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f-Harmonic Morphisms Between Riemannian Manifolds*

Yelin OU!

Abstract f-Harmonic maps were first introduced and studied by Lichnerowicz in 1970. In
this paper, the author studies a subclass of f-harmonic maps called f-harmonic morphisms
which pull back local harmonic functions to local f-harmonic functions. The author proves
that a map between Riemannian manifolds is an f-harmonic morphism if and only if
it is a horizontally weakly conformal f-harmonic map. This generalizes the well-known
characterization for harmonic morphisms. Some properties and many examples as well
as some non-existence of f-harmonic morphisms are given. The author also studies the
f-harmonicity of conformal immersions.

Keywords f-Harmonic maps, f-Harmonic morphisms, F-Harmonic maps, Har-
monic morphisms, p-Harmonic morphisms
2000 MR Subject Classification 58E20, 53C12

1 f-Harmonic Maps vs. F-Harmonic Maps

1.1 f-Harmonic maps

Let f: (M, g) — (0,00) be a smooth function. An f-harmonic map is a map ¢ : (M™,g) —
(N™, h) between Riemannian manifolds such that ¢|q is a critical point of the f-energy (see
(10, 18)),

By() = 5 | 1o,

for every compact domain Q C M. The Euler-Lagrange equation gives the f-harmonic map

equation (see [7, 23])

74(¢) = f7() + do(grad f) = 0, (1.1)
where 7(¢) = Tr,Vd¢ is the tension field of ¢ vanishing of which means ¢ is a harmonic map.

Example 1.1 Let ¢, v, ¢ : R? — R? be defined as

p(z,y,2) = (z,9),
Y(z,y,z) = 3z, 2y),
o(z,y,2) = (z,y+ 2).

Manuscript received September 17, 2012. Revised April 4, 2013.

IDepartment of Mathematics, Guangxi University for Nationalities, Nanning 530006, China.
E-mail: yelinou@hotmail.com

*Project supported by the Guangxi Natural Science Foundation (No.2011GXNSFA018127).




226 Y. L. Ou

Then, one can easily check that both ¢ and 1 are f-harmonic map with f = e* ¢ is a
horizontally conformal submersion whilst % is not. Also, ¢ is an f-harmonic map with f = e¥~?,

which is a submersion but not horizontally weakly conformal.

1.2 F-Harmonic map

Let F : [0,4+00) — [0,+00) be a C2-function, strictly increasing on (0, +oc0), and let ¢ :
(M,g) — (N,h) be a smooth map between Riemannian manifolds. Then ¢ is said to be an

F-harmonic map if ¢|q is a critical point of the F-energy functional

Brie) = [ (L),

for every compact domain  C M. The equation of F-harmonic maps is given by (see [2])

|deo]?

Tr(p) = F’(T)T(ga) + @, (gradF’(@)) =0, (1.2)

where 7(¢) denotes the tension field of .

Harmonic maps, p-harmonic maps and exponential harmonic maps are examples of F-
harmonic maps with F(t) = ¢, F(t) = %(21&)% (p > 4), and F(t) = e, respectively (see
2)).

In particular, p-harmonic map equation can be written as
p—2 p—2
() = |del” "7(p) + dep(grad|de[™ ") = 0. (1.3)

1.3 Relationship between f-harmonic and F-harmonic maps

We can see from (1.1) that an f-harmonic map with f = const > 0 is nothing but a harmonic
map, so both f-harmonic maps and F-harmonic maps are generalizations of harmonic maps.
Though we were warned in [7] that f-harmonic maps should not be confused with F-harmonic
maps and p-harmonic maps, we observe that, apart from critical points, any F-harmonic map

is a special f-harmonic map. More precisely we have the following corollary.

Corollary 1.1 Any F-harmonic map ¢ : (M,g) — (N,h) without critical points, i.e.,
2
|[dpz| # O for all x € M, is an f-harmonic map with [ = F'(‘d%l), In particular, a p-

harmonic map without critical points is an f-harmonic map with f = |dp|P~2.

Proof Since F is a C%-function and strictly increasing on (0, +00) we have F’(t) > 0 on
(0,+00). If the F-harmonic map ¢ : (M, g) — (N, h) has no critical points, i.e., |dg,| # 0 for
all x € M, then the function f : (M,g) — (0,400) with f = F'(%) is smooth and we see
from (1.1)—(1.2) that the F-harmonic map ¢ is an f-harmonic map with f = F’(%). The
second statement follows from the fact that for a p-harmonic map, F(t) = %(21&)% and hence

|def?

f= Fl(T) = |dplP~2.

