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Abstract f -Harmonic maps were first introduced and studied by Lichnerowicz in 1970. In
this paper, the author studies a subclass of f -harmonic maps called f -harmonic morphisms
which pull back local harmonic functions to local f -harmonic functions. The author proves
that a map between Riemannian manifolds is an f -harmonic morphism if and only if
it is a horizontally weakly conformal f -harmonic map. This generalizes the well-known
characterization for harmonic morphisms. Some properties and many examples as well
as some non-existence of f -harmonic morphisms are given. The author also studies the
f -harmonicity of conformal immersions.
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1 f -Harmonic Maps vs. F -Harmonic Maps

1.1 f-Harmonic maps

Let f : (M, g) → (0,∞) be a smooth function. An f -harmonic map is a map φ : (Mm, g) →
(Nn, h) between Riemannian manifolds such that φ|Ω is a critical point of the f -energy (see
[10, 18]),

Ef (φ) =
1
2

∫
Ω

f |dφ|2dvg

for every compact domain Ω ⊆ M . The Euler-Lagrange equation gives the f -harmonic map
equation (see [7, 23])

τf (φ) ≡ fτ(φ) + dφ(grad f) = 0, (1.1)

where τ(φ) = Trg∇dφ is the tension field of φ vanishing of which means φ is a harmonic map.

Example 1.1 Let ϕ, ψ, φ : R3 → R2 be defined as

ϕ(x, y, z) = (x, y),

ψ(x, y, z) = (3x, xy),

φ(x, y, z) = (x, y + z).
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Then, one can easily check that both ϕ and ψ are f -harmonic map with f = ez, ϕ is a
horizontally conformal submersion whilst ψ is not. Also, φ is an f -harmonic map with f = ey−z,
which is a submersion but not horizontally weakly conformal.

1.2 F -Harmonic map

Let F : [0,+∞) → [0,+∞) be a C2-function, strictly increasing on (0,+∞), and let ϕ :
(M, g) → (N, h) be a smooth map between Riemannian manifolds. Then ϕ is said to be an
F -harmonic map if ϕ|Ω is a critical point of the F -energy functional

EF (ϕ) =
∫

Ω

F
( |dϕ|2

2

)
vg

for every compact domain Ω ⊆M . The equation of F -harmonic maps is given by (see [2])

τF (ϕ) ≡ F ′
( |dϕ|2

2

)
τ(ϕ) + ϕ∗

(
gradF ′

( |dϕ|2
2

))
= 0, (1.2)

where τ(ϕ) denotes the tension field of ϕ.
Harmonic maps, p-harmonic maps and exponential harmonic maps are examples of F -

harmonic maps with F (t) = t, F (t) = 1
p (2t)

p
2 (p > 4), and F (t) = et, respectively (see

[2]).
In particular, p-harmonic map equation can be written as

τp(ϕ) = |dϕ|p−2
τ(ϕ) + dϕ(grad|dϕ|p−2) = 0. (1.3)

1.3 Relationship between f-harmonic and F -harmonic maps

We can see from (1.1) that an f -harmonic map with f = const > 0 is nothing but a harmonic
map, so both f -harmonic maps and F -harmonic maps are generalizations of harmonic maps.
Though we were warned in [7] that f -harmonic maps should not be confused with F -harmonic
maps and p-harmonic maps, we observe that, apart from critical points, any F -harmonic map
is a special f -harmonic map. More precisely we have the following corollary.

Corollary 1.1 Any F -harmonic map ϕ : (M, g) → (N, h) without critical points, i.e.,
|dϕx| �= 0 for all x ∈ M , is an f -harmonic map with f = F ′( |dϕ|2

2

)
. In particular, a p-

harmonic map without critical points is an f -harmonic map with f = |dϕ|p−2.

