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Abstract The authors propose a dwindling filter algorithm with Zhou’s modified subprob-
lem for nonlinear inequality constrained optimization. The feasibility restoration phase,
which is always used in the traditional filter method, is not needed. Under mild conditions,
global convergence and local superlinear convergence rates are obtained. Numerical results
demonstrate that the new algorithm is effective.
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1 Introduction

Consider the following nonlinear inequality constrained optimization:

min f(x), (1.1a)

s.t. gj(x) ≤ 0, j ∈ I, (1.1b)

where x ∈ R
n, f : R

n → R and gj : R
n → R (j = 1, · · · , m) are continuously differentiable. The

problem has become highly important in recent years (see [6, 9–10, 12, 14–15, 20–21]).
It is well-known that the sequential quadratic programming (or SQP for short) method is

one of the most effective methods to solve (1.1). Because of its superlinear convergence rate, it
is a topic of much active research. However, the SQP algorithms have two serious shortcomings.
First, in order to obtain a search direction, one must solve one or more quadratic programming
subproblems per iteration, and the computation amount of this type is very large. Second,
the SQP algorithms require the related quadratic programming subproblems to be solvable per
iteration, but it is difficult to be satisfied. Moreover, the solutions of the sequential quadratic
subproblem may be unbounded, which leads to that the sequence generated by the method is
divergent. Based on the above reasons, Zhou [19] modified the quadratic subproblem to make
it feasible and bounded.
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The filter idea was first presented by Fletcher and Leyffer [3] for nonlinear programming
(or NLP for short), offering an alternative to penalty functions, as a tool to guarantee global
convergence of algorithms for nonlinear programming. Filter methods were successfully applied
to solving various optimization problems, including complementarity and variational inequality
problems (see [3–4, 7–8, 11, 13–14, 16–17]). Recently, Chen and Sun [1] proposed a dwindling
multidimensional filter line search method for unconstrained optimization. The envelope of the
dwindling filter becomes thinner and thinner as the step size approaches zero, which leads to
more flexibility for the acceptance of the trial step.

In this paper, we propose a dwindling filter algorithm with Zhou’s modified quadratic sub-
problem for nonlinear inequality constrained optimization. The algorithm has the following
merits: It requires to solve only one QP subproblem with only a subset of the constraints which
are estimated as active; the initial point is arbitrary; the subproblem is feasible at each iterate
point; the feasibility restoration phase, which is always used in the traditional filter methods,
is not needed. This paper can be outlined as follows. In Section 2, we state the new algorithm.
The global convergence of the new algorithm is proved in Section 3. The local Q-superlinear
convergence rate is established in Section 4. Some numerical results are given in Section 5.

2 Description of the Algorithm

Define functions Φ(x) and Ψ(x) by

Φ(x) = max{0, gj(x) : j ∈ I}, (2.1)

Ψ(x) = max{gj(x) : j ∈ I}. (2.2)

∀x, d ∈ Rn, let Ψ∗(x, d) be the first order approximation to Ψ(x + d), namely

Ψ∗(x, d) = max{gj(x) +∇gj(x)Td : j ∈ I}. (2.3)

∀σ > 0, functions Ψ(x, σ) and Ψ0(x, σ): Rn × R+ → R are defined as follows:

Ψ(x, σ) = min{Ψ∗(x, d) : ‖d‖ ≤ σ}, (2.4)

Ψ0(x, σ) = max{Ψ(x, σ), 0}. (2.5)

(2.4) equals the following linear programming:

LP(x, σ) : min{z : gj(x) +∇gj(x)Td ≤ z, j ∈ I, ‖d‖ ≤ σ}. (2.6)

Denote

θ(x, σ) = Ψ(x, σ)−Ψ(x), (2.7)

θ0(x, σ) = Ψ(x, σ)0 −Ψ(x), (2.8)

F = {x : gj(x) ≤ 0 : j ∈ I} = {x : Ψ(x) ≤ 0}, (2.9)

F c = {x : Ψ(x) > 0}. (2.10)

Definition 2.1 Mangasarian-Fromotz constraint qualification (or MFCQ for short) is said
to be satisfied by g(x) ≤ 0 at x if ∃ z ∈ Rn, such that

∇gj(x)Tz < 0, ∀j ∈ {j ∈ I | gj(x) > 0}.
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Lemma 2.1 ∀x ∈ F c, if MFCQ is satisfied at x, then θ(x, σ) < 0, ∀σ < 0.

Lemma 2.2 Ψ(x, σ), Ψ0(x, σ), θ(x, σ) and θ0(x, σ) are all continuous on Rn ×R+.

Lemma 2.3 ∀x ∈ F c, if θ(x, σ) < 0, then θ0(x, σ) < 0.

For the details of Lemmas 2.1–2.3, see [19]. Given x ∈ Rn and σ > 0, D(x, σ) is defined by
the following set:

D(x, σ) = {d | gj(x) +∇gj(x)Td ≤ Ψ0(x, σ), j ∈ I}.

