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3-Lie Algebras Realized by Cubic Matrices*

Ruipu BAI' Hui LIU?  Meng ZHANG!

Abstract Associative multiplications of cubic matrices are provided. The N3-dimensional
3-Lie algebras are realized by cubic matrices, and structures of the 3-Lie algebras are
studied.
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1 Introduction

Kerner in [1] presented the survey which scattered in a series of papers whose common
denominator is the use of cubic relations in various algebraic structures, and constructed the
non-associative ternary algebra of cubic matrices (the object with elements having three in-
dices). For cubic matrices A = (aijx), B = (biji), C = (ciji), 1 < 4,7,k < 2, Kerner de-

fined the ternary multiplication of three cubic matrices (A @ B @ C)ijx = Y. GipgbpjrCrqk,
par
and (A * B * C)ijr = Y Gpigbgjrcri; in [1]. The symmetry properties of the ternary alge-
par
bras were studied, and the Zs-graded generalization of Grassmann algebras, a ternary gener-

alization of Clifford algebras, also the description of quark fields were discussed. Awata, Li,
Minicc and Yoneyad in [2] presented several nontrivial examples of the 3-dimensional quantum

Nambu bracket with cubic matrices. For cubic matrices A = (aijx), B = (bijr), C = (ciji),

N N
1<1i,j,k <N, they defined the traces functions: (A) = > apmp, (AB) = > apmelgmp
p,m=1 p,m,q=1
N
and (ABC) = > apmqPgmrCrmp, which satisfy
p,ym,q,r=1

(AB) = (BA), (ABC) = (BCA) = (CAB),

defined the multiplication of three cubic matrices (ABC) by (ABC)ijk = Y. AijpBgmqeChijk,
then obtain a skew-symmetric quantum Nambu bracket

[A, B,C] = (ABC) + (BCA) + (CAB) — (ACB) — (BAC) — (CBA),

which satisfies the generalized Jacobi identity (3.1).
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The multi-index constants are often used to describe structures of algebras. For example,

if L is a 3-Lie algebra (see [3]) with a basis 1, - ,2x, the entire multiplication table can be

N
described by the structure constants afﬂ which occur in the expression [z;,z;, 2] = > afﬂxk.
k=1

Then we obtain a four indices matrix A = (afﬂ) which satisfies afl inia

k

- Sgn(a)aio(l)io(mio(s)

and % (afjla’,;mn + afmna};lj + a?mna’zlk) = 0, where o is arbitrary 3-ary permutation. In [4],
the aku:tilors studied structures of 2-step nilpotent metric 3-Lie algebras by means of four indices
matrices. By the properties of four indices matrices, it is proved that there do not exist 2, 4,
6 and 10-dimensional 2-step nilpotent metric 3-Lie algebras with corank zero, there exist 8, or
greater than 10-dimensional 2-step nilpotent metric 3-Lie algebras with corank zero. And up to
isomorphisms only one 8-dimensional 2-step nilpotent metric 3-Lie algebras with corank zero.

In this paper, we discuss the multiplications of two cubic matrices which satisfy the asso-
ciative law, and define the sth-determinant, and “traces” of cubic matrix. By means of cubic

matrices, we construct 3-Lie algebras.

Throughout this paper, we assume that the cubic matrices are over a field F' of characteristic
L i=7,
0, 1 #j

zero, and the symbol 6;; = { for positive integers i and j.

2 Multiplications of Cubic Matrix

An N-order cubic matrix A = (a;jx) over a field F' is an ordered object which the elements
with 3 indices 4,7,k and 1 < i,5,k < N. The element in the position (i,j, k) is denoted by
(A)iji = aijr, 1 <14,j,k < N.

Denote the set of all cubic matrices over a field F by Q. Then € is an N3-dimensional vector

space over F' with

A+ B= (aijk + bijk) S Q, A = ()\aijk) S Q,

VA = (aijk), B = (bijk) S Q, A € F, that is, (A + B)ijk = Gk + bijk, ()\A)ijk = )\aijk.