Proof Since F is a C2-function and strictly increasing on (0,+∞) we have F ′(t) > 0 on
(0,+∞). If the F -harmonic map ϕ : (M, g) → (N, h) has no critical points, i.e., |dϕx| �= 0 for
all x ∈ M , then the function f : (M, g) → (0,+∞) with f = F ′( |dϕ|2

2

)
is smooth and we see

from (1.1)–(1.2) that the F -harmonic map ϕ is an f -harmonic map with f = F ′( |dϕ|2
2

)
. The

second statement follows from the fact that for a p-harmonic map, F (t) = 1
p (2t)

p
2 and hence

f = F ′
( |dϕ|2

2

)
= |dϕ|p−2.

Another relationship between f -harmonic maps and harmonic maps can be characterized
as follows.
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Corollary 1.2 (see [18]) A map φ : (Mm, g) → (Nn, h) with m �= 2 is f -harmonic if and
only if φ : (Mm, f

2
m−2 g) → (Nn, h) is a harmonic map.

1.4 A physical motivation for the study of f-harmonic maps

In physics, the equation of motion of a continuous system of spins with inhomogeneous
neighbor Heisenberg interaction (such a model is called the inhomogeneous Heisenberg ferro-
magnet) is given by

∂u

∂t
= f(x)(u × Δu) + ∇ f · (u ×∇u), (1.4)

where Ω ⊆ Rm is a smooth domain in the Euclidean space, f is a real-valued function defined
on Ω, u(x, t) ∈ S2, × denotes the cross products in R3 and Δ is the Laplace operator on Rm.
Physically, the function f is called the coupling function, and is the continuum limit of the
coupling constants between the neighboring spins. Since u is a map into S2 it is well-known
that the tension field of u can be written as τ(u) = Δu + |∇u|2u, and one can easily check
that the right-hand side of the inhomogeneous Heisenberg spin system (1.4) can be written as
u× (fτ(u) + ∇ f · ∇u). It follows that u is a smooth stationary solution of (1.4) if and only if
fτ(u)+∇ f ·∇u = 0, i.e., u is an f -harmonic map. So there exists a 1-1 correspondence between
the set of the stationary solutions of the inhomogeneous Heisenberg spin system (1.4) on the
domain Ω and the set of f -harmonic maps from Ω into 2-sphere. The above inhomogeneous
Heisenberg spin system (1.4) is also called inhomogeneous Landau-Lifshitz system (see [5–6, 9,
14, 16–17]).

Using Corollary 1.2 we have the following example which provides many stationary solutions
of the inhomogeneous Heisenberg spin system defined on R

3.

Example 1.2 u : (R3, ds0) → (Nn, h) is an f -harmonic map if and only if

u : (R3, f2ds0) → (Nn, h)

is a harmonic map. In particular, there is a 1-1 correspondence between harmonic maps from
3-sphere

S3 \ {N} ≡
(
R

3,
4ds0

(1 + |x|2)2
)
→ (Nn, h)

and f -harmonic maps with f = 2
1+|x|2 from Euclidean 3-space R3 → (Nn, h). When (Nn, h) =

S2, we have a 1-1 correspondence between the set of harmonic maps S3 → S2 and the set of
stationary solutions of the inhomogeneous Heisenberg spin system on R3. Similarly, there exists
a 1-1 correspondence between harmonic maps from hyperbolic 3-space

H3 ≡
(
D3,

4ds0
(1 − |x|2)2

)
→ (Nn, h)

and f -harmonic maps (D3, ds0) → (Nn, h) with f = 2
1−|x|2 from the unit disk in Euclidean

3-space.
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1.5 A little more about f-harmonic maps

Corollary 1.3 If φ : (Mm, g) → (Nn, h) is an f1-harmonic map and also an f2-harmonic
map, then grad(f1/f2) ∈ ker dφ.

Proof This follows from

τf1(φ) ≡ f1τ(φ) + dφ(grad f1) = 0,

τf2(φ) ≡ f2τ(φ) + dφ(grad f2) = 0,

and hence

dφ(grad ln (f1/f2)) = 0.