If d∗ is the solution of LP(x, σ), then d∗ ∈ D(x, σ) and hence D(x, σ) is nonempty. We obtain
the direction dk from the following convex programming problem Q(xk, Hk, σk):

min
{
∇f(xk)Td +

1
2
dTHkd

}
, (2.11a)

s.t. gj(xk) +∇gj(xk)Td ≤ Ψ0(xk, σk), j ∈ Lk, (2.11b)

where Lk is the set of approximate active indices of the point xk. Clearly, by the above
statement, the convex programming is feasible.

Let us measure the inequality constraint violation at x by

h(x) = ‖g(x)+‖, (2.12)

where gj(x)+ = max{0, gj(x)}, j ∈ I. The basic idea of the filter method is to interpret the
optimization problem as a bi-objective optimization problem with the two goals of minimizing
the objective function f(x) and the constraint violation h(x). In the traditional filter method,
a trial point xk(αk,l) = xk + αk,ldk is called acceptance to the filter if and only if

h(xk(αk,l)) ≤ (1− γh)h(xj) or f(xk(αk,l)) ≤ f(xj)− γfh(xj)

for all (h(xj), f(xj)) ∈ F . Different from the above idea, we call that a trial point xk(αk,l) is
acceptable to the dwindling filter if and only if

h(xk(αk,l)) ≤ h(xj)− φ(αk,l)γhh(xj) or f(xk(αk,l)) ≤ f(xj)− φ(αk,l)γfh(xj) (2.13)

for all (h(xj), f(xj)) ∈ F , where φ(α) is a dwindling function defined by Chen and Sun [1].

Definition 2.2 φ(α) : [0, 1]→ R is a dwindling function if it is a monotonically increasing
and continuous function such that

φ(α) = 0⇔ α = 0, (2.14)

α = 1⇔ φ(α) = 1, (2.15)

lim
α→0

φ(α)
α

= 0. (2.16)

For example, φ(α) = α
3
2 satisfies (2.14)–(2.16). A decreasing sequence of step sizes αk,l ∈

(0, 1] (l = 0, 1, 2, · · · ) is tried until (2.13) is satisfied, in which the envelope of the dwindling
filter becomes thinner and thinner as the step size approaches zero. If φ(α) = 1, the dwindling
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filter is reduced to the traditional filter. Later, if h(xk) > 0, the filter is augmented for a new
iteration using the update formula

Fk+1 = Fk ∪ {(h, f) ∈ R
2 : h ≥ h(xk)− φ(α)γhh(xk), f ≥ f(xk)− φ(α)γfh(xk)}. (2.17)

It is easy to see that

min{h : (h, f) ∈ Fk} > 0 (2.18)

for all k.

Algorithm 2.1 Given starting point x0, Σ is a compact set which consists of symmetric
positive definite matrices, H0 ∈ Σ, F0 = {(h, f) ∈ R2 : h ≥ h̃ − φ(α)γhh̃}, h̃ > h(x0), γf ,
γh ∈ (0, 1), ηf ∈ (0, 1

2 ), 0 < τ1 ≤ τ2 < 1, ε0 > 0, ε > 0.
Step 1 Compute f(xk), g(xk), h(xk), ∇f(xk), ∇g(xk).
Step 2 Compute an active constraint set Lk.
(1) Let i = 0 and εk,i = ε0.
(2) Set

Lk,i = {j ∈ I | −εk,i ≤ gj(xk)− Φ(xk) ≤ 0},
Ak,i = (∇gj(xk), j ∈ Lk).

If det(AT
k,iAk,i) ≥ εk,i, let Lk = Lk,i, Ak = Ak,i, and go to Step 3.

(3) Set i = i + 1, εk,i = εk,i−1
2 , and go to Step 2(2) (inner loop A).

Step 3 Compute dk from the convex programming problem and set x̃k+1 = xk + dk. If
‖dk‖+ h(xk) ≤ ε, stop.

Case 1 −∇f(xk)Tdk > h(xk) holds: If

f(x̃k+1) ≤ f(xk) + ηf∇f(xk)Tdk (2.19)

holds, set xk+1 = x̃k+1 and go to Step 5.
Case 2 −∇f(xk)Tdk > h(xk) is not satisfied: If

h(x̃k+1) ≤ (1− γh)h(xk) (2.20a)

or

f(x̃k+1) ≤ f(xk)− γfh(xk) (2.20b)

holds, set xk+1 = x̃k+1 and go to Step 5.
Step 4 Computation of direction qk.
Let A1

k be the matrix whose rows are |Lk| linearly independent rows of Ak, and A2
k be the

matrix whose rows are the remaining n− |Lk| rows of Ak. We might denote Ak =
(

A1
k

A2
k

)
. Like

Ak, we might as well let ∇f(xk) =
(

∇f1(xk)
∇f2(xk)

)
. Compute

ρk = −∇f(xk)Tdk, πk = −(A1
k)−1∇f1(xk),

d̃k =
−ρk((A1

k)−1)Te

1 + 2|eTπk| , qk = ρk(dk + dk),
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where dk =
(

d̃k
0

)
, e = (1, 1, · · · , 1)T ∈ R|Lk|.

