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The Extension of the H*¥ Mean Curvature Flow in

Riemannian Manifolds*

Hongbing QIU'  Yunhua YE!  Anqgiang ZHU!

Abstract In this paper, the authors consider a family of smooth immersions F; : M™ —
N™ 1 of closed hypersurfaces in Riemannian manifold N"*! with bounded geometry, mov-
ing by the H* mean curvature flow. The authors show that if the second fundamental form
stays bounded from below, then the H* mean curvature flow solution with finite total mean
curvature on a finite time interval [0, Tmax) can be extended over Tmax. This result gen-
eralizes the extension theorems in the paper of Li (see “On an extension of the H* mean
curvature flow, Sci. China Math., 55, 2012, 99-118”).
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1 Introduction

Let M™ be a compact n-dimensional hypersurface without boundary, and let F : M™ —
N"+1 be a smooth immersion of M™ into a Riemannian manifold N"*!. Consider the general-
ized mean curvature flow (abbreviated for GMCF), namely, a smooth one-parameter family of

immersions
F(,t): M™ — N™t!

satisfying the evolution equation

0
5 ) = —FHC )W), (1.1)

F(,0) = Fo(),

where f : R — R is a smooth function, depending only on the mean curvature of the immersed
surface, and v(-,t) is the outer unit normal on M; := F(M,t) at F(-,t). If f* > 0 along the
GMCEF, then the short time existence has been established in [10]. It is easy to prove that (1.1)
admits a smooth solution on a maximal time interval [0, Tiyax) With Tihax < 00.
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If f is the identity function, then (1.1) is the classical mean curvature flow. If we choose f
to be the power function x*, then (1.1) is the H¥ mean curvature flow. In this paper, we mainly
pay our attention to the H* mean curvature flow, also we get some results on the GMCF.

The long time existence, convergence, blow up and extension properties are of great interest
subjects in curvature flow. Recently, many efforts have been made on the extension theorem for
the mean curvature flow under some curvature conditions (see [1, 6, 11-12]). Le and Sesum [6]
showed that if the second fundamental form stays bounded from below all the way to T', then
some integral condition of mean curvature is enough to extend the mean curvature flow past
time T'. This extension theorem had also been generalized to the setting when the outer space is
Riemannian manifold (see [11-12]). In arbitrary codimension, Han and Sun [1] gave an integral
condition under which the mean curvature flow can be extended and then they investigated
some properties of type I singularity. In [7], Li proved an extension theorem for the H* mean
curvature flow in R™. Motivated by his idea, we prove the following main theorems in our

Riemannian setting.

Theorem 1.1 Let M be a compact n-dimensional hypersurface without boundary, smoothly
immersed into N1 with bounded geometry by Fy. Let [0, Timax) be the maximal time interval
of the H* mean curvature flow with Tyax < o0, and H(-,0) > 6 > 0. Then the quantity
III}/EIl;X |B|? becomes unbounded as t — Tyax.-

Along mean curvature flow, Huisken [3—4] proved that if 7' < oo is the first singularity time
for a compact MCF, then sup |A|(-,t) — oo as t — T'. The above theorem is natural for GMCF.
M,

Theorem 1.2 Assumek,n € N,k,n > 2 andn+1 > k. Let M be a compact n-dimensional
hypersurface without boundary, smoothly immersed into N™ ' with bounded geometry by Fy.
Consider the H* mean curvature flow on M,

0
EF('vt) = _Hk('vt) ’ V('at)v F(,O) = FO()

If
(1) hij > Cgi;(t) along the H* mean curvature flow for a uniform constant C' > 0,
(2) for some a >n+k+1,

T'max 1
1z = ([ [ 1@ ut) " < .
t

then the flow can be extended over the time Ty ax.-

2 Preliminaries

In the following, the induced metric and the second fundamental form on M will be denoted
by g = {gi;} and B = {h;;}. The mean curvature of M is the trace of the second fundamental

form, i.e.,
H = gij h”
The square of the second fundamental form is

|B|2 = gijgklhikhjl-
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The Riemann curvature tensor of N and its covariant derivative will be denoted by Rm =
{Ramg} and VRm = {V[,Ragw;}, respectively. We write Rm = {R;;u} for the curvature
tensor of M. Let v be the unit outer normal to M, then for a fixed time ¢, we can choose a
local field of frame eg, eq,--- , e, in N, such that restricted to M;, we have

