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Abstract In this paper, the authors consider a family of smooth immersions Ft : Mn →
Nn+1 of closed hypersurfaces in Riemannian manifold Nn+1 with bounded geometry, mov-
ing by the Hk mean curvature flow. The authors show that if the second fundamental form
stays bounded from below, then the Hk mean curvature flow solution with finite total mean
curvature on a finite time interval [0, Tmax) can be extended over Tmax. This result gen-
eralizes the extension theorems in the paper of Li (see “On an extension of the Hk mean
curvature flow, Sci. China Math., 55, 2012, 99–118”).
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1 Introduction

Let Mn be a compact n-dimensional hypersurface without boundary, and let F0 : Mn →
Nn+1 be a smooth immersion of Mn into a Riemannian manifold Nn+1. Consider the general-
ized mean curvature flow (abbreviated for GMCF), namely, a smooth one-parameter family of
immersions

F (·, t) : Mn → Nn+1

satisfying the evolution equation⎧⎨⎩
∂

∂t
F (·, t) = −f(H(·, t))ν(·, t),

F (·, 0) = F0(·),
(1.1)

where f : R → R is a smooth function, depending only on the mean curvature of the immersed
surface, and ν(·, t) is the outer unit normal on Mt := F (M, t) at F (·, t). If f ′ > 0 along the
GMCF, then the short time existence has been established in [10]. It is easy to prove that (1.1)
admits a smooth solution on a maximal time interval [0, Tmax) with Tmax < ∞.
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If f is the identity function, then (1.1) is the classical mean curvature flow. If we choose f

to be the power function xk, then (1.1) is the Hk mean curvature flow. In this paper, we mainly
pay our attention to the Hk mean curvature flow, also we get some results on the GMCF.

The long time existence, convergence, blow up and extension properties are of great interest
subjects in curvature flow. Recently, many efforts have been made on the extension theorem for
the mean curvature flow under some curvature conditions (see [1, 6, 11–12]). Le and Sesum [6]
showed that if the second fundamental form stays bounded from below all the way to T , then
some integral condition of mean curvature is enough to extend the mean curvature flow past
time T . This extension theorem had also been generalized to the setting when the outer space is
Riemannian manifold (see [11–12]). In arbitrary codimension, Han and Sun [1] gave an integral
condition under which the mean curvature flow can be extended and then they investigated
some properties of type I singularity. In [7], Li proved an extension theorem for the Hk mean
curvature flow in R

n. Motivated by his idea, we prove the following main theorems in our
Riemannian setting.

Theorem 1.1 Let M be a compact n-dimensional hypersurface without boundary, smoothly
immersed into Nn+1 with bounded geometry by F0. Let [0, Tmax) be the maximal time interval
of the Hk mean curvature flow with Tmax < ∞, and H(·, 0) ≥ δ0 > 0. Then the quantity
max
Mt

|B|2 becomes unbounded as t → Tmax.

Along mean curvature flow, Huisken [3–4] proved that if T < ∞ is the first singularity time
for a compact MCF, then sup

Mt

|A|(·, t) → ∞ as t → T . The above theorem is natural for GMCF.

Theorem 1.2 Assume k, n ∈ N, k, n ≥ 2 and n+1 ≥ k. Let M be a compact n-dimensional
hypersurface without boundary, smoothly immersed into Nn+1 with bounded geometry by F0.
Consider the Hk mean curvature flow on M ,

∂

∂t
F (·, t) = −Hk(·, t) · ν(·, t), F (·, 0) = F0(·).

If
(1) hij ≥ Cgij(t) along the Hk mean curvature flow for a uniform constant C > 0,
(2) for some α ≥ n + k + 1,

‖H‖Lα(M×[0,Tmax)) :=
( ∫ Tmax

0

∫
Mt

|H(t)|αdμdt
) 1

α

< ∞,

then the flow can be extended over the time Tmax.

2 Preliminaries

In the following, the induced metric and the second fundamental form on M will be denoted
by g = {gij} and B = {hij}. The mean curvature of M is the trace of the second fundamental
form, i.e.,

H = gijhij .

The square of the second fundamental form is

|B|2 = gijgklhikhjl.
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The Riemann curvature tensor of N and its covariant derivative will be denoted by Rm =
{Rαβγδ} and ∇Rm = {∇σRαβγδ}, respectively. We write Rm = {Rijkl} for the curvature
tensor of M . Let ν be the unit outer normal to Mt, then for a fixed time t, we can choose a
local field of frame e0, e1, · · · , en in N , such that restricted to Mt, we have

e0 = ν, ei =
∂F

∂xi
.

The relation between B, Rm and Rm is then given by the equations of Gauss and Codazzi:

Rijkl = Rijkl + hikhjl − hilhjk,

∇khij −∇jhik = R0ijk .

We have the following proposition.

Proposition 2.1 (see [4])

Δhij = ∇i∇jH + Hhilh
l
j − |B|2hij + HR0i0j

− hijR0l0
l + hjlR

l
mi

m + hilR
l
mj

m

− 2hlmR
l
i
m

j + ∇jR0li
l + ∇lR0ij

l, (2.1)
1
2
Δ|B|2 = 〈hij ,∇i∇jH〉 + |∇B|2 + H · hikhk

lh
li − |B|2

+ HhijR0i0j − |B|2R0l0
l + 2hijhjlR

l
mi

m − 2hijhlmRlimj

+ hij(∇jR0li
l + ∇lR0ij

l). (2.2)

3 The Evolution Equations

Theorem 3.1 For the GMCF in Riemannian manifold, we have the following evolution
equations:

∂

∂t
F (t) = −f(H(t))ν(t), (3.1)

∂

∂t
gij(t) = −2f(H(t))hij , (3.2)

∂

∂t
ν(t) = f ′(H(t))∇H(t), (3.3)

∂

∂t
hij(t) = f ′(H(t))Δhij + f ′′(H(t))∇eiH∇ej H

− [f(H(t)) + Hf ′(H(t))]gklhikhjl + f ′(H(t))|B|2hij

+ [f(H(t)) − Hf ′(H(t))]R0i0j + f ′(H(t))hijR0l0
l

+ f ′(H(t))(2hlmR
l
i
m

j − hjlR
l
mi

m − hilR
l
mj

m −∇jR0li
l −∇lR0ij

l), (3.4)
∂

∂t
H(t) = f ′(H(t))ΔH + f ′′(H(t))|∇H |2 + f(H(t))(|B|2 + Ric(ν, ν)), (3.5)

∂

∂t
dμ(t) = −2f(H(t))H(t)dμ(t). (3.6)
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Proof Let us first prove (3.2).

