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Abstract In this paper, the authors characterize the inhomogeneous Triebel-Lizorkin
spaces F s,w

p,q (Rn) with local weight w by using the Lusin-area functions for the full ranges
of the indices, and then establish their atomic decompositions for s ∈ R, p ∈ (0, 1] and
q ∈ [p,∞). The novelty is that the weight w here satisfies the classical Muckenhoupt
condition only on balls with their radii in (0, 1]. Finite atomic decompositions for smooth
functions in F s,w

p,q (Rn) are also obtained, which further implies that a (sub)linear operator
that maps smooth atoms of F s,w

p,q (Rn) uniformly into a bounded set of a (quasi-)Banach
space is extended to a bounded operator on the whole F s,w

p,q (Rn). As an application, the
boundedness of the local Riesz operator on the space F s,w

p,q (Rn) is obtained.

Keywords Local weight, Triebel-Lizorkin space, Atom, Lusin-Area function, Riesz
transform
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1 Introduction

The local weight class was introduced by Rychkov [18]. Recall that, for p ∈ (1,∞), the local
weight class A loc

p (Rn) consists of all non-negative locally integrable functions w such that

[w]A loc
p (Rn) := sup

|Q|≤1

{ 1
|Q|

∫
Q

w(x)dx
}{ 1

|Q|
∫

Q

[w(x)]−
1

p−1 dx
}p−1

<∞,

where the supremum is taken over all cubes of Rn with the n-dimensional Lebesgue measure no
more than 1 and with sides parallelling to the coordinate axis. If p = 1, then the class A loc

1 (Rn)
consists of all non-negative locally integrable functions w such that

[w]A loc
1 (Rn) := sup

|Q|≤1

{ 1
|Q|

∫
Q

w(x)dx
}

sup
y∈Q

[w(y)]−1 <∞.

Define A loc
∞ (Rn) :=

⋃
1≤p<∞

A loc
p (Rn). For any q ∈ [1,∞], let qw := inf{q : w ∈ A loc

q (Rn)},
which is called the critical index of the local weight w. Observe that the class A loc

∞ (Rn)
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consists of non-doubling weights, which may grow or decrease exponentially at infinity. Apart
from the well-known Muckenhoupt weight class, an important example of w ∈ A loc

∞ (Rn) is
from Triebel [24, Chapter 6], wherein the author investigated weighted inhomogeneous Besov
and Triebel-Lizorkin spaces associated to a weight w satisfying that there exist β ∈ (0, 1] and
C ∈ (0,∞) such that, for all x, y ∈ Rn, 0 < w(x) ≤ Cw(y)e|x−y|β ; see also Schott [20–21] and
Schmeißer-Triebel [19].

Rychkov [18] introduced and studied the inhomogeneous Besov and Triebel-Lizorkin spaces
associated to a weight w ∈ A loc∞ (Rn). Izuki and Sawano [14–16] then investigated the wavelet
characterizations of these function spaces. Also, Tang [22] established the maximal function
characterization of the weighted local Hardy spaces hp

w(Rn) with w ∈ A loc
∞ (Rn), which is an

extension of the results of Bui [1] and Goldberg [7]. Boundedness of some strongly singular
integrals, pseudo-differential operators and their commutators on the weighted local Hardy
spaces hp

w(Rn) were also studied in [22–23]. For generalizations of the results in [22] to some
Orlicz-type local Hardy spaces associated to the weight w ∈ A loc

∞ (Rn) (see [25]). It should
be mentioned that there are many works concerning the (in)homogeneous Besov or Triebel-
Lizorkin spaces associated to the classical Muckenhoupt weights; see, for instance, [9–13, 24]
and their references.

The main aim of this paper is to characterize the inhomogeneous Triebel-Lizorkin spaces
F s,w

p,q (Rn) with local weight w ∈ A loc
∞ (Rn) in the sense of Rychkov [18] (see also Definition 1.1

below) by using atoms completely analogous to the classical atoms of Hardy spaces. In other
words, for s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc

max{q,1}(R
n), we prove, in Theorem 1.2

below, that an element f ∈ F s,w
p,q (Rn) if and only if it can be written as a linear combination of

these weighted atoms with the coefficients belonging to �p. To this end, we first establish the
Lusin-area function characterization of F s,w

p,q (Rn) in Theorem 1.1 below. Moreover, finite atomic
decompositions for smooth functions in F s,w

p,q (Rn) are presented in Theorem 1.3 below. This
allows us to deduce the following boundedness criteria in Theorem 1.4 below: If a (sub)linear
operator maps atoms, which are infinitely differentiable, of F s,w

p,q (Rn) into a (quasi-)Banach
space uniformly, then it extends to a bounded (sub)linear operator on the whole F s,w

p,q (Rn). As
an application, the boundedness of the local Riesz operator on the space F s,w

p,q (Rn) is obtained.
It is expectable that Theorem 1.4 may have further more applications, say, in the study of the
boundedness of operators on F s,w

p,q (Rn) (see, for example, [2–3, 17]).
It should be mentioned that the definition of atoms of F s,w

p,q (Rn) (see Definition 1.2 below)
used by us throughout this paper is inspired by Han, Paluszyński and Weiss [8], in which
atomic characterizations for the classical non-weighted homogeneous Triebel-Lizorkin space
Ḟ s

p,q(R
n) were established, where s ∈ R, p ∈ (0, 1] and q ∈ [p,∞). We also remark that atomic

decompositions of the Triebel-Lizorkin spaces F s,w
p,q (Rn) with local weights were also considered

in [15], by using the machinery of the φ-transform of Frazier-Jawerth in [4–5]. The advantage
of the atoms used in this paper is that it is more convenient for applications in the study on
the boundedness of operators.

To recall the inhomogeneous Triebel-Lizorkin spaces with local weights introduced in [18],
we need the following notation. Let C∞

c (Rn) be the set of all infinitely differentiable functions
on Rn with compact support. Endow C∞

c (Rn) with the strict inductive topology, which is
denoted by D(Rn) and whose dual space by D′(Rn). As in [18], let S′

e(R
n) be the space of

all f ∈ D′(Rn) such that there exist positive constants Af and Nf such that for all φ ∈
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D(Rn), |〈f, φ〉| ≤ Af sup{|Dαφ(x)|eNf |x| : x ∈ Rn, |α| ≤ Nf}. For p ∈ (0,∞], we denote by
Lp

w(Rn) the weighted Lebesgue space which consists of all functions f such that ‖f‖Lp
w(Rn) :=

{∫
Rn |f(x)|pw(x)dx} 1

p < ∞, and by Lp,∞
w (Rn) the weighted weak-type Lebesgue space which

consists of all functions f such that ‖f‖Lp,∞
w (Rn) := sup

t>0
t[w({x ∈ Rn : |f(x)| > t})] 1

p <∞. For

any s ∈ R, we denote by �s	 the maximal integer no more than s.

Definition 1.1 Let w ∈ A loc
∞ (Rn), s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Suppose that

φ0 ∈ D(Rn) and φ := φ0 − 2−nφ0(2−1·) satisfies that∫
Rn

xαφ(x)dx = 0 for all |α| ≤ max{−1, �s	}. (1.1)

For j ∈ N, set φj := 2jnφ(2j ·). The inhomogeneous Triebel-Lizorkin space F s,w
p,q (Rn) is defined

to be the collection of all f ∈ S′
e(R

n) such that

‖f‖F s,w
p,q (Rn) :=

∥∥∥[ ∞∑
j=0

2jsq|φj ∗ f |q
] 1

q
∥∥∥

Lp
w(Rn)

<∞

with a usual modification made when q = ∞.

Notice that F s,w
p,q (Rn), with w ∈ A loc

∞ (Rn), s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], are com-
plete (quasi-)Banach spaces (see [18, Lemma 2.15]). By [18, Theorem 2.5], there exist positive
constants A0 and B0, depending only on s, p, q and w, such that, when A ≥ A0 and B ≥ B0

p ,

‖f‖F s,w
p,q (Rn) ∼

∥∥∥[ ∞∑
j=0

2jsq|φ∗j,A,Bf |q
] 1

q
∥∥∥

Lp
w(Rn)

, (1.2)

where φ∗j,A,Bf denotes the Peetre-type maximal function of f , defined by

φ∗j,A,Bf(x) := sup
y∈Rn

|φj ∗ f(y)|
(1 + 2j |x− y|)AeB|x−y| , x ∈ Rn. (1.3)

From this Peetre-type maximal function characterization for F s,w
p,q (Rn), it follows easily that

the space F s,w
p,q (Rn) is independent of the choice of φ0 ∈ D(Rn) satisfying (1.1).

For any a ∈ (0,∞), s ∈ R, q ∈ (0,∞) and f ∈ S′
e(Rn), the Lusin-area functions Sa,s

q (f) and
S̃a,s

q (f) are defined, respectively, by setting, for all x ∈ Rn,

Ss
a,q(f)(x) :=

[ ∞∑
j=0

1
|B(x, 2−j)|

∫
|x−y|<a2−j

|2jsφj ∗ f(y)|qdy
] 1

q

and

S̃s
a,q(f)(x) :=

[ ∞∑
j=0

sup
|x−y|<a2−j

|2jsφj ∗ f(y)|qdy
] 1

q

,

where {φj}∞j=0 are as in Definition 1.1. Applying the Peetre-type maximal function characteri-
zation of F s,w

p,q (Rn) in (1.2), we can conclude the following Lusin-area function characterization
of F s,w

p,q (Rn), whose proof is presented in Section 3.
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Theorem 1.1 Let w ∈ A loc∞ (Rn), a ∈ (0,∞), s ∈ Rn, p ∈ (0,∞) and q ∈ (0,∞). Then,
there exists a positive constant C such that, for all f ∈ S′

e(R
n),

1
C
‖f‖F s,w

p,q (Rn) ≤ ‖Ss
a,q(f)‖Lp

w(Rn) ≤ ‖S̃s
a,q(f)‖Lp

w(Rn) ≤ C‖f‖F s,w
p,q (Rn).

Motivated by [8], we introduce atoms of the space F s,w
p,q (Rn) as follows.