Another relationship between f-harmonic maps and harmonic maps can be characterized

as follows.
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Corollary 1.2 (see [18]) A map ¢ : (M™,g) — (N™, h) with m # 2 is f-harmonic if and
only if ¢ : (Mm,fﬁg) — (N™, h) is a harmonic map.

1.4 A physical motivation for the study of f-harmonic maps

In physics, the equation of motion of a continuous system of spins with inhomogeneous
neighbor Heisenberg interaction (such a model is called the inhomogeneous Heisenberg ferro-

magnet) is given by

%:f(x)(uxAu)—f—Vf-(uxVu), (1.4)
where 2 C R™ is a smooth domain in the Euclidean space, f is a real-valued function defined
on Q, u(x,t) € S, x denotes the cross products in R® and A is the Laplace operator on R™.
Physically, the function f is called the coupling function, and is the continuum limit of the
coupling constants between the neighboring spins. Since « is a map into S? it is well-known
that the tension field of u can be written as 7(u) = Au + |V u|?u, and one can easily check
that the right-hand side of the inhomogeneous Heisenberg spin system (1.4) can be written as
ux (fr(u)+V f-Vu). It follows that u is a smooth stationary solution of (1.4) if and only if
fr(uw)+V f-Vu=0,1ie., uis an f-harmonic map. So there exists a 1-1 correspondence between
the set of the stationary solutions of the inhomogeneous Heisenberg spin system (1.4) on the
domain € and the set of f-harmonic maps from 2 into 2-sphere. The above inhomogeneous
Heisenberg spin system (1.4) is also called inhomogeneous Landau-Lifshitz system (see [5-6, 9,
14, 16-17)).

Using Corollary 1.2 we have the following example which provides many stationary solutions

of the inhomogeneous Heisenberg spin system defined on R3.
Example 1.2 v : (R3,dsg) — (N™, h) is an f-harmonic map if and only if
u: (R% f2dsg) — (N",h)
is a harmonic map. In particular, there is a 1-1 correspondence between harmonic maps from

3-sphere

S3\ (N} = (RB’,%) — (N, h)

ﬁ from Euclidean 3-space R® — (N™, h). When (N", h) =

52, we have a 1-1 correspondence between the set of harmonic maps S® — S? and the set of

and f-harmonic maps with f =

stationary solutions of the inhomogeneous Heisenberg spin system on R3. Similarly, there exists

a 1-1 correspondence between harmonic maps from hyperbolic 3-space

4ds
3 — 3 0 n
H° = (D ’(1—|a:|2)2) — (N™, h)

and f-harmonic maps (D3 ,dsg) — (N", h) with f = # from the unit disk in Euclidean

3-space.
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1.5 A little more about f-harmonic maps

Corollary 1.3 If ¢: (M™,g) — (N™,h) is an fi-harmonic map and also an fa-harmonic
map, then grad(fi/f2) € ker d¢.

Proof This follows from

f17(¢) + dé(grad f1) = 0,
f27(¢) + do(grad fa) = 0,

71 (¢)
Tfa (¢)

and hence

do(gradIn(fi/f2)) = 0.

Proposition 1.1 A conformal immersion ¢ : (M™,g) — (N", h) with ¢*h = N2g is
f-harmonic if and only if it is m-harmonic and f = CAX™~2. In particular, an isometric

immersion is f-harmonic if and only if f = const and hence it is harmonic.

Proof It is not difficult to check (see [24]) that for a conformal immersion ¢ : (M™,g) —
(N™, h) with ¢*h = A\2g, the tension field is given by

7(¢) = mA*n + (2 — m)de(grad In \),
so we can compute the f-tension field to have

7(¢) = flmA*n + de(grad In(A>~™ f))],

where 7 is the mean curvature vector of the submanifold ¢(M) C N. Noting that 7 is normal
part whilst dg(grad In A2~™ f) is the tangential part of 7¢(¢), we conclude that 7¢(¢) = 0 if
and only if

mA?n = 0,
deé(grad In(A2=™ f)) = 0.

It follows that 7 = 0 and grad (In(A*>~™ f)) = 0 since ¢ is an immersion. From these we see
that ¢ is a minimal conformal immersion which means it is an m-harmonic map (see [24]) and
that f = CA™~2. Thus, we obtain the first statement. The second statement follows from the

first one with A\ = 1.