_OF
o 8331

€0 =V, €4

The relation between B, Rm and Rm is then given by the equations of Gauss and Codazzi:
Rijii = Rijii + hikhji — hihjk,
Vihi; — Vihik = Roijk-
We have the following proposition.
Proposition 2.1 (sece [4])
Ahij = ViVjH + Hhilhé- — |B|2hij + HFOioj
) Sl m 5l m
— hijRow' + hjiR mi™ + haR mj
- QthElimj + V,;Roii' + ViRoij', (2.1)
1 )
SAIBI = (hij, ViViH) + VB> + H - haeh* 10" — |BJ?
+ Hh Roi0j — |BI*Row + Zhijhjl}_%lmim — 20 Ry
+ B (V;Roi' + ViRoi;"). (2.2)

3 The Evolution Equations

Theorem 3.1 For the GMCF in Riemannian manifold, we have the following evolution

equations:

9 Py = —f(HEB)W() (3.1)
ot ’ )
2 0ist) = 2 (H()hys, 3:2)
0 ut) = FHO)VH), (3.3
2 hislt) = S ()b + [ (H(0)Ve, HY. H

— [P @) + P @) hachys + (1) BPh;

) — B () Roiog + 1 (H )i Roro'

+ f’(H(t))(2hlmFlimj - hjzﬁlmim hilﬁlmg‘m — V;Roi' = ViRoi;"),  (34)
SH(0) = fHE)AH + " (HE)HP + (H©)(BP + Ric,0), (3.5)
D du(t) = —2(H(1) H(t)du(t) (3.6)
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Proof Let us first prove (3.2).
0 0 = OF = OF
&gij = 8t<F weq, Iy e]> <Ve,;E,F*ej> + <V6‘7§,F*ei>
= —<vei(f(H( )v), Feej) = (Ve, (f(H(t))v), Fiei)
—fH@®))(Ve,v, Fuej) +(Ve,v, Fuei))
—f(H()hi

Next we prove (3.3).

v = 0" (G P Yty =09 (= (09 57 ) P

ahij(t) =5 (Ve,v, Frej) = <V%V6 v, Fiej) + (Ve V,V%F*6j>
= (Ve,Vaov — f(H®)R(es, v)v, Fuej) + (Ve,v, =V, (fH(L))v))
= (Ve,(f'(H(t)VH),e;) — f(H(t)){R(ei,v)v, e))
— Ve, Ve, (F(H))v) = (Veuv, f(H )V e;v)
=((f"(H())Ve, H(t))VH + f'(H(t))V.,VH,ej)
+ f(H(t)Roioj — f(H(t)g" hirhyi
= f"(H@A))Ve,HV o, H + f'(H(t)Ve, Ve, H — f(H(t)g" hixhj + f(H(t))Roio,
= ["(H(t))Ve,HV ¢, H + f'(H(t))(Ahy _Hhizhé- + |B*hi; — HRojo;
+ hiRow' — hji R mi™ — hit R ™ + 2him R ™ — Y Roi' — Vi Ros')
— F(H®))g" hixhj + f(H (1)) Roio;
FI(H() A+ f"(H(t)Ve, HV e, H

[f(H(t)) + Hf (H()]g" hichji + f'(H ()| B[*hi
+I[f(H()) - ( (t)Roio; + f'(H(t))hij Row'
(H(t))(%lm "= hle mi " — hillejm — V,;Roi' — ViRoi;"),

this proves (3.4).
To prove (3.5), it is easy to get

9 u j Kl
519 =2f(H(t))g"” hjrg
Hence
0 g™ ”ahij
all= i t9" 5,
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= 2f(H(1)g"7 hjrg" hij + g% (f'(H (£))Ahij + " (H())Veiz000 HV e, H
= [f(H({@) + Hf (H(t)]g" hixhji + f'(H())| B[ hi;
+ [f(H(t)) — Hf'(H(t))]Roio; + f'(H (t))hij Row'
ﬂH@mmwm%—mmmz—mﬁmm—%RM—v@wm
= 2f(H(t))|B]> + f'(H(t)AH + f"(H(t))|VH|* — f(H(t))|B]> — H f'(H(t))|B|*
f'(H®))|BI*H + [f(H(t)) — Hf'(H(t))|Roio" + f'(H(t))H Ror'
+ f/(H(t))(2him R zmygil hjzﬁmimgij - hizﬁmjmgij — V,;Roii' 9" — Vi Roi;'g")
= ['(H(t))AH + f"(H(t))|[VH|* + f(H(t))(|B|* + Ric(v, v)),

this proves (3.5). It is easy to obtain (3.6), we omit the concrete computation.