Proposition 1.1 A conformal immersion φ : (Mm, g) → (Nn, h) with φ∗h = λ2g is
f -harmonic if and only if it is m-harmonic and f = Cλm−2. In particular, an isometric
immersion is f -harmonic if and only if f = const and hence it is harmonic.

Proof It is not difficult to check (see [24]) that for a conformal immersion φ : (Mm, g) →
(Nn, h) with φ∗h = λ2g, the tension field is given by

τ(φ) = mλ2η + (2 −m)dφ(grad lnλ),

so we can compute the f -tension field to have

τf (φ) = f [mλ2η + dφ(grad ln(λ2−m f))],

where η is the mean curvature vector of the submanifold φ(M) ⊂ N . Noting that η is normal
part whilst dφ(grad lnλ2−m f) is the tangential part of τf (φ), we conclude that τf (φ) = 0 if
and only if {

mλ2η = 0,
dφ(grad ln(λ2−m f)) = 0.

It follows that η = 0 and grad (ln(λ2−m f)) = 0 since φ is an immersion. From these we see
that φ is a minimal conformal immersion which means it is an m-harmonic map (see [24]) and
that f = Cλm−2. Thus, we obtain the first statement. The second statement follows from the
first one with λ = 1.

2 f -Harmonic Morphisms

A horizontally weakly conformal map is a map ϕ : (M, g) → (N, h) between Riemannian
manifolds such that for each x ∈ M at which dϕx �= 0, the restriction dϕx|Hx : Hx → Tϕ(x)N

is conformal and surjective, where the horizontal subspace Hx is the orthogonal complement of
Vx = ker dϕx in TxM . It is not difficult to see that there exists a number λ(x) ∈ (0,∞) such
that h(dϕ(X), dϕ(Y )) = λ2(x)g(X,Y ) for any X,Y ∈ Hx. At the point x ∈M where dϕx = 0
one can let λ(x) = 0 and obtain a continuous function λ : M → R which is called the dilation of
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a horizontally weakly conformal map ϕ. A non-constant horizontally weakly conformal map ϕ
is called horizontally homothetic if the gradient of λ2(x) is vertical meaning that X(λ2) ≡ 0 for
any horizontal vector field X on M . Recall that a C2 map ϕ : (M, g) → (N, h) is a p-harmonic
morphism (p > 1) if it preserves the solutions of p-Laplace equation in the sense that for any
p-harmonic function f : U → R, defined on an open subset U of N with ϕ−1(U) non-empty,
f ◦ ϕ : ϕ−1(U) → R is a p-harmonic function. A p-harmonic morphism can be characterized as
a horizontally weakly conformal p-harmonic map (see [3, 11, 15, 19, 21]).

Definition 2.1 Let f : (M, g) → (0,∞) be a smooth function. A C2-function u : U → R

defined on an open subset U of M is called f -harmonic if

ΔM
f u ≡ fΔM u+ g(gradf, gradu) = 0. (2.1)

A continuous map φ : (Mm, g) → (Nn, h) is called an f -harmonic morphism if for every
harmonic function u defined on an open subset V of N such that φ−1(V ) is non-empty, the
composition u ◦ φ is f -harmonic on φ−1(V ).

Theorem 2.1 Let φ : (Mm, g) → (Nn, h) be a smooth map. Then, the following are
equivalent:

(1) φ is an f -harmonic morphism;
(2) φ is a horizontally weakly conformal f -harmonic map;
(3) There exists a smooth function λ2 on M such that

ΔM
f (u ◦ φ) = fλ2(ΔN u) ◦ φ

for any C2-function u defined on (an open subset of) N .

Proof We will need the following lemma to prove the theorem.