2 f-Harmonic Morphisms

A horizontally weakly conformal map is a map ¢ : (M,g) — (N, h) between Riemannian
manifolds such that for each € M at which dg, # 0, the restriction dy,|g, : Hy — T,y N
is conformal and surjective, where the horizontal subspace H, is the orthogonal complement of
Ve = kerdy, in T, M. Tt is not difficult to see that there exists a number A\(z) € (0, 00) such
that h(de(X),dp(Y)) = A2(2)g(X,Y) for any X,Y € H,. At the point x € M where dp, =0

one can let A\(z) = 0 and obtain a continuous function A : M — R which is called the dilation of
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a horizontally weakly conformal map . A non-constant horizontally weakly conformal map ¢
is called horizontally homothetic if the gradient of A%(z) is vertical meaning that X (\?) = 0 for
any horizontal vector field X on M. Recall that a C? map ¢ : (M, g) — (N, h) is a p-harmonic
morphism (p > 1) if it preserves the solutions of p-Laplace equation in the sense that for any
p-harmonic function f : U — R, defined on an open subset U of N with ¢ ~1(U) non-empty,
fog:¢ Y (U) — Ris a p-harmonic function. A p-harmonic morphism can be characterized as

a horizontally weakly conformal p-harmonic map (see [3, 11, 15, 19, 21]).

Definition 2.1 Let f : (M,g) — (0,00) be a smooth function. A C?-function v : U — R
defined on an open subset U of M is called f-harmonic if

Aﬂ/[ u= fAM u + g(gradf, gradu) = 0. (2.1)

A continuous map ¢ : (M™,g) — (N™, h) is called an f-harmonic morphism if for every
harmonic function u defined on an open subset V. of N such that ¢=1(V) is non-empty, the

composition uo ¢ is f-harmonic on ¢—(V).

Theorem 2.1 Let ¢ : (M™,g) — (N",h) be a smooth map. Then, the following are
equivalent:

(1) ¢ is an f-harmonic morphism,

(2) ¢ is a horizontally weakly conformal f-harmonic map;

(3) There exists a smooth function \> on M such that

AM(wog) = FA2AN u)o ¢
for any C?-function u defined on (an open subset of) N.
Proof We will need the following lemma to prove the theorem.

Lemma 2.1 (see [15]) For any point ¢ € (N™,h) and any constants C,, Cop with Cop =
n

Csa and Y, Cua = 0, there exists a harmonic function w on a neighborhood of q such that
a=1

o (q) = Co,uap(q) = Cap.

Let ¢ : (M™,g) — (N™, h) be a map and let p € M. Suppose that

$(x) = (¢! (x),6*(x), -+, 9" ())

is the local expression of ¢ with respect to the local coordinates {z'} in the neighborhood
¢~ 1(V) of p and {y*} in a neighborhood V of ¢ = ¢(p) € N. Let u: V — R be defined on an

open subset V of N. Then, a straightforward computation gives
A} (uog) = fFAM (uo ¢) +d(u o §)(gradf)
= fuapg(gradg®, gradd’) + fuaA™ ¢ + d(u o ¢)(gradf)
= fg(gradg®, gradg”)uap + [f AM¢7 + (gradf) 67 Juo. (2.2)

By Lemma 2.1, we can choose a local harmonic function v on V' C N such that u,(q) = C, =
0, Vo =1,2,--- ,n, uap(q) =1 (a # B), and all other u,,(¢) = Cpo = 0, and substitute it into
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(2.2) to have
g(grad¢aa grad¢ﬁ) = Oa Va # 6 = ]-7 2; N (23)

Note that the choice of such functions implies

haﬁ(¢(p)) :0’ va#ﬂ: 1a27"' , 1. (24)

Another choice of harmonic function u with C1; = 1, Coa = —1 (o # 1) and all other
Cy,Cop = 0 for (2.2) gives

g(grade’, gradg') — g(gradg®, gradg®) = 0, Va # B =2,3,-- ,n. (2.5)

Note also that for these choices of harmonic functions v we have

W (b(p) — h*(d(p)) =0, Vo #pB=23- n (2.6)

It follows from (2.3)—(2.6) that the f-harmonic morphism ¢ is a horizontally weakly conformal

map
g(grade®, grad¢?®) = A2 o ¢. (2.7)
Substituting horizontal conformality equation (2.7) into (2.2), we have

AM(uo ) = FA2(h 0 d)uas + [f AM 7 + (grad )¢ Juq
= FA2(AN w) o ¢+ [f AMT + FA2(hPT,) 0 6 + (gradf)o” |u,
= FA2(AN w)o ¢+ du(r4(9)) (2.8)

for any function u defined (locally) on N. By special choice of harmonic function u we conclude
that the f-harmonic morphism is an f-harmonic map. Thus, we obtain the implication “(1) =
(2)”. Note that the only assumption we used to obtain (2.8) is the horizontal conformality
(2.7). Therefore, it follows from (2.8) that “(2) = (3)”. Finally, “(3) = (1)” is clearly true.
Thus, we complete the proof of Theorem 2.1.

