H) o (H @ e mr) o
Hg = (H@ (€H O/J/H)) o (CH7H ®H) o
=L
Iy =(H®(enopn))o((0nonm) @ H),

165
(source), ﬁg and ﬁg by

((Om onm) @ H),

(H @ (61 onm)),

Ty = (e o pn) ® H) o (H @ (541 0 i),

respectively, it is straightforward to show that they are idempotent and 1%, TI satisfy the

equalities
I =idg A g, TOE =g Aidg, (2.3)
respectively (see [9]). Moreover, we have

Ik oMy, =1k, Tk ol =Ty, R ol =10}, IE oI = Ik, (2.4)

Ty olly =T, Ty olf =1k, Tpolk =11k, oIk =TI, (2.5)

Il =T oAy = Agolly, TIE =Ty oAy = Ag oIl (2.6)

T4 ody =TT, o IE = Ay oTIE, TR oAy =TIE oI = Ay o T4 (2.7)

For the morphisms target, we have the following identities:

pr o (H@y) = ((ep o pw) @ H) o (H @ cum) o (6 ® H), (2.8)

pro (g @ H) = (H® (eg o pyr)) © (cam ® H) o (H @ 6pr), (2.9)

—L
pr o (H®Ily) = (H® (egopn)) o (0n ® H), (2.10)
—R

i o (Tl © H) = (11 0 ) @ H) o (H @ 3pr), (2.11)

(H® ) o6y = (uar ® H) o (H® cap) o ((0m o nm) © H), (2.12)

Mf @ H)ody = (H®pg)o (cum®H) o (H® (6 onm)), (2.13)

L

(g ® H)odp = (H ® pg) o ((6n onm) @ H), (2.14)

(H®Ty) 08y = (un ® H) o (H® (8 o)), (2.15)

5 o pgr o (H @ ) =11k o g (2.16)

Definition 2.2 Let H be a weak Hopf algebra. We will say that a right H-comodule (A, pa)
is a right H-comodule algebra, if A is an algebra such that pa o pa = pagm © (pa ® pa) and

any one of the following equivalent conditions holds:

1) (A®HL)OPA:(ALA®H)O

(A®CH,A) o

((paona) ® A),

(

(2) (A®TIy) 0 pa= (na® H) o (A® (pa 014)),

(3) (A®HL)OPAO7IA:PAO77A7

(4) (A®HH)OpAO"7A:pAO77A7

(5) (pa®@H)opaona=(A® ug ®H)o(pa®dy)o(na®@nm),

(6) (pa®@H)opaona=(A® (umocum)®H)o (pa®dm)o(na®nm).

If (A, pa) is aright H-comodule algebra, the triple (A, H, TH) is a right-right weak entwining

structure, where

(cra®@H)o(H®pa) (2.17)
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(see [13]). Therefore the following identity holds:

(A®ep) ol = g0 (ea ® A), (2.18)
where

ea=(A@eg)oTH o (H@na). (2.19)

We denote by M (TH) the category of weak entwined modules, i.e., the objects M in C together
with two morphisms ¢pr : M ® A — A and ppr : M — M ® H, such that (M, ¢pr) is a right
A-module, (M, par) is a right H-comodule, and such that the following equality:

par o dar = (om @ H) o (M @T4) o (par © A) (2.20)

holds. Then, if (4, pa) is a right H-comodule algebra, (A, pa, pa) is an object of M (T'H).
If (A,pa) is a right H-comodule algebra, we define the subalgebra of coinvariants of A as
the equalizer:

1A ﬁ,
AH — A — A®H,
Ca

where (4 = (pa ® H)o (A®cp,a) o ((paona)® A). Note that, as a consequence of Definition
2.2(1), we have that (4 = (A®@ %) 0 pa. It is easy to see that (Ap,ma,,pa,) is an algebra,
with n4,, and pa, to be the factorizations through the equalizer i 4 of the morphisms 74 and
fa o (ia ®ia), respectively. For example, the weak Hopf algebra H is a right H-comodule
algebra with right H-comodule structure given by py = dp, and subalgebra of coinvariants Hpy
is the image of the idempotent morphism IT%. In what follows, we will denote this image by
Hy,.

Definition 2.3 Let H be a weak Hopf algebra, and (A, pa) be a right H-comodule algebra.
We define an integral as a morphism of right H-comodules f : H — A. Moreover, if fong = na,
we say that the integral is total.

An integral f + H — A is convolution invertible, if there exists a morphism f~': H — A
(called the convolution inverse of f), such that

(1) f'Af=ea,

2) fAST = (A® (emopm)) o ((paona) ® H),

G) fIAfAFT =1
where e, is the morphism defined in (2.19).

Trivially, the inverse is unique. Moreover, using the condition Definition 2.3(1), if f is an
integral convolution invertible, we get that f A f~' A f = f. Finally, when f is a total integral,
we can rewrite the equality Defnition 2.3(1) as f~' A f = f o IIZ and Definition 2.3(2) as

f/\f_lzfoﬁf{.

Example 2.1 Let H be a weak Hopf algebra, such that 1% = ﬁf{ (equivalently, IT1E = ﬁfl).
Then the identity idg is a convolution invertible total integral with inverse Ag. Note that this
equality is always true in the Hopf algebra setting. In our case, it holds, for example, if H is a
cocommutative weak Hopf algebra.
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Definition 2.4 Let H be a weak Hopf algebra and (A, pa) be a right H-comodule algebra.
We say that Ag — A is an H-cleft extension, if there exists an integral f : H — A convolution
invertible, such that the morphism f A f~' factorizes through the equalizer i 4. In what follows,
the morphism f will be called a cleaving morphism associated to the H-cleft extension Ay — A.

Proposition 2.1 Let H be a weak Hopf algebra, and (A, pa) be a right H-comodule algebra,
such that Ag — A is an H-cleft extension with cleaving morphism f. Then the equality

pacft=(f"®An)ocumodn (2.21)

holds.

Proof We define the following morphisms: 7 = pao f= s=paofandt= (f"1®Ay)o

CH,H © (SH
First of all, we show that s A r = s A t. Indeed,

sAT=pao(fAf)
=(A@Ig)opao(fAFT)
= (pa@ (M opgo(HoTE))) o (A cra® H)o((pao f)@ (paof 1) ody
= (pa®@Mf)o(A@cha)o((paof)® f1)odn
= (pa®@H)o(A®ch,a)o (f @ (nmo(H@Ag)odn))odu) @ f1)odn
= sAt.

In the foregoing calculations, the first equality follows by using that A is a right H-comodule
algebra; the second one follows because Ay — A is H-cleft; in the third one, we use (2.16); the
fourth one relies on the equality (pa @ pp) o (A® ca,a ® H%) o(pa®pa)=(pa®@H)o(A®
cr,a) ® (pa ® A), the fifth one is a consequence of the definition of T1; finally, in the last one,
we use that f is an integral.

Using similar techniques (2.6) and (2.10), we obtain that t A s =7 A s.

On the other hand, using Definition 2.1(2) and that f is an integral we have that the equality

(AP opn = ((eropn)® (F'Af)) o (H @) holds.
Now we use the previous equality and that f is a convolution invertible integral to get that
tAsSNt=1.

tASsSANt=(ua®@H)o(A@cua)o(A® py @ A)o(cya®H®A)

o(Ar @ ((f7'Af) @) odn)® A)o (bu @ f~') 0 dm

=(ua®H)o(AQcha)o (A@uag @A) o(cua@HRA)
oMr@((fT'Af)opm)@ H)o(H® chn)
o ((0m onu) @ H)) @ A)o (65 @ f~1) 0 0n

=(pa®@H)o(A®cha)o (A® pug ® A)o (cpa® H® A)
o(m @ (((cropm)@(fT'ASf)o(H®n)®H)
o(H®cp,u)o ((0monm) ® H)) @ A)
o(Bg® f V) ody

=cgao(Au AT @ (FEANFALFTY)) ooy =t
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Taking into account that » A s Ar = r, the equalities r =r AsAr=tAsAr=tAsAt=1t
hold and we conclude the proof.

Proposition 2.2 Let H be a cocommutative weak Hopf algebra, and (A, pa) be a right H-
comodule algebra. If there exists a convolution invertible integral f : H — A, then Ay — A is
an H-cleft extension.

Proof Let f~! be the convolution inverse of f. We have to show that f A f~! factorizes

through the equalizer 4. Indeed,

Cao(fAFTY
= (A@Tj)opao(A® (eq o pm)) o ((paona) ® H)
=(A®H® (egopn)) o (Ae (g @ H)ody)® H)o ((paona) @ H)
=(A®H® (egopn)) o (A® (I @ H) o ey ody) © H) o ((paona) ® H)
=A@ (gopn)@H)o(pa®@cam)o(AxTE)opaona)® H)
=(A®(egopn)@H)o (pa®cmm)o((paona)® H)
=(AQH® (egopn))o(A® (cauody)@H) o ((paona) @ H)
=(A®9H® (cgoun))o(A®dg @ H)o((paona) ® H)
=pao(fASfT).