Lemma 2.1 (see [15]) For any point q ∈ (Nn, h) and any constants Cσ, Cαβ with Cαβ =

Cβα and
n∑

α=1
Cαα = 0, there exists a harmonic function u on a neighborhood of q such that

uσ(q) = Cσ, uαβ(q) = Cαβ.

Let φ : (Mm, g) → (Nn, h) be a map and let p ∈M . Suppose that

φ(x) = (φ1(x), φ2(x), · · · , φn(x))

is the local expression of φ with respect to the local coordinates {xi} in the neighborhood
φ−1(V ) of p and {yα} in a neighborhood V of q = φ(p) ∈ N . Let u : V → R be defined on an
open subset V of N . Then, a straightforward computation gives

ΔM
f (u ◦ φ) = fΔM (u ◦ φ) + d(u ◦ φ)(gradf)

= fuαβg(gradφα, gradφβ) + fuαΔMφα + d(u ◦ φ)(gradf)

= fg(gradφα, gradφβ)uαβ + [f ΔMφσ + (gradf)φσ]uσ. (2.2)

By Lemma 2.1, we can choose a local harmonic function u on V ⊂ N such that uσ(q) = Cσ =
0, ∀σ = 1, 2, · · · , n, uαβ(q) = 1 (α �= β), and all other uρσ(q) = Cρσ = 0, and substitute it into
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(2.2) to have

g(gradφα, gradφβ) = 0, ∀α �= β = 1, 2, · · · , n. (2.3)

Note that the choice of such functions implies

hαβ(φ(p)) = 0, ∀α �= β = 1, 2, · · · , n. (2.4)

Another choice of harmonic function u with C11 = 1, Cαα = −1 (α �= 1) and all other
Cσ, Cαβ = 0 for (2.2) gives

g(gradφ1, gradφ1) − g(gradφα, gradφα) = 0, ∀α �= β = 2, 3, · · · , n. (2.5)

Note also that for these choices of harmonic functions u we have

h11(φ(p)) − hαα(φ(p)) = 0, ∀α �= β = 2, 3, · · · , n. (2.6)

It follows from (2.3)–(2.6) that the f -harmonic morphism φ is a horizontally weakly conformal
map

g(gradφα, gradφβ) = λ2hαβ ◦ φ. (2.7)

Substituting horizontal conformality equation (2.7) into (2.2), we have

ΔM
f (u ◦ φ) = fλ2(hαβ ◦ φ)uαβ + [f ΔMφσ + (gradf)φσ]uσ

= fλ2(ΔN u) ◦ φ+ [f ΔMφσ + fλ2(hαβΓ
σ

αβ) ◦ φ+ (gradf)φσ]uσ

= fλ2(ΔN u) ◦ φ+ du (τf (φ)) (2.8)

for any function u defined (locally) on N . By special choice of harmonic function u we conclude
that the f -harmonic morphism is an f -harmonic map. Thus, we obtain the implication “(1) ⇒
(2)”. Note that the only assumption we used to obtain (2.8) is the horizontal conformality
(2.7). Therefore, it follows from (2.8) that “(2) ⇒ (3)”. Finally, “(3) ⇒ (1)” is clearly true.
Thus, we complete the proof of Theorem 2.1.

Similar to harmonic morphisms we have the following regularity result.

Corollary 2.1 For m ≥ 3, an f -harmonic morphism φ : (Mm, g) → (Nn, h) is smooth.

Proof In fact, by Corollary 1.1, if m �= 2 and φ : (Mm, g) → (Nn, h) is an f -harmonic mor-
phism, then φ : (Mm, f

2
m−2 g) → (Nn, h) is a harmonic map and hence a harmonic morphism,

which is known to be smooth (see [4]).
It is well-known that the composition of harmonic morphisms is again a harmonic morphism.

The composition law for f -harmonic morphisms, however, will need to be modified accordingly.
In fact, by the definitions of harmonic morphisms and f -harmonic morphisms we have the
following result.