Definition 1.2 Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{q,1}(R

n). A distribution
a ∈ S′

e(R
n) is called a (p, q, s)w-atom of F s,w

p,q (Rn) if the following hold:
(i) a is supported on a cube Q ⊂ Rn centered at cQ and of side length �(Q).
(ii) ‖a‖F s,w

q,q (Rn) ≤ [w(Q)]
1
q − 1

p .
(iii) If |Q|<1, then for any g ∈ S(Rn), a polynomial P of degree at most N :=max

{�n(
qw

p −
1
)−s	, 0}

and a smooth cutoff function ηQ ∈ S(Rn) such that ηQ = 1 on Q and ηQ = 0 outside
2Q, 〈a, g〉 = 〈a, (g − P )ηQ〉, here and hereafter, 2Q denotes the cube centered at cQ and of side
length 2�(Q).

Now we give the following atomic characterization of the Triebel-Lizorkin spaces, which
follows from the Calderón reproducing formula (see Lemma 2.3 below) and the Lusin-area
function characterization of F s,w

p,q (Rn) in Theorem 1.1 (see Section 4 for its proof).

Theorem 1.2 Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{q,1}(R

n). Then, f ∈
F s,w

p,q (Rn) if and only if f =
∑
k∈N

λkak in S′
e(Rn), where {λk}k∈Z ∈ �p and {ak}k∈N are (p, q, s)w-

atoms. Moreover, there exists a positive constant C such that, for all f ∈ F s,w
p,q (Rn),

1
C
‖f‖F s,w

p,q (Rn) ≤ inf
{[ ∑

k∈N

|λk|p
] 1

p
}
≤ C‖f‖F s,w

p,q (Rn),

where the infimum is taken over all the decompositions of f as above.

Next, we show that functions in C∞
c (Rn) ∩ F s,w

p,q (Rn) can be decomposed into finite linear
combinations of (p, q, s)w-atoms with their coefficients belonging to �p. The proof is given in
Section 5 by invoking some ideas from [17].

Theorem 1.3 Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{1,q}(R

n). Then, every

f ∈ C∞
c (Rn)∩F s,w

p,q (Rn) admits an atomic decomposition f =
N∑

k=1

λkak, where N ∈ N, {ak}N
k=1

are (p, q, s)w-atoms such that each ak ∈ C∞
c (Rn) and

[ N∑
k=1

|λk|p
] 1

p ≤ C‖f‖F s,w
p,q (Rn) for some

positive constant C independent of f and N .

Indeed, C∞
c (Rn)∩F s,w

p,q (Rn) is dense in F s,w
p,q (Rn) (see Lemma 6.1 below). Consequently, we

can establish a boundedness criteria for (sub)linear operators from F s,w
p,q (Rn) to some (quasi)-

Banach spaces as in [17, 26–27]. Before going into details, we first recall the following notion
(see, for example, [17, 26–27]).

Definition 1.3 (i) A quasi-Banach space B is a vector space endowed with a quasi-norm
‖ · ‖B which is non-negative, non-degenerate (namely, ‖f‖B = 0 if and only if f = 0), homoge-
neous, and obeys the quasi-triangle inequality, namely, there exists a constant K ≥ 1 such that,
for all f , g ∈ B, ‖f + g‖B ≤ K[‖f‖B + ‖g‖B].
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(ii) Let r ∈ (0, 1]. A quasi-Banach space Br with the quasi-norm ‖ · ‖Br is called an r-quasi-
Banach space if ‖f + g‖r

Br
≤ ‖f‖r

Br
+ ‖g‖r

Br
for all f ,g ∈ Br.

(iii) For any r-quasi-Banach space Br with r ∈ (0, 1] and a linear space Y, an operator T
from Y to Br is said to be Br-sublinear if, for all f , g ∈ Y and λ, ν ∈ C,

‖T (λf + νg)‖Br ≤ [|λ|r‖T (f)‖r
Br

+ |ν|r‖T (g)‖r
Br

]
1
r

and ‖T (f)− T (g)‖Br ≤ ‖T (f − g)‖Br .

Applying Theorem 1.3 and the density property of C∞
c (Rn)∩F s,w

p,q (Rn) in F s,w
p,q (Rn), we can

establish a criterion for the boundedness of operators on F s,w
p,q (Rn) (see Section 6 for its proof).

Theorem 1.4 Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{1,q}(R

n). Suppose that
Br is an r-quasi-Banach space with r ∈ [p, 1] and that T : C∞

c (Rn) ∩ Ḟ s,w
p, q (Rn) → Br is a

Br-sublinear operator satisfying that

sup{‖Ta‖Br : a ∈ C∞
c (Rn) is any (p, q, s)w-atom} <∞.

Then T uniquely extends to a bounded Br-sublinear operator from F s,w
p,q (Rn) to Br.

From Theorem 1.4, it follows the boundedness of the local Riesz operator on the Triebel-
Lizorkin spaces with local weights. Let Φ ∈ D(Rn) satisfying Φ(x) = 1 for x ∈ B(0, 1) and
supp Φ ⊂ B(0, 2). For j ∈ {1, · · · , n}, consider the local Riesz operator

R loc
j f(x) := p. v.

∫
Rn

yj

|y|n+1
Φ(y)f(x− y)dy, x ∈ Rn

(see [22, 25]). It was proved in [22, Lemma 8.2] that R loc
j is bounded on Lp

w(Rn) when p ∈ (1,∞)
and w ∈ A loc

p (Rn), and from L1
w(Rn) to L1,∞

w (Rn) when w ∈ A loc
1 (Rn). For p ∈ (0, 1],

let hp
w(Rn) be the weighted local Hardy space, which consists of all f ∈ S′

e(Rn) such that
f+ := sup

0<t≤1
|φt ∗ f | ∈ Lp

w(Rn), where φ ∈ C∞
c (Rn) has a non-zero integral, and we define

‖f‖hp
w(Rn) := ‖f+‖Lp

w(Rn). The operators {R loc
j }n

j=1 were used to characterize h1
w(Rn) in [22].

Moreover, it was proved in [25, Theorem 8.2] that R loc
j is bounded on the Orlicz-type local

Hardy spaces with local weights, which particularly implies that each R loc
j is bounded on the

local weighted Hardy space hp
w(Rn) with p ∈ (0, 1] and w ∈ A loc

∞ (Rn).
Applying Theorem 1.4, we obtain the following conclusion (see Section 7 for its proof).

Theorem 1.5 Let s ∈ R, p ∈ (0, 1], q ∈ [1,∞) and w ∈ A loc
q (Rn). Then, for all j ∈

{1, · · · , n}, the operator R loc
j is bounded on F s,w

p,q (Rn).

Remark 1.1 (i) For p ∈ (0, 1], it was proved in [18, Theorem 2.25] that F 0,w
p,2 (Rn) = hp

w(Rn)
with equivalent quasi-norms. Thus, for all p ∈ (0, 1], if we take s = 0 and q = 2 in Theorem
1.5, then every R loc

j is bounded on the space hp
w(Rn) if w ∈ A loc

2 (Rn).
(ii) The result in (i) is slightly weaker than the aforementioned corollary of [25, Theorem 8.2],

which says that R loc
j is bounded on hp

w(Rn) for all w ∈ A loc∞ (Rn). The reasons for this are
as follows. The size condition of an hp

w(Rn)-atom in [25, Definition 3.4] can be given by any
‖ · ‖Lr

w(Rn) norm with r ∈ [1,∞] ∩ (p,∞); meanwhile, any weight w ∈ A loc
∞ (Rn) implies that

w ∈ A loc
r (Rn) for some r ∈ (1,∞). However, the size condition of a (p, 2, 0)w-atom in Definition

1.2 is given by some fixed quasi-norm ‖·‖F 0,w
2,2 (Rn), so we are forced to use weights w ∈ A loc

2 (Rn).
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This article is organized as follows. In Section 2, we first recall some known basic lemmas,
including the properties of the local weight, Fefferman-Stein vector-valued inequalities asso-
ciated to the local weights, and the Calderón reproducing formulae; we then prove a duality
result related to the space F s,w

p,q (Rn). The proof of Theorem 1.1 is presented in Section 3. The
whole Section 4 focuses on the proof of Theorem 1.2, by using Theorem 1.1 and a series of
auxiliary lemmas developed in Section 4. In Section 5, we prove Theorem 1.3 by using the
atomic decomposition result in Theorem 1.2. Sections 6 is devoted to the proof of Theorem 1.4
by showing the density property of C∞

c (Rn)∩F s,w
p,q (Rn) in F s,w

p,q (Rn) (see Lemma 6.1). Finally,
the proof of Theorem 1.5 is presented in Section 7, by using Theorem 1.5.

Throughout this paper, we use the following notation. Let N := {1, · · · }, Z+ := N ∪ {0}
and Z := {0,±1, · · · }. Denote by C a positive constant independent of the main parameters
involved, which may vary at different occurrences. We use f � g or g � f to denote f ≤ Cg or
g ≥ Cf , respectively. If f � g � f , then we write f ∼ g.

2 Preliminaries

For κ ∈ (0,∞), the local Hardy-Littlewood maximal operator M loc
κ is defined by setting,

for all locally integrable functions f and x ∈ Rn,

M loc
κ (f)(x) := sup

Q�x
|Q|≤κ

1
|Q|

∫
Q

|f(y)|dy.

If κ = 1, then we simply write M loc
κ as M loc. Also, for B ≥ 0, all suitable functions f and

x ∈ Rn, let KB(f)(x) :=
∫

Rn |f(y)|e−B|x−y|dy.
The following versions of the vector-valued Fefferman-Stein maximal inequalities associated

to local weights were proved in [18, Lemma 2.11].

Lemma 2.1 If κ ∈ (0,∞), p ∈ (1,∞), q ∈ (1,∞] and w ∈ A loc
p (Rn), then, for any sequence

of locally integrable functions {fj}j∈Z, it holds true that

∥∥∥{∑
j∈Z

[M loc
κ (fj)]q

} 1
q
∥∥∥

Lp
w(Rn)

≤ C
∥∥∥{∑

j∈Z

|fj|q
} 1

q
∥∥∥

Lp
w(Rn)

(2.1)

and there exists a positive constant B0, depending only on n and w, such that, when B ≥ B0
p ,

∥∥∥{∑
j∈Z

[KB(fj)]q
} 1

q
∥∥∥

Lp
w(Rn)

≤ C
∥∥∥{∑

j∈Z

|fj |q
} 1

q
∥∥∥

Lp
w(Rn)

, (2.2)

where C is a positive constant depending only on n, κ, p, q, B and [w]A loc
p (Rn).