4 Sobolev Inequalities for the GMCF

Li [7] obtained a Sobolev inequality for the power mean curvature flow by using Michael-
Simon inequality (see [8]), which is crucial for the Moser iteration in his situation. In our
setting, we also need an inequality which is similar to Michael-Simon inequality. Hence, in this
section we first introduce the Hoffman-Spruck Sobolev inequality.

Lemma 4.1 (see [2]) Let M — N be an isometric immersion of Riemannian manifolds of
dimension n and n+p (p > 1), respectively. Assume Ky < b and let h be a nonnegative C*
function on M wvanishing on OM. Then

([ weau) ™ < [ (904 niHDIp, (1.1)
M M
provided
b3 (1 — a)_%(wglVol(Supph))% <1 (4.2)
and

where R(M) is the injectivity radius of N restricted to M and

e tsin T (1 - )~ (w; 'Vol(Supph)) =] for b real, (4.4)
o= (1 —a)~# (w;; 'Vol(Supph)) = for b arbitrary. )
Here v is a free parameter, 0 < a < 1, and
pi= 27l (1 - a) F 4.
c ™ a " (1—a) — (4.5)

Following the proof of Theorem 3.4 in [7] and using Lemma 4.1, we obtain the following
general result.

Theorem 4.1 Suppose that k,n € N, k,n > 2, or k=1 and n = 2. Set

kn B n
k;n—(k+1)7n_k'+1'

k

Qr =



196 H. B. Qiu, Y. H Ye and A. Q. Zhu

Let M be a compact n-dimensional hypersurface without boundary, which is smoothly embedded
in N*t1. Assume Ky < b2. Then for all nonnegative Lipschitz functions v on M, we have

k+ k41 n+k+1 k+1
0¥, oy < Ans (V0 + B oIl )
n k k k
> An,k(”VU”Li_(lM) + [ H]| sz_Mtll(M)HU”L;_(lM))a (4.6)

(k+1)(n—1) , ,
provided that the function h := v F =G0 satisfies (4.2)-(4.3), where H is the mean curvature

of M and

(n—1)(k+1)(n+k+1) (/f + 1)(n — 1)
An =92 kn—(k+1) 2 n n+k+1 ( nk = Cn * 7)
k (2cn,k) Cnk [y
Ay = A Vol(M)™=

Corollary 4.1 Under the conditions of Theorem 4.1, for any nonnegative Lipschitz function
v, we have

1
ztf:':}l(M))k ”’UH%Q(M))?

10llZ20n ary < An (10l Ear) - V012 0r + (1H]

where
kE+1
T At ( 2k )T
An.k - An,k A 1 .
Similar to the proof of Theorem 3.6 in [7], using Corollary 4.1 and Holder’s inequality, we
obtain the following Sobolev type inequality for the GMCF.

Theorem 4.2 Suppose that k,n € N, k,n > 2. Let M be a compact n-dimensional hyper-
surface without boundary, which is smoothly embedded in N"T1. Assume Ky < b%. Consider
the GMCF

_F('at):_f(H('at))V('at)v 0<t<T < Thax < 00,

where [ € C*(Q), Q CR. Suppose f'(x) >0, and f(x)-x > 0 along the GMCF. Then for all
nonnegative Lipschitz functions v, we have

(k+1)2 k—

10055 arporyy < Bk Om;;xTuanzW,) (Il arciomy
n+k+1 1
e ol Fo (IS (o))

(k+1)(n—1)
provided that the function h := v F=0GF10 satisfies (4.2)-(4.3), where

(k=) (k+1)

By g = Xn,k -Vol(M)™ =2xZn - maX{T%,T’B—_kl}

and622+%-%>2.

Remark 4.1 If £ = 1, then % = 2. Thus we do not need to use Holder inequality to
control the L?-norm, and in this case, By k7 = By, = Ap,1 is a constant.
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5 Reverse Holder and Harnack Inequalities

In this section, we can follow the lines of [7] and [11], and easily derive a soft version of
reverse Holder inequality and a Harnack inequality for parabolic inequality along the GMCF
in Riemannian manifolds. Suppose that f € C*°(Q) for an open set Q C R, and that v is a
smooth function on M x [0, 7] such that its image is contained in 2.

We start with the following differential inequality:

(5~ 8p)v < (@+O) W) + @IVl 020, (5.1)

where the function G + C has bounded L(M x [0, T])-norm with

2

C is a fixed positive constant and Ayf;(-) = f'(-)A¢(-). Let n(z,t) be a smooth function on
M % [0,T] with the property that n(x,0) = 0 for all x € M.