Similar to harmonic morphisms we have the following regularity result.
Corollary 2.1 For m >3, an f-harmonic morphism ¢ : (M™, g) — (N™,h) is smooth.

Proof In fact, by Corollary 1.1, if m # 2 and ¢ : (M™, g) — (N™, h) is an f-harmonic mor-
phism, then ¢ : (M™, f%? g) — (N, h) is a harmonic map and hence a harmonic morphism,
which is known to be smooth (see [4]).

It is well-known that the composition of harmonic morphisms is again a harmonic morphism.
The composition law for f-harmonic morphisms, however, will need to be modified accordingly.
In fact, by the definitions of harmonic morphisms and f-harmonic morphisms we have the

following result.

Corollary 2.2 Let ¢ : (M™,g) — (N™,h) be an f-harmonic morphism with dilation A\
and v = (N" h) — (Q', k) a harmonic morphism with dilation \a. Then the composition
pog: (M™, g)— (Q k) is an f-harmonic morphism with dilation i (A2 o ¢).
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More generally, we can prove that f-harmonic morphisms pull back harmonic maps to f-

harmonic maps.

Proposition 2.1 Let ¢ : (M™,g) — (N™, h) be an f-harmonic morphism with dilation X
and ¢ : (N™ h) — (Q', k) a harmonic map. Then the composition 1o ¢ : (M™, g) — (Q', k) is

an f-harmonic map.

Proof It is well-known (see [4, Proposition 3.3.12]) that the tension field of the composition

map is given by

from which we have the f-tension of the composition ¥ o ¢ given by

71 (¢ 0 ¢) = dY(74(9)) + [fTryVdy(de, dg). (2.9)

Since ¢ is an f-harmonic morphism and hence a horizontally weakly conformal f-harmonic
map with dilation A\, we can choose local orthonormal frames {e1, - ,en, €n41, " , €} around
p € M and {e, - ,€,} around ¢(p) € N so that

d¢(ei) = Aeiv i= ]-a ) 1,
dé(en) =0, a=n+1,---,m.

Using these local frames we compute

Tr, Vdip(do, dg) = Y Vdu(dges, dge;) = 32 (Y Vdis(ei,ei)) 0

i=1 =1

=X\7(¥) 0 9.

Substituting this into (2.9) we have

Tr(1 0 ¢) = fdi(7(9)) + [N°T(¥) 0 ¢ + d(¢ 0 §)(grad f)
= dy(rp(9)) + [X°7(1) 0 ¢,

from which the proposition follows.

Theorem 2.2 Let ¢ : (M™,g) — (N",h) be a horizontally weakly conformal map with
©*h = A2g|y. Then, any two of the following conditions imply the other one:

(1) ¢ is an f-harmonic map and hence an f-harmonic morphism.

(2) grad( fA%2~") is vertical.

(3) ¢ has minimal fibers.

Proof It can be check (see [4]) that the tension field of a horizontally weakly conformal
map ¢ : (M™,g) — (N™, h) is given by

7(¢) = —(m —n)de(p) + (2 — n)de(gradIn ),
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where A is the dilation of the horizontally weakly conformal map ¢ and p is the mean curvature
vector field of the fibers. It follows that the f-tension field of ¢ can be written as

71(¢) = —(m —n) fdp(n) + fdd(gradIn A*~") + dg(grad f),

or, equivalently,

74(¢) = f[=(m — n)dé(n) + dg(grad In(fA*~"))] = 0.

From this we obtain the theorem.
An immediate consequence is the following result.

Corollary 2.3 (a) A horizontally homothetic map (in particular, a Riemannian submersion)
¢ (M™, g) — (N™ h) is an f-harmonic morphism if and only if —(m — n)u + gradln f is
vertical.

(b) A weakly conformal map ¢ : (M™,g) — (N™,h) with conformal factor \ of same
dimension spaces is f-harmonic and hence an f-harmonic morphism if and only if f = CA™ ™2
for some constant C > 0.