[¢]

[¢]

[¢]

[¢]

[¢]

~— — ~— ~— ~— ~—
m~ o~ o~ o~ o~ o~

[¢]

In the foregoing calculations, the first and the last equalities follow by Definition 2.3(2); the
second, fourth and sixth ones use the condition of comodule for A; in the third and seventh
ones we use that H is cocommutative; finally the fifth one follows by Definition 2.2(3).

Remark 2.1 Let H be a weak Hopf algebra, and (A, pa) be a right H-comodule algebra.
We want to point out the relation between the notion of H-cleft extension and the one of weak
H-cleft extension given in [2]. In [2], we introduce the set Reg"*(H, A) as the one whose
elements are the morphisms h : H — A, such that there exists a morphism A~ : H — A, called
the left weak inverse of h, such that h=* A h = e4, where e4 is the morphism defined in (2.19)
for the right-right weak entwining structure I'/ associated to (4, pa) (see (2.17)).

Then, following [2, Definition 1.9], we say that Ay — A is a weak H-cleft extension if there
exists a morphism h : H — A in Reg"WV#(H, A) of right H-comodules, such that the equality
IMo(Hoh Y)ody = (ao(eaAh™) holds. Moreover, we can assume without loss of generality
that eq A h~! = h™! and the previous equality can be expressed as

MoHoh Y ody =Cioh™t, (2.22)

and, as a consequence [2, Proposition 1.12], the morphism g4 = ppa o (A®@h ™ )ops: A — A
factorizes through 74. Therefore, there exists a unique morphism ps4 : A — Ap, such that
ga =iaopa. Then, hAh™' = g4 0 h, and, as a consequence, h A h~! admits a factorization
through i4. Moreover, by [2, Remark 1.10], we know that if there exists an h € Reg" *(H, A)
of right H-comodules,

T4 = (ua®@H) o (A@ (paopa))o((h™' @h)ody)® A). (2.23)
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Theorem 2.1 Let H be a weak Hopf algebra, and (A, pa) be a right H-comodule algebra. If
there exists an h € RegWR(H, A) of right H-comodules, such that ea Nh™' = h™1, the following
assertions are equivalent:

(i) The morphism h A h~' factorizes through the equalizer i and h™1 satisfies (2.21).

(ii) The equality (2.22) holds.

Proof If (ii) holds, Ay — A is a weak H-cleft extension and then h A h~! admits a
factorization through i4. The equality (2.21) follows in a similar way to the proof given in
Proposition 2.1 by using that e4 Ah™1 = A~

Conversely, assume that (i) holds. Then

IMfoH@h ooy

=(ua®@H)o(A® (paopa))o(h@h)ody)@h ™ )ody

= (pa @) o (h™' @ (pao(hARTY))) o du

= ((na o (A® pa)) @ (U opm)) o (K @h®cya® H)
o(H®g @ (paoh™))o(H®dy)odn

= (ua® M) o (ea®cma)o (g @h™")ody

= ((A@en)oTH) @) o (H@cma)o (6g @h~") o du

= (A® (emopm) @) o (cma@chm) o (H®cya® H)
o(6H®(pth*1))06H

=(A® MM opupy))o(cua®H)o(H® (paoh™))ody

=(h'elg)ocymodn,

where the first equality follows by (2.23), the second one uses that h A h~! factorizes through
i4 and the third one follows because A is a weak entwined module and h is a morphism of right
H-comodules. In the fourth equality, we use (2.21), and the fifth one is a consequence of the
properties of I1%. The sixth one follows by (2.18), and the seventh one relies on the definition
of TH. Using (2.8) and (2.16), we obtain the eighth equality. Finally, the last one follows by
(2.21) and the properties of ITk.

On the other hand,

Caoh™ = (AeTE)opaoh ™t = (@ (M oAu))ocunody =(h @) o ey ody.
Then the proof is complete.

Corollary 2.1 Let H be a weak Hopf algebra, and (A, pa) be a right H-comodule algebra.
If Ay — A is an H-cleft extension, then it is a weak H-cleft extension.

Proof If Ay — A is an H-cleft extension, there exists an integral f : H — A convolution
invertible, such that the morphism f A f~! factorizes through the equalizer i 4, where f~! is the
convolution inverse of f. Then, f € RegWR(H, A), ea A f~1 = 71 and by using Proposition
2.1, the equality (2.21) holds. Therefore, as a consequence of the previous theorem, we obtain
that Ay «— A is a weak H-cleft extension.

Remark 2.2 As a consequence of Corollary 2.1, the results proved in [2-3] for weak H-
cleft extensions can be applied for H-cleft extensions. For example, if Ay — A is an H-cleft
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extension with cleaving morphism f, the morphism g4 = a0 (A® f~!)opa factorizes through
the equalizer i 4, i.e., there exists a morphism ps : A — Ap such that i4opa = ga. Also, using
[4, Lemmas 3.9 and 3.11], we have the following equalities:

pao(qa® f)opa=ida, (2.24)
paopac(ia®A) =pa, o (Ag @pa). (2.25)

Definition 2.5 Let H be a weak Hopf algebra. Two H-cleft extensions Ay — A and
By — B are equivalent (written by Ay <— A ~ By — B), if Ay = By, and there exists a
morphism of right H-comodule algebras T : A — B, such that Toia =1ip.

Note that, if the H-cleft extensions Ay — A and Ay — B are equivalent, and f is a cleaving
morphism for Ay — A, it is easy to show that g = T o f is a cleaving morphism for Ay — B

L' = To f~1. Under these conditions, T is an isomorphism. If f is the cleaving morphism

with g~
associated to Ay — A, we define four morphisms as follows: v4 = (pa®H)opa : A — Ag®H,
XA = pao(ia® f): Ag®@®H — Aand yp = (pp @ H)opp : B — Ag ® H, xp =
ppo(ip®g): Ag®H — B, where pa and pp are the factorizations of g4 = pao(A® f~1)opa,
g = pp o (A®g~1)opp, respectively, and i, ip are the corresponding equalizer morphisms.

Then,

xBova=ppo((ipopa)®g)opa=ppo((Toga)®@(Tof))opa
=Topao (AR (fT'Af))opa
=Topugo(A®es)opsa =T,
ipoppoT =ppo(Be(Tof ')opgoT=Toga=Toisopa=ipopa.
If we define T~': B — Aby T~ = x4 ovg, we have
ToT '=ppo((Toisops)®(Tof)®ps=pupo(B®ep)ops=idp,

and in a similar way, T~ o T = id4. Therefore, T is an isomorphism.

7

Obviously, “~ 7 is an equivalence relation, and we denote by [By — B] the isomorphisms

class of the H-cleft extension By — B.

It is a well-known fact in the Hopf algebra setting that, if Ay <— A is an H-cleft extension
with convolution invertible integral f, the morphism h = pao(f®(f tong)) is a total integral
which is convolution invertible. There is a similar result for weak Hopf algebras, although we
want to point out that the proof is very different, because in our case dg o ng # Ny ® Ngy.
Actually, in order to give the convolution inverse of this morphism, we assume that the weak
Hopf algebra is cocommutative. This hypothesis can be removed in the classical case, because
for Hopf algebras the morphisms Hf“{, Hﬁ ﬁg and ﬁg trivialize.

Proposition 2.3 Let H be a weak Hopf algebra with invertible antipode. If Ay — A is an
H-cleft extension with cleaving morphism f, then h = pao (f ® (f~'ongy)) is a total integral.
Moreover, if H is cocommutative, h is convolution invertible.

Proof The morphism h = g0 (f® (f~Lony)) is an integral, where f~* is the convolution
inverse of f. Indeed,

paoh=pagmo((pacf)®(paocf ' onm))
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= (A (Ag oy ))opagm o (f© H)odu)® ((f~ @A) o e o 0w onm))
=(pa®H)o(f®(cgaoAu® f ') o(ug ® H)

o(H®ecmu)o ((6monm) ®ANg'))) o du
=(ua@H)o(f®(craoMg @ f o (HaE)odgorg'))odn
=(pa®@H)o(fo((frollholg')® H)ody)odu
=(h®H)ody.

The first equality follows because A is a right H-comodule algebra, the second one uses that
Ag is an isomorphism, the third and the fifth ones are the consequences of the antimultiplicative
property for g, )\I}l and the naturality of ¢, the fourth one follows by (2.12), and finally, the
last one uses (2.6).

Now, using Proposition 2.1, the properties of the antipode and (2.6), we have

(A® (en o pm)) o (cma @ H) o (H® (pao ' onm))

=(A® (emopn))o(cma®H) o (H® ((f71 @A) o cpm 08 01s))
=(nopmocum)® [ oAy @ (Omonm))
= [t oHﬁ o )\;{1 =f1 oﬁg.

As a consequence, h = f A (f~1o ﬁg), and tEegl we get that h is total because, by the
previous equality and (2.15), hong = (f A (f 1 olly)) onu = (f A f71) onu = na.