(1) Set αk,0 = 1 and l ← 0.
(2) Compute xk(αk,l) = xk + αk,lqk. If (h(xk(αk,l)), f(xk(αk,l))) ∈ Fk, go to Step 4(3).
Case 1 −αk,l∇f(xk)Tqk > h(xk) holds: If

f(xk(αk,l)) ≤ f(xk) + αk,lηf∇f(xk)Tqk (2.21)

holds, set xk+1 = xk(αk,l) and go to Step 5.
Case 2 −αk,l∇f(xk)Tqk > h(xk) is not satisfied: If

h(xk(αk,l)) ≤ h(xk)− φ(αk,l)γhh(xk) (2.22a)

or

(2.22b)
f(xk(αk,l)) ≤ f(xk)− φ(αk,l)γfh(xk) (2.22c)

holds, set xk+1 = xk(αk,l) and go to Step 5.
(3) Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l← l + 1, and go back to Step 4(2) (inner loop B).
Step 5 If either −∇f(xk)Tdk > h(xk) or −αk,l∇f(xk)Tqk > h(xk) is not satisfied, augment

the filter. Choose Hk+1 ∈ Σ, σk+1 ∈ [σl, σr], k ← k + 1, and go back to Step 1.

3 Global Convergence

Assumption 3.1 (1) The functions f(x) and gj(x) (j ∈ {0, 1, 2, · · · , m}) are twice contin-
uously differentiable and bounded on Rn.

(2) The iterate {xk} remains in a compacted subset S ⊂ R
n.

(3) There exist two constants a and b such that a‖p‖2 ≤ pTBkp ≤ b‖p‖2 for all k, where
p ∈ Rn, 0 < a ≤ b.

(4) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds.

Lemma 3.1 (see [19]) Suppose that xk ∈ Rn, Hk ∈ Rn×n is a symmetric positive definite
matrix. If MFCQ is satisfied at xk, then the convex programming problem Q(xk, Hk, σk) has a
unique solution dk which satisfies KKT conditions, i.e., there exist vectors Uk = (uk

j , j ∈ Lk),
such that

(a) gj(xk) +∇gj(xk)Tdk ≤ Ψ0(xk, σk), j ∈ Lk;
(b) uk

j ≥ 0, j ∈ Lk;
(c) ∇f(xk) + Hkdk + AkUk = 0, Ak = (∇gj(xk), j ∈ Lk);
(d) uk

j (gj(xk) +∇gj(xk)Tdk) = 0, j ∈ Lk.

Lemma 3.2 (see [15]) For any iterate k, the index i defined in Step 2 in Algorithm 2.1 is
finite, which means that the inner loop A terminates in a finite number of times.

Lemma 3.3 (see [15]) If dk �= 0, then it holds that

ρk = ∇f(xk)Tdk < 0, ∇f(xk)Tqk ≤ −1
2
ρ2

k < 0,

∇gj(xk)Tdk = 0, ∇gj(xk)Tqk ≤ − ρ2
k

1 + 2|eTπk| < 0.
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Lemma 3.4 Suppose that Assumption 3.1 holds. Then trial point xk(αk,l) could not be
rejected by xk if αk,l is sufficiently small.

Proof Suppose that x̃k+1 = xk+dk is rejected by xk. From Lemma 3.3, we get∇f(xk)Tqk <

0. The second-order Taylor expansion of f(x) implies that

f(xk(αk,l))− f(xk) + φ(αk,l)γfh(xk) = αk,l∇f(xk)Tqk + φ(αk,l)γfh(xk) + O(α2
k,l‖qk‖2).

Since φ(αk,l) = o(αk,l) as l → ∞, f(xk(αk,l)) ≤ f(xk) − φ(αk,l)γfh(xk) holds for sufficiently
small αk,l.

Remark 3.1 Without any assumption, we prove that the trial point could not be rejected
by the current iterate.

Lemma 3.5 The mechanisms of the filter ensure that for all k,

(h(xk), f(xk)) /∈ Fk. (3.1)

Proof The proof is done by induction. Note that

F0 = {(h, f) ∈ R
2 : h ≥ h̃− φ(α)γhh̃},

where h̃ > h(x0). Since φ(α) = o(α) as l→∞, h(x0) ≤ h̃−φ(α)γhh̃ holds for sufficiently small
α. The claim is valid for k = 0.

Suppose that the claim is true for k. If (h(x̃k+1), f(x̃k+1)) /∈ Fk+1 with x̃k+1 = xk+dk holds,
the claim is true. Otherwise, we consider the trial point x(αk,l) = xk +αk,lqk. It is evident that
(h(xk+1), f(xk+1)) /∈ Fk. In the following we need to prove that (h(xk+1), f(xk+1)) /∈ Fk+1.
There are two cases.