Corollary 2.2 Let φ : (Mm, g) → (Nn, h) be an f -harmonic morphism with dilation λ1

and ψ : (Nn, h) → (Ql, k) a harmonic morphism with dilation λ2. Then the composition
ψ ◦ φ : (Mm, g) → (Ql, k) is an f -harmonic morphism with dilation λ1(λ2 ◦ φ).
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More generally, we can prove that f -harmonic morphisms pull back harmonic maps to f -
harmonic maps.

Proposition 2.1 Let φ : (Mm, g) → (Nn, h) be an f -harmonic morphism with dilation λ

and ψ : (Nn, h) → (Ql, k) a harmonic map. Then the composition ψ ◦ φ : (Mm, g) → (Ql, k) is
an f -harmonic map.

Proof It is well-known (see [4, Proposition 3.3.12]) that the tension field of the composition
map is given by

τ(ψ ◦ φ) = dψ(τ(φ)) + Trg∇dψ(dφ, dφ),

from which we have the f -tension of the composition ψ ◦ φ given by

τf (ψ ◦ φ) = dψ(τf (φ)) + fTrg∇dψ(dφ, dφ). (2.9)

Since φ is an f -harmonic morphism and hence a horizontally weakly conformal f -harmonic
map with dilation λ, we can choose local orthonormal frames {e1, · · · , en, en+1, · · · , em} around
p ∈M and {ε1, · · · , εn} around φ(p) ∈ N so that{

dφ(ei) = λεi, i = 1, · · · , n,
dφ(eα) = 0, α = n+ 1, · · · ,m.

Using these local frames we compute

Trg∇dψ(dφ, dφ) =
m∑

i=1

∇dψ(dφei, dφei) = λ2
( n∑

i=1

∇dψ(εi, εi)
)
◦ φ

= λ2τ(ψ) ◦ φ.

Substituting this into (2.9) we have

τf (ψ ◦ φ) = fdψ(τ(φ)) + fλ2τ(ψ) ◦ φ+ d(ψ ◦ φ)(grad f)

= dψ(τf (φ)) + fλ2τ(ψ) ◦ φ,

from which the proposition follows.

Theorem 2.2 Let φ : (Mm, g) → (Nn, h) be a horizontally weakly conformal map with
ϕ∗h = λ2g|H. Then, any two of the following conditions imply the other one:

(1) φ is an f -harmonic map and hence an f -harmonic morphism.

(2) grad( fλ2−n) is vertical.

(3) φ has minimal fibers.

Proof It can be check (see [4]) that the tension field of a horizontally weakly conformal
map φ : (Mm, g) → (Nn, h) is given by

τ(φ) = −(m− n)dφ(μ) + (2 − n)dφ(grad lnλ),
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where λ is the dilation of the horizontally weakly conformal map φ and μ is the mean curvature
vector field of the fibers. It follows that the f -tension field of φ can be written as

τf (φ) = −(m− n)fdφ(μ) + fdφ(grad lnλ2−n) + dφ(grad f),

or, equivalently,

τf (φ) = f [−(m− n)dφ(μ) + dφ(grad ln(fλ2−n))] = 0.

From this we obtain the theorem.

An immediate consequence is the following result.

Corollary 2.3 (a) A horizontally homothetic map (in particular, a Riemannian submersion)
φ : (Mm, g) → (Nn, h) is an f -harmonic morphism if and only if −(m − n)μ + grad ln f is
vertical.

(b) A weakly conformal map φ : (Mm, g) → (Nm, h) with conformal factor λ of same
dimension spaces is f -harmonic and hence an f -harmonic morphism if and only if f = Cλm−2

for some constant C > 0.
(c) A horizontally weakly conformal map φ : (Mm, g) → (N2, h) is an f -harmonic map and

hence an f -harmonic morphism if and only if −(m− 2)μ+ grad ln f is vertical.