∂

∂t
gij =

∂

∂t
〈F∗ei, F∗ej〉 =

〈
∇ei

∂F

∂t
, F∗ej

〉
+

〈
∇ej

∂F

∂t
, F∗ei

〉
= −〈∇ei(f(H(t))ν), F∗ej〉 − 〈∇ej (f(H(t))ν), F∗ei〉
= −f(H(t))(〈∇eiν, F∗ej〉 + 〈∇ej ν, F∗ei〉)
= −f(H(t))hij .

Next we prove (3.3).

∂

∂t
ν = gij

〈 ∂

∂t
ν, F∗ei

〉
F∗ej = gij

(
−

〈
ν,∇ei

∂F

∂t

〉)
F∗ej

= −gij〈ν,∇ei(−f(H(t))ν)〉F∗ej

= gij〈ν, (∇eif(H(t)))ν + f(H(t))∇eiν〉F∗(ej)

= gij〈ν, (∇eif(H(t)))ν〉F∗ej

= gij∇eif(H(t))F∗ej

= ∇f(H(t)) = f ′(H(t))∇H(t).

Using (2.1) of Proposition 2.1, we have

∂

∂t
hij(t) =

∂

∂t
〈∇eiν, F∗ej〉 = 〈∇ ∂

∂t
∇eiν, F∗ej〉 + 〈∇eiν,∇ ∂

∂t
F∗ej〉

= 〈∇ei∇ ∂
∂t

ν − f(H(t))R(ei, ν)ν, F∗ej〉 + 〈∇eiν,−∇ej (f(H(t))ν)〉
= 〈∇ei(f

′(H(t))∇H), ej〉 − f(H(t))〈R(ei, ν)ν, ej〉
− 〈∇eiν,∇ej (f(H(t)))ν〉 − 〈∇eiν, f(H(t))∇ej ν〉

= 〈(f ′′(H(t))∇eiH(t))∇H + f ′(H(t))∇ei∇H, ej〉
+ f(H(t))R0i0j − f(H(t))gklhikhjl

= f ′′(H(t))∇eiH∇ej H + f ′(H(t))∇ei∇ej H − f(H(t))gklhikhjl + f(H(t))R0i0j

= f ′′(H(t))∇eiH∇ej H + f ′(H(t))(Δhij − Hhilh
l
j + |B|2hij − HR0i0j

+ hijR0l0
l − hjlR

l
mi

m − hilR
l
mj

m + 2hlmR
l
i
m

j −∇jR0li
l −∇lR0ij

l)

− f(H(t))gklhikhjl + f(H(t))R0i0j

= f ′(H(t))Δhij + f ′′(H(t))∇eiH∇ej H

− [f(H(t)) + Hf ′(H(t))]gklhikhjl + f ′(H(t))|B|2hij

+ [f(H(t)) − Hf ′(H(t))]R0i0j + f ′(H(t))hijR0l0
l

+ f ′(H(t))(2hlmR
l
i
m

j − hjlR
l
mi

m − hilR
l
mj

m −∇jR0li
l −∇lR0ij

l),

this proves (3.4).
To prove (3.5), it is easy to get

∂

∂t
gil = 2f(H(t))gijhjkgkl.

Hence

∂

∂t
H =

∂gij

∂t
hij + gij ∂hij

∂t
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= 2f(H(t))gijhjkgklhij + gij(f ′(H(t))Δhij + f ′′(H(t))∇ei2000H∇ej H

− [f(H(t)) + Hf ′(H(t))]gklhikhjl + f ′(H(t))|B|2hij

+ [f(H(t)) − Hf ′(H(t))]R0i0j + f ′(H(t))hijR0l0
l

+ f ′(H(t))(2hlmR
l
i
m

j − hjlR
l
mi

m − hilR
l
mj

m −∇jR0li
l −∇lR0ij

l))

= 2f(H(t))|B|2 + f ′(H(t))ΔH + f ′′(H(t))|∇H |2 − f(H(t))|B|2 − Hf ′(H(t))|B|2
+ f ′(H(t))|B|2H + [f(H(t)) − Hf ′(H(t))]R0i0

i + f ′(H(t))HR0l0
l

+ f ′(H(t))(2hlmR
l
i
m

jg
ij − hjlR

l
mi

mgij − hilR
l
mj

mgij −∇jR0li
lgij −∇lR0ij

lgij)

= f ′(H(t))ΔH + f ′′(H(t))|∇H |2 + f(H(t))(|B|2 + Ric(ν, ν)),

this proves (3.5). It is easy to obtain (3.6), we omit the concrete computation.

4 Sobolev Inequalities for the GMCF

Li [7] obtained a Sobolev inequality for the power mean curvature flow by using Michael-
Simon inequality (see [8]), which is crucial for the Moser iteration in his situation. In our
setting, we also need an inequality which is similar to Michael-Simon inequality. Hence, in this
section we first introduce the Hoffman-Spruck Sobolev inequality.

Lemma 4.1 (see [2]) Let M → N be an isometric immersion of Riemannian manifolds of
dimension n and n + p (p ≥ 1), respectively. Assume KN ≤ b2 and let h be a nonnegative C1

function on M vanishing on ∂M . Then( ∫
M

h
n

n−1 dμ
) n−1

n ≤ cn

∫
M

(|∇h| + h|H |)dμ, (4.1)

provided

b2(1 − α)−
2
n (ω−1

n Vol(Supph))
2
n ≤ 1 (4.2)

and

2ρ0 ≤ R(M), (4.3)

where R(M) is the injectivity radius of N restricted to M and

ρ0 =

{
b−1 sin−1[b(1 − α)−

1
n (ω−1

n Vol(Supph))
1
n ] for b real,

(1 − α)−
1
n (ω−1

n Vol(Supph))
1
n for b arbitrary.