Some properties of the local weights are presented in the following lemma; whose proofs
were given in [18, Lemma 1.4] and [22, Lemma 2.1 and Corollary 2.1].

Lemma 2.2 Let p ∈ [1,∞], w ∈ A loc
p (Rn) and κ ∈ (0,∞).

(i) There exists a positive constant cw, which depends only on [w]A loc
p (Rn) and n, such that,

for all t ∈ [1,∞) and cubes Q with |Q| = 1, w(tQ) ≤ ecwtw(Q).
(ii) There is a positive constant C, which depends only on [w]A loc

p (Rn) and n, such that, if
|Q| ≤ 1, then w(2Q) ≤ Cw(Q) and, if |rQ| > 1, then w((r + 1)Q) ≤ Cw(rQ).
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(iii) M loc
κ is bounded from L1

w(Rn) to L1,∞
w (Rn) if p = 1, and bounded on Lp

w(Rn) if p ∈
(1,∞].

(iv) For p ∈ (1,∞), w ∈ A loc
p (Rn) if and only if w− 1

p−1 ∈ A loc
p′ (Rn), here and hereafter, p′

denotes the conjugate index of p.

The Calderón-type reproducing formula in the local case was essentially given in [18, Theo-
rem 1.6]. Indeed, Lemma 2.3 for j = 0 was proved in [18, Theorem 1.6] and the proofs for the
general case j ∈ N are essentially the same. We omit the details.

Lemma 2.3 Assume that φ0 ∈ D(Rn) has a nonzero integral. Let φ := φ0 − 2−nφ0(2−1·).
Then, for any given L ∈ Z+, there exist functions ψ0,ψ ∈ D(Rn) such that ψ0 has a nonzero
integral, ψ has vanishing moments up to order L (namely,

∫
Rn x

αψ(x)dx = 0 for all multi-
indices α with |α| ≤ L) and, for all j ∈ Z+ and f ∈ D′(Rn),

f = (ψ0)j ∗ (φ0)j ∗ f +
∞∑

i=j+1

ψi ∗ φi ∗ f in D′(Rn), (2.3)

where φi := 2inφ(2i·) and ψi := 2inψ(2i·) for all i ∈ N.

Finally, we conclude this section with the following duality result.

Proposition 2.1 Let s ∈ R, p ∈ (1,∞), q ∈ [1,∞) and w ∈ A loc
p (Rn). Then

(F s, w
p,q (Rn))∗ = F−s, w1−p′

p′,q′ (Rn).

Proof For p ∈ (1,∞), q ∈ [1,∞) and w ∈ A loc
p (Rn), we denote by Lp

w(�q)(Rn) the space

of all sequences of functions {hj}∞j=0 such that ‖{hj}∞j=0‖Lp
w(�q)(Rn) :=

∥∥{ ∞∑
j=0

|hj|q
} 1

q
∥∥

Lp
w(Rn)

is

finite. If w = 1, then we simply write Lp
w(�q)(Rn) as Lp(�q)(Rn). By an argument similar to

that used in the proof of (Lp(�q)(Rn))∗ = Lp′
(�q

′
)(Rn) (see [24, p. 177]), we conclude that

(Lp
w(�q)(Rn))∗ = Lp′

w1−p′ (�q
′
)(Rn).

Let f ∈ F−s, w
− 1

p−1

p′,q′ (Rn). For all g ∈ F s, w
p,q (Rn), by Lemma 2.3, we have g =

∞∑
i=0

ψi ∗ φi ∗ g,
where ψi, φi are as in Lemma 2.3. Without loss of generality, we may assume that {φi}∞i=1 has
vanishing moments up to order M > |s|. From this and Hölder’s inequality, it follows that

|〈f, g〉| ≤
∞∑

i=0

|〈ψi ∗ f, φi ∗ g〉| ≤ ‖f‖
F−s, w1−p′

p′,q′ (Rn)
‖g‖F s, w

p,q (Rn)

with a usual modification made when q = 1. Thus, Lf(g) := 〈f, g〉 induces a linear continuous

functional on F s, w
p,q (Rn) with ‖Lf‖ ≤ ‖f‖

F−s, w1−p′
p′,q′ (Rn)

. Hence, (F s, w
p,q (Rn))∗ ⊃ F−s, w1−p′

p′,q′ (Rn).

To show the converse, we assume that L ∈ (F s, w
p,q (Rn))∗. Since

f ∈ F s, w
p,q (Rn) �→ {2jsφj ∗ f}∞j=0 ∈ Lp

w(�q)(Rn)

is a one-to-one map from F s, w
p,q (Rn) to a subspace of Lp

w(�q)(Rn), it follows that the functional
L can be interpreted as a functional on that subspace of Lp

w(�q)(Rn). By the Hahn-Banach
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theorem, L can be extended to a continuous linear functional on Lp
w(�q)(Rn) with the norm

preserved, which is denoted by L̃. By this and (Lp
w(�q)(Rn))∗ = Lp′

w1−p′ (�q
′
)(Rn), we see that

there exists {gj}∞j=0 ∈ Lp′

w1−p′ (�q
′
)(Rn) such that, for all f ∈ F s, w

p,q (Rn),

L(f) = L̃({2jsφj ∗ f}∞j=0) =
∞∑

j=0

2js

∫
Rn

gj(x)φj ∗ f(x)dx =
∞∑

j=0

2js

∫
Rn

f(x)φ̃j ∗ gj(x)dx,

where φ̃j := φj(−·) for all j ∈ Z+ and ‖{gj}∞j=0‖Lp′
w1−p′ (�q′ )(Rn)

= ‖L̃‖ = ‖L‖. If we let g :=
∞∑

j=0

2jsφj ∗ gj, then L(f) =
∫

Rn g(x)f(x)dx for all f ∈ F s, w
p,q (Rn). Since {φi}∞i=0 have compact

support and vanishing moments up to order M > |s|, it follows that, for all x ∈ Rn,

|φi ∗ φj ∗ gj(x)| � 2−|j−i|MM loc
κ (gj)(x)

with κ being a sufficiently large number depending on the support of {φi}∞i=0. Then,

‖g‖
F−s, w1−p′

p′,q′ (Rn)
�

∥∥∥{ ∞∑
i=0

∣∣∣ ∞∑
j=0

2−|j−i|(M−|s|)M loc
κ (gj)

∣∣∣q′} 1
q′

∥∥∥
Lp′

w1−p′ (Rn)
.

By Hölder’s inequality and
∞∑

j=0

2−|j−i|(M−|s|) � 1, we see that the last term displayed above is

bounded by

∥∥∥{ ∞∑
i=0

∞∑
j=0

2−|j−i|(M−|s|)|M loc
κ (gj)|q′} 1

q′
∥∥∥

Lp′
w1−p′ (Rn)

�
∥∥∥{ ∞∑

j=0

|M loc
κ (gj)|q′} 1

q′
∥∥∥

Lp′
w1−p′ (Rn)

.

Finally, we apply (2.1) and Lemma 2.2(iv) to obtain

‖g‖
F−s, w1−p′

p′,q′ (Rn)
�

∥∥∥{ ∞∑
j=0

|gj |q′} 1
q′

∥∥∥
Lp′

w1−p′ (Rn)
∼ ‖{gj}∞j=0‖Lp′

w1−p′ (�q′ )(Rn)
∼ ‖L‖.

Hence, (F s, w
p,q (Rn))∗ ⊂ F−s, w1−p′

p′,q′ (Rn), which completes the proof of Proposition 2.1.

3 Proof of Theorem 1.1

In this section, we show Theorem 1.1 by using the following estimate in [18, Lemma 2.9].

Lemma 3.1 Assume that φ0 ∈ D(Rn) has a nonzero integral. Let φ := φ0 − 2−nφ0(2−1·).
Then, for any r ∈ (0,∞), A ≥ 0 and B ≥ 0, there exists a positive constant C, depending only
on n, r, φ0, A and B, such that, for all f ∈ S′

e(R
n), j ≥ 0 and x ∈ Rn,

|φj ∗ f(x)| ≤ C
[ ∞∑

k=j

2(j−k)Ar2kn

∫
Rn

|φk ∗ f(y)|r
(1 + 2j |x− y|)Ar eBr|x−y|dy

] 1
r

.

Proof of Theorem 1.1 Since Ss
a,q(f)(x) ≤ S̃s

a,q(f)(x) for all x ∈ Rn, it follows that

‖Ss
a,q(f)‖Lp

w(Rn) ≤ ‖S̃s
a,q(f)‖Lp

w(Rn).
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For all A,B ∈ (0,∞), x ∈ Rn and k ∈ N, by the definition of S′
e(Rn), we obtain

sup
|x−y|<a2−k

|φk ∗ f(y)| = sup
|y|<a2−k

|φk ∗ f(x− y)| ≤ (1 + a)A2aB sup
y∈Rn

|φk ∗ f(x− y)|
(1 + 2k|y|)A 2B|y| .

Consequently,

S̃a,s
q (f)(x) �

{ ∞∑
k=0

2ksq
[

sup
y∈Rn

|φk ∗ f(x− y)|
(1 + 2k|y|)A 2B|y|

]q} 1
q �

{ ∞∑
k=0

2ksq
[
φ∗k,A,Bf(x)

]q} 1
q

,

which, combined with (1.2), implies that ‖S̃s
a,q(f)‖Lp

w(Rn) � ‖f‖F s,w
p,q (Rn).

It remains to show that ‖f‖F s,w
p,q (Rn) � ‖Ss

a,q(f)‖Lp
w(Rn). To this end, we choose r ∈

(0,min{p, q}), A > max
{

n
r − s, n

r

}
and B > B0

p (with B0 as in Lemma 2.1). Then, from
Lemma 3.1, we deduce that, for all j ∈ Z+ and x ∈ Rn,

2js|φj ∗ f(x)| � 2js
{ ∞∑

k=j

2(j−k)Ar22kn

∫
|z|<a2−k

∫
Rn

|φk ∗ f(y + z)|r
(1 + 2j|x− y − z|)AreBr|x−y−z|dydz

} 1
r

.

Combining this with Fubini’s theorem and the fact that, when k ≥ j ≥ 0 and |z| ≤ a2−k,

1
(1 + 2j |x− y − z|)AreBr|x−y−z| � 1

(1 + 2j |x− y|)AreBr|x−y| ,

we further conclude that, for all x ∈ Rn,

2js|φj ∗ f(x)| �
{ ∞∑

k=j

2(j−k)(A+s−n
r )r2jn

∫
Rn

2kn
∫
|z|<a2−k 2ksr|φk ∗ f(y + z)|rdz
(1 + 2j|x− y|)AreBr|x−y| dy

} 1
r

.

