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Atomic Decompositions of Triebel-Lizorkin Spaces with
Local Weights and Applications*
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Abstract In this paper, the authors characterize the inhomogeneous Triebel-Lizorkin
spaces Fj¢"(R™) with local weight w by using the Lusin-area functions for the full ranges
of the indices, and then establish their atomic decompositions for s € R, p € (0,1] and
q € [p,o0). The novelty is that the weight w here satisfies the classical Muckenhoupt
condition only on balls with their radii in (0, 1]. Finite atomic decompositions for smooth
functions in Fj;"(R™) are also obtained, which further implies that a (sub)linear operator
that maps smooth atoms of F,7;’(R™) uniformly into a bounded set of a (quasi-)Banach
space is extended to a bounded operator on the whole F;>;”(R™). As an application, the
boundedness of the local Riesz operator on the space F,>;"(R™) is obtained.
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1 Introduction

The local weight class was introduced by Rychkov [18]. Recall that, for p € (1, 00), the local
weight class .A;OC (R™) consists of all non-negative locally integrable functions w such that

ohapeiey = anp (g [ v}y [ oo sraa)™ <

where the supremum is taken over all cubes of R™ with the n-dimensional Lebesgue measure no
more than 1 and with sides parallelling to the coordinate axis. If p = 1, then the class A]°° (R™)
consists of all non-negative locally integrable functions w such that

o (L »
g ey = 00 {1 [ i} supfu] 7 < oo

Define Al°¢(R") := | AZI,"C (R™). For any g € [1,00], let ¢, := inf{q : w € A;OC (R™)},
1<p<oo
which is called the critical index of the local weight w. Observe that the class A1°¢ (R")
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consists of non-doubling weights, which may grow or decrease exponentially at infinity. Apart
from the well-known Muckenhoupt weight class, an important example of w € A!°¢(R") is
from Triebel [24, Chapter 6], wherein the author investigated weighted inhomogeneous Besov
and Triebel-Lizorkin spaces associated to a weight w satisfying that there exist 8 € (0, 1] and
C € (0,00) such that, for all z,y € R, 0 < w(x) < Cw(y)e"”_mﬁ; see also Schott [20-21] and
Schmeifler-Triebel [19].

Rychkov [18] introduced and studied the inhomogeneous Besov and Triebel-Lizorkin spaces
associated to a weight w € A (R™). Izuki and Sawano [14-16] then investigated the wavelet
characterizations of these function spaces. Also, Tang [22] established the maximal function
characterization of the weighted local Hardy spaces h? (R™) with w € AX¢ (R"), which is an
extension of the results of Bui [1] and Goldberg [7]. Boundedness of some strongly singular
integrals, pseudo-differential operators and their commutators on the weighted local Hardy
spaces hl (R™) were also studied in [22-23]. For generalizations of the results in [22] to some
Orlicz-type local Hardy spaces associated to the weight w € A1°¢(R™) (see [25]). It should
be mentioned that there are many works concerning the (in)homogeneous Besov or Triebel-
Lizorkin spaces associated to the classical Muckenhoupt weights; see, for instance, [9-13, 24]
and their references.

The main aim of this paper is to characterize the inhomogeneous Triebel-Lizorkin spaces
Fs:(R™) with local weight w € A2 (R") in the sense of Rychkov [18] (see also Definition 1.1
below) by using atoms completely analogous to the classical atoms of Hardy spaces. In other
words, for s € R, p € (0,1], ¢ € [p,00) and w € Alll‘fgx{q71}(R"), we prove, in Theorem 1.2
below, that an element f € F»*(R") if and only if it can be written as a linear combination of
these weighted atoms with the coefficients belonging to ¢P. To this end, we first establish the
Lusin-area function characterization of F;;*(R") in Theorem 1.1 below. Moreover, finite atomic
decompositions for smooth functions in F;:;(R"™) are presented in Theorem 1.3 below. This
allows us to deduce the following boundedness criteria in Theorem 1.4 below: If a (sub)linear
operator maps atoms, which are infinitely differentiable, of F;*(R") into a (quasi-)Banach
space uniformly, then it extends to a bounded (sub)linear operator on the whole F;:*(R™). As
an application, the boundedness of the local Riesz operator on the space F;:*(R") is obtained.
It is expectable that Theorem 1.4 may have further more applications, say, in the study of the
boundedness of operators on F*(R") (see, for example, [2-3, 17]).

It should be mentioned that the definition of atoms of F:/(R™) (see Definition 1.2 below)
used by us throughout this paper is inspired by Han, Paluszynski and Weiss [8], in which
atomic characterizations for the classical non-weighted homogeneous Triebel-Lizorkin space
F§7Q(R”) were established, where s € R, p € (0,1] and ¢ € [p, 00). We also remark that atomic
decompositions of the Triebel-Lizorkin spaces ;" (R™) with local weights were also considered
in [15], by using the machinery of the ¢-transform of Frazier-Jawerth in [4-5]. The advantage
of the atoms used in this paper is that it is more convenient for applications in the study on
the boundedness of operators.

To recall the inhomogeneous Triebel-Lizorkin spaces with local weights introduced in [18],
we need the following notation. Let C2°(R™) be the set of all infinitely differentiable functions
on R™ with compact support. Endow C2°(R™) with the strict inductive topology, which is
denoted by D(R™) and whose dual space by D'(R™). As in [18], let S.(R™) be the space of
all f € D'(R") such that there exist positive constants Ay and Ny such that for all ¢ €
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D(R™), [(f, ¢)| < Apsup{|D¢(x)[eNrI*l . 2 € R™, |a] < N;}. For p € (0,00], we denote by
L%, (R™) the weighted Lebesgue space which consists of all functions f such that |||,z gn) =
{ Jn |f(x)|pw(x)dx}% < 00, and by LP:>°(R"™) the weighted weak-type Lebesgue space which
consists of all functions f such that || f|| 1z @n) := iggt[w({m e R™: |f(z)| > t})]? < oo. For

any s € R, we denote by |s| the maximal integer no more than s.

Definition 1.1 Let w € AL°(R"), s € R, p € (0,00) and q¢ € (0,00]. Suppose that
¢o € D(R™) and ¢ := ¢po — 27 "¢po(271") satisfies that

/n z¥p(x)dr =0 for all |of < max{—1, |s]}. (1.1)

For j € N, set ¢; :=2"¢(27-). The inhomogeneous Triebel-Lizorkin space 52 (R™) is defined
to be the collection of all f € SL(R™) such that

LY (R™)

o0 1
1l ey 1= |[[ D2 279165 % 119)"
j=0

with a usual modification made when ¢ = 0.

Notice that F3(R™), with w € AL(R"), s € R, p € (0,00) and ¢ € (0,00], are com-
plete (quasi-)Banach spaces (see [18, Lemma 2.15]). By [18, Theorem 2.5], there exist positive
constants Ap and By, depending only on s, p, ¢ and w, such that, when A > Ay and B > %,

Wl ~ | [ 2 465am80] |, (1.2)
]:0 L'(U(Rn)
where ¢7 4 g f denotes the Peetre-type maximal function of f, defined by
P *
®; a.pf(x) = sup 165 % /(W) x e R™ (1.3)

vern (1+ 27|z — y|)AePle=vl”

From this Peetre-type maximal function characterization for F* (R™), it follows easily that
the space F;,’(R") is independent of the choice of ¢ € D(R") satisfying (1.1).