(4.4)

Here α is a free parameter, 0 < α < 1, and

cn := π · 2n−1α−1(1 − α)−
1
n

n

n − 1
ω
− 1

n
n . (4.5)

Following the proof of Theorem 3.4 in [7] and using Lemma 4.1, we obtain the following
general result.

Theorem 4.1 Suppose that k, n ∈ N, k, n ≥ 2, or k = 1 and n = 2. Set

Qk =
kn

kn − (k + 1)
=

n

n − k + 1
k

.
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Let M be a compact n-dimensional hypersurface without boundary, which is smoothly embedded
in Nn+1. Assume KN ≤ b2. Then for all nonnegative Lipschitz functions v on M , we have

‖v‖k+1

L
k+1

k
Qk (M)

≤ An,k(‖∇v‖k+1

L
k+1

k (M)
+ ‖H‖n+k+1

Ln+k+1(M)
‖v‖k+1

L
k+1

k (M)
)

≤ Ân,k(‖∇v‖k+1
L2(M) + ‖H‖n+k+1

Ln+k+1(M)
‖v‖k+1

L2(M)), (4.6)

provided that the function h := v
(k+1)(n−1)
kn−(k+1) satisfies (4.2)–(4.3), where H is the mean curvature

of M and

An,k = 2
(n−1)(k+1)(n+k+1)

kn−(k+1) (2cn,k)n+k+1
(
cn,k = cn · (k + 1)(n − 1)

kn − (k + 1)

)
,

Ân,k = An,kVol(M)
k−1
2 .

Corollary 4.1 Under the conditions of Theorem 4.1, for any nonnegative Lipschitz function
v, we have

‖v‖2
L2Qk (M) ≤ Ãn,k(‖v‖

k−1
k

L2(M) · ‖∇v‖
k+1

k

L2(M) + (‖H‖n+k+1
Ln+k+1(M)

)
1
k ‖v‖2

L2(M)),

where

Ãn.k = A
1
k

n,k ·
( 2k

k + 1

)k+1
k

.

Similar to the proof of Theorem 3.6 in [7], using Corollary 4.1 and Hölder’s inequality, we
obtain the following Sobolev type inequality for the GMCF.

Theorem 4.2 Suppose that k, n ∈ N, k, n ≥ 2. Let M be a compact n-dimensional hyper-
surface without boundary, which is smoothly embedded in Nn+1. Assume KN ≤ b2. Consider
the GMCF

∂

∂t
F (·, t) = −f(H(·, t))ν(·, t), 0 ≤ t ≤ T ≤ Tmax < ∞,

where f ∈ C∞(Ω), Ω ⊂ R. Suppose f ′(x) > 0, and f(x) · x ≥ 0 along the GMCF. Then for all
nonnegative Lipschitz functions v, we have

‖v‖β
Lβ(M×[0,T ])

≤ Bn,k,T · max
0≤t≤T

‖v‖
(k+1)2

k2n
+ k−1

k

L2(Mt)

(
‖∇v‖

k+1
k

L2(M×[0,T ])

+ max
0≤t≤T

‖v‖
k+1

k

L2(Mt)
(‖H‖n+k+1

Ln+k+1(M×[0,T ])
)

1
k

)
,

provided that the function h := v
(k+1)(n−1)
kn−(k+1) satisfies (4.2)–(4.3), where

Bn,k,T = Ãn,k · Vol(M)
(k−1)(k+1)

2k2n · max{T k−1
k , T

k−1
2k }

and β = 2 + k+1
k · k+1

kn > 2.

Remark 4.1 If k = 1, then k+1
k = 2. Thus we do not need to use Hölder inequality to

control the L2-norm, and in this case, Bn,k,T = Bn,1,T = An,1 is a constant.
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5 Reverse Hölder and Harnack Inequalities

In this section, we can follow the lines of [7] and [11], and easily derive a soft version of
reverse Hölder inequality and a Harnack inequality for parabolic inequality along the GMCF
in Riemannian manifolds. Suppose that f ∈ C∞(Ω) for an open set Ω ⊂ R, and that v is a
smooth function on M × [0, T ] such that its image is contained in Ω.

We start with the following differential inequality:( ∂

∂t
− Δf,t

)
v ≤ (G + C)f(v) + f ′′(v)‖∇tv‖2, v ≥ 0, (5.1)

where the function G + C has bounded Lq(M × [0, T ])-norm with

q >
γ

γ − 2
, γ = 2 +

(k + 1)2

k2n
,

C is a fixed positive constant and Δf,t(·) = f ′(·)Δt(·). Let η(x, t) be a smooth function on
M × [0, T ] with the property that η(x, 0) = 0 for all x ∈ M .

Let S be the set of all functions f ∈ C∞(Ω) (Ω ⊂ R) satisfying the following conditions:
(a) f satisfies the differential inequality (5.1),
(b) f ′(x) > 0 for all x ∈ Ω,
(c) f(x) ≥ 0 whenever x ≥ 0,
(d) f(H(t))H(t) ≥ 0 along the GMCF,
(e) f ′(v) ≥ C2 > 0 on M × [0, T ] for some uniform constant C2.

Lemma 5.1 Let M be a compact n-dimensional hypersurface without boundary, which is
smoothly embedded in Nn+1. Consider the differential inequality (5.1). Let β ≥ 2 be a fixed
number. Then

C2

∫ s

0

∫
Mt

|∇t(ηf
β
2 (v))|2dμdt +

∫
Ms

fβ(v)η2dμ

≤ β

β − 1

∫ s

0

∫
Mt

fβ(v)
{

2η
( ∂

∂t
− f ′(v)Δt

)
η

+
[ 1
β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

]
|∇tη|2

}
dμdt

+
β2

β − 1
‖(G + C)f ′(v)‖Lq(M×[0,T ]) · ‖η2fβ(v)‖

L
q

q−1 (M×[0,T ])
.