Let

Φk,s,q(f)(y) :=
[
2kn

∫
|z|<a2−k

2ksq|φk ∗ f(y + z)|qdz
] 1

q

, y ∈ Rn.

Further, since 0 < r < min{p, q} and A+ s− n
r > 0, it follows, from Hölder’s inequality, that

2js|φj ∗ f(x)| �
{ ∞∑

k=j

2(j−k)(A+s−n
r )r

[
2jn

∫
Rn

[Φk,s,q(f)(y)]r

(1 + 2j |x− y|)AreBr|x−y|dy
] q

r
} 1

q

.

By Ar > n, we see that, for all j ∈ Z+ and x ∈ Rn,

2jn

∫
Rn

[Φk,s,q(f)(y)]r

(1 + 2j |x− y|)AreBr|x−y|dy � M loc (|Φk,s,q(f)|r)(x) +KBr(|Φk,s,q(f)|r)(x),

which implies that

2js|φj ∗ f(x)| �
{ ∞∑

k=j

2(j−k)(A+s−n
r )r[M loc (|Φk,s,q(f)|r)(x) +KBr(|Φk,s,q(f)|r)(x)] q

r

} 1
q

.

Consequently, we have

‖f‖F s,w
p,q (Rn) �

∥∥∥{ ∞∑
k=0

[M loc (|Φk,s,q(f)|r)] q
r

} 1
q

+
{ ∞∑

k=0

[KBr(|Φk,s,q(f)|r)] q
r

} 1
q
∥∥∥

Lp
w(Rn)

.

Further, by r < min{p, q} and B ≥ B0
p , we apply (2.1) and (2.2) to obtain ‖f‖F s,w

p,q (Rn) �
‖Ss

a,q(f)‖Lp
w(Rn). This concludes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2

To prove Theorem 1.2, we need to establish a series of auxiliary lemmas.

Lemma 4.1 Let s ∈ (−∞, 0), p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{q,1}(R

n). Assume that
(i) φ0 ∈ D(Rn) such that supp (φ0) ⊂ B(0, 1);
(ii) for any z ∈ Rn, φ(z) := φ0(z) − 2−nφ0(2−1z);
(iii) a ∈ S′

e(Rn) is a (p, q, s)w-atom supported on a cube Q, with center cQ and side length
�(Q) ≤ 1√

n
.

Then, for all k ∈ Z+, supp (φk ∗ a) ⊂ B(cQ, 3). Moreover, for all k ∈ Z+ and x ∈ B(cQ, 3),

|φk ∗ a(x)| ≤ C2kn+k(N+1)[w(Q)]−
1
p |Q|min{1, 1

q }+ s+N+1
n ,

where C is a positive constant independent of k, a and x.

Proof It is easy to see that every supp (φk ∗a) ⊂ B(cQ, 3). Since �(Q) ≤ 1√
n
, it follows that

there exists i0 ∈ Z+ such that 2−i0−1 <
√
n�(Q) ≤ 2−i0 . By Definition 1.2, the (p, q, s)w-atom

a has vanishing moments up to order N := �n(
qw

p − 1
) − s	. From the Calderón reproducing

formula (2.3), it follows that there exist functions ψ0,ψ ∈ D(Rn) such that ψ0 has a nonzero
integral and ψ has vanishing moments up to order N , and

a = (ψ0)i0 ∗ (φ0)i0 ∗ a+
∞∑

i=i0+1

ψi ∗ φi ∗ a in D′(Rn). (4.1)

Let PN (φk) be the Taylor polynomial given by that, for all y, z ∈ Rn,

PN (φk)(z; y) :=
∑

γ∈Zn
+

|γ|≤N

cγ(cQ − y)γ(Dγφk)(z − cQ),

where {cγ}γ are coefficients. For any y, z ∈ Rn, set Φk,z(y) := φk(z − y) − PN (φk)(z; y).
Let ηQ be the smooth cutoff function associated to the cube Q as defined in Definition 1.2.
For all k ∈ Z+ and z ∈ Rn, by the vanishing moment condition of a, we have φk ∗ a(z) =
〈a, φk(z − ·)ηQ〉 = 〈a, Φk,zηQ〉. From this and (4.1), it follows that, for all k ∈ Z+ and z ∈ Rn,

φk ∗ a(z) = 〈(φ0)i0 ∗ a, (̃ψ0)i0 ∗ (Φk,zηQ)〉 +
∞∑

i=i0+1

〈φi ∗ a, ψ̃i ∗ (Φk,zηQ)〉,

where we used the notation ϕ̃(u) := ϕ(−u) for any function ϕ and u ∈ Rn. By the choice of i0
and the support conditions of φ and a, we conclude that supp ((φ0)i0 ∗ a) ⊂ B(cQ, 3

√
n�(Q))

and supp (φi ∗ a) ⊂ B(cQ, 3
√
n�(Q)) for i > i0. Thus, for all k ∈ Z+ and z ∈ Rn,

φk ∗ a(z) =
∫

B(cQ,3
√

n�(Q))

(φ0)i0 ∗ a(y) (̃ψ0)i0 ∗ (Φk,zηQ)(y)dy

+
∞∑

i=i0+1

∫
B(cQ,3

√
n�(Q))

φi ∗ a(y) ψ̃i ∗ (Φk,zηQ)(y)dy. (4.2)

For all multi-indices α ∈ Zn
+ with |α| ≤ N , the mean value theorem further implies that, for all

y ∈ B(cQ, 3
√
n�(Q)) and z ∈ Rn,

|Dα
y Φk,z(y)| � 2kn+k(N+1)�(Q)N−|α|+1. (4.3)
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From (4.3), it further follows that

|Dα
y (Φk,zηQ)(y)| �

∑
β∈Zn

+
β≤α

|Dβ
y Φk,z(y)| � 2kn+k(N+1). (4.4)

By (4.3) and �(Q) ∼ 2−i0 , we know that, for all y ∈ B(cQ, 3
√
n�(Q)),

|(̃ψ0)i0 ∗ (Φk,zηQ)(y)| � 2kn+(k−i0)(N+1). (4.5)

Since
∫

Rn ψ(x)xαdx = 0 for all |α| ≤ N , we see that, for all i ≥ i0 +1 and y ∈ B(cQ, 3
√
n�(Q)),

|ψ̃i ∗ (Φk,zηQ)(y)|
=

∣∣∣ ∫
Rn

ψi(u − y)
[
Φk,z(u)ηQ(u) −

∑
|α|≤N

cα(u− y)αDα
y (Φk,zηQ)(y)

]
du

∣∣∣. (4.6)

By the mean value theorem and (4.4), we see that the quality inside the bracket of the second
line of (4.6) is dominated by

sup
θ∈[0,1]

∑
|α|=N+1

|(u − y)αDα(Φk,zηQ)(θu + (1 − θ)y)| � |u− y|N+12k(n+N+1).

Inserting this into (4.6) gives that, when i > i0,

|ψ̃i ∗ (Φk,zηQ)(y)| � 2k(n+N+1)

∫
Rn

|ψi(u− y)||u− y|N+1dy � 2kn+(k−i)(N+1). (4.7)

Applying (4.2), (4.5) and (4.7), we conclude that, for all k ∈ Z+ and z ∈ Rn,

|φk ∗ a(z)| � 2kn+(k−i0)(N+1)

∫
B(cQ,3

√
n�(Q))

|(φ0)i0 ∗ a(y)|dy

+
∞∑

i=i0+1

2kn+(k−i)(N+1)

∫
B(cQ,3

√
n�(Q))

|φi ∗ a(y)|dy. (4.8)

Now we consider the following two cases.

Case 1 q ∈ [1,∞). Taking z := x ∈ B(cQ, 3) in (4.8) and applying the fact (φ0)i0 =
i0∑

i=0

φi,

we see that

|φk ∗ a(x)| � 2kn+(k−i0)(N+1)

∫
B(cQ,3

√
n�(Q))

i0∑
i=0

|2isφi ∗ a(y)|2−is dy

+ 2kn+k(N+1)

∫
B(cQ,3

√
n�(Q))

∞∑
i=i0+1

|2isφi ∗ a(y)|2−i(s+N+1)dy.

Further, if we apply Hölder’s inequality to each term on the right-hand side of the above
inequality, and use the facts s < 0 and s+ N + 1 > 0, then

|φk ∗ a(x)| � 2kn+k(N+1)2−i0(s+N+1)

∫
B(cQ,3

√
n�(Q))

{ ∞∑
i=0

|2isφi ∗ a(y)|q
} 1

q

dy. (4.9)
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Using Hölder’s inequality and w ∈ A loc
q (Rn), we further have

∫
B(cQ,3

√
n�(Q))

{ ∞∑
i=0

|2isφi ∗ a(y)|q
} 1

q

dy � [w(Q)]−
1
p |Q|.

Inserting this estimate into (4.9), we conclude that, for all x ∈ B(cQ, 3),

|φk ∗ a(x)| � 2kn+k(N+1)[w(Q)]−
1
p |Q|1+ s+N+1

n ,

which is the desired conclusion.
Case 2 p ∈ (0, 1) and q ∈ [p, 1). In this case, w ∈ A loc

1 (Rn) and N = �n(
1
p − 1

) − s	.
Since w ∈ A loc

1 (Rn), it follows that the ball B(cQ, 3
√
n�(Q)) is covered by a finite number of

(depending only on n) smaller cubes {Q̃} such that each Q̃ has the same side length as that of
Q and hence w(Q̃) ∼ w(Q) by Lemma 2.2(ii), which further gives that

sup
y∈B(cQ,3

√
n�(Q))

|w−1(y)| ≤
∑
Q̃

sup
y∈Q̃

|w−1(y)| �
∑
Q̃

|Q̃|
w(Q̃)

� |Q|
w(Q)

. (4.10)

From (4.8), (4.10) and the fact (φ0)i0 =
i0∑

i=0

φi, together with s < 0, we deduce that, for all

k ∈ Z+ and z ∈ Rn,

|2ksφk ∗ a(z)| � |Q|
w(Q)

2kn2(k−i0)(s+N+1)

∫
B(cQ,3

√
n�(Q))

i0∑
i=0

|2isφi ∗ a(y)|w(y)dy

+
|Q|
w(Q)

∞∑
i=i0+1

2kn2(k−i)(s+N+1)

∫
B(cQ,3

√
n�(Q))

|2isφi ∗ a(y)|w(y)dy,

which, together with n+ s+ N + 1 > 0 and q < 1, gives that

2−k(n+s+N+1)|2ksφk ∗ a(z)|

� |Q|
w(Q)

2i0n2−i0(n+s+N+1)q

∫
B(cQ,3

√
n�(Q))

2−i0(n+s+N+1)(1−q)
i0∑

i=0

|2isφi ∗ a(y)|w(y) dy

+
|Q|
w(Q)

∞∑
i=i0+1

2in2−i(n+s+N+1)q

∫
B(cQ,3

√
n�(Q))

2−i(n+s+N+1)(1−q)|2isφi ∗ a(y)|w(y)dy.