For any a € (0,00), s € R, ¢ € (0,00) and f € S/(R"), the Lusin-area functions Sg-*(f) and
S¢*(f) are defined, respectively, by setting, for all x € R",

Sta0@ = [ magy 206, % () "]
=0 )

)| |lr—y|<a2—7

and

oo 1

SealN@) =D swp 270« fly)liay) ",

=3 le—yl<a2—

where {¢, 72 are as in Definition 1.1. Applying the Peetre-type maximal function characteri-
zation of F5:»(R™) in (1.2), we can conclude the following Lusin-area function characterization
of F;(R™), whose proof is presented in Section 3.
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Theorem 1.1 Let w € A% (R"), a € (0,00), s € R”, p € (0,00) and q € (0,00). Then,
there exists a positive constant C' such that, for all f € SL(R™),

—HfHF““(Rn) <S5 (Dl @ey < NS (Ol e, @ny < C| f]

F; Y (R™)-

Motivated by [8], we introduce atoms of the space F};:"(R") as follows.

Definition 1.2 Let s € R, p € (0,1], ¢ € [p,¢) and w € Amax{q 1}(R"). A distribution
a € S,(R™) is called a (p, q, s)w-atom of Fi"(R™) if the following hold:

(1) a is supported on a cube Q C R™ centered at cg and of side length £(Q).

(ii) [lall g0 gy < [W(Q)]777.

(iii) If |Q| <1, then for any g € S(R™), a polynomial P of degree at most N : max{ (q’“ -
1) —s],0} and a smooth cutoff function ng € S(R™) such that ng =1 on @ and ng = 0 outside
2Q, (a,g) = {(a,(g — P)ng), here and hereafter, 2Q) denotes the cube centered at cq and of side
length 20(Q).

Now we give the following atomic characterization of the Triebel-Lizorkin spaces, which
follows from the Calderén reproducing formula (see Lemma 2.3 below) and the Lusin-area
function characterization of F;»"(R") in Theorem 1.1 (see Section 4 for its proof).

Theorem 1.2 Let s € R, p € (0,1], ¢ € [p,00) and w € Arlr‘l’;x{q’l}(R"). Then, f €

Fy'(R™) if and only if f = kZN Akay in S¢(R™), where {\;}kez € €7 and {ay}ren are (p, g, $)w-
€
atoms. Moreover, there exists a positive constant C such that, for all [ € F3p° (R™),

repen <t {[ ] < i)

keN

—||f|

g’ (R™)s

where the infimum is taken over all the decompositions of f as above.

Next, we show that functions in C2°(R™) N F,*(R™) can be decomposed into finite linear
combinations of (p, g, s),-atoms with their coeflicients belonging to ¢?. The proof is given in
Section 5 by invoking some ideas from [17].

Theorem 1.3 Let s € R, p € (0,1], ¢ € [p,00) and w € Amax{l q}(R"), Then, every

[ e C(R™)NES(R™) admits an atomic decomposition f = kzl Agak, where N € N, {a,}_,

N 1
are (p,q,s)w-atoms such that each ar € C°(R™) and [ 3 |\efP]” < C||f|
k=1

Fow®ny for some

positive constant C' independent of f and N.

Indeed, C2°(R™) N F*(R™) is dense in F;*(R™) (see Lemma 6.1 below). Consequently, we
can establish a boundedness criteria for (sub)linear operators from F;*(R") to some (quasi)-
Banach spaces as in [17, 26-27]. Before going into details, we first recall the following notion
(see, for example, [17, 26-27]).

Definition 1.3 (i) 4 quasi-Banach space B is a vector space endowed with a quasi-norm
Il - I8 which is non-negative, non-degenerate (namely, || fllg = 0 if and only if f =0), homoge-
neous, and obeys the quasi-triangle inequality, namely, there exists a constant K > 1 such that,
Jorall f, g€ B, ||f+gls < K[|z +llglls]-
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(ii) Let r € (0,1]. A quasi-Banach space B, with the quasi-norm || - |
Banach space if |+ gllg, < | fll5, + lglls, for all f.q € B,.

(iii) For any r-quasi-Banach space B, with r € (0,1] and a linear space ), an operator T
from Y to B, is said to be B,-sublinear if, for all f, g €Y and A\, v € C,

B, 15 called an r-quasi-

IT(\f +vg)] Bl

5. < AT (N5, + V"I T(9)]

and | T(f) = T(9)lls. < IT(f - 9)ll5,-

Applying Theorem 1.3 and the density property of CZ°(R™) N Fy*(R™) in " (R™), we can
establish a criterion for the boundedness of operators on Fy;,*(R™) (see Section 6 for its proof).

Theorem 1.4 Let s € R, p € (0,1], ¢ € [p,o0) and w € Arl;facx{l q}(R”). Suppose that
B, is an r-quasi-Banach space with v € [p,1] and that T : C°(R™) N F;Z”(]R”) — B, is a

B,.-sublinear operator satisfying that
sup{||Ta||5, : a € C(R") is any (p,q, s)w-atom} < oc.

Then T uniquely extends to a bounded B,.-sublinear operator from Fy:»(R™) to B,.

From Theorem 1.4, it follows the boundedness of the local Riesz operator on the Triebel-
Lizorkin spaces with local weights. Let ® € D(R™) satisfying ®(z) = 1 for x € B(0,1) and
supp ® C B(0,2). For j € {1,--- ,n}, consider the local Riesz operator

oc y n

RIf@) =y [ 8@y, aeR

(see [22, 25]). It was proved in [22, Lemma 8.2] that R }°¢ is bounded on L%, (R™) when p € (1, 00)

and w € AP (R"), and from L}, (R") to Ly;*(R") when w € Aj°°(R"). For p € (0,1],

let A2 (R™) be the weighted local Hardy space, which consists of all f € S.(R™) such that

[t = sup |¢ * f| € LE(R™), where ¢ € C°(R™) has a non-zero integral, and we define
0<t<1

[ £llnz,ny == lf | L2, @&n). The operators {R;°°}7_, were used to characterize hy,(R™) in [22].
Moreover, it was proved in [25, Theorem 8.2] that R}OC is bounded on the Orlicz-type local
Hardy spaces with local weights, which particularly implies that each R}OC is bounded on the
local weighted Hardy space h? (R™) with p € (0,1] and w € A% (R™).

Applying Theorem 1.4, we obtain the following conclusion (see Section 7 for its proof).

Theorem 1.5 Let s € R, p € (0,1], ¢ € [1,00) and w € .A;OC (R™). Then, for all j €
{1,---,n}, the operator R}°° is bounded on Fj3¥(R™).

Remark 1.1 (i) For p € (0, 1], it was proved in [18, Theorem 2.25] that F£7’2“’ (R™) = AP (R™)
with equivalent quasi-norms. Thus, for all p € (0, 1], if we take s = 0 and ¢ = 2 in Theorem
1.5, then every R;°¢ is bounded on the space k%, (R") if w € A3°¢ (R™).

(ii) The result in (i) is slightly weaker than the aforementioned corollary of [25, Theorem 8.2],
which says that R}OC is bounded on hE (R") for all w € A (R™). The reasons for this are
as follows. The size condition of an hZ (R™)-atom in [25, Definition 3.4] can be given by any
| - |l ey norm with 7 € [1,00] N (p, 00); meanwhile, any weight w € AL (R™) implies that
w € AlC (R™) for some r € (1,00). However, the size condition of a (p, 2, 0),,-atom in Definition
1.2 is given by some fixed quasi-norm || || 0 (mn)» SO We are forced to use weights w € A°¢ (R™).
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This article is organized as follows. In Section 2, we first recall some known basic lemmas,
including the properties of the local weight, Fefferman-Stein vector-valued inequalities asso-
ciated to the local weights, and the Calderén reproducing formulae; we then prove a duality
result related to the space Fy;,’(R™). The proof of Theorem 1.1 is presented in Section 3. The
whole Section 4 focuses on the proof of Theorem 1.2, by using Theorem 1.1 and a series of
auxiliary lemmas developed in Section 4. In Section 5, we prove Theorem 1.3 by using the
atomic decomposition result in Theorem 1.2. Sections 6 is devoted to the proof of Theorem 1.4
by showing the density property of C2°(R™) N F)*(R™) in FJ>,*(R™) (see Lemma 6.1). Finally,
the proof of Theorem 1.5 is presented in Section 7, by using Theorem 1.5.