Now we assume that H is cocommutative. We define h™! = pao((fony)® f~1). Following
a similar way to the one developed for h, it is easy to prove the equalities h=! = (fo Hﬁ) AfL
and pao(f1® (fonu)) =pao(f 1@ (follf oly))ocyyody. As a consequence of the
last equation, taking into account that H is cocommutative, we obtain that

pao ((f onm) @ (fonu)) =nu. (2.26)

We conclude the proof showing that h~! is the convolution inverse of h. Condition (2) in
Definition 2.3 follows because, as a consequence of (2.26), hAh™! = fA f71 = (A® (g o
pm)) o ((paona) @ H).

As far as Definition 2.3(1), using that f is a convolution invertible integral, A is an H-
comodule algebra and (2.15), we get that = Ah = (A®(egopn))o(cy a®@H)o(HR(paona)) =
€A.

The proof for the condition (3) in Definition 2.3 for h follows a similar pattern, and we leave
the details to the reader. Then h is convolution invertible.

Remark 2.3 As a consequence of the previous proposition, in the cocommutative setting,
we can assume that the integral is total.

In the following definition, we recall the notion of left weak H-module algebra introduced
in [5].

Definition 2.6 Let H be a weak Hopf algebra. We will say that A is a left weak H-module
algebra if A is an algebra and there exists a morphism @4 : H ® A — A satisfying

(1) pao(nu ® A) =ida,

(2) pao(H@pa)=pao(pa®@pa)o(H @cya®A)o(0y ® A® A),
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(3) pao(pr ®na)=pao(H® (pao(H@na))),
and any one of the following equivalent conditions holds:

)SOAO(HIH®A) prac ((pao (H@na)® A),

) (T ®A) = paocaao ((pao (H®na) A,

) pao (I H®77A) pao(H®na),

7) pao (T ®na) = pao (H@na),

) ( pao(H ®n4))® (e opm))o (0n @ H),

) enopm)®(pao(H®@na)))o(H@cynm)o (dn @ H).

H & (pao(H®na))) = (
9) pao(H® (pao(H®na))) = (
If we replace (3) by
(3) pac (uu ®A) =pao(H®pa),
we will say that (A, pa) is a left H-module algebra.

(4
(
(
(
( (
( (

Remark 2.4 Note that as a consequence of Definition 2.6(4)—(5) if the weak Hopf algebra
is cocommutative the morphism @4 o (H ®n4) factorizes through the center of A, that is, there
exists a unique morphism n : H — Z(A), such that iz 4)yona = pa0(H®na). Moreover, if H
is a Hopf algebra and (4, ¢4) is a left weak H-module algebra, conditions (4)—(9) in Definition
2.6 imply that ey ® na = pa o (H ®na). As a consequence, the equality (3) in Definition 2.6
is always true and @4 is a weak action of H on A (see [6]).

Proposition 2.4 Let H be a cocommutative weak Hopf algebra. If Ay — A is an H-cleft
extension with cleaving morphism f, the pair (Amg,va,,) s a left weak H-module algebra, where
Ay is the factorization of the morphism o4 = pao (A® (maocan))o(f@f 1) ody)@ia)
through the equalizer i 4.

Proof If Ay — A is an H-cleft extension, as a consequence of Corollary 2.1, we have that
Apg — A is a weak H-cleft extension, and then, using [2, Proposition 1.15], we know that ¢4,
factorizes through the equalizer i4 and satisfies Definition 2.2(2). Moreover it is easy to see
that

Yag =paopac (f®ia), (2.27)

and then Definition 2.2(1) holds.
As far as Definition 2.2(3),

Yay o (H® (pay o (H®n4y)))
=paopac(f®(qacf))
=paopac(fR(fAF)

= ((paopa)®(Emopun))o(f@(paona)oH)

= (pa® (e o)) o (AT @ H)o((pao f)© H)
=((pacgqacf)®@(emopn))o(én®H)
(pao(fAFY)@ (e opm))o(dn®H)

pA® (em o pm))o ((paona) ® pm)
=pac(fAf D)) opn

=@y °(H ®Nay),

~ o~~~
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where the first equality follows by (2.27); the second one follows because g4 o f = f A f~1; the
third, sixth and seventh ones are consequences of Definition 2.3(2); in the fourth one, we use
that A is a right H-comodule algebra; in the fifth one, we use (2.11) and that f is an integral;
finally, in the last one, we use that pa o (f A f1) = ¢a, o (H®na,).

It only remains to show one of the equivalent conditions (4)—(9) in Definition 2.6. We get
(6) in Definition 2.6:

Pagy © (M ®@nay) =pac(fAf ) oll =paoc(A® (emopn))o((paona) ®@1f)
:pAO(f/\f_l) = PAu O(H®77AH)'

3 Crossed Systems for Weak Hopf Algebras

Taking into account the theory developed in the previous section, in the remainder of this
paper, we will assume that H is a cocommutative weak Hopf algebra. In this section, we
generalize the theory of crossed systems over a Hopf algebra given by Doi [14] to the weak
setting. Also we obtain a bijective correspondence between the isomorphisms classes of H-cleft
extensions [Ay < A] and the equivalence classes of crossed systems for H over Ay. Following
[5, Definition 1.18], we have the following definition.

Definition 3.1 Let (A,pa) be a left weak H-module algebra. We define Reg,,, (H,A),
as the set of morphisms h : H — A, such that there exists a morphism h=' : H — A (the
convolution reqular inverse of h) satisfying the following equalities:

(IhARY=h"YAh=u,

(2) hAR™Y Ah =h,

(3) R *ARARt=h"Y
where up = pa 0 (H @mn4).

In a similar way, Reg,, , (H® H, A) is the set of morphisms o : H® H — A, such that there
exists a morphism o' : H® H — A satisfying:

(4)oNo =0t No = us,

(5) c Ao Ao =0,

6) o tAocATTL =071,
where uy = pa o (H @ uy).

Note that h~! is unique because, if there exists a morphism g : H — A satisfying Definition
3.1 (1)-(3) for h, we have

g=gANhAg=uiAg=h"*AhAg=h"*Auy=h *AhARt=h"1

The proof for the unicity of 0~! is similar and, of course, the sets Reg,,, (H, A), Reg,,,(H®
H, A) may be empty. Note that, using (3) of Definition 2.6, we have

Uo = U7 O fLF- (3.1)

Also, as a consequence of [5, Proposition 1.19], we know that, if (A, pa) is a left weak
H-module algebra, such that there exists an h : H — A satisfying that:

AAR Y =h*Ah=u, hAhW*Ah=h, R *AhRAR ' =h"!
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the following equalities are equivalent:

hong =na, (3.2)
hOH% = Uy,
hoTly = ui. (3.4)

In a similar way, it is possible to see that, if 0 : H ® H — A is a morphism, such that
oANo ! 2071/\U:u2, J/\Ufl/\aza, o tAhoneT! 2071,
the following equalities are equivalent:
oo(ny ®H)=u, (3.5)
oo (Il @ H) o dy = uy,
UocH7Ho(H®ﬁf{)05H=u1. (3.7)

Finally, the following assertions are equivalent:

oo(H®nm) = ui, (3.8)
co(HUE) oy = uy,
aocH,HO(ﬁ§®H)06H:u1. (3.10)

Proposition 3.1 Let (A, pa) be a left weak H-module algebra. If there exists an h: H — A
satisfying the following equalities: hAh™' = h™*Ah = u1, hAh™'Ah = h, h"'*AhAR™! = A7,
we have that hong =n4 if and only if R~ ong = 4.

Proof If honyg = na, using (2.12) and (3.3), we have
h~rong =(h"" Aur)ony = (h™" A(hollf)) onm =ui 0Ny = na.

Conversely, if A" oy =na, hony = (h Aur)ony = (h A (h™' o 11f)) oy = u1 0Ny = na.

Definition 3.2 Let (A,p4) be a left weak H-module algebra, and o : H®@ H — A be a
morphism satisfying Definition 3.1(4)—~(6). We say that (pa,0) is a crossed system for H over
A if the following conditions hold:

(1)
pac(A®pa)o(c@pug @A) o (duen ® A)
=pao((pac(H®pa))©A)o(HOH®caa)o(HRHo®A)o (Ongn ® A).

(2)
(pao(H@ o)) A (00 (H um) = (0@ em) A (oo (um  H)).

(3)
co(H@nu)=00o(mu®@H)=¢pao(H®@na).

It is clear that our condition (4) in Definition 3.1 over o implies that it is left invertible in
the sense of [22, Definition 4.1]. In any case, to obtain the main results of this paper and a
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good cohomological interpretation, we need the right invertibility, that is Definition 3.1(4)—(6).
Moreover, the morphism ¢ is in Reg,, , (H ® H, A), and Definition 3.2(2) is equivalent to

pao (@' ®(pao(H®0)o@nen @ H)= (00 (ur®H) Ao~ o (H@pg)). (3.11)

Two crossed systems for H over A, (pa,0) and (¢a,7) are said to be equivalent, denoted
by (¢a,0) = (¢a,7),if pao(H®na) = ¢ao(H®na) and there exists an h in Reg,, , (H, A) N
Reg,, (H, A) with h ong = 14, such that

wa=pa0(pa®@A)o(h@pa®@h™ 1) o0y @cua)o(dg @A), (3.12)
o=pao(pa®@h ") o (A ®T @ pn)o (h®da @ dnen)
oc(n@h®H®H)odngH. (3.13)

Proposition 3.2 The relation = is an equivalence relation.