Since q ≥ p and N +1 > n
(

1
p − 1

)− s, we have (n+ s+N +1)q−n ≥ (n+ s+N +1)p−n > 0

and hence, for all i ≥ i0, 2in2−i(n+s+N+1)q ≤ |Q|[1+ s+N+1
n ]q−1 by 2−i0 ∼ �(Q). Combining this

with B(cQ, 3
√
n�(Q)) ⊂ B(cQ, 3), we further know that, for all k ∈ Z+ and z ∈ Rn,

2−k(n+s+N+1)|2ksφk ∗ a(z)|

� |Q|[1+ s+N+1
n ]q

w(Q)

∞∑
i=0

∫
B(cQ,3)

2−i(n+s+N+1)(1−q)|2isφi ∗ a(y)|w(y)dy. (4.11)

Let A := sup
k∈Z+

sup
z∈B(cQ,3)

2−k(n+N+1)|φk ∗ a(z)| and φ∗k,A,B(a) be the Peetre-type maximal func-

tion as defined in (1.3), where A > A0 and B > B0
q . By the facts that w ∈ A loc

1 (Rn) and
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n+ N + 1 + s > 0, together with a ∈ F s,w
q,q (Rn) and (1.2), we see that

A ≤ 1

[w(B(cQ, 3))]
1
q

{ ∞∑
k=0

∫
Rn

|2ksφ∗k,A,B(x)|qw(x)dx
} 1

q

<∞.

Since A is finite, by (4.11), we obtain

A � A1−q |Q|q[1+ s+N+1
n ]

w(Q)
‖a‖q

F s,w
q,q

� A1−q|Q|q[1+ s+N+1
n ]w(Q)−

q
p ,

that is, A � [w(Q)]−
1
p |Q|1+ s+N+1

n . From this and the definition of A, we deduce that, for all
k ∈ Z+ and x ∈ B(cQ, 3),

|2ksφk ∗ a(x)| � 2k(n+N+1)[w(Q)]−
1
p |Q|1+ s+N+1

n ,

which completes the proof of Lemma 4.1.

Lemma 4.2 If s ∈ R, p, q ∈ (0,∞) and w ∈ A loc
∞ (Rn), then there exists a positive constant

C such that, for all f ∈ S′
e(R

n),

1
C
‖f‖F s,w

p,q (Rn) ≤ ‖f‖F s−1,w
p,q (Rn) +

n∑
j=1

‖Djf‖F s−1,w
p,q (Rn) ≤ C‖f‖F s,w

p,q (Rn), (4.12)

where Dj := ∂
∂xj

for j ∈ {1, · · · , n}.
Proof Fix p, q ∈ (0,∞) and w ∈ A loc∞ (Rn). For m ∈ Z+, it was proved by Rychkov [18,

Theorem 2.20] that, for all f ∈ S′
e(R

n),

‖f‖F m,w
p,q (Rn) ∼

∑
|α|≤m

‖Dαf‖F 0,w
p,q (Rn), (4.13)

where, for α := (α1, · · · , αn) ∈ Zn
+, D

α :=
(

∂
∂x1

)α1 · · · ( ∂
∂xn

)αn
.

The proof for (4.12) is an easy adaption of (4.13) and the following lifting property in [18,
Theorem 2.18]: There exists t ∈ (0,∞) sufficiently small, depending on p, n and w, such that,
for all a ∈ R and f ∈ S′

e(R
n),

‖J a
t f‖F s+a,w

p,q (Rn) ∼ ‖f‖F s,w
p,q (Rn), (4.14)

where J t
a denotes the Bessel potential operator J t

a := (id − t2Δ)−
a
2 , where id is the identity

operator. Precisely, for any s ∈ R, we choose m ∈ Z such that m ≤ |s| < m + 1, and then
applying (4.13)–(4.14) yields

‖f‖F s,w
p,q (Rn) ∼ ‖J 1−s

t f‖F 1,w
p,q (Rn) ∼

∑
|α|≤1

‖Dα(J 1−s
t f)‖F 0,w

p,q (Rn) ∼
∑
|α|≤1

‖Dαf‖F s−1,w
p,q (Rn),

which implies (4.12). This finishes the proof of the lemma.

Lemma 4.3 Let s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{q,1}(R

n). Then, there exists a
positive constant C, depending only on s, p, q, n and w, such that, for all (p, q, s)w-atoms a,

‖a‖F s,w
p,q (Rn) ≤ C. (4.15)
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Proof Let a be a (p, q, s)w-atom supported on a cube Q with center cQ and side length
�(Q). If p = q, then (4.15) follows trivially from Definition 1.2(ii), so it suffices to show (4.15)
for p < q. To this end, we choose φ0 ∈ D(Rn) such that supp (φ0) ⊂ B(0, 1), φ0(x) = 1 when
|x| < 1

2 , and 0 ≤ φ0 ≤ 1, and let φ := φ0 − 2−nφ0(2−1·). First, we show that (4.15) holds when
s < 0 by considering the following two cases for �(Q).

Case 1 1√
n
≤ �(Q) and s < 0. For any k ∈ Z+, we observe that supp (φk) ⊂ B(0, 2−k+1),

which gives that supp (φk ∗ a) ⊂ Q(cQ, �(Q) + 4) by using supp a ⊂ Q. Here and in what
follows, we use Q(x, r) to denote the cube in Rn with center x ∈ Rn and side length r ∈ (0,∞).
From this and Hölder’s inequality, together with Lemma 2.2(ii), it follows that

‖a‖F s,w
p,q (Rn) � [w(Q)]

1
p− 1

q ‖a‖F s,w
q,q (Rn) � 1.

This proves (4.15) for the case 1√
n
≤ �(Q).

Case 2 �(Q) < 1√
n

and s < 0. In this case, for any k ∈ Z+, by supp (φk) ⊂ B(0, 2−k+1)
and supp a ⊂ Q, we have supp (φk ∗ a) ⊂ B(cQ, 2 +

√
n�(Q)) ⊂ B(cQ, 3), which implies that

‖a‖F s,w
p,q (Rn) �

{∫
4
√

nQ

[ ∞∑
k=0

2ksq|φk ∗ a(x)|q
] p

q

w(x)dx
} 1

p

+
{∫

B(cQ,3)\4√nQ

· · ·
} 1

p

=: Z1 + Z2.

Following the argument used in Case 1, we apply Hölder’s inequality and w(4
√
nQ) ∼ w(Q)

to deduce that Z1 � 1.
Now we estimate Z2. If x ∈ B(cQ, 3) \ 4

√
nQ such that φk ∗ a(x) �= 0, then by φk ∗

a(x) = 〈a, φk(x − ·)ηQ〉, we have 2
√
n�(Q) ≤ |x − cQ| < √

n�(Q) + 2−k+1, which implies that
|x− cQ| < 2−k+2, that is, k ≤ �log2

4
|x−cQ| 	. By this and Lemma 4.1, we see that

Z2 � [w(Q)]−
1
p

{∫
Rn

[M loc
κ (χQ)(x)]

p(s+n+N+1)
n w(x)dx

} 1
p

,

where κ is a positive constant independent of a and x. Since p(s+n+N+1)
n > qw, by the weighted

boundedness properties of Mκ we further know that

Z2 � [w(Q)]−
1
p

{ ∫
Rn

[χQ(x)]
p(s+n+N+1)

n w(x)dx
} 1

p � 1.

Combining the estimates of Z1 and Z2, we see that (4.15) holds when �(Q) ≤ 1√
n

and s < 0.
Based on the conclusions in Cases 1–2, we know that (4.15) holds when s < 0. The general

case of (4.15) can be reduced to the case s < 0 by using Lemma 4.2. Indeed, if 0 ≤ s < 1 and
a is a (p, q, s)w-atom, then by Lemma 4.2, we see that

‖a‖F s,w
p,q (Rn) ∼ ‖a‖F s−1,w

p,q (Rn) +
n∑

j=1

‖Dja‖F s−1,w
p,q (Rn). (4.16)

If we can show that a and {Dja}n
j=1 are constant multiples of (p, q, s−1)w-atoms, then applying

the already proved conclusion that (4.15) holds for s < 0 yields that ‖a‖F s−1,w
p,q (Rn) � 1 and

‖Dja‖F s−1,w
p,q (Rn) � 1, which, combined with (4.16), gives that ‖a‖F s,w

p,q (Rn) � 1, that is, (4.15)
holds for all 0 ≤ s < 1. Repeating the above process yields (4.15) for all s ∈ R.
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To finish the proof of Lemma 4.3, we still need to show that if a is a (p, q, s)w-atom, then a
and {Dja}n

j=1 are constant multiples of (p, q, s− 1)w-atoms. It is obvious, from Definition 1.1,
that ‖a‖F s−1,w

q,q (Rn) ≤ ‖a‖F s,w
q,q (Rn), and hence a is a (p, q, s − 1)w-atom. Likewise, every Dja is

a constant multiple of a (p, q, s− 1)w-atom provided that we can prove that

‖Dja‖F s−1,w
q,q (Rn) � ‖a‖F s,w

q,q (Rn). (4.17)

To show (4.17), we first shift the differential from a to φ, namely, |Dja ∗ φ0| = |a ∗Djφ0| and
|Dja∗φi| = 2i|a∗(Djφ)i| for i ∈ N, and then use the Calderón reproducing formula (see Lemma
2.3) and the fact that, for all k, i ∈ Z+ and x ∈ Rn,

|(Djφ)i ∗ ψk(x)| � 2(min{k,i})n2−|k−i|LχB(0,C2−min{k,i})(x),

where L ∈ (0,∞) can be sufficiently large and C is a positive constant depending on the
supports of φ and ψ. Based on these facts, (4.17) follows from a standard calculation (see the
proof of [18, Theorem 2.5]) and we thus omit the details.