Case 1 h(xk) = 0.
We have ∇f(xk)Tqk < 0 from Lemma 3.3 and −αk,l∇f(xk)Tqk > h(xk). So (2.21) must be

satisfied, i.e., Fk+1 = Fk and (h(xk+1), f(xk+1)) /∈ Fk+1.
Case 2 h(xk) > 0.
If −αk,l∇f(xk)Tqk > h(xk) holds, the proof is similar to Case 1. Otherwise, consider that

the filter is augmented in iteration k, i.e.,

Fk+1 = Fk ∪ {(h, f) ∈ R
2 : h ≥ h(xk)− φ(α)γhh(xk), f ≥ f(xk)− φ(α)γf h(xk)}.

By (h(xk+1), f(xk+1)) /∈ Fk and

f(xk+1) ≤ f(xk)− φ(αk)γfh(xk) (by the proof of Lemma 3.4),

we obtain (h(xk+1), f(xk+1)) /∈ Fk+1.

Lemma 3.6 Suppose that Assumption 3.1 holds. Then the inner loop B terminates in a
finite number of iterations.

Proof The proof is done by contradiction. Suppose that the inner loop does not terminate
in a finite number of iterations. In this case, the algorithm will always reject the trial points x̃

and x(αk,l), which leads to αk,l → 0. Therefore, we may consider two cases.
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If −αk,l∇f(xk)Tqk > h(xk) holds, the trial point is required to satisfy (2.21). Since qk is a
descent direction, there exists a constant c1 > 0 such that, for αk,l ≤ c1, (2.21) must be satisfied.
If, on the other hand, −αk,l∇f(xk)Tqk > h(xk) does not hold, the trial point is required to
satisfy (2.22). From Lemma 3.4, there exists a constant c2 > 0 such that, for αk,l ≤ c2, (2.22)
must be satisfied.

From Lemma 3.5, we have (h(xk), f(xk)) /∈ Fk, i.e.,

h(xk) ≤ hj − φ(α)γhhj or f(xk) ≤ fj − φ(α)γfhj for all (θj , fj) ∈ F .

Suppose that x(αk,l) = xk + αk,lqk is rejected by the filter. Hence

h(xk(αk,l)) > hj − φ(α)γhhj (3.2a)

or
f(xk(αk,l)) > fj − φ(α)γfhj (3.2b)

for all (hj , fj) ∈ F . If h(xk) ≤ hj − φ(α)γhhj holds, from Lemma 3.3 and αk,l → 0, we obtain
that there exists a constant c3 > 0, for αk,l ≤ c3,

h(xk(αk,l)) = max{0, gj(xk + αk,lqk)} ≤ max{0, gj(xk)} = h(xk) ≤ hj − φ(α)γhhj ,

which contradicts (3.2a). If f(xk) ≤ fj − φ(α)γfhj holds, from Lemma 3.3 and αk,l → 0, we
get that there exists a constant c4 > 0, such that for αk,l ≤ c4,

f(xk(αk,l)) = f(xk) + αk,l∇f(xk)Tqk + O(α2
k,l‖qk‖2) ≤ f(xk) ≤ fj − φ(α)γf hj,

which contradicts (3.2b). Choose αk,l ≤ min{c1, c2, c3, c4}, and the inner loop B terminates in
a finite number of iterations.

Lemma 3.7 Suppose that infinite points are added to the filter. Then there exists a subse-
quence G in which the filter has been augmented such that

lim
k→∞,k∈G

h(xk) = 0.

Proof The proof is done by contradiction. Suppose that there exists an infinite subsequence
{ki} of G for which

h(xki ) ≥ ε (3.3)

for some ε > 0. At each iteration ki, (h(xki), f(xki )) is added to the filter, which means that
no other (h, f) can be added to the filter at a later stage within the square

[h(xki )− γhφ(αki )ε, h(xki)]× [f(xki)− γfφ(αki)ε, f(xki)].

Now observe that the area of the each of these squares is at least γhγfφ(αki )
2ε2. As a conse-

quence, if there exists an infinite subsequence {kij} ⊆ {ki} such that φ(αkij
) ≥ ε as j → ∞,

the set [0, hmax]× [fmin,∞]∩{(h, f) | f ≤ κf} is completely covered by at most a finite number
of such squares. This is in contradiction to the infinite subsequence {kij}. If φ(αki) → 0 as
i→∞, we get

αki → 0. (3.4)

Since lim
i→∞

αki = 0, we have lim
i→∞

αki,li = 0. Lemma 3.6 implies that there exists a constant c5

such that for αki,li ≤ c5, αki,li is accepted by Algorithm 2.1, which contradicts (3.4).
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Lemma 3.8 Suppose that finite points are added to the filter. Then

lim
k→∞

h(xk) = 0.