Proof Let (pa,0) be a crossed system. The morphism u; is in Reg,,, (H, A) with inverse
U1_1 = uq, and satisfies that uq ong = na. Moreover, using that (A, ¢ 4) is a left weak H-module
algebra, we have

pao(pa®A)o(u @ pa®@u;t)o (0 ®@cra)o (dg @A)
=pao(pa®A)o((pao(H ®@n4)) ®pa® (pao(H@n4))) o (0n @cua)o (0u ® A)
=pao(pa® (pao(H®na)))o(0n ®cua)o(dn ®A)=pa,

and get (3.12).

As far as (3.13), using that (A, p4) is a left weak H-module algebra and taking into account
that o is in Reg,,, (H ® H, A), we have that

NAO(,LLA®u;1)o(MA®J®uH)o(u1®¢A®§H®H)o(5H®U1®H®H)05H®H
=pao((pao(pao(H®na))©pa)® (oA (pao (um ©na))))

o (6 ® (pao(H®na) © H® Hodngn)
=pao((pao(ur ®na))® (Ao~ Ao))obugn)

:0'/\(7_1/\(7:0',

and the relation is reflexive.

In order to get that ~ is symmetrical, assume that (v, 0) ~ (¢, 7). Let h be the morphism
in Reg,,, (H, A)NRegy, (H, A) satisfying (3.12)-(3.13), such that hong = na. Then the inverse
h~1is in Reg,, (H,A) N Regy, (H,A). As a consequence of Proposition 3.1, we obtain that
h='ong = na. Moreover,

(pa®A)o(h™' @ pa@h)o(dg ®ch,a)o(6g @A)

(na @ A)o (W' Ah) © ¢a® (W Ah)) o (0 @ cna) o (5 © A)

= pra o (pa® A)o ((pao(H®na)) ® ¢pa @ (dao(H ®na)))o (6n @ cu,a)o (0n ® A)
=pa o (Pa® (¢ao(H®na))) o (H ®cua)o(0n ®A) = ¢a,

frao (p
= pao(p

by using that (¢a,0) &~ (1a,7), Definition 3.1(1) and that (A4,14) is a left weak H-module
algebra. In a similar way, we obtain (3.13) and the relation is symmetrical.
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Finally we show the transitivity. Assume that (¢4,0) = (¢4, 7) and (¢a,7) =~ (xa,7) with
morphisms h in Reg,, , (H, A)NReg, , (H, A) and g in Reg, , (H, A)NReg, , (H, A), respectively.
Then, the convolution product h A g is in Reg,, (H, A) N Reg, , (H,A). Using (2.12), (3.3),
Defnition 3.1(2) and that g=' A g = h™! A h, we obtain that (h A g) o = na.

The proof for the conditions (3.12)—(3.13) follows a similar pattern to the well-known proof
in the classical case, and we leave the details to the reader.

Remark 3.1 We have given the detailed calculus for the above proposition in order to
illustrate the differences when working with weak Hopf algebras. Note that the proof is trivial
in the classical case: If H is a Hopf algebra, the relation is reflexive using the morphism
h =ep ®na, and it is easy to get that it is symmetrical because AAL™' = h ' Ah =g @na.
Obviously, these equalities are not true for weak Hopf algebras.

Proposition 3.3 Let (A, pa) be a left weak H-module algebra and o € Reg,, ,(H @ H, A).
The following assertions hold:

(i) comp@H)=u1 <o o(ng @ H)=u.

(i) co(H@ny) =u1 & o to(H@ny) = ui.

Proof We prove (i). The proof of (ii) is similar, and we leave the details to the reader.
o o(ng @ H)
= (07" Nuz) o (nr ® H)
=pao (07 @ (uiopn))oduemo (nn @ H)
= pao (0 o) ®u)) o (Mg ® H) od) ® H) o8y
=pao((ctocygu)®o)o(H® (((ﬁz opg)@H)o (H® cp.m)
o((6monu)®H))®H)o(H®dn)odn
=pao((0  ocmm)®o)o(H® (He ((epopn) @ H)o (H @ cuu)o 5y @ H)))
o((dgony)® (dpony)®H))@H)o (H®d0g)odny
=pao((0 ocgm)®o)o(H® (He (((ep o p) ® H)
o(H®cuu)o ((cumodu)® H)))
o((dgonu)®@0ronu)RH))®@H)o(H® (cumodu))odu
=((pao(c'®@o))@(cpopn))o(HOcurg@caag @ H)o (6g ®cyng® H)
o ((6m onu) ® ((0n ® H) o 6n)
= (w1 ®epg)odpopmo(nu®@H)=ui,
where the first and the eighth equalities follow by the properties of o, the second one uses the
definition of ug, the third one follows by (2.14), in the fourth one, we use (3.6) and (2.12), the

fifth one is a consequence of the definition of ﬁz, the sixth one follows by Definition 2.1(3), the

seventh one uses the cocommutativity of H, and the last one uses the unit-counit properties.

The proof of the converse is the same changing o by o~ !.

Remark 3.2 The equalities (1)—(3) of Definition 3.2 have a clear meaning in the theory of
weak crossed products introduced in [4, 8]. The full details can be also found in [5, Section 2].
In this point, we give a brief summary adapted to our setting, i.e., there are some changes in
the notation.
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Let (A,pa) be a left weak H-module algebra and o : H ® H — A be a morphism. We
define the morphisms ¢y : H® A = A® Hand ofy : H® H — A® H, by 5 = (o4 ® H) o
(H ®cp,a)o (dy @ A) and afl = (0 ® uy) o dgeH, respectively.

Then, the morphism Vg = (4 ® H) o (A® i) o (A® H ®n4) is an idempotent, and
we will denote by A X, H, iagn : AXe H —> A® H and pagy : A® H — A X, H the object,
the injection and the projection associated to the factorization of V o5 p, respectively.

Considering the quadruple Ay = (A, H, i}, 04 ), where (A, ¢4) is a left weak H-module
algebra and o € Reg,, , (H ® H, A), we say that Ay satisfies the twisted condition if

(na®@ H)o (A® ) o (o ® A) = (pa® H)o (A® o) o (vig @ H) o (H®¢yp),  (3.14)
and the cocycle condition holds if

(ra® H)o(Avog)o(og ®H) = (pa®H)o(A®oy) o (Y ® H)o(H®oy).  (3.15)

For the product defined by

fia,a = (na ® H) o (pa ®ofy) o (AR py ® H), (3.16)

if the twisted and the cocycle conditions hold, we obtain that it is associative and normalized
with respect to Vagn (i-e., Vagy 0 ftae, 0 = las. i = pas,d ° (Vagn @ Vagm)). We say
that A®, H = (A® H, pag,m) is a weak crossed product if A satisfies (3.14)—(3.15).

Due to the normality condition, the object A x, H is an algebra with product pax, g =
PAgH © tag,H © (lagH ® tagn), and unit nax, g = pagu © (Na @ nu) (see [16, Propositions
3.7-3.8]). Moreover, v = Vagm o (na @ ng) is a preunit for pag, o

Therefore, if (pa,0) is a crossed system for H over A, we have that A ®, H = (A ®
H, pag, ) is a weak crossed product with preunit v = Vagm o (na @ ni). Conversely, if the
pair (pa, o) satisfies that A ®, H = (A® H, pag, n) is a weak crossed product with preunit
v = Vagm © (na ® ng) and normalized with respect to Vagm, we obtain that (p4,0) is a
crossed system for H over A (see [5, Corollary 2.20]).

In the following result, we characterize crossed products with an H-module structure ¢ 4.

Theorem 3.1 Let (A, pa) be a left weak H-module algebra and o € Reg,,(H @ H, A)
satisfying Definition 3.2(1). The following assertions are equivalent:

(i) (A, pa) is a left H-module algebra.

(ii) The morphism o factorizes through the center of A.