Summarizing all the above arguments, we complete the proof of Lemma 4.3.

Proof of Theorem 1.2 Fix s ∈ R, p ∈ (0, 1], q ∈ [p,∞) and w ∈ A loc
max{q,1}(R

n). If there
exist (p, q, s)w-atoms {ak}k∈N and {λk}k∈Z ∈ �p such that f =

∑
k∈N

λkak in S′
e(R

n), then we

apply Lemma 4.3 to obtain ‖f‖p
F s,w

p,q (Rn)
≤ ∑

k∈N

|λk|p ‖ak‖p
F s,w

p,q (Rn)
�

∑
k∈N

|λk|p. This inequality

implies that ‖f‖F s,w
p,q (Rn) � inf

{[ ∑
k∈N

|λk|p
] 1

p
}
, where the infimum is taken over all the atomic

decompositions of f as above.
To show the converse part, fix f ∈ F s,w

p,q (Rn). Assume that φ0 ∈ D(Rn) has a nonzero
integral, 0 ≤ φ0 ≤ 1, supp (φ0) ⊂ B

(
0, 1

2

)
, φ0(x) = 1 whenever |x| ≤ 1

4 , and that φ :=
φ0 − 2−nφ0(2−1·) satisfies (1.1). For all x ∈ Rn, define

S̃s
q(f)(x) :=

{ ∞∑
k=0

sup
|x−y|<√

n2−k

|2ksφk ∗ f(y)|q
} 1

q

.

Then, by Theorem 1.1, we have ‖S̃s
q(f)‖Lp

w(Rn) ∼ ‖f‖F s,w
p,q (Rn) <∞. Denote by Q the collection

of all dyadic cubes of Rn. For any k ∈ Z, let Ωk := {x ∈ Rn : S̃s
q (f)(x) > 2k} and

Λk :=
{
Q ∈ Q : |Q| ≤ 1, w(Q ∩ Ωk) ≥ 1

2
w(Q) and w(Q ∩ Ωk+1) <

1
2
w(Q)

}
. (4.18)

Notice that Λk might be empty. It is easy to see that, for each Q ∈ Q with |Q| ≤ 1, there exists
a unique k ∈ Z such that Q ∈ Λk. A dyadic cube Q ∈ Λk is called a maximal dyadic cube
in Λk if, for any dyadic cube Q̃ ∈ Λk, either Q̃ ⊂ Q or Q̃ ∩ Q = ∅. For each k ∈ N, denote
by {Qi

k}i∈Ik
the collection of all such maximal dyadic cubes in Λk, where Ik is the index set

(which might be empty). Observe that {Qi
k}i∈Ik

are mutually disjoint. Moreover,

{Q ∈ Q : |Q| ≤ 1} =
⋃
k∈Z

Λk =
⋃
k∈Z

⋃
i∈Ik

{Q ∈ Λk : Q ⊂ Qi
k}.

Given any L ∈ Z+ sufficiently large (to be determined later), by Lemma 2.3, we see that

f(x) =
∞∑

�=0

ψ� ∗ φ� ∗ f(x), x ∈ Rn, (4.19)
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where ψ0 ∈ D(Rn) has a nonzero integral and ψ ∈ D(Rn) satisfies that
∫

Rn x
αψ(x)dx = 0 for

all multi-indices α with |α| ≤ L. Without loss of generality, we may assume that both ψ� and
φ� are supported on B(0, 2−�) for all � ∈ Z+. For each Q ∈ Q with |Q| ≤ 1, there exists some
� ∈ Z+ such that �(Q) = 2−�, and then we define

ψQ(·) := ψ�(·) = 2�nψ(2�·), φQ(·) := φ�(·) = 2�nφ(2�·). (4.20)

With these notations, we rewrite (4.19) as

f(x) =
∑
k∈Z

∑
i∈Ik

∑
Q⊂Qi

k
Q∈Λk

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy, x ∈ Rn. (4.21)

For each k ∈ Z and i ∈ Ik, let

λk, i := w(Qi
k)

1
p− 1

q

{ ∑
Q⊂Qi

k
Q∈Λk

w(Q)[�(Q)]−sq sup
y∈Q

|(φQ ∗ f)(y)|q
} 1

q

and, for all x ∈ Rn.

ak, i(x) :=
1
λk, i

∑
Q⊂Qi

k
Q∈Λk

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy.

Based on (4.21), we see that f =
∑
k∈Z

∑
i∈Ik

λk, iak, i is the desired atomic decomposition of f ,

provided that we can show that every ak,i is a (p, q, s)w-atom and

{∑
k∈Z

∑
i∈Ik

|λk, i|p
} 1

p � ‖f‖F s,w
p,q (Rn). (4.22)

To prove (4.22), we first show that, for all k ∈ Z,∑
Q∈Λk

w(Q)[�(Q)]−sq sup
y∈Q

|(φQ ∗ f)(y)|q � 2kqw(Ωk). (4.23)

To prove (4.23), let Ω∗
k :=

{
x ∈ Rn : M loc (χΩk

)(x) > 1
2

}
for all k ∈ Z. From (2.1) and Lemma

2.2(iii), it follows that w(Ω∗
k) � w(Ωk) and hence∫

Ω∗
k\Ωk+1

[S̃s
q(f)(x)]q w(x)dx ≤ 2(k+1)qw(Ω∗

k) � 2(k+1)qw(Ωk). (4.24)

On the other hand, for all y ∈ Q ∈ Λk, we have Q ⊂ Ω∗
k and

w((Ω∗
k \ Ωk+1) ∩Q) ≥ w(Q \ Ωk+1) = w(Q) − w(Q ∩ Ωk+1) ≥ w(Q)

2
,

which further implies that∫
Ω∗

k\Ωk+1

[S̃s
q(f)(x)]q w(x)dx �

∑
Q∈Λk

w(Q)�(Q)−sq sup
y∈Q

|(φQ ∗ f)(y)|q. (4.25)

Combining (4.24)–(4.25), we obtain (4.23).
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From Hölder’s inequality, w(Qi
k ∩ Ωk) ≥ 1

2w(Qi
k), the fact that the family {Qi

k}i∈Ik
are

mutually disjoint, and (4.23), we deduce that∑
k∈Z

∑
i∈Ik

|λk, i|p �
∑
k∈Z

w(Ωk)2kp � ‖f‖p
F s,w

p,q (Rn)
,

which shows (4.22).
Now we show that each ak,i is a constant multiple of some (p, q, s)w-atom. Indeed, by

supp (φ0) ⊂ B(0, 1), it is easy to see that supp (ak,i) ⊂ 4Qi
k. Also, notice that ak,i satisfies

the vanishing moment condition provided that |Qi
k| < 1. Thus, it remains to prove that

‖ak,i‖F s,w
q,q (Rn) � [w(4Qi

k)]
1
q − 1

p . This can be done by considering the following two cases: q ∈
(1,∞) and q ∈ [p, 1].

Case 1 q ∈ (1,∞). By w ∈ A loc
q (Rn), we see that, for all Q ∈ Q with |Q| ≤ 1,

[w(Q)]
1
q [w1−q′

(Q)]
1
q′ ∼ |Q|. (4.26)

From Theorem 1.1 and the fact that Q ⊂ {y ∈ Rn : |x − y| < √
n2−k} for all x ∈ Q with

�(Q) = 2−k, we deduce that, for any g ∈ F−s,w1−q′

q′,q′ (Rn),

‖g‖
F−s,w1−q′

q′,q′ (Rn)
�

{ ∑
Q⊂Qi

k
Q∈Λk

w1−q′
(Q)�(Q)sq′

sup
y∈Q

|ψ̃Q ∗ g(y)|q′} 1
q′
. (4.27)

Applying (4.26)–(4.27) and Hölder’s inequality, we conclude that, for all g ∈ F−s,w1−q′

q′,q′ (Rn)

with a norm at most 1, |〈ak,i, g〉| � [w(Qi
k)]

1
q − 1

p . From this and Proposition 2.1, it follows that
‖ak,i‖F s,w

q,q (Rn) � [w(Qi
k)]

1
q − 1

p .

Case 2 q ∈ [p, 1]. In this case, notice that w ∈ A loc
1 (Rn). By Theorem 1.1, we have

‖ak,i‖F s,w
p,q (Rn) ∼

{ ∑
P∈Q
|P |≤1

�(P )−sq

∫
P

[
sup

|x−z|<�(P )

|φP ∗ ak,i(z)|q
]
w(x)dx

} 1
q

. (4.28)

For all x ∈ P and |x − z| < �(P ), by q ∈ [p, 1] and the inequality that
{ ∑

j∈N

|bj |
}q ≤ ∑

j∈N

|bj|q

holds for all sequences {bj}j∈N, we conclude that

|φP ∗ ak,i(z)|q ≤ 1
|λk, i|q

∑
Q⊂Qi

k
Q∈Λk

sup
y∈Q

|φQ ∗ f(y)|q
[ ∫

Q

|φP ∗ ψQ(z − y)|dy
]q

. (4.29)

Because φ and ψ satisfy the vanishing moment condition up to order L, we apply [6, Lemma 2
in p. 121 and Lemma 4 in p. 122] or [17, Corollary 3.1] to deduce that, for all u ∈ Rn,

|φP ∗ ψQ(u)| �
[
min

{�(P )
�(Q)

,
�(Q)
�(P )

}]L 1
max{|Q|, |P |}

[ max{�(P ), �(Q)}
max{�(P ), �(Q)} + |u|

]L

.

Combining this with supp (φP ∗ ψQ) ⊂ {u : |u| ≤ 2 max{�(P ), �(Q)}} further implies that, for
all y ∈ Q, x ∈ P and |x− z| < �(P ), if φP ∗ ψQ(z − y) �= 0, then

|cP − cQ| ≤ 2(
√
n+ 1)max{�(P ), �(Q)} ≤ 4

√
nmax{�(P ), �(Q)} (4.30)
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and

|φP ∗ ψQ(z − y)| �
[
min

{�(P )
�(Q)

,
�(Q)
�(P )

}]L 1
max{|Q|, |P |} =: AP,Q. (4.31)

Invoking (4.30)–(4.31), we continue to estimate (4.29) with

|φP ∗ ak,i(z)|q � 1
|λk, i|q

∑
Q⊂Qi

k
Q∈Λk

|cP −cQ|≤4
√

n max{�(P ), �(Q)}

sup
y∈Q

|φQ ∗ f(y)|q(AP,Q)q |Q|q.