Proof From Assumption 3.1, there exists a K ∈ N so that for all iterations k ≥ K, there
is no point adding to the filter. If x̃k+1 = xk + dk is accepted by Algorithm 2.1, we then have
that for all k ≥ K,

f(x̃k+1) ≤ f(xk) + ηf∇f(xk)Tdk ≤ f(xk)− ηfh(xk). (3.5)

Suppose that x̃k+1 = xk + dk is rejected by Algorithm 2.1. In this case, the trial point xk+1 =
xk + αkqk is accepted. Since h(xk) < αk(−∇f(xk)Tqk), we have

f(xk+1) ≤ f(xk) + αkηf∇f(xk)Tqk ≤ f(xk)− ηfh(xk),

which is the same as (3.5). We conclude that

f(xK+i)− f(xK) ≤ −ηf

K+i−1∑
k=K

h(xk).

Since {fK+i} is bounded below as i→∞, we have lim
k→∞

h(xk) = 0.

Lemma 3.9 Suppose that Assumptions 3.1 holds. Then

lim
k→∞

h(xk) = 0.

Proof The proof is similar to that of Theorem 1 in [16].

Theorem 3.1 Suppose that Assumptions 3.1 holds. Then

lim
k→∞

‖dk‖ = 0.

Proof Suppose that the claim is not true, i.e., there exists a subsequence infinite index set
K and a constant ε > 0 so that ‖dk‖ ≥ ε for all k ∈ K. It follows from Lemmas 3.1 and 3.3 that

h(xk) +∇f(xk)Tdk = h(xk)− dT
k Hkdk − dT

k AkUk

= h(xk)− dT
k Hkdk + g(xk)TUk

≤ −dT
k Hkdk + (1− c6)h(xk)

≤ −a‖dk‖2 + (1 − c6)h(xk)

≤ −aε2 + (1− c6)h(xk). (3.6)

If 1−c6 ≤ 0, h(xk) < −∇f(xk)Tdk holds. If, on the other hand, 1−c6 > 0, h(xk) < −∇f(xk)Tdk
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also holds with h(xk) < aε2

1−c6
since h(xk)→ 0 as k →∞. Similarly, we have

h(xk) +∇f(xk)Tqk ≤ h(xk)− 1
2
ρ2

k

= h(xk)− 1
2
(−dT

k Hkdk − dT
k AkUk)2

= h(xk)− 1
2
[(dT

k Hkdk)2 + 2dT
k HkdkdT

k AkUk + (dT
k AkUk)2]

= −1
2
(dT

k Hkdk)2 − dT
k HkdkdT

k AkUk − 1
2
(dT

k AkUk)2 + h(xk)

≤ −1
2
a2‖dk‖4 + dT

k Hkdkg(xk)TUk − 1
2
(g(xk)TUk)2 + h(xk)

≤ −1
2
a2ε4 + (bε2c6 + 1)h(xk). (3.7)

When h(xk) < a2ε4

2(bε2c6+1) , h(xk) < −∇f(xk)Tqk ≤ −α∇f(xk)Tqk is satisfied. Define

ζ =

⎧⎪⎪⎨
⎪⎪⎩

a2ε4

2(bε2c6 + 1)
, if 1− c6 ≤ 0,

min
{ aε2

1− c6
,

a2ε4

2(bε2c6 + 1)

}
, otherwise.

(3.8)

Choose K1 such that for all k ≥ K1, h(xk) ≤ ζ, and then the trail point must be accepted by
(2.19) or (2.21). We denote the two sets of indices of those iterations in which (2.19) holds by
K1 ⊂ K and in which (2.21) holds by K2 ⊂ K. There are three cases.

Case 1 If K1 is infinite and K2 is finite, there exists a K2, such that for all iterations
k ≥ K2 and k ∈ K1, (2.19) holds, i.e.,

f(xk)− f(xk+1) ≥ −ηf∇f(xk)Tdk

= ηf (dT
k Hkdk − dT

k AkUk)

≥ ηfa‖dk‖2 − ηfc6h(xk). (3.9)

From the proof of Lemma 3.8, one can conclude that

lim
k→∞

ηfa‖dk‖2 − ηfc6h(xk) = 0.

lim
k→∞

h(xk) = 0 implies that lim
k→∞
k∈K1

‖dk‖ = 0, which is a contradiction.

Case 2 If K2 is infinite and K1 is finite, there exists a K3, such that for all iterations
k ≥ K3 and k ∈ K2,

f(xk)− f(xk+1) ≥ −αkηf∇f(xk)Tqk

≥ 1
2
ηfαkρ2

k

≥ 1
2
a2ε4αk − bε2c6αkh(xk). (3.10)

From the proof of Lemma 3.8 and lim
k→∞

h(xk) = 0, we have lim
k→∞
k∈K2

αk = 0, which contradicts the

proof of Lemma 3.6.
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Case 3 If K1 is infinite and K2 is infinite, we have

∞ >
∑

k

f(xk)− f(xk+1) ≥
∑
k∈K

f(xk)− f(xk+1)

≥
∑

k∈K1

−ηf∇f(xk)Tdk +
∑

k∈K2

−αkηf∇f(xk)Tqk

≥
∑

k∈K1

ηfaε2 − ηfc6h(xk) +
∑

k∈K2

1
2
a2ε4αk − bε2c6αkh(xk)

=∞,

which is a contradiction.