Let S be the set of all functions f € C*°(Q) (Q C R) satisfying the following conditions:

(a) f satisfies the differential inequality (5.1),

(b) f'(z) > 0 for all z € Q,

(¢) f(z) > 0 whenever z > 0,

(d) f(H(t))H(t) > 0 along the GMCF,

(e) f'(v) > Cy >0o0n M x [0,T] for some uniform constant Cs.

Lemma 5.1 Let M be a compact n-dimensional hypersurface without boundary, which is
smoothly embedded in N"*1. Consider the differential inequality (5.1). Let 8 > 2 be a fized

number. Then
Cz// NACTES Idudt+/ 1P (o)Pdu

<555 [ [ refa(g-roma)s

{ﬁ f{/,) * ﬂﬁ(giﬂl—)’—2 ()Mvtm }dudt

62
B -

_|_

+

G+ O @ laueoiry 1P O, 5 o

Proof Multiplying (5.1) by 7% f'(v) f°~*(v), then for any s € [0, T], we have

| [ oot eaes [ [ G e
0 M 0 M,
< A /Mt |G+C|n2f/(1))fﬁ(v)d‘u,dt+/o /Mt 772f/(v)fl/(v)fﬁ71(v)|vtv|2dﬂdt.

Using the integration by parts, the properties of  and (3.6), we conclude that

/08 /M [2(Vev, Ven)n(f ()2 P71 w) + P (2f () f" (v) 771 (v)
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+ (8= 1)(f' () f72(0)Vev|*)dpdt + - / FPyn*dus)

%/ W) 2”5% i f (HL(£) H ()| dpdt

_l_

/l |G+C|n ffe) d”dH/ /M w2 f () £ (0) 27 ()| Vo] 2dpdt
%/ s P (w) 2778 dudt+/ » |G+ C|n?f'(v) fP (v)dpdt

+/0 /Mt?7 F'@) " () 771 (0)|Vio*dpdt.

Direct calculation gives

1
g
— %/9/ {fﬁ(v)Zn(% —f'(v)At)n_QfB(U)f/(U”vm'Q}dudt

/ /M B )2 + £2(0) " (0)|(Vev, Vin)dpd.

And the Cauchy-Schwartz inequality implies

//M, )2 7 (W) (Viw, Vi) dudt

/ / D772 ()| Vv dpdt
M,
__2/ / f'(0)fB ()| Ven2dpdt

€ 0 M,

and

% / ‘ /M nf?(0) " (0)(V v, Vo) dpdt

- / /M L) ' (0) " () 17 (0) Vo 2dpd

1 W)

7 /0 P @I audt.
Note that
8 8 2
Vil >>|2=\§f§-1<v>f'<v>vt<v>\ 5 p2 ) @)Vl

If we choose €2 = 5 , then we can obtain that

m/ Vi f <>>|f<>2dudt+/ o)

/ o o rwadm
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JOSW) 88 L 1
+ {ﬂ f'(v) —2f'(v) + ﬁ (v)} |V }dudt

° 2 pl 8
+ 8 / /Mt G+ Cli ' (0) £ (v)dpdt.

Combining the above estimates with

IVo(nf % (0) < 22 (0)[Vanl? + 202V f 2 (0)?

gives

Cs / / 19, f % (0) Pdudt + / 72 )y

<37 /Mfﬂ {o(5~ F/@A)n

v)f"(v) | 8687 242,

{ﬁ () + B(B—1) f(v )}|Vt77| }dudt
2

5ﬂ (G +C)f' (v V)|lLaaxo ) - In 2P (v )l

_|_

+

J .
LT=T (Mx[0,77])

Theorem 5.1 Let M be a compact n-dimensional hypersurface without boundary, which
is smoothly embedded in N™ 1. Assume Ky < b2

, and k,n € N, k,n > 2. Consider the
differential inequality (5.1). Let

COq—H(G+C) ()HL’I (Mx[0,T])s
C, = (1+||H|

and B > 2 be a fized number. Then there exists a positive constant Cy, k. 17(Co.q,C1,3,q) de-
pending only on n, k, T, 3,q,Co.q, C1 and VOl(M), such that for any f € S,

2

Ln+k+1(Mx[o T]))

197 @) 13 ariomy

< Gk (Cog, Cr, B, q Hfﬁ {77 +277<——f( )A )
+ (%f(f),{:)( o) 8”8;(; 2_5;;2 ‘(v ))IVmI ”

B4 (n-1)
provided that the function (nfg(v)) =D gatisfies the conditions (4.2)~(4.3) for any t €
[0,T], where