Using the characterizations of f -harmonic morphisms and p-harmonic morphisms and Corol-
lary 1.1 we have the following corollary which provides many examples of f -harmonic mor-
phisms.

Corollary 2.4 A map φ : (Mm, g) → (Nn, h) between Riemannian manifolds is a p-
harmonic morphism without critical points if and only if it is an f -harmonic morphism with
f = |dφ|p−2.

Example 2.1 The Möbius transformation φ : Rm \ {0} → Rm \ {0} defined by

φ(x) = a+
r2

|x− a|2 (x− a)

is an f -harmonic morphism with f(x) = C
(

r
|x−a|

)2(m−2). In fact, it is well-known that the
Möbius transformation is a conformal map between the same dimensional spaces with the
dilation λ = r2

|x−a|2 . It follows from [20] that φ is an m-harmonic morphism, and hence by
Corollary 2.4, the inversion is an f -harmonic morphism with

f = |dφ|m−2 = (
√
mλ)m−2 = C

( r

|x− a|
)2(m−2)

.

The next example is an f -harmonic morphism that does not come from a p-harmonic mor-
phism.

Example 2.2 The map from Euclidean 3-space into the hyperbolic plane φ : (R × R ×
R+, ds20) → H2 ≡ (

R × {0} × R+, 1
z2 ds20

)
with φ(x, y, z) = (x, 0,

√
y2 + z2 ) is an f -harmonic

morphism with f = 1
z . Similarly, we know from [12] that the map φ : H3 ≡ (

R × R ×
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R+, 1
z2 ds20

) → H2 ≡ (
R × {0} × R+, 1

z2 ds20
)

with φ(x, y, z) = (x, 0,
√
y2 + z2 ) is a harmonic

morphism. It follows from Example 1.2 that the map from Euclidean space into the hyperbolic
plane φ : (R × R × R+, ds20) → H2 ≡ (

R × {0} × R+, 1
z2 ds20

)
with φ(x, y, z) = (x, 0,

√
y2 + z2 )

is an f -harmonic map with f = 1
z . Since this map is also horizontally weakly conformal it is

an f -harmonic morphism by Theorem 2.1.

Example 2.3 Any harmonic morphism φ : (Mm, g) → (Nn, h) is an f -harmonic morphism
for a positive function f on M with vertical gradient, i.e., dφ(gradf) = 0. In particular, the
radial projection φ : Rm+1 \ {0} → Sm, φ(x) = x

|x| is an f -harmonic morphism for f = α(|x|),
where α : (0,∞) → (0,∞) is any smooth function. In fact, we know from [4] that the radial
projection is a harmonic morphisms and on the other hand, one can check that the function
f = α(|x|) is positive and has vertical gradient.

Using the property of f -harmonic morphisms and Sacks-Uhlenbeck’s well-known result on
the existence of harmonic 2-spheres we have the following proposition which gives many ex-
amples of f -harmonic maps from Euclidean 3-space into a manifold whose universal covering
space is not contractible.

Proposition 2.2 For any Riemannian manifold whose universal covering space is not con-
tractible, there exists an f -harmonic map φ :

(
R3, ds20

) → (Nn, h) from Euclidean 3-space with
f(x) = 2

1+|x|2 .

Proof Let ds20 denote the Euclidean metric on R3. It is well-known that we can use the
inverse of the stereographic projection to identify

(
R

3,
4ds2

0
(1+|x|2)2

)
with

S3 \ {N} =
{

(u1, u2, u3, u4)
∣∣∣ 4∑

i=1

u2
i = 1, u4 �= 1

}
,

the Euclidean 3-sphere minus the north pole. In fact, the identification is given by the isometry

σ :
(

R
3,

4ds20
(1 + |x|2)2

)
→ S3 \ {N} ⊆ R

4

with

σ(x1, x2, x3) =
( 2x1

1 + |x|2 ,
2x2

1 + |x|2 ,
2x3

1 + |x|2 ,
|x|2 − 1
1 + |x|2

)
.