Proof Let (A,p4) be a left H-module algebra. We define 7, : AQ H® H — A as
Yo =pao ((aocan)®A)o(A® (0 ®0")odngn)). Then,

Yo = pao (AR us) (3.17)

because

Yo =pao((paocaa)@A)o(Ae (0 Auz) @0~ ) 0dnen))
=pao((pac(A@pua)o(A® (caac(A®ur)))) ®A)o(can®H®A)
c(A®og®o ) o(A®dugn)
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=pao((pac(A® (pao (I @ A)ocan))o(can® H))® A)
c(Avop @0 o (A®Suen)
=pao((pao(A®(A® (paoccanmo(A® (upo(H®Ag)o (up ® pw)
0dnen)))) @A) o(cas@HRH @A) o (Ao @ H® H® A)
0(A®dpgn @0 ') o (AQ dugH)
=pao((pac(A@pa)o(og@A)o(HOH® (paoccamo(A®An)))
oc(H®cag@pm)olcan@®HRH®@H)o (AR pen)) @0 1) o(A®Susn)
=pac((nao((paoc(H®pa)®A)o(H®H®can)
o((H®H®o)odugn) ®A)
oc(HOH® (paoccango(ARAg)))o(H®canu® pm)
o(can@H®HQH) 0o (AR 0uan)) ® o No(A®duen)
=pao(((pao(pr®A))o(H®can)) ®A)o(can @Ay @A)
o (A® ((urr @ pwr) 0 Sen) @ (0 A1) o (A® Sugn)
=pao((paoccano(A® (o)) @uz)o (A®Sugn)

— pao((pao (M ®A)ocam) ®u)o(A® Oy o par))
=pao((paocaao(ur®@A)ocan)@ui)o (AR (0nopm))
= a0 (A®us),

where the first and the eighth equalities follow by Definition 3.1(4)—(5), the second one uses
(3.1), the third one is a consequence of Definition 2.6(4), the fourth one follows by the definition
of I1£, the fifth and the seventh equalities are consequences of Definition 2.6(3)’. The sixth and
the nineth equalities follow by the cocommutativity of H, the tenth one uses Definition 2.6(5),
and the last one uses Definition 2.6(2).

Therefore, o factorizes through the center of A because

pao(A®o)

=pac(A® (uzAo))

=pa°o (1o ®0)o(A®nsn)
=pao((pac((paoccan)@A)o(A®((0@0 ) oduen)) ®a)o (AR dugn)
=pac((naccan)®A)o(A® ((0 ®uz)odnen))

= a0 (A® (paceano(ADTIy))) o (can® H)o (A® aft)

=pao(A® (pao(lF®A)ocan))o(caa®H)o (A oy)

=pao(A® (nao(u®A)ocan))o(can®H)o(A®oy)
=paccaac(A®o),

where the first, the fourth and the last equalities follow by Definition 3.1(4)—(5), the second
one uses (3.17), the third one is a consequence of the definition of 7., the fifth and the seventh
equalities follow by Definition 2.6(5), and the sixth one is a consequence of the cocommutativity
of H.

Conversely, assume that the morphism o factorizes through the center of A. Then, using
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Definition 2.6(2)—(3), conditions (4)—(6) in Definition 3.1, the twisted condition and that H is
cocommutative, we get that (A4, ¢4) is a left H-module algebra.

Corollary 3.1 Let (A, pa) be a left weak H-module algebra. The following assertions are
equivalent:

(i) (A,04) is a left H-module algebra.

(ii) (pa,us2) is a crossed system for H over A.

Proof It is straightforward.

Remark 3.3 In the conditions of Corollary 3.1, if (A, p4) is a left H-module algebra, we
have that for the crossed system (¢a,uz) the equality o4 = (uy ® H) o 6z o g holds. Then,
the associated crossed product defined is pag,,m = Vagw o (fta @ pa) o (A® Y& @ H) and
therefore piax,, o = pagH © (A @ pug)o (AR 1/)}3 ® H)o (iagy ® iagm). In this case, we say
that the weak crossed product is smash.

On the other hand, for a left weak H-module algebra, if the equality pa = pa o (1T ® A)
holds, using Definition 2.6(4), we obtain that

fax, i = Ppagn o (ta @ H) o (ua @ oty) o (AR cga® H) o (iagn @ iagH)-

In this case, the weak crossed product is called twisted.

Proposition 3.4 Let (pa,0) be a crossed system for H over A. Then, the algebra A x, H
is a right H-comodule algebra for the coaction pax,m = (Pagu@H)o(ARdy)oiagm. Moreover,
(A Xo H)H = A.

Proof As a consequence of [5, Proposition 3.2], we obtain that A x, H is a right H-
comodule algebra for the coaction pax, ng = (Pagy @ H)o (A® ) oiagm. Moreover, it is easy

to prove that
PAX s H

Ax H AxH®H
(Ax H®UE) 0 pax, 1

7:A><(,H

A

is an equalizer diagram, where iax_ n = pagm © (A @ ny).

In the following proposition, we establish the relation between crossed systems and H-cleft

extensions.

Proposition 3.5 Let (pa,0) be a crossed system for H over A. Then A — A x, H is an
H-cleft extension.

Proof The morphism f =pagm o (na ® H): H — A x, H is a total integral. Obviously,
fona =nax,m. Moreover, using that Vs m is a morphism of right H-comodules, we get that
[ is an integral. We define f~! = pagro(c ™' @ H)o (H ®cyu)o (0 oAy) @ H)ody. We
will show that f~! is the convolution inverse of f. First note that Definition 2.3(1) holds:

Y
=pagn o (1a® o) o (A® (w @ H) o) @ H) o (07! @ H) o (H ® ch,11)
=pach © (a0 (A® (u2 A 0)) ® prr) o (07" @ don)
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o(H®cmm)o (dproim)@H)og) @ H)ody
=pasn o (pa@H)o (0 ' @og) o (H @ cmm) o (0 orn) @ H)odu) ® H) o by
=pagm o ((u1opug) @ pu)oduem o (Ag @ H)ody
= pagn o (u1 ® H) o 5g o TR
= pagn © Vagn o (na @ T1)
=(AxH®Egopn))o(cuaxa @H) o (H® (pax,HONAx, H))-

In the previous calculations, the first equality follows by the normalized condition for the
product pag, g; the second one uses that (A, p4) is a left weak H-module; the third and fourth
ones hold because o is in Reg,,, (H ® H, A); the fifth one follows by the definition of IE: the
sixth one uses Vagy = (pao (A®u1)) ® H) o (A® dg); finally, in the last one we use that f
is a total integral.

The proof of Definition 2.3(2) follows a similar pattern, by the equality

(co(H@ug))A (o™ o(ug @ H)))o(H® Ay @ H)o (H®dg) 06y = u,

which follows by (2.12)-(2.13) as well as o € Reg,,, (H ® H, A) and (3.11).

To finish the proof, we only need to show that f~' A f A f~1 = f~1. First of all, using that
H is cocommutative, it is easy to see that (f™' @ Ag) o cg g 08y = pax,m o f~'. Using this
equality, the fact that A\ o Ay = idy (which follows because H is cocommutative) and (2.6),
we have

STPR((fAF ) oAmoAn))ody

Fr® (f oTlg 0 Aw 0 Aw)) o e 0 O
A><H®(fonI))oprHof*1
AXH(fT'Af))opaxaoft=f"

FTEANFA T = pax o
= HAx,H ©

= HAx,H ©

~ o~ o~ o~

= HAx,H ©

Then the proof is completed.

Proposition 3.6 Let Ay — A be an H-cleft extension. The morphism
oa:=(pao(fOANopn): HOH — A,

where [ : H — A is a convolution invertible total integral, factorizes through the equalizer i 4.
Moreover, if pa, : H® Ay — Apg is the left weak H-module structure defined in Proposition
2.4, the factorization of o4 is a morphism in Regg,AH (H ® H, Ag) satisfying the condition (3)
in Definition 3.2 and with convolution inverse the factorization through the equalizer iz of the
morphism o ;" := (fopu) A (paocaao (f~1 @ f71).

Proof If Ay — A is an H-cleft extension, Corollary 2.1 implies that Ay <— A is a weak
H-cleft extension. Then, using [2, Proposition 1.17], we obtain that o4 factorizes through the
equalizer i4 and, if o4,, is this factorization, the equality

oAy =paopac(f®f) (3.18)

holds.
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On the other hand, the morphism 021 factorizes through the equalizer 7 4. Indeed,

PA 0021

= pagn © (f © H® pagn) o (g @ pa @ (pao f71) @ (pao f71) o (Snen ® cu,u) © Suen

= (a® pr) o (f ® pagn @ H) o (H ® cya ® cua ® H)
o(ur @ He [(AeTy)opac f@ (pao f) o (H & cam ©cnp)
o(bg@H®H®H)odggn

=(uaH)o(f@[(A@ pm)o (caa® ((eaopn)@H)o(H®0y)))o(HRusa®@ H® H)
o (H@®A® cua®H)o(HE (pao )& (pao f) o (H cuu)o (6  H))
o(pn @ H® H)odpgn

=(pa®@H)o(fo[(A® pm)o(cra®H)o(H@ps@H)o(H® [T @ (pao ™))
o(H®chu)o(0g®@H)])o(up ® H®H)odugn

=(pa@H)o(f@[(raccaao(fTH @) @) o (H®cuu)o ((cum ®du) @ H)))
o(ug @ H® H)odgen

=(pa®@H)o(fo[(A® pm)o(cra®H)o(Hops@H)o(H® [T @ (pao ™))
o(H®chu)o(0g®H)])o(up ® H® H)odugn

= (AeTy)opaoay’

— (A®Th) o paoay’.
In the last computations, the first and the fourth equalities follows because A is a right

H-comodule algebra, the second one relies on Theorem 2.1. In the third one, we use (2.11). In
the fifth one, we apply the identity

(paocaao(fl@f NelUy) o(H®can)o ((cupody)® H)
= (A@puu)o(cra®H)o(HOua@ H)o(H® f~' @ (pao f71))
o (H®CH,H) o (51-[ ®H) (319)

Finally, the sixth one is obtained by (2.5) and the idempotent character of ﬁf,, the seventh
follows by repetition of the previous computations but in inverse order, and the last one relies
on (2.4).