5.2
LY(Mx[0,T]) (5:2)

Cn,k,T(CO.qv Cla 6; Q)

:—maX
6_

{2(§n,k,T) Ci1, |2(B nkT) Clcoqﬂﬁ2 }lJru}

and
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In particular, if (G + C)f'(v) € L>®(M x [0,T)), then letting g — oo, we have
Crk,7(Co,005 C1, 8, q)

2 ~ 2

26 (Co,00f3? ~ 2
< —ﬂ—l( 51 +1)(Bn,k,T)”C1

2 ~ 2
< G G+ DB C

< 8(1 + Co.00)B(Br1)7 Ch,

where
k+1

~ I
Bn,k,T = Bn,k,T ' max{(c_g) ' 71}7
Co,00 = (G + C) f' (V)| Lo (arx0,7))-

In this case, we obtain
2B
I £ O, ar oy

< D SO 72@) [ + 205, — F@)A)

+ (%f(l}),{;)( ) 4 66(; 2_5;;2 "(v ))IVmI ”

5.3
LY(Mx[0,T]) (53)

(k+1)(n—1

)n—1)
provided that the function (nfg(v)) =D satisfies the conditions (4.2)-(4.3) for any t €
[0,T], where

2
anT—8(1+COoo)( nkT)"’-

Proof Denote

ni= 2 [ pofen(g - e

F=1Jy Ju
LIW/0) | 88 -2542

+[B Pt e Vel paudr
”

G+ OV s axiory - 17 £ @)l

L7oT (Mx[0,T])

and

1/0/Mtf5 2n——f() )

L) (o) , 85— 26+2
[B J'(v) 5(5_ 1) f'w )} Vinl® }dudt.

By Lemma 5.1, we have
53 1
Imf2 (W)l < A2,

) A
IVe(nfz (W)llLzaxpo.m) < (@) '

=
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Let S := M x [0, T] and let the norm ||- || L»(arx[0,77) be abbreviated by |- | Lr(s). If the function
e+ D) (n—1)

(nfg(v)) B0 satisfies the conditions (4.2)-(4.3) for any ¢ € [0,T], applying Theorem 4.2

to nfg (v), we have the following estimate:

170,36y = (7 @) )
< [Bn,k,T CAZ (1 + || H| kail(s))]% = (En,k,T)%ClA
= 2 2
::(anﬂﬂ?CH<A4—6ﬂ 166 + OV @)lzois) - 1L @ 2 )

Since 1 < qiLl < 2, by using the interpolation inequality

122, g2 ) < NP P03 gy + 2 P20 1),
where
-1
1 q
g 7 - )
a—-1 2 (v-2)g—~
q 0
Hence if we choose
6—1
£=—— 5 ,
Q(Bn,k,T)WC&BQCO,q

then we have

IO FE

gmamjﬁcm+[

6 1+v
GO0 Busn) O] PP )ls)
~ 2 ﬂ ~ 2 1+v 248
< max {2(Boer) O, (257 Cog(Bunr) TG F (A I £ 0) nscs)
= Nn,k,T(CO,qvclaﬁaQ) : (A + ||n2f6(v)||L1(S))a

where énkT(coq,Cl,B, q) is the constant depending only on n,k,T, 3, q,Co.q, C1, Vol (M).
From the definition of A and noting that 1 < ﬁ < 2, we obtain
2B
1722,

< Co k1 (Co,g, Crs By q Hfﬁ [77 +277(gt '(v)At)n

(]

Ly(s)’

where

A B
Cn,k,T - Cn,k,T 6 1

Next, we shall show that an L°°-norm of f(v) over a smaller domain can be bounded by an
LP-norm of f(v) over the whole manifold M x [0, T].
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Corollary 5.1 Let M be a compact n-dimensional hypersurface without boundary, which
is smoothly embedded in N"t1. Assume —c®> < Ky < b%, and k,n € N, k,n > 2. Consider the
differential inequality (5.1). Let

Co,oo = (G + C)f' ()l Lo (M x[0,77) >

nhtl 2
Cr =+ H o v (arxjorry)

and B > 2 be a fized number. Then there exists a uniform constant Cy, > 0 depending only on

n, such that for any f € S, we have

1. v
If @)z rixiz mmy < Enger(8) - CF "2 1f )l Lo arx o) (5.4)
where
1, v Y %(372)2 L.ﬁ72
En,k,T(ﬁ) - (l)n,k,TC(nﬁ)B.m : (5) ! 45 0-n%,
Proof Set
T 1 1 1 .
t=3(1-pm) nog e =OL2