Inserting this into (4.28) and interchanging the summations in P and Q, we obtain

‖ak,i‖F s,w
p,q (Rn) � 1

|λk, i|
{ ∑

Q⊂Qi
k

Q∈Λk

w(Q)�(Q)−sq sup
y∈Q

|φQ ∗ f(y)|q

×
( ∑

P∈Q
|P |≤1

|cP−cQ|≤4
√

n max{�(P ), �(Q)}

[�(Q)
�(P )

]sqw(P )
w(Q)

(AP,Q)q |Q|q
)} 1

q

,

which gives ‖ak,i‖F s,w
p,q (Rn) � w(Qi

k)
1
q − 1

p , provided that when Q ⊂ Qi
k and Q ∈ Λk,

∑
P∈Q
|P |≤1

|cP−cQ|≤4
√

n max{�(P ), �(Q)}

[ �(Q)
�(P )

]sqw(P )
w(Q)

(AP,Q)q |Q|q � 1. (4.32)

To show (4.32), we define

Zi :=
∑

P∈Wi

[ �(Q)
�(P )

]sqw(P )
w(Q)

(AP,Q)q |Q|q, i ∈ {1, 2},

where W1 := {P ∈ Q : �(P ) ≤ �(Q), |P | ≤ 1, |cP − cQ| ≤ 4
√
nmax{�(P ), �(Q)}} and

W2 := {P ∈ Q : �(P ) > �(Q), |P | ≤ 1, |cP − cQ| ≤ 4
√
nmax{�(P ), �(Q)}}.

Notice that, for all P ∈W1, we have AP,Q ≤ 1 and P ⊂ 5
√
nQ, so that w(P )

w(Q) ≤ w(5
√

nQ)
w(Q) � 1

by Lemma 2.2(ii). Therefore, if we choose L > |s|, then

Z1 �
∑

P∈W1

[ �(P )
�(Q)

]Lq−sqw(P )
w(Q)

�
∞∑

j=− log2 �(Q)

∑
P∈Q

�(P )=2−j

|cP−cQ|≤4
√

n�(Q)

[�(P )
�(Q)

]Lq−sq

� 1. (4.33)

Now we estimate Z2. Observe that Q ⊂ 5
√
nP when P ∈ W2. Since �(P ) ≤ 1 and �(Q) ≤ 1,

the fact w ∈ A loc
1 (Rn) implies that w(5

√
nP )

|5√nP | ∼ inf
x∈5

√
nP
w(x) and w(Q)

|Q| ∼ inf
x∈Q

w(x). Thus,

w(P )
w(Q)

≤ w(5
√
nP )

w(Q)
∼ |5√nP |

|Q|
inf

x∈5
√

nP
w(x)

inf
x∈Q

w(x)
� |P |

|Q| .
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By this and the expression of AP,Q, we see that, when L satisfies (L+ s)q + n(q − 1) > 0,

Z2 �
∑

P∈W2

[�(Q)
�(P )

](L+s)q+n(q−1)

�
− log2 �(Q)∑

j=0

∑
P∈Q

�(P )=2−j

|cP−cQ|≤4
√

n�(P )

{�(Q)
�(P )

}(L+s)q+n(q−1)

� 1. (4.34)

Combining (4.33)–(4.34) gives (4.32). Thus, we complete the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Proof of Theorem 1.3 Let f ∈ C∞
c (Rn) ∩ F s,w

p,q (Rn). With all the notation as in the
proof of Theorem 1.2, we decompose f into f =

∑
k∈Z

∑
i∈Ik

λk,iak,i in S′
e(R

n), where each ak,i is a

(p, q, s)w-atom supported on 4Qi
k, defined by

ak, i(x) =
1
λk, i

∑
Q⊂Qi

k
Q∈Λk

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy, x ∈ Rn,

and
{ ∑

k∈Z

∑
i∈Ik

|λk, i|p
} 1

p � ‖f‖F s,w
p,q (Rn). Here, for any k ∈ Z, Λk is as in (4.18); Qi

k is the largest

dyadic cube contained in the set Λk; the functions ψQ and φQ are as in (4.20). Without loss
of generality, we may assume that φj , ψj with j ∈ Z+ are supported on B(0, 2−j), and ψj , φj

with j ∈ N have the vanishing moments up to order L, where L > |s|.
For any N ∈ N, let

Q(0, 2N) := {(x1, · · · , xn) ∈ Rn : −1 ≤ 2−Nxi < 1, i ∈ {1, · · · , n}},
WN

1 := {Q ∈ Q : Q ⊂ Q(0, 2N), 2−N ≤ �(Q) ≤ 1},
WN

2 := {Q ∈ Q : �(Q) ≤ 1} \WN
1 .

For each Q ∈ WN
1 , there exists a unique (k, i) such that Q ⊂ Qi

k. Denote by JN the collection
of all such (k, i). Since WN

1 has finitely many elements, so does JN . For each (k, i) ∈ JN , let

ãk, i(x) =
1
λk, i

∑
Q⊂Qi

k

Q∈Λk∩W N
1

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy, x ∈ Rn. (5.1)

In a similar way to the arguments used in Cases 1–2 of the proof of Theorem 1.2, we conclude
that each ãk,i is also a constant multiple of some (p, q, s)w-atom. Since f ∈ C∞

c (Rn) and the
summation in (5.1) has only finite terms, it follows that every ãk,i ∈ C∞

c (Rn). For any N ∈ N,
set fN :=

∑
(k,i)∈JN

λk,iãk,i and bN := f − fN . Then, both fN and bN are in C∞
c (Rn). Moreover,

fN is a linear combination of finite smooth (p, q, s)w-atoms, and the proof of Theorem 1.2 shows
that the �p-(quasi)norm of its coefficients is bounded by a constant multiple of ‖f‖F s,w

p,q (Rn).
Thus, to finish the proof of Theorem 1.3, we only need to prove that, when N is large enough,
bN is a small constant multiple of some (p, q, s)w-atom.
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For all x ∈ Rn, noticing that WN
1 =

⋃
(k,i)∈JN

{Q ⊂ Qi
k : Q ∈ Λk ∩WN

1 }, we write

fN(x) =
∑

Q∈W N
1

∫
Q

ψQ(x − y)(φQ ∗ f)(y)dy.

Then, applying (4.21), we see that, for all x ∈ Rn,

bN(x) = f(x) − fN (x) =
∑

Q∈W N
2

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy. (5.2)

Since f has compact support, there exists N0 ∈ N such that supp f ⊂ Q(0, 2N0). Notice that
supp (φQ) ⊂ Q. For any Q ∈ WN

2 , to ensure that φQ ∗ f is a non-zero function, we need
Q∩Q(0, 2N0+5) �= ∅. But any cube Q in WN

2 is dyadic and satisfies �(Q) ≤ 1, and we therefore
conclude that Q∩Q(0, 2N0+5) �= ∅ is the same as Q ⊂ Q(0, 2N0+5). Notice that, if N > N0 +5,
then {Q ∈ WN

2 : Q ⊂ Q(0, 2N0+5)} = {Q ∈ Q : �(Q) < 2−N}. This allows us to replace the
summation in (5.2) with

∑
Q∈Q

�(Q)<2−N

when N > N0 + 5. Thus, when N > N0 + 5, we have

bN(x) =
∑
Q∈Q

�(Q)<2−N

∫
Q

ψQ(x− y)(φQ ∗ f)(y)dy =
∑
�>N

ψ� ∗ φ� ∗ f(x), (5.3)

where ψ� and φ� are associated to ψQ and φQ as in (4.20). Clearly, supp (bN ) ⊂ Q(0, 2N0+5).
Now we estimate the quasi-norm ‖bN‖F s,w

q,q (Rn). From (5.3), it follows that

‖bN‖F s,w
q,q (Rn) =

{ ∞∑
j=0

2jsq

∫
Rn

∣∣∣ ∑
�>N

φj ∗ ψ� ∗ φ� ∗ f(x)
∣∣∣q w(x)dx

} 1
q

.

If φj ∗ψ� ∗φ� ∗f �= 0, then by the support conditions of φj and ψ� we see that |j− �| ≤ 2. Thus,

‖bN‖F s,w
q,q (Rn) �

{ ∞∑
j=N−2

∑
�>N

|�−j|≤2

2jsq

∫
Rn

∣∣∣φj ∗ ψ� ∗ φ� ∗ f(x)
∣∣∣q w(x)dx

} 1
q

.

For the sake of simplicity, we only estimate the term j = �. By supp (φj ∗ ψj ∗ φj ∗ f) ⊂
Q(0, 2N0+5) and the estimate that, for all ϕ, g ∈ S(Rn) such that

∫
Rn ϕ(x)xαdz = 0 for all

multi-indices |α| ≤ L,

|ϕj ∗ g(x)| � 2−jL(1 + |x|)−(n+1), x ∈ Rn

(see [17, Lemma 3.3(i)] or [6, p. 121, Lemma 2]), we have

{ ∞∑
j=N−2

2jsq

∫
Rn

|φj ∗ ψj ∗ φj ∗ f(x)|q w(x)dx
} 1

q � 2−N(L−|s|)[w(Q(0, 2N0+5))]
1
q ,

which is bounded by a constant multiple of 2−
N(L−|s|)

2 [w(Q(0, 2N0+5))]
1
q − 1

p provided that N is
large enough (depending on w,N0, p, q, s and L). Therefore,

‖bN‖F s,w
q,q (Rn) ≤ c2−

N(L−|s|)
2 [w(Q(0, 2N0+5))]

1
q− 1

p
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for some positive constant c depending only on w,N0, n, p, q, L and s, and

aN := c−12
N(L−|s|)

2 bN

is a (p, q, s)w-atom supported on Q(0, 2N0+5) by observing that aN does not need to satisfy any
vanishing moment since |Q(0, 2N0+5)| ≥ 1, which implies that

f = fN + bN =
∑

(k,i)∈JN

λk,iak,i + c2−
N(L−|s|)

2 aN

is a finite atomic decomposition with (p, q, s)w-atoms ak,i, aN in C∞
c (Rn) and the coefficients

satisfying ∑
(k,i)∈JN

|λk,i|p + |c2−Nσ|p � ‖f‖p
F s,w

p,q (Rn)
+ 2−

N(L−|s|)
2p � ‖f‖p

F s,w
p,q (Rn)

.