Proof Multiplying (5.1) by η2f ′(v)fβ−1(v), then for any s ∈ [0, T ], we have∫ s

0

∫
Mt

(−Δf,tv)η2f ′(v)fβ−1(v)dμdt +
∫ s

0

∫
Mt

∂v

∂t
· η2f ′(v)fβ−1(v)dμdt

≤
∫ s

0

∫
Mt

|G + C|η2f ′(v)fβ(v)dμdt +
∫ s

0

∫
Mt

η2f ′(v)f ′′(v)fβ−1(v)|∇tv|2dμdt.

Using the integration by parts, the properties of η and (3.6), we conclude that∫ s

0

∫
Mt

[2〈∇tv,∇tη〉η(f ′(v))2fβ−1(v) + η2(2f ′(v)f ′′(v)fβ−1(v)
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+ (β − 1)(f ′(v))3fβ−2(v))|∇tv|2]dμdt +
1
β

∫
Ms

fβ(v)η2dμ(s)

≤ 1
β

∫ s

0

∫
Mt

fβ(v)
[
2η

∂η

∂t
− η2f(H(t))H(t)

]
dμdt

+
∫ s

0

∫
Mt

|G + C|η2f ′(v)fβ(v)dμdt +
∫ s

0

∫
Mt

η2f ′(v)f ′′(v)fβ−1(v)|∇tv|2dμdt

≤ 1
β

∫ s

0

∫
Mt

fβ(v)2η
∂η

∂t
dμdt +

∫ s

0

∫
Mt

|G + C|η2f ′(v)fβ(v)dμdt

+
∫ s

0

∫
Mt

η2f ′(v)f ′′(v)fβ−1(v)|∇tv|2dμdt.

Direct calculation gives

1
β

∫ s

0

∫
Mt

fβ(v)2η
∂η

∂t
dμdt

=
1
β

∫ s

0

∫
Mt

[
fβ(v)2η

( ∂

∂t
− f ′(v)Δt

)
η + fβ(v)f ′(v)2ηΔtη

]
dμdt

=
1
β

∫ s

0

∫
Mt

[
fβ(v)2η

( ∂

∂t
− f ′(v)Δt

)
η − 2fβ(v)f ′(v)|∇tη|2

]
dμdt

− 2
β

∫ s

0

∫
Mt

η[βfβ−1(f ′(v))2 + fβ(v)f ′′(v)]〈∇tv,∇tη〉dμdt.

And the Cauchy-Schwartz inequality implies

4
∫ s

0

∫
Mt

η(f ′(v))2fβ−1(v)〈∇tv,∇tη〉dμdt

≥ −2ε2
∫ s

0

∫
Mt

η2(f ′(v))3fβ−2(v)|∇tv|2dμdt

− 2
ε2

∫ s

0

∫
Mt

f ′(v)fβ(v)|∇tη|2dμdt

and

2
β

∫ s

0

∫
Mt

ηfβ(v)f ′′(v)〈∇tv,∇tη〉dμdt

≥ −
∫ s

0

∫
Mt

η2f(v)f ′(v)f ′′(v)fβ−1(v)|∇tv|2dμdt

− 1
β2

∫ s

0

∫
Mt

f(v)f ′′(v)
f ′(v)

fβ(v)|∇tη|2dμdt.

Note that

|∇t(f
β
2 (v))|2 =

∣∣∣β
2

f
β
2 −1(v)f ′(v)∇t(v)

∣∣∣2 =
β2

4
fβ−2(v)(f ′(v))2|∇tv|2.

If we choose ε2 = β−1
4 , then we can obtain that

2(β − 1)
β

∫ s

0

∫
Mt

|∇t(f
β
2 (v))|2f ′(v)η2dμdt +

∫
Ms

fβ(v)η2dμ

≤
∫ s

0

∫
Mt

fβ(v)
{

2η
( ∂

∂t
− f ′(v)Δt

)
η
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+
[ 1
β

f(v)f ′′(v)
f ′(v)

− 2f ′(v) +
8β

β − 1
f ′(v)

]
|∇tη|2

}
dμdt

+ β

∫ s

0

∫
Mt

|G + C|η2f ′(v)fβ(v)dμdt.

Combining the above estimates with

|∇t(ηf
β
2 (v))|2 ≤ 2fβ(v)|∇tη|2 + 2η2|∇tf

β
2 (v)|2

gives

C2

∫ s

0

∫
Mt

|∇t(ηf
β
2 (v))|2dμdt +

∫
Ms

fβ(v)η2dμ

≤ β

β − 1

∫ s

0

∫
Mt

fβ(v)
{

2η
( ∂

∂t
− f ′(v)Δt

)
η

+
[ 1
β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

]
|∇tη|2

}
dμdt

+
β2

β − 1
‖(G + C)f ′(v)‖Lq(M×[0,T ]) · ‖η2fβ(v)‖

L
q

q−1 (M×[0,T ])
.

Theorem 5.1 Let M be a compact n-dimensional hypersurface without boundary, which
is smoothly embedded in Nn+1. Assume KN ≤ b2, and k, n ∈ N, k, n ≥ 2. Consider the
differential inequality (5.1). Let

C0,q = ‖(G + C)f ′(v)‖Lq(M×[0,T ]),

C1 = (1 + ‖H‖
n+k+1

k

Ln+k+1(M×[0,T ])
)

2
γ ,

and β ≥ 2 be a fixed number. Then there exists a positive constant Cn,k,T (C0.q, C1, β, q) de-
pending only on n, k, T, β, q, C0,q, C1 and Vol(M), such that for any f ∈ S,

‖η2fβ(v)‖
L

γ
2 (M×[0,T ])

≤ Cn,k,T (C0.q, C1, β, q)
∥∥∥fβ(v)

[
η2 + 2η

( ∂

∂t
− f ′(v)Δt

)
η

+
( 1

β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

)
|∇tη|2

]∥∥∥
L1(M×[0,T ])

, (5.2)

provided that the function (ηf
β
2 (v))