Let n;(z,t) be smooth functions satisfying the following properties:

d

=1 wlos =0, 0<m <1 |
[t:,T] Nil[0,t:_1] 7. "

NilMAB@or) =1 MilM—MaB@or) =0, 0< Ml <1, [Veni| < CpdPT

< CpdP ™,

Ui

B (k+1)(n—1)
2

Set I; = [t;, T]. Now we claim that (n;f2 (v)) #=GFD satisfies the conditions (4.2)—(4.3) for
any ¢t € [0, 7).
In fact, under the GMCF, we observe that

Volg(t) (B(R)) < VOlg(O) (B(R))

for any ¢ € [0, T] by (3.6). For g(0), there exists a non-positive constant K = K (n, max |B|,N)
xe Mo

such that the sectional curvature of My is bounded from below by K. Then by the Bishop-

Gromov Volume comparison theorem, we have

Voly()(B(R)) < Volk (B(R)),

where Volg (B(R)) denotes the volume of the ball with radius R in the n-dimensional complete
simply connected space form with constant curvature K. Hence

Voly()(B(R)) < Volk (B(R)).
Therefore, we can choose R sufficiently small such that

b2(1—a) 7 (w, ' Volg (B(R)* <1, 2py < R(M),
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where pg is defined by (4.4). Here the sufficient smallness of R can be achieved by choosing a
(k4+1)(n—1)

sufficiently large p. So (mfg(v)) PG satisfies the conditions (4.2)—(4.3) for any t € [0, T].

Since [|(G + C) f'(v)|| oo (v x[o,7]) exists, using Theorem 5.1, we have

”fﬁ(v)“L%(Mxl,;) < (D 7 Crd T4 - 8- CL| 2 (0) | 23 (v, )-

Then by the standard Moser iteration process, we have
1, o
If @)L rixiz iz < Enpr(8) - CF 72 1f )l Lo arxio -

Corollary 5.2 Let M be a compact n-dimensional hypersurface without boundary, which is
smoothly embedded in N" "1 with bounded geometry. Suppose n,k € N, k,n > 2, andn+1 > k.
Consider the H* mean curvature flow

0
5P = —H (1) - v(), 0<t < T < Tnax < 00,
If
Ca\ w1 k—1 2
H) = (52) >0, [RE OB + Ol (axory < 00
along the H* mean curvature flow for some uniform constant Co > 0, then there exists a
uniform constant C,,, depending only on n, such that

(H ()| oo (a1 Z 1)

1 n+k+1
< By () L+ |1H]

< Bk, T~ H O Lrtrs1(arxo,77)

n+zl§+1 R
oo, ry) T2 TH @) pner o, m)

where

1 n+k+1 ntktl 21
Fn,k,Tmax = Erllc,k,Tmax (T) (1 + ||H||Lnl-7—k+1(Mx[07T])) YRR

Proof Let
fx)=2F Ry - R.

From the evolution equation of H(t), i.e., (3.5), we have

(2~ Ap)H®) = FHEO)ITHOE + F(HE)(BP + Rcw,))

ot
< fUHG)IVH @GP + fH()(B]? +C).
By Corollary 5.1, there exists a uniform constant C,, > 0, such that

||Hk(t)||Lac(Mx[g,T]) < En kv (B)CT 7 H" ()] 5 (e x(0,77)

ie.,

1 i S
IH @ Lo axiz ) < B (BYCT” "2 IHH ()] Lrs (arxj0,77)-
Choose 3 = %’“H > 2, then it follows that
1 n+k+1\ 2
VOl i 1) < B (= ) OT T < H @) s arxpor)-

Remark 5.1 When k =1, n+ 1 > k is obvious, but for k > 2, this assumption is needed
in our proof.
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6 Proof of Main Theorem

Proof of Theorem 1.1 We shall follow the basic ideas of Schulze [9]. If Theorem 1.1 is
false, then there exists some C' < oo such that

max|B|2 <C
My

on 0 <t < Tax- Using the evolution equation and the upper bound for H, it follows that for
pelUCM,0< 0 <p<Tnax, we have that

At (Plp.p). F(p.0) < | " 1 p,7)dr < Cp— o)

and F'(-,t) converges uniformly to some continuous limit function F(-, Tiyax). We want to show
that F'(+, Tmax) actually represents a smooth limit surface Mr, This is then a contradiction

max *

to the maximality of Tiax. In order to show that F(-, Tymax) represents a smooth surface Mrp .,
we only have to establish uniform bounds for all derivatives of the second fundamental form on
My, 0 <t < Thpax.