Throughout this paper, we use the following notation. Let N := {1, ---}, Z4 := NU {0}
and Z := {0,£1,---}. Denote by C a positive constant independent of the main parameters
involved, which may vary at different occurrences. We use f < g or ¢ 2 f to denote f < Cg or
g > Cf, respectively. If f < g < f, then we write f ~ g.

2 Preliminaries

For k € (0,00), the local Hardy-Littlewood maximal operator M°¢ is defined by setting,
for all locally integrable functions f and x € R",

ME (@)= s [ 1wy

QBL |Q|

If Kk = 1, then we simply Write Mc as M'°c. Also, for B > 0, all suitable functions f and
x € R", let Kp(f = Jau [f(W)]e™ Blz—ylqy.

The followmg versions of the Vector-valued Fefferman-Stein maximal inequalities associated

to local weights were proved in [18, Lemma 2.11].

Lemma 2.1 Ifx € (0,00), p € (1,00), g € (1,00] and w € A°(R™), then, for any sequence
of locally integrable functions {f;}jez, it holds true that

1 1
Mloc } <CH{ q}q 2.1
H{ I ey < N g (2.1)
and there exists a positive constant By, depending only on n and w, such that, when B > 70
SIKs(517} <c{X 031 . 22
H{ (i)l L2, (R") |f] LY, (R™) (22)

where C' is a positive constant depending only on n, Kk, p, ¢, B and [w]A;oc (Rn)-

Some properties of the local weights are presented in the following lemma; whose proofs
were given in [18, Lemma 1.4] and [22, Lemma 2.1 and Corollary 2.1].

Lemma 2.2 Let p € [1,00], w € A (R™) and k € (0,00).

(i) There exists a positive constant c,,, which depends only on [w]Algoc ®ny and n, such that,
for all t € [1,00) and cubes Q with |Q| =1, w(tQ) < e*'w(Q).

(ii) There is a positive constant C, which depends only on [w]AIl)uc ®ny and n, such that, if
Q| <1, then w(2Q) < Cw(Q) and, if |rQ| > 1, then w((r +1)Q) < Cw(rQ).
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(iii) M,ec is bounded from LL(R™) to LL>®(R™) if p = 1, and bounded on LE,(R™) if p €
(1, 00].

(iv) Forp € (1,00), w € A;,OC (R™) if and only if w T € A;‘?C (R™), here and hereafter, p'
denotes the conjugate index of p.

The Calderén-type reproducing formula in the local case was essentially given in [18, Theo-

rem 1.6]. Indeed, Lemma 2.3 for j = 0 was proved in [18, Theorem 1.6] and the proofs for the
general case j € N are essentially the same. We omit the details.

Lemma 2.3 Assume that ¢g € D(R"™) has a nonzero integral. Let ¢ := ¢g — 27 "¢o(271).
Then, for any given L € Z, there exist functions 1,10 € D(R™) such that 1o has a nonzero

integral, v has vanishing moments up to order L (namely, fR,, z®Y(z)dx = 0 for all multi-
indices a with |a| < L) and, for all j € Z4 and f € D'(R"™),

f=0)j*(go)j*f+ Y vixgixf in D'(R"), (2.3)

i=j+1
where ¢; = 2" p(2%) and 1p; := 21"p(2%) for all i € N.
Finally, we conclude this section with the following duality result.

Proposition 2.1 Let se R, p € (1,0), ¢ € [1,00) and w € A;OC (R™). Then

’
—-P

(B R™)" = Fy " (R"),
P, P'q

Proof For p € (1,00), q € [1,00) and w € A)°° (R™), we denote by LE (¢9)(R™) the space

&) 1 .
of all sequences of functions {h;}32, such that [[{h;}32,l 1z (pa)mn) = I{ Jgo |hj|7} HL{L(R") is
finite. If w = 1, then we simply write L2 (¢4)(R™) as LP(¢2)(R™). By an argument similar to
that used in the proof of (LP(¢9)(R™))* = L¥ (£ )(R™) (see [24, p.177]), we conclude that
(LoD R = T, () (R).

1
Let f e F, %" """ (R"). For all g € F3 " (R"), by Lemma 2.3, we have g = sz*@*g,

where 1;, ¢; are as in Lemma 2.3. Without loss of generality, we may assume that {(;51}Z ; has

vanishing moments up to order M > |s|. From this and Hélder’s inequality, it follows that
o
<> Wi f. ¢ixg)l < HfHF 1 191l e e

i=0
with a usual modification made when ¢ = 1. Thus, Lf(g) := (f, g) induces a linear continuous

—s, 1
functional on F>"(R™) with [[L¢|| < || f]| - Hence, (Fj3"(R"))* D F,, %"

/ 7p/ n
ot ®").

To show the converse, we assume that L E (Flf”qw (R™))*. Since
fe R (RY) = {27, + f}52 € LE,(¢9)(R")

is a one-to-one map from F;”(R™) to a subspace of LE (£7)(R™), it follows that the functional
L can be interpreted as a functional on that subspace of L2 (¢7)(R™). By the Hahn-Banach
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theorem, L can be extended to a continuous linear functional on LP (¢7)(R™) with the norm
preserved, which is denoted by L. By this and (L2 (¢7)(R™))* = =¥ ,(£9)(R™), we see that

wl—p’

there exists {g;}32, € Lw1 o ,(£9")(R™) such that, for all f € Ey 0 (R™),

L(f) = L{2%0; * F}320) = ZzﬂS/ g;(@)d; * f (& dx—Zw/ F(2)3; * gj(2)dz

where ¢; := ¢;(—-) for all j € Z, and |\{gj}§‘;0|\Lp/1 = |L| = |L|. If we let g :=

o ()R

> 2% * gj, then L(f) = [5. g(x)f(z)dz for all f € F3“(R™). Since {¢;}72, have compact
§=0
support and vanishing moments up to order M > |s|, it follows that, for all z € R,

| * ¢ * g; ()| S 271 IMALYee () ()

with x being a sufficiently large number depending on the support of {¢;}:°,. Then,
o) e’} g\ L
ol gy S [{ D2 | 227D (g}

vhd i=0 ;=0

By Holder’s inequality and > 2717=4(M=Ish) < 1 we see that the last term displayed above is
i=0
bounded by

oo o0 1
o= li=il(M~[s])| pploc (. q’}« H{ Mlee ( q} .
>»> )} Z| @}

1=0 j=0 wl=p’ wl=p

, .
Lil—p/ (R™)

Finally, we apply (2.1) and Lemma 2.2(iv) to obtain

0 L
o S [{ b}
Hg”Fp—/:/wl v’ (R™) ~ = |g]|

1o / / ~ .
Lpll,p/ (R™) ||{g‘]}]:0||Lil—p’ (¢4")(Rm) HLH

Hence, (Fj,"(R™))* C F,,% o (R") which completes the proof of Proposition 2.1.