(k+1)(n−1)
kn−(k+1) satisfies the conditions (4.2)–(4.3) for any t ∈

[0, T ], where

Cn,k,T (C0.q, C1, β, q)

=
β

β − 1
max

{
2(B̃n,k,T )

2
γ C1,

[
2(B̃n,k,T )

2
γ C1C0,q

β2

β − 1

]1+ν}
and

ν =
γ

(γ − 2)q − γ
.
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In particular, if (G + C)f ′(v) ∈ L∞(M × [0, T ]), then letting q → ∞, we have

Cn,k,T (C0,∞, C1, β, q)

=
2β

β − 1
max

{
1,

C0,∞β2

β − 1

}
· (B̃n,k,T )

2
γ C1

≤ 2β

β − 1

(C0,∞β2

β − 1
+ 1

)
(B̃n,k,T )

2
γ C1

≤ 2β2

(β − 1)2
(C0,∞β + 1)(B̃n,k,T )

2
γ C1

≤ 8(1 + C0,∞)β(B̃n,k,T )
2
γ C1,

where

B̃n,k,T = Bn,k,T · max
{( 1

C2

) k+1
2k

, 1
}
,

C0,∞ = ‖(G + C)f ′(v)‖L∞(M×[0,T ]).

In this case, we obtain

‖η2fβ(v)‖
L

γ
2 (M×[0,T ])

≤ Dn,k,T βC1

∥∥∥fβ(v)
[
η2 + 2η

( ∂

∂t
− f ′(v)Δt

)
η

+
( 1

β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

)
|∇tη|2

]∥∥∥
L1(M×[0,T ])

, (5.3)

provided that the function (ηf
β
2 (v))

(k+1)(n−1)
kn−(k+1) satisfies the conditions (4.2)–(4.3) for any t ∈

[0, T ], where
Dn,k,T = 8(1 + C0,∞)(B̃n,k,T )

2
γ .

Proof Denote

A : =
β

β − 1

∫ s

0

∫
Mt

fβ(v)
{

2η
( ∂

∂t
− f ′(v)Δt

)
η

+
[ 1
β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

]
|∇tη|2

}
dμdt

+
β2

β − 1
‖(G + C)f ′(v)‖Lq(M×[0,T ]) · ‖η2fβ(v)‖

L
q

q−1 (M×[0,T ])

and

Λ : =
β

β − 1

∫ s

0

∫
Mt

fβ(v)
{

2η
( ∂

∂t
− f ′(v)Δt

)
η

+
[ 1
β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

]
|∇tη|2

}
dμdt.

By Lemma 5.1, we have

‖ηf
β
2 (v)‖L2(Ms) ≤ A

1
2 ,

‖∇t(ηf
β
2 (v))‖L2(M×[0,T ]) ≤

( A

C2

) 1
2
.
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Let S := M × [0, T ] and let the norm ‖·‖Lp(M×[0,T ]) be abbreviated by ‖·‖Lp(S). If the function

(ηf
β
2 (v))

(k+1)(n−1)
kn−(k+1) satisfies the conditions (4.2)–(4.3) for any t ∈ [0, T ], applying Theorem 4.2

to ηf
β
2 (v), we have the following estimate:

‖η2fβ(v)‖
L

γ
2 (S)

= (‖ηf
β
2 (v)‖γ

Lγ(S))
2
γ

≤ [B̃n,k,T · A γ
2 (1 + ‖H‖

n+k+1
k

Ln+k+1(S)
)]

2
γ = (B̃n,k,T )

2
γ C1A

= (B̃n,k,T )
2
γ C1

(
Λ +

β2

β − 1
‖(G + C)f ′(v)‖Lq(S) · ‖η2fβ(v)‖

L
q

q−1 (S)

)
.

Since 1 < q
q−1 < γ

2 , by using the interpolation inequality

‖η2fβ(v)‖
L

q
q−1 (S)

≤ ε‖η2fβ(v)‖
L

γ
2 (S)

+ ε−ν‖η2fβ(v)‖L1(S),

where

ν =
1 − q − 1

q
q − 1

q
− 2

γ

=
γ

(γ − 2)q − γ
.

Hence if we choose

ε =
β − 1

2(B̃n,k,T )
2
γ C1β2C0,q

,

then we have

‖η2fβ(v)‖
L

γ
2 (S)

≤ 2(B̃n,k,T )
2
γ C1Λ +

[
2

β2

β − 1
C0,q(B̃n,k,T )

2
γ C1

]1+ν

· ‖η2fβ(v)‖L1(S)

≤ max
{
2(B̃n,k,T )

2
γ C1,

[
2

β2

β − 1
C0,q(B̃n,k,T )

2
γ C1

]1+ν}
· (Λ + ‖η2fβ(v)‖L1(S))

:= C̃n,k,T (c0,q, C1, β, q) · (Λ + ‖η2fβ(v)‖L1(S)),

where C̃n,k,T (c0,q, C1, β, q) is the constant depending only on n, k, T, β, q, C0,q, C1, Vol (M).
From the definition of Λ and noting that 1 < β

β−1 ≤ 2, we obtain

‖η2fβ(v)‖
L

γ
2 (S)

≤ Cn,k,T (C0,q, C1, β, q)
∥∥∥fβ(v)

[
η2 + 2η

( ∂

∂t
− f ′(v)Δt

)
η

+
( 1

β

f(v)f ′′(v)
f ′(v)

+
8β2 − 2β + 2

β(β − 1)
f ′(v)

)
|∇tη|2

]∥∥∥
L1(S)

,

where

Cn,k,T = C̃n,k,T · β

β − 1
.