In the following, we denote the metric of N and Graph(u) by g and g respectively. For
k <1, since H* is concave in h'; and it has uniform C2-bound, then using the estimate of [5]
(see [5, Theorem 2 in Chapter 5.5]), we can obtain the uniform C?*“-bounds. For k > 1, let
S be a fixed reference hypersurface which is tangent to the hypersurface F(-,ty) at some point
p € N, and assume that we have Gaussian coordinates {x1,---,2,} in a neighborhood of p on
S. Then there exists a local coordinate in the neighborhood of p in N constructed from the
above coordinate. Suppose that U is a neighborhood of p such that for every point ¢ € U there

exists a unique minimal geodesic
v:00,d(g,8)] = N, 1(0)=4q, ~(1)=d €S
to the hypersurface S satisfying L((t)) = d(q,S). The coordinate of ¢ is set to be

(xl (Q)v e 7xn(Q)7xn+1(Q)) = (xl (ql)v e ,xn(q/), d(Qa S))

By the construction, g(y(1),v) = 0 for any v € TpS. Given 0y, € TyN, 1 < i < n, there
exists a curve 7, such that 7,(0) = ¢, 94(0) = 0y, and d(y4(s),S) = d(g,S). For any point
74(s), =6 < s < 6, there exists a unique minimal geodesic from ¢ to S. Hence we have a family
of minimal geodesics

F: [Oad(% S)] X (_5a 5) — N

such that F( s) :[0,d(q,S)] — N is the minimal geodesic from v4(s) to S. Hence the vector
field v(t) = dF(95)(t,0) is a Jacobi field with v(0) = 8, € T,N and g(v(1), L F(t,0)[=1) = 0.
Hence

y(v( ) ((1115 (t O)‘t—o) =0

that is §(0,, 0p,,,) =0, i = 1,--+ ,n. Since 9,,,, = L F(¢t,0) |t _o» We have

g(aznﬂvaan) =1
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Under this coordinate {x1,--- ,z,41}, locally around p we can write F(-,t) for ¢t € (tg —
g,to + ¢) (for some € > 0) as graphs of function u(t) on S (see [4, 13]). Set

Graph(u) := {(x1, - ,xn,u(xy, - 2,)) | (X1, ,2,) € S} (6.1)

Then {E; = 0y, + uy,05,,, | 1 <i < n} gives a basis for the tangent space to Graph(u). It is
easy to see that

P ( S g, 05 + anH) (6.2)

V1t [Vul? V=

is the unit inner normal vector on F'(-,t) and u satisfies the following evolution equation:

%u =/1+ |Vu2H*. (6.3)

By direct calculation, we have that

hij = y(vEﬁEJ? V) = ?(vai+ui3n+1 (81 + 'U'jan-i-l); V)

1
_ B n+l ol ol o
= 7|2 {ui; + e wly; —ujwl'y, uzulfj’nﬂ},

V1+|Vu

since FZ+1,n+1 =0, F'.’Hl =0fori=1,--- ,n,andp=1,--- ,n+1, where I is the Christoffel

7,m+
symbol of N. Using the expression of E;, we compute that
5 5 1 y
1] — -] _ . =r=]Ss . 6.4
97 =9~ T 9 e e (6.4)
Hence
TV Ve TPt T e
(ugg + Tt — il — 2wl ). (6.5)
Therefore (6.3) and (6.5) imply that
0
5= (V1+|Vu2)7F
. 1 . k
. ((yzj _ mgzryﬂurus) (uij + FZ.JFI — 'Uleéj — ZUiU,lFé’nJrl)) . (6.6)

According to Theorem 2, Chapter 5.3 in [5], with the assumption that |B| is bounded, we
can obtain the uniform Holder-estimates in space and time for %u. Similarly, by Theorem 4,
Chapter 5.2 in [5], we can also have the Holder-estimates for Vu. On the other hand, the mean
curvature H satisfies the evolution equation

%H =kH"'AH + k(k— 1)H*2|VH|? + H*(|B]* + Ric(v,v))

1
> kHN'AH + k(k—1)H 2|\ VH? + —H"? - CH".
n
Then let ¢ be the solution of the ODE

% =—C¢"  ¢(0) = Hyuin(0) > 6 > 0.
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Then we have

Sl ¢*1(0)
PO = T en e

Since k > 1, ¢(¢) > 0 for all ¢ > 0.
If we consider ¢ as a function on M X [0, Tinax), we have

S = 0) 2 RH AGH = 9) + k(= DI V(T = 9)F + I = OB, — (1),

Suppose tg be the first time that

H(p.to) - 6lto) = min(H(z,1) - 6(1)

attaining zero. Then at (p,tp), we have

By H(p,to) = ¢(to) > 0, we have

1
0> =(H—¢)>=-H"?>0,
n

gl

which is a contradiction. Hence H(x,t) > ¢(t) > §(Tmax) > 0, where

_ ¢*~1(0)
o 1+ C(k‘ — 1)¢k71(0)Tmax .