3 Proof of Theorem 1.1
In this section, we show Theorem 1.1 by using the following estimate in [18, Lemma 2.9].

Lemma 3.1 Assume that ¢g € D(R"™) has a nonzero integral. Let ¢ := ¢g — 27 "¢o(271).
Then, for any r € (0,00), A >0 and B > 0, there exists a positive constant C, depending only
on n,r, o, A and B, such that, for all f € SL(R™), j >0 and x € R",

67 % f(2)] < €[ D 20 Rarghn / BT (0 1

2 N P o
Proof of Theorem 1.1 Since S; (f)(x) < gjq(f)(x) for all z € R™, it follows that

1155.o ()l e rry < 11554 ()l L2, (m)-
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For all A, B € (0,00), x € R™ and k € N, by the definition of S/(R™), we obtain

a |¢k * f(.l? - y)|
sup  |orx f(y)| = sup |ow* flz—y)| < (1+a)?2°F sup )
|lz—y|<a2-* ly|<a2-+ yern (14 2k|y[)A 28Iyl
Consequently,
5 F @) TyE g :
Gos(f { 2ksq[ | } } { ) gq[ } }
! Z . (L + 2F[y])A 2510 Z 5 apl (@)
which, combined with (1.2), implies that ||§S (Nllze @y S If] FE (R
It remains to show that [|f|psw@n) S [195,,(f)llzs @n). To this end, we choose r €

(0,min{p,q}), A > max{Z — s, 2} and B > B;)O (with By as in Lemma 2.1). Then, from
Lemma 3.1, we deduce that, for all j € Z; and x € R",

- * f (y+2)" g
275| b. < 2]5{ 9(i—F) Ar22kn/ / | dud } .
|65+ F(2)] 5 Z 2|<a2—k Jrn (14 27|z —y — z|)AreBrie—y=2| yes
Combining this with Fubini’s theorem and the fact that, when k > j > 0 and |z| < a27*,
1 1

<
(4 27w — y — 2N rePrlov—l ~ (1 2]z — y)ArePrlol’
we further conclude that, for all z € R™,

0o 9kn J‘|Z|<a2 . 2k9r|¢k *f(y+z)|”"dz 1

27°l6; + ()| £ { 2<j—k><A+s—%>r2jn/
1% f@)] 5 kz::] . (14 27|z — y[)AreBriz=yl

Let
Cesa N = [ [ e sy e ]y e
<a2

Further, since 0 < r < min{p, ¢} and A+ s — 2 > 0, it follows, from Holder’s inequality, that

ooy (o) 5 { 32 pians e [ D11

- n (1 2] — y)AreBrie

By Ar > n, we see that, for all j € Z, and z € R™,

2 e ey £ M (g (D)@) + K (g ().

which implies that
2010 x f@)] {ZW DAL= (B (1)) (@) + K (1@ (DI @]

Consequently, we have

1

FoY (Rn) H{ Mloc |q)k s,q( } {Z KBr |(I)k S’q )|T)]%}q
k=0

/]

Lﬁ, (]Rn)

ZRACORS

Further, by r < min{p, ¢} and B > %, we apply (2.1) and (2.2) to obtain || f]
1

155.4(f)|le, (&ny- This concludes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2
To prove Theorem 1.2, we need to establish a series of auxiliary lemmas.

Lemma 4.1 Let s € (—00,0), p € (0,1], ¢ € [p,o0) and w € Arlr(l)gx{q,l}(Rn)' Assume that

(i) ¢o € D(R™) such that supp (¢o) C B(0,1);

(ii) for any z € R™, ¢(2) := ¢o(2) — 27 "¢po(2712);

(ili) a € SL(R™) is a (p, q, 8)w-atom supported on a cube Q, with center cg and side length
UQ) < &=

Then, for all k € Zy, supp (¢r *xa) C Blcg, 3). Moreover, for all k € Zy and x € B(cg,3),

s+N+1

|1 aa)] < C2PHHV D [(Q)] 75| @Qm

where C' is a positive constant independent of k,a and x.

Proof It is easy to see that every supp (¢ *a) C B(cg,3). Since £(Q) < —L, it follows that

. , vn’
there exists 79 € Z, such that 27%°~1 < /nl(Q) < 2%, By Definition 1.2, the (p, g, 5),,-atom
a has vanishing moments up to order N := Ln(% — 1) — s]. From the Calderén reproducing

formula (2.3), it follows that there exist functions 1,10 € D(R™) such that ¥y has a nonzero
integral and 1) has vanishing moments up to order A/, and

a=(Yo)i, * (P0)ig xa+ Y Wix¢ixa in D'(R"), (4.1)

i=ip+1

Let Py (¢y) be the Taylor polynomial given by that, for all y, z € R™,

Py (dr)(z39) = Y eyleq — ) (DVew)(2 — cq),

e
where {c,}, are coefficients. For any y,z € R", set Oy .(y) = on(z — y) — Pnv(on)(2;y).
Let ng be the smooth cutoff function associated to the cube ) as defined in Definition 1.2.
For all k € Zy and z € R™, by the vanishing moment condition of a, we have ¢y, * a(z) =
(a, pr(z — )ng) = (a, P ng). From this and (4.1), it follows that, for all k¥ € Z4 and z € R,

ok * a(z) = ((do)iy * a, m * (Opm)) + Y (dixa, i # (Pk,271Q)),
i=iot1

where we used the notation ¢(u) := ¢(—u) for any function ¢ and u € R™. By the choice of iy
and the support conditions of ¢ and a, we conclude that supp ((¢o)q, * a) C Blcg, 3v/nl(Q))
and supp (¢; * a) C Blcg, 3v/nl(Q)) for i > ig. Thus, for all k € Z; and z € R",

b+ a(z) = / (J0)i0 * aly) (Bo)as * (Pranc) (¥)dy
B(cq,3v/nl(Q))

o0

+ @i * aly) bi * (Pr,.nq) (y)dy. (4.2)

i=ig+1 /B(CQ73\/HK(Q))

For all multi-indices a € Z% with || < N, the mean value theorem further implies that, for all
y € B(cg,3v/nl(Q)) and z € R™,

|D;(I)k,z(y)| S 2kn+k(N+1)£(Q)Nf\a|+1. (43)
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From (4.3), it further follows that

D2 (@1200) (W) S Y [DE®y - (y)] S 2EnHENHD, (4.4)
e,

By (4.3) and £(Q) ~ 27% we know that, for all y € B(cg, 3v/n(Q)),

|(W0)iq * (Brzmq)(y)] S 25+ )N, (4.5)

Since [, ¥(x)z*dz = 0 for all |a] <N, we see that, for all i > ip+1 and y € B(cq, 3v/nl(Q)),

i # (@1,2m0) (y)]

Gilu = y) [Pr(Wng() = Y calu =) Dy(@rang)(v)]du|.  (46)

R la] <N

By the mean value theorem and (4.4), we see that the quality inside the bracket of the second
line of (4.6) is dominated by

sup Y [(u—y) DY (Do) (Bu + (1= O)y)| S [u— yN R HNFD,
0€[0,1] |a|=N+1

Inserting this into (4.6) gives that, when i > i,

i * (Br,2m0) (y)] S 28 HVHD / i (u = y)lJu =y dy S 2P TN, (4.7)

Rn

Applying (4.2), (4.5) and (4.7), we conclude that, for all k¥ € Z; and z € R",

6k % a(z)] S 2t E—0 W) / 1(60)io * a(y)|dy
B(cq,3v/nl(Q))
£y kmHEmaWD / 164 * a(y)ldy. (48)
i=ig+1 B(cq,3vnl(Q))

Now we consider the following two cases.
ig
Case 1 ¢ € [1,00). Taking z := x € B(cq,3) in (4.8) and applying the fact (¢o)i, = Y. ¢,
i=0
we see that

10

|01 % a(z)| S 2D / 3250+ aly)[27 dy
B(cq,3vnl(Q)) ;—o
+ 2Fm ROV / > [2%¢ixa(y)27 D ay.

B(c@,3vnt(Q)) j=io+1

Further, if we apply Holder’s inequality to each term on the right-hand side of the above
inequality, and use the facts s < 0 and s + A+ 1 > 0, then

0 1
@) 5 2NN [ SR} . (49)
B(cq,3v/nl(Q)) ~ o
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Using Hélder’s inequality and w € A;OC (R™), we further have

2 1)y < @)l
/B(cQ,Bfe(Q»{Z' dixalyl} dy S [w(@)] 771

Inserting this estimate into (4.9), we conclude that, for all x € B(cq, 3),

§+/\/+1

[ al@)] S 2F VD [w(@)] QI

which is the desired conclusion.