Next, we shall show that an L∞-norm of f(v) over a smaller domain can be bounded by an
Lβ-norm of f(v) over the whole manifold M × [0, T ].
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Corollary 5.1 Let M be a compact n-dimensional hypersurface without boundary, which
is smoothly embedded in Nn+1. Assume −c2 ≤ KN ≤ b2, and k, n ∈ N, k, n ≥ 2. Consider the
differential inequality (5.1). Let

C0,∞ = ‖(G + C)f ′(v)‖L∞(M×[0,T ]),

C1 = (1 + ‖H‖
n+k+1

k

Ln+k+1(M×[0,T ])
)

2
γ ,

and β ≥ 2 be a fixed number. Then there exists a uniform constant Cn > 0 depending only on
n, such that for any f ∈ S, we have

‖f(v)‖L∞(M×[ T
2 ,T ]) ≤ En,k,T (β) · C

1
β · γ

γ−2
1 ‖f(v)‖Lβ(M×[0,T ]), (5.4)

where

En,k,T (β) = (Dn,k,T Cnβ)
1
β · γ

γ−2 ·
(γ

2

) 1
β · 2γ

(γ−2)2 · 4 1
β · γ2

(γ−2)2 .

Proof Set

ti =
T

2

(
1 − 1

4p+i

)
, ri =

1
2p

+
1

2p+i+1
, i = 0, 1, 2, · · · .

Let ηi(x, t) be smooth functions satisfying the following properties:

ηi|[ti,T ] = 1, ηi|[0,ti−1] = 0, 0 ≤ ηi ≤ 1,
∣∣∣ d
dt

ηi

∣∣∣ ≤ Cn4p+i,

ηi|M∩B(x0,ri) = 1, ηi|M−M∩B(x0,ri−1) = 0, 0 ≤ ηi|M ≤ 1, |∇tηi| ≤ Cn4p+i+1.

Set Ii = [ti, T ]. Now we claim that (ηif
β
2 (v))

(k+1)(n−1)
kn−(k+1) satisfies the conditions (4.2)–(4.3) for

any t ∈ [0, T ].
In fact, under the GMCF, we observe that

Volg(t)(B(R)) ≤ Volg(0)(B(R))

for any t ∈ [0, T ] by (3.6). For g(0), there exists a non-positive constant K = K
(
n, max

x∈M0
|B|, N)

such that the sectional curvature of M0 is bounded from below by K. Then by the Bishop-
Gromov Volume comparison theorem, we have

Volg(0)(B(R)) ≤ VolK(B(R)),

where VolK(B(R)) denotes the volume of the ball with radius R in the n-dimensional complete
simply connected space form with constant curvature K. Hence

Volg(t)(B(R)) ≤ VolK(B(R)).

Therefore, we can choose R sufficiently small such that

b2(1 − α)−
2
n (ω−1

n · VolK(B(R)))
2
n ≤ 1, 2ρ0 ≤ R(M),
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where ρ0 is defined by (4.4). Here the sufficient smallness of R can be achieved by choosing a

sufficiently large p. So (ηif
β
2 (v))

(k+1)(n−1)
kn−(k+1) satisfies the conditions (4.2)–(4.3) for any t ∈ [0, T ].

Since ‖(G + C)f ′(v)‖L∞(M×[0,T ]) exists, using Theorem 5.1, we have

‖fβ(v)‖
L

γ
2 (M×Ii)

≤ (Dn,k,T Cn4p+i+1) · β · C1‖fβ(v)‖L1(M×Ii−1).

Then by the standard Moser iteration process, we have

‖f(v)‖L∞(M×[ T
2 ,T ]) ≤ En,k,T (β) · C

1
β · γ

γ−2
1 ‖f(v)‖Lβ(M×[0,T ]).

Corollary 5.2 Let M be a compact n-dimensional hypersurface without boundary, which is
smoothly embedded in Nn+1 with bounded geometry. Suppose n, k ∈ N, k, n ≥ 2, and n+1 ≥ k.
Consider the Hk mean curvature flow

∂

∂t
F (·, t) = −Hk(·, t) · ν(·, t), 0 ≤ t ≤ T ≤ Tmax < ∞.

If

H(t) ≥
(C2

k

) 1
k−1

> 0, ‖kHk−1(t)(|B|2 + C)‖L∞(M×[0,T ]) < ∞
along the Hk mean curvature flow for some uniform constant C2 > 0, then there exists a
uniform constant Cn, depending only on n, such that

‖H(t)‖L∞(M×[ T
2 ,T ])

≤ E
1
k

n,k,T

(n + k + 1
k

)
(1 + ‖H‖

n+k+1
k

Ln+k+1(M×[0,T ])
)

2
γ−2

1
n+k+1 · ‖H(t)‖Ln+k+1(M×[0,T ])

≤ Fn,k,Tmax · ‖H(t)‖Ln+k+1(M×[0,T ]),

where

Fn,k,Tmax = E
1
k

n,k,Tmax

(n + k + 1
k

)
(1 + ‖H‖

n+k+1
k

Ln+k+1(M×[0,T ])
)

2
γ−2

1
n+k+1 .

Proof Let

f(x) = xk : R+ → R.

From the evolution equation of H(t), i.e., (3.5), we have( ∂

∂t
− Δf,t

)
H(t) = f ′′(H(t))|∇tH(t)|2 + f(H(t))(|B|2 + Ric(ν, ν))

≤ f ′′(H(t))|∇tH(t)|2 + f(H(t))(|B|2 + C).

By Corollary 5.1, there exists a uniform constant Cn > 0, such that

‖Hk(t)‖L∞(M×[ T
2 ,T ]) ≤ En,k,T (β)C

1
β

γ
γ−2

1 ‖Hk(t)‖Lβ(M×[0,T ]),

i.e.,

‖H(t)‖L∞(M×[ T
2 ,T ]) ≤ E

1
k

n,k,T (β)C
1

kβ
γ

γ−2
1 ‖H(t)‖Lkβ(M×[0,T ]).

Choose β = n+k+1
k ≥ 2, then it follows that

‖H(t)‖L∞(M×[ T
2 ,T ]) ≤ E

1
k

n,k,T

(n + k + 1
k

)
C

γ
γ−2

1
n+k+1

1 · ‖H(t)‖Ln+k+1(M×[0,T ]).