Let azil be the factorization of 021. We will finish the proof by showing that o4, is a
morphism in Reg¢AH(H ® H,Apg) with inverse O'ZII{. First of all, note that Ay — A is an
H-cleft extension and then, using Proposition 2.2, the morphism f A f~! factorizes through
the equalizer i4. Now, using that H is a weak Hopf algebra, f is an integral, A is an H-
comodule algebra, Ay is a weak H-module algebra and the equality (2.24) we obtain that
ia0(oay, AUZ;) =i40pa, 0 ®n4, ). Then, using that i 4 is a monomorphism, o 4,, /\022 =
Pay o (la ®nay).

The proof of the equality 0211{ Noay = @ay o (pr o (H ®nay)) follows a similar pattern,
using (2.9), (2.25), (3.18) and the equality e4 o ugy o (I ® H) = e o uy, where e, is the
morphism defined in (2.19).

To prove Definition 3.1(5), we compose with the equalizer i 4

ia0(0ay Nojgr Noay) =ia0(0ay A(Pay o (nr @nay))
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= (pao(fONAS oum) N(fAF)opm)
=(pao(fONANfT"AFAFNopun)=iaooa,,

and then o4, A 0211{ ANoa, =04,  In asimilar way, using f A f~1 A f = f, we get Definition
3.1(6).

To finish the proof, we only need to show that o4, satisfies the normal condition. Indeed,
it is easy to see that ig 00y 0o (N @ H) = qaopao(na® f) = qaof = fAf L=
1A 0 QA O(H®77AH) and 1ACTAy, O(H®7}H) =qgaof = f/\ff1 =140 QAL O(H@UAH).
Therefore, o4, 0o (Mg @ H) =04, o (H®ny) = pa, o (H®na,).

In the next theorem, we prove that each H-cleft extension determines a unique equivalence
class of crossed systems for H over A. First we need a fundamental result in the study of
H-cleft extensions that generalizes [15, Theorem 11].

Theorem 3.2 Let Ay — A be an H-cleft extension with cleaving morphism f. Then, the
pair (YA, 0A, ) 18 a crossed system for H over Ap, where pa,, is the weak H-module structure
defined in Proposition 2.4 and o4, is the morphism obtained in Proposition 3.6. Moreover, the
H-cleft extensions Ag — A and Ag — Ay Xoay H are equivalent.

Proof TFirst note that in this case wfIH = (pa® H)opaopao (f®is) and UﬁH =
(pa®@H)opaopao(f® f). Then, as a consequence of [4, Proposition 3.13], we have that the
quadruple (Agy, H, ng , 01‘3“’ ) satisfies the twisted and the cocycle conditions. Therefore, the
theory exposed in Remark 3.2 leads to get that (pa,,04, ) is a crossed system for H over Ap.
Moreover, by [4, Lemma 3.11], we obtain that Vi, en = (pAa @ H) opaopao (ia® f).

Taking into account Proposition 3.5, we know that Ag — Apg Xoay H is an H-cleft ex-
tension. Also, using [4, 3.10], there exists a right H-comodule algebra isomorphism T =
PapoH © (pA @ H)opa : A — Ag Xga, H, such that Tt = pao(ia® f)oiagen and
T oingx,, 1 =pao(ia®f)oVayeno (A ®nu) = pao(ia® (fonu)) = ia. Therefore,
Ay — Aand Ay — Agy Xoay H are equivalent.

Proposition 3.7 Let (pa,0) be a crossed system for H over A. Let A — A x, H be
the H-cleft extension constructed in Proposition 3.5. Then, if (¢pa,T) is the crossed system
associated to the H-cleft extension A — A X, H, we have that (¢pa,7) = (va,0).

Proof Using Proposition 3.4 and Theorem 3.2, the convolution invertible total integral
| = pagm o (na ® H) determines a crossed system (¢4, 7), where ¢4 and 7 are defined by
da = pax,H © Pax,H © (f @iax,m) and T = pax,m © plax,m © (f @ f), where pax, u is
the factorization through the equalizer iax, g = pagn © (A @ ny) of the morphism gax, o =
pax O (AXe H® f71) o pax, u.

We will show that the crossed systems (p4,0) and (¢4, 7) coincide. First of all note that,
using the properties of the antipode, that H is a cocommutative weak Hopf algebra, as far as
Definition 3.2(2), (3.6) and (3.9), the equality

ur=pao((pacH@o ™)) ®o)o(HOH® (cpu®H)o (H®cnn)))

holds. Then we can obtain a simple expression for the morphism gax,m. Indeed,

Qax i = a1 ° (Pagn @ 1) o (A®dw) ciagnm
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=pagh © (pa @ H) o (pa®o @ py) o (A®pa @dnen)o (A® H®cya @ H)
0(A®dgp®oc '®H)o(AQH®H®cpp)o(A® H® (6 oAy)® H)
0(A® H®dy)o (A®dn)oisgn

=pagn o (ha ® 1) 0 (AQ pa® H) o (A® (H® pa) oo ) @0 @ H)
c(ARH®H®cyyg®H®H)
c(AQH®@cuu®@cun@H)o(ARdy @ (dgolg) ®H)o (AQH ® (ca,mo0m))
0 (A®dy)oiagn

=pacn o (na ®I) o (A® (pao((pac(H®o ")) ®o)o (H®H® @ H)
o(H®cum @cup)o(0g® (dgody)@H)o(H®JIy)ody))oiagn

= pagn o (a @NE) o (A@uy @ H)o (AR dy) oisgn

= pag © (A@I) o Vagn 0iapn

= pasn o (AQTE) cisp.

In the following calculations, the first equality follows by the H-comodule structure for
A X, H; in the second one we use that pag, 7o (Vagy @ Vagn) = ttag, #; the third one relies
on the antimultiplicativity of the antipode; the fourth one relies on cocommutativity of H; the
fifth one follows by (3.20); the seventh one is a consequence of the definition of V g ; finally
the last one uses that Vg ctagy = tagH-

On the other hand, qax,z = iax, 0 ©Pax, H = PagH © (Pax,u @) and then (A®epy) o
iaeH © qax. 0 = (A®en) oVagn o (Pax,H @ Nu) = Pax,H- As a consequence, pax, g =
(A®ep)oiagn because

pax, = (A®en)oVagr o (ARTE) oiagn
= (na®en) @ (A@ (pao (g ©na)) @ H) 0iagn

=(A®ep)oVagr ciagr = (A®en) OiagH.
Using this equality it is easy to see that (va,0) = (¢a, 7). Indeed,

GA =DPAx,H O Pax,H° (f @iax,m)
=(ua®eg)o(pa®@o@up)o(HRARdugu)o (HRcua@H)o (0yg @ AQny)
:‘LLAO((pA®(0’O(H®HZ)O§H))O(H@CH’A)O(§H®A)
=pao(pa®ur)o(H @cha)o(dn ®A) =qpa,

and 7 = pax, g opax, mo(fRf)=(A®en)oVagno (0@ pu)odugy =0 Auz = 0.

The following proposition is the weak version of [14, Lemma 2.1].

Proposition 3.8 Let Ag — A be an H-cleft extension with cleaving morphism f. Assume
that g : H — A is another convolution invertible total integral with associated crossed system
(pAy,Tay). Then the crossed systems (9Aay,04y) and (da,,Ta, ) are equivalent.

Proof The morphism h o= f A g ! factorizes through the equalizer i4. Indeed, as a
consequence of (2.21), the coassociativity of 0y and the naturality of ¢, we have

paoh=(paof)A(pacg™?)
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(f@H)odu)A((9g~" ®Am)ocumodn)
(nac(feg™)@) o (H® (cumobu))odu
(nac(feg™") @ [ ollj)) o (H® (cumobu)) odu
= (A®TIE)opaoh,

and then there exists a morphism h : H — Ap, such that h = iq o h. Note that, in the
conditions of this theorem, f A f~'=gAg ' and f"'Af =g ' Ag. Then,

YA ° (H ® 77AH) = ¢AH o (H ® 77AH) (321)

because ia0pa, o (H®Nay) =qaof=fAf andisoga, o (H®nay) =409 =9Ag ",
where g4 is the morphism defined in Remark 2.2 and ¢/, is the analogous for g.

On the other hand, using that f and g are convolution invertible total integrals, we have
hong =paoc(A®g ) opaofonm=pao(Axg )opaogony =(gAg ") onu =na.

Therefore, taking into account that n4 =i4 ona, , we obtain that hong = na,.