This finishes the proof of Theorem 1.3.

6 Proof of Theorem 1.4

The goal of this section is to show Theorem 1.4. We need the following density lemma.

Lemma 6.1 Let s ∈ R, p, q ∈ (0,∞) and w ∈ A loc∞ (Rn). Then, C∞
c (Rn) ∩ F s,w

p,q (Rn) is
dense in F s,w

p,q (Rn).

Proof By the localization principle in [18, Theorem 2.21], for all f ∈ F s,w
p,q (Rn), we have

‖f‖F s,w
p,q (Rn) ∼

[ ∑
k∈Zn

‖γkf‖p
F s,w

p,q (Rn)

] 1
p

, (6.1)

where γ ∈ D(Rn) such that its integer translates γk(x) := γ(x− k) for all x ∈ Rn with k ∈ Zn

form a partition of unity, that is,
∑

k∈Zn

γk(x) = 1 for all x ∈ Rn. Notice that supp (γk) has

finite overlapping property (bounded by a positive constant depending only on supp γ). For
all N ∈ N, define fN :=

∑
j∈Zn

|j|≤N

γjf. Observe that every fN has compact support. Moreover, the

sequence {fN}N∈N converges to f as N → ∞. Indeed, by (6.1), we see that, when N → ∞,

‖f − fN‖F s,w
p,q (Rn) �

{ ∑
k∈Zn

|k|≥N−c

‖γkf‖p
F s,w

p,q (Rn)

} 1
p → 0,

where c is a positive constant depending only on supp γ. Thus, to finish the proof of this
lemma, we may as well assume that f ∈ F s,w

p,q (Rn) has compact support.

Now suppose that f ∈ F s,w
p,q (Rn) has compact support. By (2.3), write f =

∞∑
i=0

ψi ∗ φi ∗ f
with ψi and φi as in Lemma 2.3. Without loss of generality, we may assume that both ψi and

φi are supported on the ball B(0, 2−i) for i ∈ Z+. For all N ∈ N, let gN :=
N∑

i=1

ψi ∗φi ∗ f. Since

f is assumed to have compact support, it follows that every gN ∈ C∞
c (Rn). It remains to show

that gN → f in F s,w
p,q (Rn) as N → ∞. Notice that

‖gN − f‖F s,w
p,q (Rn) =

∥∥∥{ ∞∑
k=0

2ksq
∣∣∣ ∞∑

i=N+1

φk ∗ ψi ∗ φi ∗ f
∣∣∣q} 1

q
∥∥∥

Lp
w(Rn)

, N ∈ N.
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For all x ∈ Rn, from the previous assumptions that both ψi and φi are supported on the ball
B(0, 2−i), the definition of the Peetre-type maximal function, and [17, Corollary 3.1] (see also
[6, Lemma 2 in p. 121, and Lemma 4 in p. 122]), we deduce that, for all x ∈ Rn,

|φk ∗ ψi ∗ φi ∗ f(x)| � 2−|k−i|M (1 + 2k−i)Aφ∗i,A,Bf(x),

where A and B are positive constants satisfying A ≥ A0 and B ≥ B0
p , and M > A + |s| is a

sufficiently large constant. By this and Hölder’s inequality, we further conclude that

‖gN − f‖F s,w
p,q (Rn) �

∥∥∥{ ∞∑
i=N+1

2isq|φ∗i,A,Bf |q
} 1

q
∥∥∥

Lp
w(Rn)

,

which tends to 0 as N → ∞ in terms of (1.2). Thus, {gN}N∈N ⊂ C∞
c (Rn) ∩ F s,w

p,q (Rn) and it
converges to f in F s,w

p,q (Rn) as N → ∞, which completes the proof of Lemma 6.1.

Proof of Theorem 1.4 For any f ∈ C∞
c (Rn)∩F s,w

p,q (Rn), by Theorem 1.3, f admits a finite

atomic decomposition f =
N∑

k=1

λkak, where N ∈ N, {ak}N
k=1 are (p, q, s)w-atoms in C∞

c (Rn) and

{ N∑
k=1

|λk|p
} 1

p � ‖f‖F s,w
p,q (Rn). By the assumption of Theorem 1.4, we see that ‖Tak‖Br � 1 for

all k ∈ {1, · · · , N}. Moreover, by r ∈ [p, 1] and the fact that T is Br-sublinear, we have

‖Tf‖r
Br

=
N∑

k=1

|λk|r‖Tak‖r
Br

�
N∑

k=1

|λk|r �
[ N∑

k=1

|λk|p
] r

p � ‖f‖r
F s,w

p,q (Rn). (6.2)

In general, for any f ∈ F s,w
p,q (Rn), by Lemma 6.1, there exists {gm}m∈N ⊂ C∞

c (Rn) ∩ F s,w
p,q (Rn)

that converges to f in F s,w
p,q (Rn) as m → ∞. By (6.2) and Definition 1.3(iii), {Tgm}m∈N is a

Cauchy sequence in Br and hence it converges to some element in Br, which we denote by T̃ f ,
namely, T̃ f := lim

m→∞Tgm in Br. Notice that T̃ is well defined based on (6.2) and Definition

1.3(iii). Consequently, ‖T̃ f‖Br = lim
m→∞ ‖Tgm‖Br � lim

m→∞ ‖gm‖F s,w
p,q (Rn) � ‖f‖F s,w

p,q (Rn), which
completes the proof of Theorem 1.4.

7 Proof of Theorem 1.5

In this section, we apply Theorem 1.4 to show Theorem 1.5.

Proof of Theorem 1.5 Notice that F s,w
p,q (Rn), for p ∈ (0, 1] and q ∈ [p,∞), is a p-quasi-

Banach space. By Theorem 1.4, it suffices to show that, for any (p, q, s)w-atom a supported on
a cube Q,

‖R loc
j a‖F s,w

p,q (Rn) � 1. (7.1)

To this end, by Theorem 1.1, we only need to show that ‖S̃s
1,q(R loc

j a)‖Lp
w(Rn) � 1, where

S̃s
1,q(R loc

j a)(x) =
[ ∞∑

k=0

sup
|x−y|<2−k

|2ksφk ∗ (R loc
j a)(y)|q

] 1
q

, x ∈ Rn.

Here φ0 ∈ D(Rn), φ := φ0 − 2−nφ0(2−1·) satisfies the vanishing moments up to order L ≥
max{−1, �s	}, and φk := 2nkφ(2k·) for k ∈ N. Without loss of generality, we may assume that
every supp (φk) ⊂ B(0, 2−k) and L > |s|.



Atomic Decompositions of Triebel-Lizorkin Spaces 259

By the support conditions of a and φk, together with the definition of R loc
j , we see that

supp (S̃s
1,q(R loc

j a)) ⊂ {x ∈ Rn : |x − cQ| < �(Q) + 3}. Applying Hölder’s inequality with
1
q
p

+ 1
( q

p )′ = 1 and Lemma 2.2(ii), we know that

‖S̃s
1,q(R loc

j a)‖Lp
w(Rn)

�
{ ∫

|x−cQ|<�(Q)+3

[ ∞∑
k=0

sup
|x−y|<2−k

|2ksφk ∗ (R loc
j a)(y)|q

]
w(x)dx

} 1
q

[w(Q)]
1
p− 1

q .

By the Calderón reproducing formulae and the fact that R loc
j commutates with the convolution

operator, we conclude that, for all y ∈ Rn,

φk ∗ (R loc
j a)(y) =

∞∑
i=0

φk ∗ ψi ∗ (R loc
j (φi ∗ a))(y),

where ψi and φi are as in Lemma 2.3 (here we also assume that ψi and φi are supported on
B(0, 2−i), and {ψi}∞i=1 have vanishing moments up to order L > |s|). Furthermore,

|φk ∗ R loc
j a(y)| �

∞∑
i=0

2−|k−i|L 1
(2−k + 2−i)n

∫
|y−z|<2−k+2−i

|R loc
j (φi ∗ a)(z)|dz,

where we used again [6, Lemma 2 in p. 121 and Lemma 4 in p. 122] (see also [17, Corollary 3.1]).
As q > 1, using Hölder’s inequality and the definition of A loc

q (Rn) gives that, when |x−y| < 2−k,

1
(2−k + 2−i)n

∫
|y−z|<2−k+2−i

|R loc
j (φi ∗ a)(z)|dz

�
[ 1
w(B(x, 2−k + 2−i))

∫
|x−z|<2−k+1+2−i

|R loc
j (φi ∗ a)(z)|qw(z)dz

] 1
q

.

Notice that L is taken to be larger than |s|. Then, applying Hölder’s inequality again, we obtain

sup
|x−y|<2−k

|2ksφk ∗ (R loc
j a)(y)|q

�
∞∑

i=0

2isq2−|k−i|L

w(B(x, 2−k + 2−i))

∫
|x−z|<2−k+1+2−i

|R loc
j (φi ∗ a)(z)|qw(z)dz.

By this and Fubini’s theorem, together with the fact that∫
|x−z|<2−k+1+2−i

1
w(B(x, 2−k + 2−i))

w(x)dx � 1,

we see that {∫
|x−cQ|<�(Q)+3

[ ∞∑
k=0

sup
|x−y|<2−k

|2ksφk ∗ (R loc
j a)(y)|q

]
w(x)dx

} 1
q

�
{ ∞∑

i=0

2isq

∫
Rn

|R loc
j (φi ∗ a)(z)|qw(z)dz

} 1
q

.

Then, using the fact that R loc
j is bounded on Lq

w(Rn) and the size condition of a (p, q, s)w-atom,
we see that the last quality in the above estimate is bounded by{ ∞∑

i=0

2isq

∫
Rn

|φi ∗ a(z)|qw(z)dz
} 1

q � ‖a‖F s,w
q,q (Rn) � [w(Q)]

1
q− 1

p .

Thus, ‖S̃s
1,q(R loc

j a)‖Lp
w(Rn) � 1. Hence, (7.1) holds and we complete the proof of the theorem.
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