Case 2 p € (0,1) and g € [p,1). In this case, w € AJ°°(R") and N = \_n(% —1) —s].
Since w € A{°¢ (R"), it follows that the ball B(cg,3/nl(Q)) is covered by a finite number of
(depending only on n) smaller cubes {@} such that each é has the same side length as that of
Q and hence w(Q) ~ w(Q) by Lemma 2.2(ii), which further gives that

sup y)| < Zsup lw(y)| < Z |Q~| S ulﬂ (4.10)
Q

yEB(CQ:‘g\/ﬁZ(Q)) 5 YERQ

From (4.8), (4.10) and the fact (¢o);, = Z @i, together with s < 0, we deduce that, for all
k € Z4 and z € R™, -

0

Q' ko (k—io)(s+N+1) j
25y, % a(z)| S —==2kmalhmi)ls 12 ¢; * a(y)|w(y)dy
w(Q) (ca,3v/me( ))ZO

Q n —1)(s s
| | Z gkno(k—i)( +N+1)/ 126 * a(y)|w(y)dy,
Mt (@ 3vTt(Q)

which, together with n + s+ A + 1> 0 and ¢ < 1, gives that

2—k(n+s+N+1) |2ks¢k % a(z)|

Q' Signo—i N i SNy
< LEL_giong—io(nts+tN+l)q 2=t (ntstNFDA=0 N 1915, 4 a(y)|w(y) dy
w(Q) B(cq.3vml(Q)) ;

)
+ |Q| Z 2in2*’i(n+8+/\f+1)11/ 27i(n+s+N+1)(17q)|2is¢i % a(y)|w(y)dy
w(@) 4 B(eq 3/70(Q))

Since ¢ > pand N +1 > n(%—l) —s,wehave (n+s+N+1)g—n>(n+s+N+1)p—n>0
and hence, for all i > ig, 2in2=i(n+s+N+1a < |Q|I+=57=]a—1 1y 9=i0 ~ (). Combining this
with B(cg,3v/nl(Q)) C Blcg,3), we further know that, for all k € Z; and z € R”,

2—k(n+s+N+1)|2ks¢k % a(z)|
|Q| 14 sENHL §+N+1 o)
SO [ e ag ey, (@41)
w(Q) = JB(ca.3)

Let A:= sup sup 2 FNFD|gy xa(2)] and ¢f 4, z(a) be the Peetre-type maximal func-
kEZ 4 ZEB(CQ,'S) T

tion as defined in (1.3), where A > Ay and B > %. By the facts that w € A{°¢(R") and
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n+N +1+ 5> 0, together with a € F;2*(R") and (1.2), we see that
1
AL —— / |25 o x)|%w(x)dr ¢ " < oo.
[w(B(cQ, DIk Z el }
Since A is finite, by (4.11), we obtain
|q 1 5+N+1
w(@Q)

b++

Q s+N+1 _a
A <Al . S AT Q@) 3,

that is, A < [w(Q)] 7 |Q|**
k€ Z4 and = € B(cg,3),

. From this and the definition of A, we deduce that, for all

5+N+1

2y afw)] S 2N [w(Q))FIQIM

which completes the proof of Lemma 4.1.

Lemma 4.2 Ifs € R, p,q € (0,00) and w € AL (R™), then there exists a positive constant
C such that, for all f € SL(R™),

s (&) (4.12)

1
= orwpmny <
CHfHF,,,q @& < I

n
Figbv@®e) T 221 1D fll 1w @ny < Cllfll 5
=

where D := 8 - for j € {1,--- ,n}.

Proof Fix p,q € (0,00) and w € A¢(R™). For m € Z,, it was proved by Rychkov [18,
Theorem 2.20] that, for all f € S.(R"),

I e eny ~ D IDFll g oy (4.13)
jal<m
where, for o= (a1, an) € 2, D= (52) ™ -+ (52:) ™"

The proof for (4.12) is an easy adaption of (4.13) and the following lifting property in [18,
Theorem 2.18]: There exists ¢ € (0, 00) sufficiently small, depending on p,n and w, such that,
for all a € R and f € S.(R™),

|7 f F52 (R (4.14)

where J! denotes the Bessel potential operator J! := (id — t?A)~ 2, where id is the identity
operator. Precisely, for any s € R, we choose m € Z such that m < |s| < m + 1, and then
applying (4.13)—(4.14) yields

1y ~ 15 Fllpp g, ~ 32 DT Dl ooy ~ S 1D

lal<1 lal<1

Eihew@mn) © ”fl

Fpg' M (R)

which implies (4.12). This finishes the proof of the lemma.

Lemma 4.3 Let s € R, p € (0,1], g € [p,0) and w € Amacx{q 1}(R”). Then, there exists a

positive constant C, depending only on s,p,q,n and w, such that, for all (p,q, s)w-atoms a,

lall Fse@ny < C. (4.15)
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Proof Let a be a (p,q,s)w-atom supported on a cube @ with center ¢g and side length
Q). If p =g, then (4.15) follows trivially from Definition 1.2(ii), so it suffices to show (4.15)
for p < g. To this end, we choose ¢y € D(R™) such that supp (¢9) C B(0,1), ¢o(z) = 1 when
lz| < 4, and 0 < ¢ < 1, and let ¢ := ¢ — 27 "¢o(271+). First, we show that (4.15) holds when
s < 0 by considering the following two cases for £(Q).

Case 1 ﬁ < 4(Q) and s < 0. For any k € Z, , we observe that supp (¢x) C B(0,27%+1),
which gives that supp (¢r * a) C Q(cg,l(Q) + 4) by using suppa C Q. Here and in what
follows, we use Q(z,r) to denote the cube in R™ with center € R™ and side length r € (0, c0).
From this and Hélder’s inequality, together with Lemma 2.2(ii), it follows that

1_1
Fre @) S [w(@)]P 77|l

This proves (4.15) for the case ﬁ <(Q).

Case 2 ((Q) < ﬁ and s < 0. In this case, for any k € Zy, by supp (¢x) C B(0,27%+1)
and suppa C @, we have supp (¢ * a) C B(cg,2 + v/nl(Q)) C B(cg,3), which implies that

la

RCORSES

RICORS {/4x/ﬁQ [ngquk * a(a?)ﬂ %w(x)da:}% - {/13(%,3)\4\/5(9 . }%

=71+ 7Zs>.

llal

Following the argument used in Case 1, we apply Holder’s inequality and w(4y/nQ) ~ w(Q)
to deduce that Z; < 1.

Now we estimate Zp. If x € B(cg,3) \ 4¢/nQ such that ¢y * a(x) # 0, then by ¢y *
a(x) = {a, gr(z — )ng), we have 2/nl(Q) < |z — co| < v/nl(Q) + 2751 which implies that

|z — cql < 27%F2 that is, k < |log, ﬁj. By this and Lemma 4.1, we see that

1 p(s+n+N+1)

25 @I [ 2 o)) S u@ar)

where £ is a positive constant independent of a@ and x. Since ”(SL:NH) > qu, by the weighted
boundedness properties of M, we further know that

1

225 @) H{ [ o) s} <1,

Combining the estimates of Z; and Zy, we see that (4.15) holds when ¢(Q) < \/Lﬁ and s < 0.
Based on the conclusions in Cases 1-2, we know that (4.15) holds when s < 0. The general
case of (4.15) can be reduced to the case s < 0 by using Lemma 4.2. Indeed, if 0 < s < 1 and

ais a (p,q, s)w-atom, then by Lemma 4.2, we see that

n
petwany + Y 1Djal (4.16)

=1

lal

F ) ~ llal Fgh (R
If we can show that a and {D;a}}_, are constant multiples of (p, g, s —1),-atoms, then applying
the already proved conclusion that (4.15) holds for s < 0 yields that ||a]
| Djal Fe-togny ~ 1, which, combined with (4.16), gives that [lal| ps.» gn) < 1, that is, (4.15)
holds for all 0 < s < 1. Repeating the above process yields (4.15) for all s € R.

i <
Foab v @) S 1 and
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To finish the proof of Lemma 4.3, we still need to show that if a is a (p, ¢, s),-atom, then a
and {Dja}_; are constant multiples of (p, g, s — 1),-atoms. It is obvious, from Definition 1.1,
that [|a| Faotw gy < lal
a constant multiple of a (p, ¢, s — 1),,-atom provided that we can prove that

F;y'(;/ (Rn) . (417)

To show (4.17), we first shift the differential from a to ¢, namely, |D;a * ¢o| = |a * D;¢o| and
|Djax ;| = 2'a*(D;p);| for i € N, and then use the Calderén reproducing formula (see Lemma
2.3) and the fact that, for all k,i € Z4 and z € R™,

(D 8); * ()] S 2minthilng=lk=illy b o mintriny (@),

Fow(®e), and hence a is a (p, ¢, s — 1),-atom. Likewise, every Dja is

I1Djal

Fgh™ (Rn) 5 Ha|

where L € (0,00) can be sufficiently large and C' is a positive constant depending on the
supports of ¢ and . Based on these facts, (4.17) follows from a standard calculation (see the
proof of [18, Theorem 2.5]) and we thus omit the details.