Remark 3.2 The result of Theorem 3.1 is stronger than that in [16]. The reason is that
the feasibility restoration phase, which is always used in the traditional filter method, is not
needed.

4 Local Convergence

In order to analyze the local convergence rate of the proposed algorithm more assumptions
are needed.

Assumption 4.1 (1) x∗ is a KKT point of (1.1). Strict complementarity slackness and
linear independence of the gradients of the active constraints hold.

(2) The second-order sufficient condition holds at x∗, i.e., there exists a constant τ̃ > 0 such
that

pT∇2
xxL(x∗, λ∗)p ≥ τ̃‖p‖2 with ∇gj(x∗)Tp = 0, j ∈ I∗,

where I∗ = {j | gj(x∗) = 0, j ∈ I}.
(3) xk → x∗.
(4)

lim
k→∞

‖[Hk −∇2L(x∗, λ∗)]dk‖
‖dk‖ = 0. (4.1)

Algorithm 4.1 Given starting point x0, Σ is a compact set which consists of symmetric
positive definite matrices, H0 ∈ Σ, F0 = {(h, f) ∈ R2 : h ≥ h̃ − φ(α)γhh̃}, h̃ > h(x0), γf ,
γh ∈ (0, 1), τ ∈ (2, 3), ηf ∈ (0, 1

2 ), 0 < τ1 ≤ τ2 < 1, ε0 > 0, ε > 0.
Step 1 Compute f(xk), g(xk), h(xk), ∇f(xk), ∇g(xk).
Step 2 Compute an active constraint set Lk.
(1) Let i = 0 and εk,i = ε0.
(2) Set

Lk,i = {j ∈ I | −εk,i ≤ gj(xk)− Φ(xk) ≤ 0},
Ak,i = (∇gj(xk), j ∈ Lk).

If det(AT
k,iAk,i) ≥ εk,i, let Lk = Lk,i, Ak = Ak,i, and go to Step 3.

(3) Set i = i + 1, εk,i = εk,i−1
2 , and go to Step 2(2) (inner loop A).

Step 3 Compute dk from the convex programming problem and set x̃k+1 = xk + dk. If
‖dk‖+ h(xk) ≤ ε, stop.
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Step 4 Let PkAk =
(

A1
k

A2
k

)
, where Pk is a permutation matrix and A1

k is invertible. Solve

linear equations: (A1
k)Td̂k = −‖dk‖τe + F (xk + dk), where F (xk + dk) = (gj(xk + dk), j ∈ Lk).

Set dsoc
k = PT

k

(
d̂k
0

)
and xk = xk + dk + dsoc

k .

Case 1 −∇f(xk)Tdk > h(xk) holds. If

f(xk+1) ≤ f(xk) + ηf∇f(xk)Tdk (4.2)

holds, set xk+1 = xk+1 and go to Step 5.
Case 2 −∇f(xk)Tdk > h(xk) is not satisfied. If

h(xk+1) ≤ (1− γh)h(xk) (4.3a)

or

f(xk+1) ≤ f(xk)− γfh(xk) (4.3b)

holds, set xk+1 = xk+1 and go to Step 5.
Step 5 Computation of direction qk.
Let A1

k be the matrix whose rows are |Lk| linearly independent rows of Ak, and A2
k be the

matrix whose rows are the remaining n− |Lk| rows of Ak. We might denote Ak =
(

A1
k

A2
k

)
. Like

Ak, we might as well let ∇f(xk) =
(∇f1(xk)

∇f2(xk)

)
. Compute

ρk = −∇f(xk)Tdk, πk = −(A1
k)−1∇f1(xk),

d̃k =
−ρk((A1

k)−1)Te

1 + 2|eTπk| , qk = ρk(dk + dk),

where dk =
(

d̃k
0

)
, e = (1, 1, · · · , 1)T ∈ R|Lk|.

(1) Set αk,0 = 1 and l ← 0.
(2) Compute xk(αk,l) = xk + αk,lqk. If (h(xk(αk,l)), f(xk(αk,l))) ∈ Fk, go to Step 5(3).
Case 1 −αk,l∇f(xk)Tqk > h(xk) holds. If

f(xk(αk,l)) ≤ f(xk) + αk,lηf∇f(xk)Tqk (4.4)

holds, set xk+1 = xk(αk,l) and go to Step 6.
Case 2 −αk,l∇f(xk)Tqk > h(xk) is not satisfied. If

h(xk(αk,l)) ≤ h(xk)− φ(αk,l)γhh(xk) (4.5a)

or

f(xk(αk,l)) ≤ f(xk)− φ(αk,l)γfh(xk) (4.5b)