(c) A horizontally weakly conformal map ¢ : (M™,g) — (N?,h) is an f-harmonic map and

hence an f-harmonic morphism if and only if —(m — 2)u + gradln f is vertical.

Using the characterizations of f-harmonic morphisms and p-harmonic morphisms and Corol-
lary 1.1 we have the following corollary which provides many examples of f-harmonic mor-

phisms.

Corollary 2.4 A map ¢ : (M™,g9) — (N™, h) between Riemannian manifolds is a p-

harmonic morphism without critical points if and only if it is an f-harmonic morphism with
f=ldglP2.
Example 2.1 The Mobius transformation ¢ : R™ \ {0} — R™ \ {0} defined by

r2

o(z) =a+ (2 —a)

|z —al?
is an f-harmonic morphism with f(z) = 0(4)2@72). In fact, it is well-known that the

lz—al

Mobius transformation is a conformal map between the same dimensional spaces with the

dilation A = ﬁ It follows from [20] that ¢ is an m-harmonic morphism, and hence by

Corollary 2.4, the inversion is an f-harmonic morphism with

f=1dg]™ % = (Vi 2 = ¢ (— )2(m—2>

|z —al

The next example is an f-harmonic morphism that does not come from a p-harmonic mor-

phism.

Example 2.2 The map from Euclidean 3-space into the hyperbolic plane ¢ : (R x R x

R*,ds) — H? = (R x {0} x Rt, 5ds?) with ¢(z,y,2) = (2,0,1/y*> + 22) is an f-harmonic

morphism with f = % Similarly, we know from [12] that the map ¢ : H® = (R x R x
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RT, 5dsd) — H? = (R x {0} x RT, ds) with ¢(z,y,2) = (,0,1/y> + 22) is a harmonic

morphism. It follows from Example 1.2 that the map from Euclidean space into the hyperbolic

plane ¢ : (R x R x RT,ds3) — H? = (R x {0} x RT, 5ds3) with ¢(z,y,2) = (,0, /y? + 2?)
1

is an f-harmonic map with f = >. Since this map is also horizontally weakly conformal it is

an f-harmonic morphism by Theorem 2.1.

Example 2.3 Any harmonic morphism ¢ : (M™, g) — (N™,h) is an f-harmonic morphism
for a positive function f on M with vertical gradient, i.e., d¢(gradf) = 0. In particular, the
radial projection ¢ : R™T1\ {0} — S™, ¢(x) = ro7 is an f-harmonic morphism for f = a(|z|),
where « : (0,00) — (0,00) is any smooth function. In fact, we know from [4] that the radial
projection is a harmonic morphisms and on the other hand, one can check that the function

f = a(]z]) is positive and has vertical gradient.

Using the property of f-harmonic morphisms and Sacks-Uhlenbeck’s well-known result on
the existence of harmonic 2-spheres we have the following proposition which gives many ex-
amples of f-harmonic maps from Euclidean 3-space into a manifold whose universal covering

space is not contractible.

Proposition 2.2 For any Riemannian manifold whose universal covering space is not con-

tractible, there exists an f-harmonic map ¢ : (R3, ds%) — (N™, h) from FEuclidean 3-space with
fz) = ﬁ

Proof Let ds3 denote the Euclidean metric on R3. It is well-known that we can use the

2
inverse of the stereographic projection to identify (R?’, ﬁ)ﬁ) with

4
53 \ {N} = {(u17u2;u3;u4)‘ Z Uf - ]-7 Uy # 1};
i=1
the Euclidean 3-sphere minus the north pole. In fact, the identification is given by the isometry
. 4ds? .
o: (R}, —22 )—>S‘3 N} CR*
(% o) = 91\ (0 €

with

211 229 223 |z|? — 1)

o) = (TILp: Tr e T4 1577

One can check that under this identification, the Hopf fiberation

4ds?
. 3 0 ~ a3 2
o : (R ,7(1_’_'%'2)2) > S\ {N} = S
can be written as

(b(l‘l,ﬂﬁg,l‘g) = (|Z|2 - |w|2723w)a

where
2331 2332 2333 . |J?|2 —1

TR RE T pr U T TERE T TP




234 Y. L. Ou
It is well-known (see [4]) that the Hopf fiberation ¢ is a harmonic morphism with dilation A = 2.
So, by Corollary 1.1, ¢ : (R3 ds2) — S? is an f-harmonic map with f = 1+‘2x‘2.

see that this map is also horizontally conformal submersion and hence, by Theorem 2.1, it is