The morphism h=! = g A f~! admits a factorization through the equalizer i4 (the proof is
similar to the one developed for h) and the factorization h=! is the convolution inverse of h.
As a consequence h is in RegW‘H (H,Ag)N Reg¢AH (H, Ag). Indeed, first note that

iao(hAR D) =hAR Y =fAg  AgAF T =fAFINFAFTE
= a0 (H®na)=ia0pa, o (Hna,)

and using (3.21), hAh™! = pa, o (H ® na,) = ¢da, o (H @ nay,). Similarly, h~' A h =
iy o (H®Na,)=bda, o (H@na,). Moreover, igo (AR Ah)=hAh *Ah=h=is0h
and igo (W ARARY) = h 'ARARY =h ' =is0h ! Then hAh L Ah = h and
h=YAhRAR™Y=R"1

The proof of (3.12) follows by the definition of h and ¢4,,. In order to get (3.13), we begin
by showing the equality paopagao(f@ (g7 ' Ag)@(fAgH)®g)o (0 @0n) = pao(f®f),
which follows because f and g are convolution invertible integrals, A is a right H-comodule
algebra, (2.8) and the equality f~' A f = g~! A g. Using this equality and arguments similar
to the ones developed above, we will finish the proof by showing (3.13) as

A0 Ay 0 (ay @K ") 0 (ay ®Tay @ ) o (h® day @ Suen)
o(lg@h@H®H)odugn

=pao((pao(pa®g™) o (FAFTIANS(fAgT)®H) o (H®chnm)o (on ® H))
@ (pao (A (fTEAFAF ) opaopac(g®g))odusn

= (pacpagac(f@ (g A (FAg)®g) o (n @dm))A(f o pn)

= (nao(f@ )N opn)

=ip4004,.

Corollary 3.2 Let Ay — A, Ag — B be two equivalent H-cleft extensions with cleaving

morphisms [ and g, respectively. Then the corresponding crossed systems (¢ay,04,) and
(ba,,TAy) are equivalent.
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Proof If Ay — A and Ay <— B are equivalent, there exists an isomorphism of right
H-comodule algebras T': A — B, such that ig = T o4, and, as a consequence, | = T o f is
a convolution invertible total integral for Ay — B with inverse [=! = T o f~!. Therefore, as
a consequence of Proposition 3.8, the crossed system (14,,,wa,, ) associated to Ay — B for [
is equivalent to (¢4, ,Ta, ). Moreover, if ps is the factorization through i of the morphism
ga = pao (A® f71)opa and pp is the factorization through ip of the morphism qp =
pao(B®@I71Y)opp. By using (2.27), ta, =ppopupo (I®ip). Then

VYay =ppoppo(T@T)o(f®ia)=ppoTopuso(f®ia)=paopac(f®ia)=pa,.
On the other hand, by (3.18), wa, =ppopupo (I ®I). As a consequence,
way =ppoppo(T'@T)o(fef)=ppoTopso(f&f)=paopaco(f®f)=0a,.
Therefore (pa,,04,) and (¢a,,Ta,) are equivalent.

Proposition 3.9 If (pa,a) and (¢pa, ) are two equivalent crossed systems, so are the
associated H-cleft extensions A — A xo H and A — A xg H.

Proof We will begin to show that this correspondence is well defined. Let h be the morphism
in Reg,, , (H, A) NReg, , (H, A) satisfying conditions (3.12)-(3.13). We denote by A — A x, H
and A — A xg H the H-cleft extensions defined by (¢4, ) and (¢4, 3), respectively. We will
show that T'=pagr o (ta @ H)o (AQh® H) o (A®dy)oiagn is a morphism of H-comodule
algebras, such that T o iax, g = tax,y. First of all, note that the idempotent morphisms
defined by the two crossed systems coincide. We denote it by Vagm. Moreover, using (2.14)
and (3.4), it is easy to prove that T o nax, o = NaxzH- In order to see the multiplicative
condition for T, we need to fix a new notation and get two auxiliary identities. First note
that, as a consequence of Remark 3.2, the crossed systems (¢a,c) and (¢4, ) define two
quadruples (A, H, wfl’a = (pa®@ H)o (H ®cp,a)o (0g @ A),of[,a = (@ ® py) o dpugn) and
(A H, 1/)}4[75 = (pa®H)o(H®cpy,a)o (g ®A), aflﬁ = (6@ pm)odusm), respectively, which
induce the corresponding weak crossed products. On the other hand, by using the equivalence
between (o4, ) and (¢4, 3) and that h € Reg,,, (H, A) and (8 € Reg,, , (H ® H, A), the equality
pao(A®h)o a}f},a =pao((pao(h®@da)o(dg ®h)) ®B)odygn holds. Taking into account
that Vgm0 1/1}41 = wﬁ,, it is easy to prove the equality

(Vagn @ H) o (pao (h®¢a)o 0y @A) ®dn) o (H ®cpa)o (0 ® A)
= (ua ® ) o (h@ Vg 5) 0 (6n @ A). (3.22)
In a routine way, we can check that T' is a multiplicative morphism.
Using that iagpoT = (ua @ H)o(AQh®@ H)o (AR ) oiagm, it is easy to see that T is a

morphism of right H-comodules. Moreover, by (2.14) and (3.4), we have that Toiax ,# = iax,H
and the associated H-cleft extensions A — A x, H and A — A x3 H are equivalent.

Remark 3.4 In the conditions of the previous result, 7" is an isomorphism with inverse
T '=pagno(pa®@H)o(Ah '@ H)o (A®dg) oiasm.

Theorem 3.3 Two H-cleft extensions Ay — A, Ay — B are equivalent if and only if so
are their respective associated crossed systems.
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Proof The “if” part is a consequence of Corollary 3.2. Moreover, if Ay — A, Ay — B
are two weak H-cleft extensions with equivalent crossed systems (¢4, ,04,) and (@4, ,Ta, ),
as a consequence of Proposition 3.9, we know that the associated H-cleft extensions Ay —
Ay Xoay H and Ay — Ag Xra, H are equivalent. Therefore, using Theorem 3.2, we obtain
Ay — A~ Ay — Ay Xoay H~Ay — Ax Xra, H ~ Ay — B which proves the theorem.

Now we can give the main result of this section which is a generalization of [14, Theorem
2.7.

Corollary 3.3 Let (A,pa) be a right H-comodule algebra. There exists a bijective corre-
spondence between the equivalence classes of H-cleft extensions Ag — B and the equivalence
classes of crossed systems for H over Ap.

Proof If CS(H, Ay) denotes the set of equivalence classes of crossed systems of H over
Ap and Cleft(Ay) denotes the set of equivalence classes of H-cleft extensions Ay — B,
using Proposition 3.9 and Corollary 3.2 we have two maps F : CS(H, Ay) — Cleft(Ay) and
G : Cleft(Ay) — CS(H, Ap) defined by F([(¢ay,04,)]) = [An — An Xs,, H] and by
G([Ag — B]) = [(¢a,,Tay)], respectively. The map G is the inverse of F', because, by using
Proposition 3.7, (G o F) ([(¢ay,04,4)]) = G([An — Ay Xo,,, H]) = [(pay,04,)]. And as a
consequence of Theorem 3.2, (F o G)([An — B]) = F([(pay,Tay)l) = [An — An x-,,, H] =
[Ag — B].

4 Crossed Systems and Cohomology

In [5], we developed a cohomology theory of algebras over cocommutative weak Hopf algebras
which generalizes the one given in [23] for Hopf algebras. The main result contained in [5] (see
Theorem 3.11) asserts that if (A, p4) is a commutative left H-module algebra, there exists a
bijection between the second cohomology group, denoted by H i L(H,A), and the equivalence
classes of weak crossed products A ®, H, where o : H ® H — A satisfies the 2-cocycle and
the normal conditions. In this section, for an H-cleft extension Ay — A, we will establish a
bijection between the set of equivalence classes of crossed systems with a fixed weak H-module
algebra structure and the second cohomology group HiZ(Am (H,Z(Ap)), where Z(Ap) is the
center of the subalgebra of coinvariants Ag. Our results generalize to the weak Hopf algebra
setting, the ones proved by Doi for Hopf algebras in [14].

Proposition 4.1 Let Ay — A be an H-cleft extension. We denote by (pa,,04, ) the
corresponding crossed system defined by the convolution invertible total integral f : H — A.
Then (Z(Am),0z(ay)) 5 a left H-module algebra, where @z(a, is the factorization through
the equalizer iz a, of the morphism @a, o (H ®iza,)).