holds, set xk+1 = xk(αk,l) and go to Step 6.
(3) Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l← l + 1, and go back to Step 5(2) (inner loop B).
Step 6 If either −∇f(xk)Tdk > h(xk) or −αk,l∇f(xk)Tqk > h(xk) is not satisfied, augment

the filter. Choose Hk+1 ∈ Σ, σk+1 ∈ [σl, σr], k ← k + 1, and go back to Step 1.
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Theorem 3.1 shows that ‖dk‖ → 0 as k →∞. So, it is natural that ‖dk‖ satisfies ‖dk‖ ≤ σk

for sufficiently large k. (2.3)–(2.5) imply that Ψ0(xk, σk) = 0 when k is large enough. So the
sequence Q(xk, Hk, σk) is equivalent to the following quadratic programming subproblem when
k is sufficiently large

min
{
∇f(xk)Td +

1
2
dTHkd

}
, (4.6a)

s.t. gj(xk) +∇gj(xk)Td ≤ 0, j ∈ Lk. (4.6b)

Lemma 4.1 (see [15]) It holds, for k →∞, that

Lk ≡ I(x∗) = I∗, ‖dk‖ → 0, λk → (λ∗
j , j ∈ I∗), Uk → λ∗,

where (dk, λk) is the KKT pair of the above quadratic programming subproblem.

Lemma 4.2 Suppose that Assumption 4.1 holds. Then the full step xk+1 = xk + dk or
xk+1 = xk + dk + dsoc

k is acceptable to the current filter Fk for sufficiently large k.

Proof Suppose that the full step xk+1 = xk + dk is rejected by the dwindling filter.
According to (4.6) and the invertibility of A1

k,

‖dsoc
k ‖ =

∥∥∥∥PT
k

(
d̂k

0

)∥∥∥∥ ≤ δ1‖d̂k‖ = δ1(A1
k)−T (−‖dk‖τe + F (xk + dk)) = O(‖dk‖2).

For j /∈ I∗ and sufficiently large k, there exists a constant c7 > 0 such that gj(xk) ≤ −c7. Using
Taylor’s theorem, we can write

gj(xk + dk + dsoc
k ) = gj(xk) +∇gj(xk)T(dk + dsoc

k ) +
1
2
(dk + dsoc

k )T∇2gj(ϑk)(dk + dsoc
k )

≤ −c7 + O(‖dk‖),

where ϑk is between xk and xk +dk +dsoc
k . Since ‖dk‖ → 0 as k →∞, the right-hand side term

is negative. As for j ∈ I∗, using Taylor’s theorem and the definition of dsoc
k ,

gj(xk + dk + dsoc
k ) = gj(xk + dk) +∇gj(xk)Tdsoc

k +
1
2
dT

k∇2gj(�k)dsoc
k

+
1
2
(dsoc

k )T∇2gj(ξk)dsoc
k

= gj(xk + dk) +∇gj(xk)TPT
k

(
d̂k

0

)
+ +O(‖dk‖3)

= gj(xk + dk) + [(A1
k)Td̂k]j + O(‖dk‖3)

= −‖dk‖τ + O(‖dk‖3),

where τ ∈ (2, 3), �k is between xk and xk + dk and ξk is between xk + dk and xk + dk + dsoc
k .

From the two cases, we obtain that h(xk +dk +dsoc
k ) = ‖gj(xk +dk +dsoc

k )+‖ = max{0, gj(xk +
dk + dsoc

k )} = 0. From the update formula of the dwindling filter, we have

min{h : (h, f) ∈ Fk} > 0 (4.7)

for all k. Therefore, xk+1 = xk + dk + dsoc
k is acceptable to the current filter Fk for sufficiently

large k.
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Theorem 4.1 Suppose that Assumption 4.1 holds. Then the full step xk+1 = xk + dk or
xk+1 = xk + dk + dsoc

k is taken by the algorithm for sufficiently large k. Further, the sequence
{xk} converges to x∗ Q-superlinearly.

Proof Suppose that the point xk+1 = xk + dk is not accepted by the filter Fk. In that
case, consider xk+1 = xk + dk + dsoc

k . From Lemma 4.2, we have that xk+1 = xk + dk + dsoc
k is

acceptable to the current filter Fk for sufficiently large k. It is similar to the proof of Theorem
3.1 that −∇f(xk)Tdk > [h(xk)]ν , ν ∈ (0, 1

2 ) holds for sufficiently large k. Then we have

h(xk) ≤ [−∇f(xk)Tdk]
1
ν = o(‖dk‖2).