It is easy to

an f-harmonic morphism. On the other hand, by a well-known result of Sacks-Uhlenbeck’s,
we know that there exists a harmonic map p : S — (N", h) from 2-sphere into a manifold
whose covering space is not contractible. It follows from Proposition 2.1 that the composition
pod: (R3 dsg) — (N™, h)is an f-harmonic map with f = TZ‘Q

Remark 2.1 We notice that the authors in [8] and [14] used the heat flow method to study
the existence of f-harmonic maps from closed unit disk D? — S? sending boundary to a single
point. The f-harmonic morphism ¢ : (R®,ds?) — S? in Proposition 2.2 clearly restrict to
an f-harmonic map ¢ : (D3 ds2) — S? from 3-dimensional open disk into S2. It would be
interesting to know if there exists any f-harmonic map from higher dimensional closed disk

into two-sphere. Though we know that ¢ : (M™,g) — (N", h) being f-harmonic implies
¢ (M™, fm2g) — (N",h)

being harmonic we need to be careful trying to use results from harmonic maps theory since
a conformal change of metric may change the curvature and the completeness of the original
manifold (M™, g).

As we remark in Example 2.3 that any harmonic morphism is an f-harmonic morphism
provided f is positive with vertical gradient, however, such a function need not always exist as

the following proposition shows.

Proposition 2.3 A Riemannian submersion ¢ : (M™,g) — (N™, h) from non-negatively
curved compact manifold with minimal fibers is an f-harmonic morphism if and only if [ =
C > 0. In particular, there exists no nonconstant positive function on S*"*1 so that the Hopf

fiberation ¢ : STt — (N™ h) is an f-harmonic morphism.

Proof By Corollary 2.3, a Riemannian submersion ¢ : (M™,g) — (N", h) with minimal
fibers is an f-harmonic morphism if and only if gradIn f is vertical, i.e., d¢(grad Inf) = 0. This,

together with the following lemma will complete the proof of the proposition.

Lemma 2.1 Let ¢ : (M™,g) — (N™ h) be any Riemannian submersion of a compact
positively curved manifold M. Then, there exists no (nonconstant) function f : M — R such
that do(gradInf) = 0.

Proof Suppose that f: (M™,g) — R has vertical gradient. Consider
(M, e g),

where € > 0 is a sufficiently small constant.

If € is small enough, then e%*fg is positively curved. One can check that

¢ : (M,e*g) — (N, h) (2.10)
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is a horizontally homothetic submersion with dilation A\?> = e~2¢/ since f has vertical gradient.
By the main theorem in [22] we conclude that the map ¢ defined in (2.10) is a Riemannian

submersion, which implies that the dilation and hence the function f has to be a constant.

Remark 2.2 It would be very interesting to know if there exists any f-harmonic morphism
(or f-harmonic map) ¢ : S?"*1 — (N™ h) with non-constant f. Note that for the case of
n = 2, the problem of classifying all f-harmonic morphisms ¢ : (S3,g9) — (N2, h) (where
go denotes the standard Euclidean metric on the 3-sphere) amounts to classifying all harmonic
morphisms ¢ : (52, f2go) — (N2, h) from conformally flat 3-spheres. A partial result on the lat-
ter problem was given in [13] in which the author proved that a submersive harmonic morphism
¢ : (83 f290) — (N2, h) with non-vanishing horizontal curvature is the Hopf fiberation up to
an isometry of (S3,go). This implies that there exists no submersive f-harmonic morphism
¢ :(S3,g0) — (N2, h) with non-constant f and the horizontal curvature K (f2go) # 0.

Proposition 2.4 Form > n > 2, a polynomial map (i.e., a map whose component functions
are polynomials) ¢ : R™ — R™ is an f-harmonic morphism if and only if ¢ is a harmonic

morphism and f has vertical gradient.

Proof Let ¢ : R™ — R™ be a polynomial map (i.e., a map whose component functions
are polynomials). If ¢ is an f-harmonic morphism, then, by Theorem 2.1, it is a horizontally
weakly conformal f-harmonic map. It was proved in [1] that any horizontally weakly conformal
polynomial map between Euclidean spaces has to be harmonic. This implies that ¢ is also a

harmonic morphism, and in this case we have d¢(grad f) = 0 from (1.1).

Example 2.4 ¢ : R? =2 R x C — C with ¢(¢,2) = p(z), where p(z) is any polynomial
function in z, is an f-harmonic morphism with f(¢, z) = «(t) for any positive smooth function

Q.
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