One can check that under this identification, the Hopf fiberation

φ :
(

R
3,

4ds20
(1 + |x|2)2

) ∼= S3 \ {N} → S2

can be written as

φ(x1, x2, x3) = (|z|2 − |w|2, 2zw),

where

z =
2x1

1 + |x|2 + i
2x2

1 + |x|2 , w =
2x3

1 + |x|2 + i
|x|2 − 1
1 + |x|2 .
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It is well-known (see [4]) that the Hopf fiberation φ is a harmonic morphism with dilation λ = 2.
So, by Corollary 1.1, φ : (R3, ds20) → S2 is an f -harmonic map with f = 2

1+|x|2 . It is easy to
see that this map is also horizontally conformal submersion and hence, by Theorem 2.1, it is
an f -harmonic morphism. On the other hand, by a well-known result of Sacks-Uhlenbeck’s,
we know that there exists a harmonic map ρ : S2 → (Nn, h) from 2-sphere into a manifold
whose covering space is not contractible. It follows from Proposition 2.1 that the composition
ρ ◦ φ : (R3, ds20) → (Nn, h) is an f -harmonic map with f = 2

1+|x|2 .

Remark 2.1 We notice that the authors in [8] and [14] used the heat flow method to study
the existence of f -harmonic maps from closed unit disk D2 → S2 sending boundary to a single
point. The f -harmonic morphism φ : (R3, ds20) → S2 in Proposition 2.2 clearly restrict to
an f -harmonic map φ : (D3, ds20) → S2 from 3-dimensional open disk into S2. It would be
interesting to know if there exists any f -harmonic map from higher dimensional closed disk
into two-sphere. Though we know that φ : (Mm, g) → (Nn, h) being f -harmonic implies

φ : (Mm, f
2

m−2 g) → (Nn, h)

being harmonic we need to be careful trying to use results from harmonic maps theory since
a conformal change of metric may change the curvature and the completeness of the original
manifold (Mm, g).

As we remark in Example 2.3 that any harmonic morphism is an f -harmonic morphism
provided f is positive with vertical gradient, however, such a function need not always exist as
the following proposition shows.

Proposition 2.3 A Riemannian submersion φ : (Mm, g) → (Nn, h) from non-negatively
curved compact manifold with minimal fibers is an f -harmonic morphism if and only if f =
C > 0. In particular, there exists no nonconstant positive function on S2n+1 so that the Hopf
fiberation φ : S2n+1 → (Nn, h) is an f -harmonic morphism.

Proof By Corollary 2.3, a Riemannian submersion φ : (Mm, g) → (Nn, h) with minimal
fibers is an f -harmonic morphism if and only if grad ln f is vertical, i.e., dφ(grad lnf) = 0. This,
together with the following lemma will complete the proof of the proposition.

Lemma 2.1 Let φ : (Mm, g) → (Nn, h) be any Riemannian submersion of a compact
positively curved manifold M . Then, there exists no (nonconstant) function f : M → R such
that dφ(grad lnf) = 0.

Proof Suppose that f : (Mm, g) → R has vertical gradient. Consider

(M, eεfg),

where ε > 0 is a sufficiently small constant.
If ε is small enough, then e2εfg is positively curved. One can check that

φ : (M, e2εfg) → (N, h) (2.10)
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is a horizontally homothetic submersion with dilation λ2 = e−2εf since f has vertical gradient.
By the main theorem in [22] we conclude that the map φ defined in (2.10) is a Riemannian
submersion, which implies that the dilation and hence the function f has to be a constant.