Combining with Lemma 3.1 and dsoc
k = O(‖dk‖2), we obtain that

∇f(xk)Tdsoc
k = −UT

k AT
k dsoc

k − dT
k Hkdsoc

k

= UT
k ‖dk‖τe + F (xk + dk) + o(‖dk‖2)

=
1
2
dT

k

( ∑
j∈I∗

uk,i∇2gj(xk)
)
dk + o(‖dk‖2). (4.8)

By (4.8) and Taylor’s expansion, we have

f(xk + dk + dsoc
k )− f(xk)− ηf∇f(xk)Tdk

= ∇f(xk)T(dk + dsoc
k ) +

1
2
dT

k∇2f(xk)dk + o(‖dk‖2)− ηf∇f(xk)Tdk

= (1 − ηf )∇f(xk)Tdk +∇f(xk)Tdsoc
k +

1
2
dT

k∇2f(xk)dk + o(‖dk‖2)

= (1 − ηf )(−dT
k Hkdk − dT

k AkUk) +
1
2
dT

k

( ∑
j∈I∗

uk,i∇2gj(xk)
)
dk

+
1
2
dT

k∇2f(xk)dk + o(‖dk‖2)

≤ (ηf − 1)dT
k Hkdk +

1
2
dT

k∇2L(xk, Uk)dk + (1− c6)h(xk) + o(‖dk‖2)

=
(
ηf − 1

2

)
dT

k Hkdk +
1
2
dT

k (∇2L(xk, Uk)−Hk)dk + o(‖dk‖2)

≤ a
(
ηf − 1

2

)
‖dk‖2 + o(‖dk‖2).

Since ‖dk‖ → 0 as k →∞, ηf < 1
2 and a > 0, we get

f(xk + dk + dsoc
k ) ≤ f(xk) + ηf∇f(xk)Tdk

for sufficient large k. By Assumption 4.1(4), the sequence {xk} converges to x∗ Q-superlinearly.

5 Numerical Experiments

In this section, we present the numerical results of Algorithm 2.1 on an HP i5 personal
computer with 2G memory. The selected parameter values are: γf = 0.5, γh = 0.5, τ = 2.5,
ηf = 0.5, τ1 = τ2 = 0.5, ε0 = 10−6, ε = 10−6, σl = 1, σr = 1.5. The computation terminates
when the stopping criterion ‖dk‖+ h(xk) ≤ ε is satisfied.
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Table 1 Numerical results.

Algorithm 2.1 IPOPT

Problem Nt Nf Nt Nf

HS01 55 79 25 33

HS02 13 31 12 14

HS03 10 10 5 6

HS04 2 2 6 7

HS05 7 9 8 9

HS11 8 8 9 10

HS12 9 9 9 10

HS13 33 33 32 39

HS15 6 14 17 22

HS16 6 8 11 12

HS17 12 12 18 19

HS18 10 10 15 19

HS20 17 39 14 15

HS21 4 4 8 9

HS22 6 7 6 7

HS23 6 6 10 12

HS24 5 5 12 14

HS29 10 12 9 10

HS30 20 20 8 12

HS31 8 13 8 9

HS33 5 5 13 16

HS35 7 8 7 8

HS36 2 2 13 14

HS37 10 13 12 13

HS43 12 16 9 10

HS45 8 8 7 8

HS57 22 23 21 23

HS59 18 18 34 54

HS65 8 9 15 16

HS66 8 8 7 8

HS70 40 40 30 46

HS76 7 7 7 8

HS83 4 4 17 18

HS84 3 3 15 16

HS95 2 2 22 32

HS96 2 2 18 19

HS97 7 7 17 18

HS98 7 7 22 23

HS100 17 34 11 22

HS104 19 19 8 9

All the forty nonlinear inequality constrained problems are numbered in the same way as
in [5]. Nt and Nf stand for the numbers of iterations and function evaluations, respectively.
IPOPT is an interior-point filter line-search algorithm for nonlinear optimization (see [18]). To
compare the performance of Algorithm 2.1 and IPOPT, we use the performance profiles as
described in [2]. Our profiles are based on function evaluations and the numbers of iterations.
The benchmark results are generated by running a solver on a set P of problems and recording
information of interest such as the number of function evaluations. Let S be the set of solvers
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in comparison. For each problem p and solver s, we define

tp,s = the number of function evaluations required to solve problem p by solver s.

Accordingly, set tp,s to be the number of gradient evaluations or iterations. The comparison is
based on the performance ratio defined by

rp,s =
tp,s

min{tp,s : s ∈ S} .

If we define
ρs(τ) =

1
np

size{p ∈ P : rp,s ≤ τ},

then ρs(τ) is the probability for the solver s ∈ S. The value of ρs(1) is the probability that
the solver will win over the rest of the solvers. From Figures 1–2, it is clear that Algorithm 2.1
wins over IPOPT on the given problems.
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Figure 1 Performance profile on the numbers of iterations.
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Figure 2 Performance profile on function evaluations.

6 Conclusion

In this paper, we propose a dwindling filter algorithm with Zhou’s modified subproblem
for nonlinear inequality constrained optimization, which requires less computational costs com-
pared with the traditional filter algorithm (see [18]) on the given problems. The feasibility
restoration phase is not used in the algorithm. Under mild conditions, global convergence and
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local superlinear convergence rates are obtained. Moreover, the global convergence result of
Theorem 3.1 is stronger than that in [16]. How to choose the dwindling parameters φ(α) to get
better numerical experience deserves further research.
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