Remark 5.1 When k = 1, n + 1 ≥ k is obvious, but for k ≥ 2, this assumption is needed
in our proof.
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6 Proof of Main Theorem

Proof of Theorem 1.1 We shall follow the basic ideas of Schulze [9]. If Theorem 1.1 is
false, then there exists some C < ∞ such that

max
Mt

|B|2 ≤ C

on 0 ≤ t < Tmax. Using the evolution equation and the upper bound for H , it follows that for
p ∈ U ⊂ M , 0 < σ < ρ < Tmax, we have that

dist(F (p, ρ), F (p, σ)) ≤
∫ ρ

σ

Hk(p, τ)dτ ≤ C(ρ − σ)

and F (·, t) converges uniformly to some continuous limit function F (·, Tmax). We want to show
that F (·, Tmax) actually represents a smooth limit surface MTmax . This is then a contradiction
to the maximality of Tmax. In order to show that F (·, Tmax) represents a smooth surface MTmax ,
we only have to establish uniform bounds for all derivatives of the second fundamental form on
Mt, 0 ≤ t < Tmax.

In the following, we denote the metric of N and Graph(u) by g and g respectively. For
k ≤ 1, since Hk is concave in hi

j and it has uniform C2-bound, then using the estimate of [5]
(see [5, Theorem 2 in Chapter 5.5]), we can obtain the uniform C2,α-bounds. For k > 1, let
S be a fixed reference hypersurface which is tangent to the hypersurface F (·, t0) at some point
p ∈ N , and assume that we have Gaussian coordinates {x1, · · · , xn} in a neighborhood of p on
S. Then there exists a local coordinate in the neighborhood of p in N constructed from the
above coordinate. Suppose that U is a neighborhood of p such that for every point q ∈ U there
exists a unique minimal geodesic

γ : [0, d(q, S)] → N, γ(0) = q, γ(1) = q′ ∈ S

to the hypersurface S satisfying L(γ(t)) = d(q, S). The coordinate of q is set to be

(x1(q), · · · , xn(q), xn+1(q)) = (x1(q′), · · · , xn(q′), d(q, S)).

By the construction, g(γ̇(1), v) = 0 for any v ∈ Tq′S. Given ∂xi ∈ TqN, 1 ≤ i ≤ n, there
exists a curve γq such that γq(0) = q, γ̇q(0) = ∂xi and d(γq(s), S) = d(q, S). For any point
γq(s),−δ < s < δ, there exists a unique minimal geodesic from q to S. Hence we have a family
of minimal geodesics

F : [0, d(q, S)] × (−δ, δ) → N,

such that F (·, s) : [0, d(q, S)] → N is the minimal geodesic from γq(s) to S. Hence the vector
field v(t) = dF (∂s)(t, 0) is a Jacobi field with v(0) = ∂xi ∈ TqN and g

(
v(1), d

dtF (t, 0)|t=1

)
= 0.

Hence
g
(
v(0),

d
dt

F (t, 0)
∣∣∣
t=0

)
= 0,

that is g(∂xi , ∂xn+1) = 0, i = 1, · · · , n. Since ∂xn+1 = d
dtF (t, 0)

∣∣
t=0

, we have

g(∂xn+1 , ∂xn+1) = 1.
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Under this coordinate {x1, · · · , xn+1}, locally around p we can write F (·, t) for t ∈ (t0 −
ε, t0 + ε) (for some ε > 0) as graphs of function u(t) on S (see [4, 13]). Set

Graph(u) := {(x1, · · · , xn, u(x1, · · · , xn)) | (x1, · · · , xn) ∈ S}. (6.1)

Then {Ei = ∂xi + uxi∂xn+1 | 1 ≤ i ≤ n} gives a basis for the tangent space to Graph(u). It is
easy to see that

ν :=
1√

1 + |∇u|2
(∑

i,j

−gijuxi∂j + ∂n+1

)
(6.2)

is the unit inner normal vector on F (·, t) and u satisfies the following evolution equation:

∂

∂t
u =

√
1 + |∇u|2Hk. (6.3)

By direct calculation, we have that

hij = g(∇EiEj , ν) = g(∇∂i+ui∂n+1(∂j + uj∂n+1), ν)

=
1√

1 + |∇u|2 {uij + Γn+1
ij − ulΓl

ij − ujulΓ1
i,n+1 − uiulΓl

j,n+1},

since Γp
n+1,n+1 = 0, Γn+1

i,n+1 = 0 for i = 1, · · · , n, and p = 1, · · · , n+1, where Γ is the Christoffel
symbol of N . Using the expression of Ei, we compute that

gij = gij − 1
1 + |∇u|2 girgjsuxruxs . (6.4)

Hence

H = gijhij =
1√

1 + |∇u|2
(
gij − 1

1 + |∇u|2 girgjsuxruxs

)
· (uij + Γn+1

ij − ulΓl
ij − 2uiulΓl

j,n+1). (6.5)

Therefore (6.3) and (6.5) imply that

∂

∂t
u = (

√
1 + |∇u|2)1−k

·
((

gij − 1
1 + |∇u|2 girgjsurus

)
(uij + Γn+1

ij − ulΓl
ij − 2uiulΓl

j,n+1)
)k

. (6.6)

According to Theorem 2, Chapter 5.3 in [5], with the assumption that |B| is bounded, we
can obtain the uniform Hölder-estimates in space and time for ∂

∂tu. Similarly, by Theorem 4,
Chapter 5.2 in [5], we can also have the Hölder-estimates for ∇u. On the other hand, the mean
curvature H satisfies the evolution equation

∂

∂t
H = kHk−1ΔH + k(k − 1)Hk−2|∇H |2 + Hk(|B|2 + Ric(ν, ν))

≥ kHk−1ΔH + k(k − 1)Hk−2|∇H |2 +
1
n

Hk+2 − CHk.

Then let φ be the solution of the ODE

dφ

dt
= −Cφk, φ(0) = Hmin(0) ≥ δ > 0.
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Then we have

φk−1(t) =
φk−1(0)

1 + C(k − 1)φk−1(0)t
.

Since k > 1, φ(t) > 0 for all t > 0.
If we consider φ as a function on M × [0, Tmax), we have

∂

∂t
(H − φ) ≥ kHk−1Δ(H − φ) + k(k − 1)Hk−2|∇(H − φ)|2 +

1
n

Hk+2 − C(Hk(x, t) − φk(t)).