Remark 2.2 It would be very interesting to know if there exists any f -harmonic morphism
(or f -harmonic map) φ : S2n+1 → (Nn, h) with non-constant f . Note that for the case of
n = 2, the problem of classifying all f -harmonic morphisms φ : (S3, g0) → (N2, h) (where
g0 denotes the standard Euclidean metric on the 3-sphere) amounts to classifying all harmonic
morphisms φ : (S3, f2g0) → (N2, h) from conformally flat 3-spheres. A partial result on the lat-
ter problem was given in [13] in which the author proved that a submersive harmonic morphism
φ : (S3, f2g0) → (N2, h) with non-vanishing horizontal curvature is the Hopf fiberation up to
an isometry of (S3, g0). This implies that there exists no submersive f -harmonic morphism
φ : (S3, g0) → (N2, h) with non-constant f and the horizontal curvature KH(f2g0) �= 0.

Proposition 2.4 For m > n ≥ 2, a polynomial map (i.e., a map whose component functions
are polynomials) φ : R

m → R
n is an f -harmonic morphism if and only if φ is a harmonic

morphism and f has vertical gradient.

Proof Let φ : Rm → Rn be a polynomial map (i.e., a map whose component functions
are polynomials). If φ is an f -harmonic morphism, then, by Theorem 2.1, it is a horizontally
weakly conformal f -harmonic map. It was proved in [1] that any horizontally weakly conformal
polynomial map between Euclidean spaces has to be harmonic. This implies that φ is also a
harmonic morphism, and in this case we have dφ(grad f) = 0 from (1.1).

Example 2.4 φ : R3 ∼= R × C → C with φ(t, z) = p(z), where p(z) is any polynomial
function in z, is an f -harmonic morphism with f(t, z) = α(t) for any positive smooth function
α.
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[6] Cieśliński, J., Sym, A. and Wesselius, W., On the geometry of the inhomogeneous Heisenberg ferromagnet:
Non-integrable case, J. Phys. A: Math. Gen., 26, 1993, 1353–1364.

[7] Course, N., f -harmonic maps, Thesis, University of Warwick, Coventry, CV47AL, UK, 2004.

[8] Course, N., f -Harmonic maps which map the boundary of the domain to one point in the target, New
York J. Math, 13, 2007, 423–435.



236 Y. L. Ou

[9] Daniel, M., Porsezian, K. and Lakshmanan, M., On the integrability of the inhomogeneous spherically
symmetric Heisenberg ferromagnet in arbitrary dimension, J. Math. Phys., 35(10), 1994, 6498–6510.

[10] Eells, J. and Lemaire, L., A report on harmonic maps, Bull. London Math. Soc., 10, 1978, 1–68.

[11] Fuglede, B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28,
1978, 107–144.

[12] Gudmundsson, S., The geometry of harmonic morphisms, Ph. D. Thesis, University of Leeds, UK, 1992.

[13] Heller, S., Harmonic morphisms on conformally flat 3-spheres, Bull. London Math. Soc., 43(1), 2011,
137–150.

[14] Huang, P. and Tang, H., On the heat flow of f -harmonic maps from D2 into S2, Nonlinear Anal., 67(7),
2007, 2149–2156.

[15] Ishihara, T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto
Univ., 19(2), 1979, 215–229.

[16] Lakshmanan, M. and Bullough, R. K., Geometry of generalised nonlinear Schrödinger and Heisenberg
ferromagnetic spin equations with x-dependent coefficients, Phys. Lett. A, 80(4), 1980, 287–292.

[17] Li, Y. X. and Wang, Y. D, Bubbling location for f -harmonic maps and inhomogeneous Landau-Lifshitz
equations, Comment. Math. Helv., 81(2), 2006, 433–448.

[18] Lichnerowicz, A., Applications harmoniques et variétés kähleriennes, Symposia Mathematica III, Academic
Press, London, 1970, 341–402.

[19] Loubeau, E., On p-harmonic morphisms, Diff. Geom. and Its Appl., 12, 2000, 219–229.

[20] Manfredi, J. and Vespri, V., n-harmonic morphisms in space are Möbius transformations, Michigan Math.
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