Summarizing all the above arguments, we complete the proof of Lemma 4.3.

Proof of Theorem 1.2 Fix s € R, p € (0,1], ¢ € [p,o0) and w € Al°C (R™). If there

max{q,1}
exist (p, q, s)w-atoms {a}reny and {A;}trez € P such that f = > Agay in SL(R™), then we
kEN
apply Lemma 4.3 to obtain ||f[[%swgny < 2 [Akl” llarlsw gay S 3 [Axl?. This inequality
P keN P keN

1
implies that || f|| psw@ny S inf {[ 3 [A[P] 7}, where the infimum is taken over all the atomic
kEN

decompositions of f as above.

To show the converse part, fix f € F:"(R"). Assume that ¢9 € D(R™) has a nonzero
integral, 0 < ¢o < 1, supp (¢g) C B(O, %), ¢o(x) = 1 whenever |z| < i, and that ¢ :=
B0 — 27 "¢o(27 1) satisfies (1.1). For all z € R", define

o0

SN ={> s o}

k—o lz—y|<y/n2-Fk

Then, by Theorem 1.1, we have ||§; (e, @ny ~ [1fll752 @ny < 0o. Denote by Q the collection
of all dyadic cubes of R". For any k € Z, let Qj := {z € R" : S5(f)(z) > 2"} and

Av={Qe 0 Q<1 w(@noy) > %w(Q) and w(Q N Q1) < %w(Q)}. (4.18)

Notice that Ay might be empty. It is easy to see that, for each Q € Q with |Q| < 1, there exists
a unique k € Z such that Q € Ag. A dyadic cube Q € Ay is called a maximal dyadic cube
in Ay if, for any dyadic cube é € Ay, either @ C Q or é NQ = @. For each k € N, denote
by {Qi }ier, the collection of all such maximal dyadic cubes in Ay, where Ij; is the index set
(which might be empty). Observe that {Q% };es, are mutually disjoint. Moreover,

Qe QI <1}=JM=] J{QeA: QcQi}.

kezZ keZicl,

Given any L € Z sufficiently large (to be determined later), by Lemma 2.3, we see that

fl@) = trxdpf(z), zeR (4.19)
=0
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where 99 € D(R™) has a nonzero integral and ¢ € D(R") satisfies that [p, 2*¢(x)dz = 0 for
all multi-indices « with |a| < L. Without loss of generality, we may assume that both ¥, and
¢¢ are supported on B(0,27¢) for all £ € Z, . For each Q € Q with |Q| < 1, there exists some
¢ € 7 such that £(Q) = 27¢, and then we define

o) = 1e(-) =2P(2%),  ¢o() = du() =2¢(2"). (4.20)

With these notations, we rewrite (4.19) as

=>.>. > / Y)(oq = f)(y)dy, =€R" (4.21)

keZielx Qcaj
QeAk

For each k € Z and ¢ € I, let

Q=

Wi = w(@)7 7 {3 w(@EQI sup (60 + w1}

QCQy
QEA

and, for all z € R™.

onile) = 5= X vl —)isa = )y
o QCQy,

Based on (4.21), we see that f = > > Mg iak,q is the desired atomic decomposition of f,
kEZ il
provided that we can show that every ay; is a (p, ¢, $)w-atom and

{Z Z |>\k,z‘|p} S llEse@ny- (4.22)
keZ i€l
To prove (4.22), we first show that, for all k € Z,
> w@IUQ)) T sup |(¢q * £)(y)|” S 25w (). (4.23)
Qe veQ

To prove (4.23), let Qf := {z € R™ : M'*°(xq,)(z) > 3} for all k € Z. From (2.1) and Lemma

2.2(iii), it follows that w(€2;) S w(f) and hence
/ [S2(£)(@)]? w(z)dz < 2+ D0(QF) < 20 D9(0y,). (4.24)

QL1

On the other hand, for all y € @ € Ay, we have @ C 2}, and

WO\ 041) NQ) 2 w(Q\ Our) = w(Q) — w(@ 1 D) = 22,
which further implies that
[ B@ruedsz 3 w@U@) oo« Hwlt.  (1.29)
Qg1 Qe yeQ

Combining (4.24)—(4.25), we obtain (4.23).
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From Hélder’s inequality, w(Qi N Q) > %W(Q@’ the fact that the family {Q%}ies, are

mutually disjoint, and (4.23), we deduce that

SO Il £ w2 S £

Fiiy (&)
keZicly kEZ

which shows (4.22).

Now we show that each ay; is a constant multiple of some (p,q,s),-atom. Indeed, by
supp (¢o) C B(0,1), it is easy to see that supp (ax;) C 4Q%. Also, notice that ay; satisfies
the vanishing moment condition provided that |Q}€| < 1. Thus, it remains to prove that
lak,ill pew @ny < [w(4Q}€)]%_é This can be done by considering the following two cases: ¢ €
(1,00) and g € [p, 1].

Case 1l g€ (1,00). Byw € .A;OC (R™), we see that, for all Q € Q with |Q| < 1,

7 ~ Q. (4.26)

From Theorem 1.1 and the fact that Q@ C {y € R" : |z — y| < /n27%} for all z € Q with
0(Q) = 27%, we deduce that, for any g € F, % v - (R™),

L
7

Il oy 2 {22 ' (@UQ sup g g )"} (4.27)
Qcaj veQ
QeAk
Applying (4.26)-(4.27) and Holder’s 1nequahty7 we conclude that, for all g € F,% ! - (R™)
with a norm at most 1, [{axi, g)| < [w (Qz)] 2~ . From this and Proposition 2.1, it follows that
i1
llak,il Fil(Rn) S S [w (QZ)]‘J P
Case 2 ¢ € [p,1]. In this case, notice that w € A{°(R"). By Theorem 1.1, we have

Fo (Rn) ™ { Z (P / [ sup  |op *a;m-(z)|q} w(x)da:}% (4.28)

PeQ |z —2|<l(P)
[Pl<1

la,q]

For all z € P and |z — z| < £(P), by q € [p,1] and the inequality that { > |b;[}* < 3 |b;|
JEN JEN

holds for all sequences {b;};en, we conclude that

. q 1 q _ !
o 2l S o 37 sploa SO [ 1errviate =]’ @29)
QEA

Because ¢ and v satisfy the vanishing moment condition up to order L, we apply [6, Lemma 2
in p.121 and Lemma 4 in p.122] or [17, Corollary 3.1] to deduce that, for all u € R",

L(P) E(Q)HL 1 max{{(P), {(Q)} 1F
(Q) (P) 11 max{|Q|, [P} lmax{((P), £(Q)} + |ul]

Combining this with supp (¢p *g) C {u: |u| < 2max{l(P), £(Q)}} further implies that, for
ally € Q, z € Pand |z — z| < {(P), if ¢p *Yg(z —y) # 0, then