6(Tinax)

(6.6) implies that

vi= (V1T [Vap)*

and
. —ij 1 —ir—js n+1 l l k=1

are also uniformly Hélder-continuous in space and time. Therefore we can write (6.6) as a
linear, strictly parabolic PDE

2u —au;; 4+ b+ f =0

ot

with coefficients a™,b?, f in C? in space and time. The interior Schauder estimates then lead

to C%*P-bounds. In both cases, namely, k¥ < 1 and k& > 1, using again parabolic Schauder
estimates, we get a bound on all the higher C'-norms.

Proof of Theorem 1.2 It is sufficient to prove the theorem for « = n+ k + 1 since by the
Holder inequality, ||H ()] Ltk (rxo,r)) < o0 if @ >n+k+1.
Note that ||H ()| za(arx(0,7]) is invariant under the rescaling of the H* mean curvature flow.

Le (M x[0,T]) < 00 implies ||H(t)|

ﬁ(p,t) = Qk*il . F(p, %) for @ > 0.
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We argue by contradiction. Suppose that the solution to the H* mean curvature flow can not
be extended over Ti,.x. Then B(t) is unbounded as t — Tyax. Let A; (¢ = 1,--+ ,n) be the
principal curvatures. Then

B = ZA? (ZA) = H(1
Since h;j > cgij (¢ > 0), thus H**1(z,t) is also unbounded as t — Tyax. Namely,

sup HM (g, 1) =
(@,t) €M %[0, Trmax)

Choose an increasing time sequence {t(i)}fil, such that lim ¢ = T},... We take a sequence

11— 00

of points (") € M, satisfying

) — g+ (@ @) = ma HM Y (2t
Q (@, 1) oy X (z,1),
then
lim Q) = oo

Therefore there exists a positive integer iy such that (Q(z)) 1¢() > 1 and Q¥ > 1 for i > io.
For i > ip and t € [0, 1], we consider the rescaled flows
t—

FO(a,t) = (QV) ™ F (2, ———
(@) = @) (e o

+1@) (M, gD (1)) = (N, Q).
Then a simple calculation shows that

99 (@, t) = Q1)

e
+o
-

g(x, ﬁ + t(i)),

t—1 +t(i)),

(%) _ ()21 -
hypa (2,1) = (Q )k“hpq(x; (Q(z))k%l

HO (1) = (@) P H (m, 1 440,
Q)

where ¢(?), hg,iq) and H® are the corresponding induced metric, second fundamental forms, and
the mean curvature, respectively. From the definition of Q¥ we must have

(HD (z, )" <1, 0<hl(x,t) <1, (z,t) € M x[0,1].

As in [12], we can find a subsequence of (M, g (t), F®(t),2®), t € [0,1], converges to a
Riemannian manifold (M g(t), F(t), %), where F(t) : M — R™ is an immersion.
Since

(HD (2,6))F*1 <1 on M x [0,1] for all i > i,

it follows that k(H " (z,t)) =1 (B® (x,t))? is also bounded on M x [0, 1] for any i > i. And since
(N, h) has bounded geometry and Q) > 1 for i > ig, (N,Q™h) also has bounded geometry
with the same bounding constants as (N, h) for each i > ip. It follows from Corollary 5.2 that

1 k41
max  (H (2, 1)) < C( / / IH(i)(x,t)|"+’“+1dugm(t)dt) e
(z,t)e M) x[$,1] o Ja,
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where C' is a constant independent of ¢ for ¢ > 5. Hence

max  H*t'(z,t) = lim max (HD (2,1))F+1
(z,t)eMx[L,1] i—00 (z,t)EM () x[$,1]
! : =
< lim C( / / |H® (x,t)|"+k+1dug(i)(t)dt)
o J,
() kil
n+k+1
< lim C / |H(x,t)|”+k+1dudt) 2,
i—oo ti—— 1 Jm,
(@) FFT

1 .
since (fOT Jap [H[" PR dpdt) 7571 < 00 and lim Q) = oo.
t 1—00
On the other hand, by our construction, we have

H*1(%,1) = lim (HD (2™, 1)) = 1.

17— 00

This is a contradiction. We complete the proof of Theorem 1.2.
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