Proof We define 4 : HR Ag — Aas s = pao(A® (ua OCA,A))O(((f_l ®f)ody)®ia).
In a similar way to Proposition 2.4, it is easy to see that 14 factorizes through the equalizer
i4, and then there exists a morphism 4, : H ® Ag — Ap, such that i4 04, =1¥4. On the
other hand, the following equalities hold:

pao(f 1 ®@ia)=pao@a®f 1) o(H®cuay)o (6n @ An), (4.1)
paccasro(f®ia)=paoc(Wa® f)o(dy ® An). (4.2)
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Indeed, using Definition 3.1(1), (3) and that uy factorizes through the center of A (which
follows because if H is cocommutative, (4) and (5) of Definition 2.6 coincide),
pao (f7r®@ia)=pao((f~ Aur)@ia)
=pao(pa®A)o (f1 @ia®@u))o(H®cua,)o (On @ An)
=pao(pa®A) o (f1@ia®@(fAF)o(H@chay)o (0n® An)
=pao(a® f71)o(H@cmay)o (0n® An).
The proof of (4.2) follows a similar pattern.
Now we can prove that ¢4, o (H ®iza,)) factorizes through the center of Ag. Indeed,
using (4.1)—(4.2) and the properties of the center of Ag, we have
iaopag o ((pago(H®izy)))® An)
=pao((pao(f®ia) @ (pao@Wa® f ') o(H®cma,)o (0n® An)) o (H @ cmay © An)
°0(0g ®izgay) @ Amr)
=pao(pa®A)o(f®(naocaao((iacizia,)) ® (iaotay,))®f)
o (H®Z(An)QHQchay)o (HR®Z(An) Q@ 0n @ An)
o(H®chzay) ®@An)o(0n ® Z(An) ® An)
=pao((paocano(f®ia) @ (nao((ia0izan)®f)) o (H®czian)ay ®H)
o(H® Z(An) @ cu,ay) o (H®chza,) ®Ar) o (0n ® Z(An) @ An)
=1A0 Ay ©CAp Ay © ((Pay 0 (H®izay))) @ Ax).
Then there exists a morphism pz(a,) : H ® Z(Ag) — Z(Ag), such that iza,) 0 @za,) =
YAy © (H ®izca,y). Trivially, ¢ 74, satisfies the conditions of Definition 2.6. Moreover,

PZ(Ag) © (H® @Z(AH)) = Pz(An) ©° (e ® Z(An)), (4.3)

because iz(a,) 0 Yz(ay) © (H ®@ ©z(an)) = Pay © (e ®@iz(ay)), and then (Z(Am), pz.a,)) is
a left H-module algebra.

The following technical lemma will be useful for the last theorem of this paper.

Lemma 4.1 Let Ag — A be an H-cleft extension. We denote by @4, the weak H-module
algebra structure defined for Ay by a convolution invertible total integral f : H — A, and by
a, the morphism defined in Proposition 4.1. Then the equality pa,, o(H®va, )o(dg®@An) =
LAy © ((SOAH o (H RNay)) @ AH) holds.

Proof By composing the left part with the monomorphism 4, we obtain that

ia0pay o (H®@Yay)o(0n®An)=ia0pay o ((pay o (H @nay)) @ An).

Taking into account that 4 is a monomorphism, we get the equality.
Now we show the main result of this section.

Theorem 4.1 Let Ay — A be an H-cleft extension. We denote by (pa,,04,) the corre-
sponding crossed system defined by the convolution invertible integral f : H — A. Then there
is a bijective correspondence between the second cohomology group HiZ(AH) (H,Z(Apg)) and the
equivalence classes of crossed systems for H over Ay having ¢, as weak H-module algebra

structure.
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Proof Let [r] be in HgAH (H,Z(Ap)). Using the properties of the center of Ag, it is
easy to prove that the morphism o4, A (izca,) o 7) satisfies Definition 3.2(1)-(2). As far as
Definition 3.1(3), note that

(@44 A(iz(ag) o7)) o (I @ H) 00y
= tag © (04, 0 (g ® H) 061) @ ((iz(an) 0 7) 0 (Il ® H) 0 b)) 0 0y
=ui ANu; = uj.
Using the equivalence between (3.5) and (3.6), we have that uy = (04, A(iza,)o7))o(na@H).
In a similar way, u1 = (04, A (iza,)©7)) o (H ®ng), and then (@A, ,04, A (iza,)0T)) is
a crossed system for A over H.

Conversely, let (va,,,7) be a crossed system for H over Ay. Then the morphism O'E; Ay
factorizes through the equalizer i;(4,,). Indeed,

pay o (Ag @ oy, A7)

= Ay, O(AH@(UQ/\UQ/\UZ}_I/\'}’))

= ptay © (Bay ® Ag)o(ug Ay ® Ay @04l Ay)o (H®cayn ®H® H)
o(capn®@H®@H®H)o (Axy ®@dnen)

=payo(pa, ®H)o(o, Noa, Nus® Ag @0yt Ay)o(H®cayn ®H®H)
o(caym@H®@H®@H)o(Ag @ dpgm)

= ptay © (pay @ H)o (04} Noay @ (0ay o (H@bay)o ((6r 0 pw) ® Ag)) @ oyl Ay)
0 (0o @Agr@HQH)o(H®cayn @H@H)o (cayn @H@H Q@ H)o (Ay @ 0uen)

= pay © (pay ® An) o (An ® (pay © (Pay o (H® a,)) ® Ag)o(H@H ®cay,ap)
oc(H®H®o4, @A) o Ousm ® Am)) @ Am)
O((TE;®H®H®(§0AHO(MH@AH))(@UZII{/\’Y)O(H®H®§H®H®AH®H®H)
o (e @Ag @H®H)o (H®cay,n®HQH)
o(cayu®H®H®H)o (Ay ®dpen)

= piay © (hay ® An) o (Ag @ (pay o (H @pay)) ® An)
o0, @H®H ® (pay o (pu © An)) @ oay Aogl A7)
o(H® H®0gepn @ Ag @ HR H) o (0gen ® Ay ® H® H)
o(HR®capn®@H®H)o(cAya@®HRH®H)o (A ®dugn)

= pay © (An ® (pay o ((Pag © (H @ pay)) ® Ag) o (HRH @ cayay)o(HOH®y® Ap)
o (brpn © An))) o (Ag @ HO H® (pay o (hg ® Ap))) o (04, @ dnen @ An)
oc(HOH®H®ca,n)o(HROH ®@cayn@H)o(H®cay, n®@H®H)
o(caym@H®H®@H)o(Ag @ dpem)

= piay © (An ® (pay © (v ® (pay © (ne @ Ag))))) © (nen ® An))
o(Ag @ H® H® (pa, O(MH®AH)))O(UZII{ Qe @An)o (HOHQH Qcay 1)
c(H®H®ca,n@H)o(HRcapu QHR@H)o (cayn @HQHQH) o (Ay @ ugn)

= Ay, 0(0211{ Ay ANua @ Ap)o(H @ cay, m)o(cay n®H)

= piay © (0a, AY® Am) o (H @ cay i) o (caym®H).
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In the above computations, the first and the third equalities follow because 0211{ is in
RegwAH (H,Ap); the second one holds because us factorizes through the center of Ap; in
the fourth one and the nineth ones, we use (4.3); the fifth and eighth one rely on Definition
3.2(1) for o4, and 7, respectively; the sixth one follows by cocommutativity; the seventh one
uses that H is cocommutative and o4, is a morphism in RegwAH (H, Ag); finally, the last
equality follows by Definition 3.1(4)—(5) for ~.

As a consequence, by using that H is cocommutative, 0211{ AYANOAy =04y N UZ; Ay =1,
and therefore UZ; Ay=7vA 0211{.

The proof of the condition Definition 3.2(2) follows a similar pattern to the one developed
in [14] and will be omitted. As far as Definition 3.2(3), the proof follows in a similar way to
the one giving for o4, A (iz(a,) o 7) using Proposition 3.3. Finally, we have to show that the
correspondence is well defined. Let [r] and [7'] be in H?(H, Z(Ag)), such that the crossed
systems (@A, 04, A (iz(ay) © 7)) and (pay,0 A (iz(ay) © 7')) are equivalent. Let h be the
morphism in Reg,, (H, Ap) satisfying conditions (3.12)—(3.13). Then h factorizes through
the center of Ay . Indeed,

fay o (h® Ap)
=pa, o ((hAur Aup) @ Ap)
=pay o (hAu1) ®@ (pay o cay.ay))o(H®u @ Ap)o (6n ® An)
= pay © (ay ®u1) o (h @ (pay o ((pay o (H®nay,)) ® An))) ® H)
o(0m @cHay)o 0y @ An)
= ptay © (pay @u1)o (h® (pay o (H®pay)o (dn ® An)) ® H)
o (0g ®cH,Ay)o(0n ® Ax)
= pay o (pay o (pay ® Ag)o (h@pa, ®h™1) o (0n ® cma,) o (0n @ An)) @ h)
o (HR®pa, ®H)o (0g @ cH ay)©o (0n @ An)
= A, ©(pay @h)o(H® pa, @H)o (g @ cr,a,)o (0n @ An)
= Ay ©(Hay o(u1 @ Ag))@h)o (H®chay)o (0g @ An)
= A, o (Ag @ (u1 Ah))ocu ay
(

= MAg © Apn ®h) OCH,Apg-

Using that h factorizes through the center of Ay and (3.13), it is easy to see that 7 and 7/
are cohomologous.

Conversely, if 7 and 7/ are cohomologous, using the properties of the center of Ay, we get
that the corresponding crossed systems (¢, 04, A(iza,)o7)) and (0a,, 04, A(iza)oT))
are equivalent, and we conclude the proof.
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