[  vig(w)| S | min {

lep — cql < 2/ + 1) max{£(P), AQ)} < 4/mmax{{(P), (Q)} (4.30)
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and

((P) €@)\)* 1 B
(Q)" £(P) H max{[Ql 1P} - Are (4.31)

Invoking (4.30)—(4.31), we continue to estimate (4.29) with

(67 * o(z )| S | min {

lpp * ak,i(2)|" S = Z sup [ * f(y)|"(Apg)? Q.
’ QcQi vee
Qe
lep—cq|<4y/nmax{£(P),¢(Q)}

Inserting this into (4.28) and interchanging the summations in P and @, we obtain

1 —Ssq q
kil e S i Z w(QQ) ™ sup |60 + S (1)
UQ)rw(P) ;
< ( P i3] wighrar @)}’
|PI<1

lep—cq|<4y/nmax{£(P),¢(Q)}

which gives |lak,illps.» @n) S w(Q};)%_%, provided that when @ C Q% and Q € Ay,

UQ)*w(P) (Va0 <
;% [apﬂ wq) Ara)t QI ST (4.32)
|PI<1
lep—cq|<4v/mmax{L(P), (Q)}
To show (4.32), we define
Q)75 w(P) .
Zi = DY N A d q; ) )
P%V:V {g(P)} w(@( PQ)? Q7 i€ {1,2}

where Wy :={P € Q: {(P) <{(Q), |P| <1, |cp — cq| < 4y/nmax{{(P), {(Q)}} and
Wy :={P € Q: UP)>Q), |P| <1, |cp — co| < 4v/nmax{{(P), {(Q)}}.

Notice that, for all P € Wy, we have Ap g < 1 and P C 5y/n@Q, so that % < “’(3(7‘/6;@ <1

by Lemma 2.2(ii). Therefore, if we choose L > |s|, then

((P)qLa—saw(P) - 0(P)7La—sq
A0S S —— <L (4.33)
2w v o ) 1%:% 7@

lep—cq|<4vnl(Q)

Now we estimate Zs. Observe that @) C 5y/nP when P € Ws. Since ¢(P) <1 and ¢(Q) <1,
the fact w € A{°° (R™) implies that wlEnP) | inf w(x) and wQ) nelgw(x) Thus,
xT

BVl ™ esvinp Il
w(P) _ wsyiP) _[syiP| schvar " _ |P|
W@ = W@ Tl bt Sl



Atomic Decompositions of Triebel-Lizorkin Spaces 255

By this and the expression of Ap g, we see that, when L satisfies (L + s)q +n(q¢ — 1) > 0,

[(Q) (L+s)g+n(g—1)
%5 3 )

Pew;
—log, £(Q)
Q) \ (E+s)a+n(g—1)
< — 7 <
DY > {e(P)} <1 (4.34)
j=0 PcQ

LpP)y=2"7
lep—cq|<4v/nl(P)

Combining (4.33)—(4.34) gives (4.32). Thus, we complete the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Proof of Theorem 1.3 Let f € C*(R") N F;*(R™). With all the notation as in the
proof of Theorem 1.2, we decompose f into f = > > Agsak; in SL(R™), where each ay; is a
kEZiEl,
(p, g, 8)w-atom supported on 4Q%, defined by

a i) = — 3 LwQ<x—y><¢Q*f)<y>dy, r ER",

Ak, ,
QCQy,
QEA

and { 32 3 [} SIS
kEZ i€l
dyadic cube contained in the set Ag; the functions ¥g and ¢¢ are as in (4.20). Without loss

Fowny- Here, for any k € Z, Ay is as in (4.18); ¢ is the largest

of generality, we may assume that ¢;,¢; with j € Z are supported on B(0, 277), and Vi, ¢;
with j € N have the vanishing moments up to order L, where L > [s|.
For any N € N, let

Q0,2M) = {(z1, - ,xp) eR": =1 <27 Va; <1,i€{l,---,n}},
WP ={QeQ: QcqQ,2V),27V < Q) <1},
Wy i={Q € Q: £(Q) <13\ W},

For each Q € W}, there exists a unique (k,i) such that Q C Q4. Denote by Jy the collection
of all such (k,4). Since W7{¥ has finitely many elements, so does Jx. For each (k,i) € Jy, let

i@ =5 X [ vele—uer Ny, wern 6.1)
’ QCQ}
QenpnwN

In a similar way to the arguments used in Cases 1-2 of the proof of Theorem 1.2, we conclude
that each @y ; is also a constant multiple of some (p, g, s),-atom. Since f € C2°(R™) and the
summation in (5.1) has only finite terms, it follows that every ay; € C2°(R™). For any N € N,

set fv = Y Apiar; and by := f — fn. Then, both fy and by are in C2°(R™). Moreover,
(k,i)eTn
fn is alinear combination of finite smooth (p, g, $),-atoms, and the proof of Theorem 1.2 shows

that the (P-(quasi)norm of its coefficients is bounded by a constant multiple of || f|| g @n)-
Thus, to finish the proof of Theorem 1.3, we only need to prove that, when N is large enough,

by is a small constant multiple of some (p, g, s),,~atom.
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For all z € R™, noticing that W¥ = |J {Q CQL: Q€ A, n W]}, we write
(k)edN

fnle) = /wQ z - y)(éq * F)()dy

QewqN

Then, applying (4.21), we see that, for all z € R",

by(x) = fz) = fn(z) = ) /wQ z—y)(dq * [)(y)dy (5-2)

Qewy

Since f has compact support, there exists No € N such that supp f C Q(0,2"0). Notice that
supp (¢g) C Q. For any @ € WJ, to ensure that ¢q * f is a non-zero function, we need
QNQ(0,2N0*%) =£ &, But any cube Q in Wi is dyadic and satisfies £(Q) < 1, and we therefore
conclude that QNQ(0,2V0*+%) £ & is the same as Q C Q(0,2N0F5). Notice that, if N > Ny+5,
then {Q € W : Q € Q(0,2V*5)} = {Q € Q: ¢(Q) < 2~N}. This allows us to replace the
summation in (5.2) with Y>> when N > Ny + 5. Thus, when N > Ny + 5, we have

QeQ

LQy<2—N
@) = 3 /wa— (b * Ny = 3 o x de * f(z) (5.3)
[(Q?jf N (>N

where 1), and ¢, are associated to ¥g and ¢¢g as in (4.20). Clearly, supp (by) C Q(0,2NoF5).
Fow(®e)- From (5.3), it follows that

P ) = {Z 2”‘1/

If ¢ x 1y * g * f # 0, then by the support conditions of ¢; and ¢, we see that |j —¢| < 2. Thus,

Now we estimate the quasi-norm ||by|

1

1] Z(bj*w[*(ﬁg*f(l‘)‘qU)(x)dl‘}E.
>N

n

1

Falq' (R™) { Z Z 2jsq/ *W*qﬁe*f(x)‘qw(x)dx}a.

j=N-2 ¢>N
[e—jl<2

1]

For the sake of simplicity, we only estimate the term j = ¢. By supp (qu x ) x @ik f) C
Q(0,2N0F5) and the estimate that, for all ¢,g € S(R™) such that [p, ¢(z)z*dz = 0 for all
multi-indices |a| < L,

lpj * g(@) S 27F (A +]a)~ "), zeR”

(see [17, Lemma 3.3(i)] or [6, p. 121, Lemma 2]), we have

S 20 [ oy < @ wle)da}” S 278D w(Q(, 2 ),

j=N-2

H)

[w(Q(0,2N0+5))|s~» provided that N is
large enough (depending on w, Ny, p, q, s and L). Therefore,

[w(Q(0,2N0F%))]a 7

which is bounded by a constant multiple of 2=+

N(L—|s])
[on] 2

Fii ) S €20
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for some positive constant ¢ depending only on w, Ng,n, p,q, L and s, and
(L—|s)
ay = 0_12N 5 by
is a (p, q, 8)w-atom supported on Q(0,2N0+5) by observing that ay does not need to satisfy any
vanishing moment since |Q(0,2N0%)| > 1, which implies that

f=fn+bn= Z )\Mam + CZ_N(L;M)LLN

(k,i)eIn

is a finite atomic decomposition with (p, g, s),-atoms ax;,an in C2°(R™) and the coefficients
satisfying

)
p
S sy

S Pkl 2N S £

For@ny T2
(ki)edn

This finishes the proof of Theorem 1.3.