Suppose t0 be the first time that

H(p, t0) − φ(t0) = min
x∈M

(H(x, t) − φ(t))

attaining zero. Then at (p, t0), we have

0 ≥ ∂

∂t
(H − φ),

Δ(H − φ) ≥ 0.

By H(p, t0) = φ(t0) > 0, we have

0 ≥ ∂

∂t
(H − φ) ≥ 1

n
Hk+2 > 0,

which is a contradiction. Hence H(x, t) > φ(t) > δ(Tmax) > 0, where

δ(Tmax) =
φk−1(0)

1 + C(k − 1)φk−1(0)Tmax
.

(6.6) implies that

v := (
√

1 + |∇u|2)1−k

and

w :=
((

gij − 1
1 + |∇u|2 girgjsurus

)
(uij + Γn+1

ij − ulΓl
ij − 2uiulΓl

j,n+1)
)k−1

(6.7)

are also uniformly Hölder-continuous in space and time. Therefore we can write (6.6) as a
linear, strictly parabolic PDE

∂

∂t
u − aijuij + biui + f = 0

with coefficients aij , bi, f in Cβ in space and time. The interior Schauder estimates then lead
to C2,β-bounds. In both cases, namely, k ≤ 1 and k > 1, using again parabolic Schauder
estimates, we get a bound on all the higher Cl-norms.

Proof of Theorem 1.2 It is sufficient to prove the theorem for α = n+ k +1 since by the
Hölder inequality, ‖H(t)‖Lα(M×[0,T ]) < ∞ implies ‖H(t)‖Ln+k+1(M×[0,T ]) < ∞ if α > n + k + 1.
Note that ‖H(t)‖Lα(M×[0,T ]) is invariant under the rescaling of the Hk mean curvature flow.

F̃ (p, t) = Q
1

k+1 · F
(
p,

t

Q

)
for Q > 0.
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We argue by contradiction. Suppose that the solution to the Hk mean curvature flow can not
be extended over Tmax. Then B(t) is unbounded as t → Tmax. Let λi (i = 1, · · · , n) be the
principal curvatures. Then

|B|2 =
n∑

i=1

λ2
i ≤

( n∑
i=1

λi

)2

= H2(t).

Since hij ≥ cgij (c > 0), thus Hk+1(x, t) is also unbounded as t → Tmax. Namely,

sup
(x,t)∈M×[0,Tmax)

Hk+1(x, t) = ∞.

Choose an increasing time sequence {t(i)}∞i=1, such that lim
i→∞

t(i) = Tmax. We take a sequence

of points x(i) ∈ M , satisfying

Q(i) = Hk+1(x(i), t(i)) = max
(x,t)∈M×[0,t(i)]

Hk+1(x, t),

then

limQ(i) = ∞.

Therefore there exists a positive integer i0 such that (Q(i))
2

k+1 t(i) ≥ 1 and Q(i) ≥ 1 for i ≥ i0.
For i ≥ i0 and t ∈ [0, 1], we consider the rescaled flows

F (i)(x, t) = (Q(i))
1

k+1 F
(
x,

t − 1

(Q(i))
2

k+1
+ t(i)

)
: (M, g(i)(t)) → (N, Q(i)h).

Then a simple calculation shows that

g(i)(x, t) = (Q(i))
2

k+1 g
(
x,

t − 1

(Q(i))
2

k+1
+ t(i)

)
,

h(i)
pq (x, t) = (Q(i))

2
k+1 hpq

(
x,

t − 1

(Q(i))
2

k+1
+ t(i)

)
,

H(i)(x, t) = (Q(i))−
1

k+1 H
(
x,

t − 1

(Q(i))
2

k+1
+ t(i)

)
,

where g(i), h
(i)
pq and H(i) are the corresponding induced metric, second fundamental forms, and

the mean curvature, respectively. From the definition of Q(i) we must have

(H(i)(x, t))k+1 ≤ 1, 0 ≤ hi
pq(x, t) ≤ 1, (x, t) ∈ M × [0, 1].

As in [12], we can find a subsequence of (M, g(i)(t), F (i)(t), x(i)), t ∈ [0, 1], converges to a
Riemannian manifold (M̃, g̃(t), F̃ (t), x̃), where F̃ (t) : M̃ → R

n+1 is an immersion.
Since

(H(i)(x, t))k+1 ≤ 1 on M × [0, 1] for all i ≥ i0,

it follows that k(H(i)(x, t))k−1(B(i)(x, t))2 is also bounded on M×[0, 1] for any i ≥ i0. And since
(N, h) has bounded geometry and Q(i) ≥ 1 for i ≥ i0, (N, Q(i)h) also has bounded geometry
with the same bounding constants as (N, h) for each i ≥ i0. It follows from Corollary 5.2 that

max
(x,t)∈M(i)×[ 12 ,1]

(H(i)(x, t))k+1 ≤ C
( ∫ 1

0

∫
Mt

|H(i)(x, t)|n+k+1dμg(i)(t)dt
) k+1

n+k+1
,
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where C is a constant independent of i for i ≥ i0. Hence

max
(x,t)∈M̃×[ 12 ,1]

H̃k+1(x, t) = lim
i→∞

max
(x,t)∈M(i)×[ 12 ,1]

(H(i)(x, t))k+1

≤ lim
i→∞

C
( ∫ 1

0

∫
Mt

|H(i)(x, t)|n+k+1dμg(i)(t)dt
) k+1

n+k+1

≤ lim
i→∞

C
( ∫ t(i)

t(i)− 1

(Q(i))
2

k+1

∫
Mt

|H(x, t)|n+k+1dμdt
) k+1

n+k+1
= 0,

since
( ∫ T

0

∫
Mt

|H |n+k+1dμdt
) 1

n+k+1 < ∞ and lim
i→∞

Q(i) = ∞.

On the other hand, by our construction, we have

H̃k+1(x̃, 1) = lim
i→∞

(H(i)(x(i), 1))k+1 = 1.

This is a contradiction. We complete the proof of Theorem 1.2.
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