6 Proof of Theorem 1.4
The goal of this section is to show Theorem 1.4. We need the following density lemma.

Lemma 6.1 Let s € R, p,q € (0,00) and w € AR (R™). Then, CZ(R"™) N F5E(R™) is
dense in F"(R").

Proof By the localization principle in [18, Theorem 2.21], for all f € F:*(R"), we have

e ~ | 2 I

kEZ?L

/]

b ) } (6.1)

where v € D(R") such that its integer translates v*(z) := v(z — k) for all z € R with k € Z"

form a partition of unity, that is, >, v¥(x) = 1 for all # € R™. Notice that supp (v*) has
kezZn

finite overlapping property (bounded by a positive constant depending only on supp~y). For

all N € N, define fy := > 47f. Observe that every fy has compact support. Moreover, the

jezn
<N
sequence {fn}nen converges to f as N — oo. Indeed, by (6.1), we see that, when N — oo,

1

P P
sow — 0
Fplq (R")} ’

I = Ivllegpen S§ X 10

kezm
k>N —c

where ¢ is a positive constant depending only on supp~y. Thus, to finish the proof of this
lemma, we may as well assume that f € F\° (R™) has compact support.

Now suppose that f € F7;*(R") has compact support. By (2.3), write f = Z Uik ¢ % f
with 1; and ¢; as in Lemma 2.3. Without loss of generality, we may assume that both 1; and

¢; are supported on the ball B(0,27%) for i € Z;. For all N € N, let gy := E i % ¢; % f. Since

f is assumed to have compact support, it follows that every gy € C°(R™). It remains to show
that gy — f in F"(R™) as N — oo. Notice that

”9N_f||F;W<Rn>—H{ S| S gy wtin g iy

k=0 i=N+1

N eN.

)
Ly, (R™)
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For all z € R™, from the previous assumptions that both v; and ¢; are supported on the ball
B(0,27%), the definition of the Peetre-type maximal function, and [17, Corollary 3.1] (see also
[6, Lemma 2 in p. 121, and Lemma 4 in p. 122]), we deduce that, for all x € R™,

| # i s # ()] S 27IFTIM (1 2R Agr | L (),

where A and B are positive constants satisfying A > Ag and B > %, and M > A+ |s] is a
sufficiently large constant. By this and Hélder’s inequality, we further conclude that

0 1
@) S H{ Z 2”q|¢f,,4,3f|q}q
i=N+1

which tends to 0 as N — oo in terms of (1.2). Thus, {gn}nen C CZ(R™) N Fy*(R™) and it
converges to f in F;;*(R™) as N — oo, which completes the proof of Lemma 6.1.

lgn — fI

Y
L (R™)

Proof of Theorem 1.4 For any f € C°(R")NF;*(R™), by Theorem 1.3, f admits a finite
N

atomic decomposition f = Y Apay, where N € N, {a;}Y_, are (p, g, s),-atoms in C°(R") and
k=1

N 1
{Z I} 51
all k € {1,--- ,N}. Moreover, by r € [p, 1] and the fact that 7" is B,-sublinear, we have

N N N -
b= 2ol ITarlls, < SIS [ InP]” <1
k=1 k=1 k=1

In general, for any f € F;."(R"), by Lemma 6.1, there exists {gm }men C CZ°(R™) N Fy0 (R™)
that converges to f in F"(R") as m — co. By (6.2) and Definition 1.3(iii), {7'gm }men is a
Cauchy sequence in B, and hence it converges to some element in ,., which we denote by T'f,
namely, T f= n}gnoo T, in B,. Notice that T is well defined based on (6.2) and Definition

75w (rn)- By the assumption of Theorem 1.4, we see that [ Tay|s, < 1 for

ITf]

Fiig (R (6.2)

1.3(iii). Consequently, |Tf[|s, = lm [Tgmls, < lm ||gmllrse@ny S I flIFs@@n), which
m—00 m—00 ’

completes the proof of Theorem 1.4.

7 Proof of Theorem 1.5
In this section, we apply Theorem 1.4 to show Theorem 1.5.

Proof of Theorem 1.5 Notice that F};;"(R"), for p € (0,1] and ¢ € [p,00), is a p-quasi-
Banach space. By Theorem 1.4, it suffices to show that, for any (p, ¢, s),-atom a supported on
a cube @,

IR all e oy S 1. (7.1)

To this end, by Theorem 1.1, we only need to show that ||§f’q(R}°C a)llpr,@mny S 1, where

o0

1
S, RPa)@) = > sup 286 s (RIa)y)7]", weR™.
ko lz—y|<27F
Here ¢9 € D(R™), ¢ := ¢dg — 2 "¢p(27 1) satisfies the vanishing moments up to order L >
max{—1, |s|}, and ¢; := 2"%¢(2*.) for k € N. Without loss of generality, we may assume that
every supp (¢r) C B(0,27%) and L > |s|.
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By the support conditions of a and ¢y, together with the definition of RIOC, we see that
supp (qu(Rloc a)) C {x € R" : |z —cg| < ¢(Q) + 3}. Applying Holder’s inequality with
++ Ty ), = 1 and Lemma 2.2(ii), we know that

HSf,q(RJ!OC a)ll Lz, &n)

[e )

{ /| ld(QHg[Z sup |26+ () a)(y)|| w(a)da |

ko lz—yl<2=F

Q=

[w(Q)]7 7.

By the Calderén reproducing formulae and the fact that R}OC commutates with the convolution
operator, we conclude that, for all y € R™,

ok * (R} a) Z bk * i+ (R} (¢ % a))(y),

where 1; and ¢; are as in Lemma 2.3 (here we also assume that 1; and ¢; are supported on
B(0,27%), and {¢;}22, have vanishing moments up to order L > |s|). Furthermore,

1
RI,OC < 9- |k—i|L / Rl_oc ) d
60+ R afy)| < Z R o I A ITICT

where we used again [6, Lemma 2 in p. 121 and Lemma 4 in p. 122] (see also [17, Corollary 3.1]).
As g > 1, using Holder’s inequality and the definition of A;OC (R™) gives that, when |z —y| < 27,
1 / )
_— R (¢ * a)(z)|dz
277+ 279" Jiy—zjca-ki2—i IRy (@ )

1 1
< loc (o0 o q a
ey /||+ [RI® (6 a) (2)] (2]

Notice that L is taken to be larger than |s|. Then, applying Holder’s inequality again, we obtain
sup 2"k * (R} a)(y)[*

\x—y\<2*k

2zsq2 |k—i|L

loc .
~ Z J? 2-k + 2 )) /IZ<2—k+1+2—7: |RJ (QS’L * G)(Z)|qTU(Z)dZ

By this and Fubini’s theorem, together with the fact that
/ 1
o z|<2-k+140-1 W(B(x,27F +271))

w(z)dr <1,

we see that
o0 1

{/|$—0Q|<€(Q)+3 [Z sup |2ks¢k * (R]loc a)(y)lq} w(J?)da:} 4

k—o lz—yl<27k

oo

{2 [ mE G}

i=0
Then, using the fact that R}OC is bounded on L% (R™) and the size condition of a (p, g, s),-atom,
we see that the last quality in the above estimate is bounded by

o0

(S0 [ Joraiuee) <l

i=0

S

poany S [w(Q)] 77

Thus, |\§f’q(7€}°c a)lls,rny S 1. Hence, (7.1) holds and we complete the proof of the theorem.
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