Denote Ejj; a cubic matrix which the element in the position (4,7, k) is 1 and elsewhere
N

are zero, that is, Ejjx = (Gimn) With Gimn = 0i0jmOkn, 1 < I,m,n < N; E; = > Ejjj,
j=1

1 < j < N. Then {Ejj, 1 < 4,5,k < N} is a basis of Q, and for every A = (a;jx) € Q,

A= Y ayrEik, aigr € F.
1<ij k<N
Every cubic matrix A can be written as the following three types of blocking forms:

A:(A%avA}\/')v A:(A%aaA?V)a A:(A(fvaA‘JSV)a

where A} = (a;j), A? = (ajir), A? = (a;1i) are usual (N x N)-order matrices with the elements
Qijk, Qjik, Gjk; at the position of the jth-row and the kth-column, respectively, 1 <14 < V.

Define the multiplications #, of cubic matrices are as follows: VA = (ai;x), B = (biji) € Q,
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Ax.s B=

B)ijk), 1 <,j,k < N, where

N N
(A1 B)ijk = Y aijpbipr,  (A*12 B)ijie = > apjibijp,

p=1

p=1

(As1s B)ijk = Y Gipkbpje,  (Axo1 B)ij = Y agjpbipk,

p=1
(A x92 B)iji = E apitbigp,
p,q=1
N
(A4 B)ije = Y aijpbaph,
pq 1

p,q=1
N
(A 23 B)iji = E Wipgbpjk
p,q=1
N
(Asas B)ijk = Y apgrbijp,
p,q=1

(A %96 B)iji = Z @ipkbpjgs

e N N
_ 1 2 _
(o B = (3 41), (2 53), = 3 b
g=1 p=1 p,q=1
N N N
(A *28 B)ijk = (Z Ai)zk(z BJ) Z azqkszp;
p=1 q=1 p,q=1
N N N
_ 3 1 _
(A *29 B)ijk = (ZAp>ij (Z Bq)jk = Z aijqu-k,
p=1 q=1 p,q=1
N N
Ao B = 3 aa(SB) = 3w
P,q=1 r=1 Jk p.g,r=1
N N
(Axas Bk = ) aqu(ZBf) . Y agipbirk,
p,q=1 r=1 ¢ p,q,r=1
N N N
(A *33 B)ij. = Z aqu(ZB;f) = Z apqibijr-
P,q=1 r=1 Y pgr=1
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(2.1)

Then the multiplications of two cubic matrices defined as above in the blocking form are as

follows:

A*llBZ
A*12B:
A*lgBZ

A*QQB:

A*QgBZ

A*24B

p=1 p=1

((A*11 B)i,---, (A*u B)y) = (A} Bi,--- , AyBy),
((A *12 B)%a 7(A *12 B)?V) = (B%Afv 7B]2VA?V)7
((Ax1z B)Y, -+, (Axi3 B)y) = (A}BY, -+, AYBY),
N
B=((Asn Bl (Asa BYY) = (Y ALBL- -, ZAlBN)
p=1
N N
(A2 BY, o, (Ao BYR) = (D0 B2A3,-- .Y BRAY)
p=1 p=1
N N
(Ass BYY, o+, (Aag BY) = (D ALBL- > ALBY)
p=1 p=1
N N
= (A B)L, o (Ao BN) = (ALY Bl AR B)

)

)

)
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N
A*25B=((A*25B)%,--- (A*25B (BQZA ,BJQVZA?)),

p=1

N
Akog B = ((Asag B)3, -, (Axos BY% (A?’ZB ~~,A;°’VZBS),

p=1

where A7 B} is the product of two (N x N)-order matrices A and B}.
Define the linear isomorphism 7 : @ — Q, that is, VA = (ai;x) € Q,
T(A) = A" = (aj;),  (AT)ijr = ajjp = arij = (A)rij, 1<4,5,k < N.

Then 7 satisfies 73 = Idg, and

Theorem 2.1 (Q,%11), (Q,%21), (X, *22), (Q,*27) and (2, *31) are non-isomorphic asso-
ciative algebras. And there exists the unit element U(1) = (wijx) in (€, %11), where w;jix = Ojk,
1 <i,5,k <N, that is, for every A € (Q,%11), Ax11 U(1) = U(1) %11 A = A. And the mul-
tiplication tables of the associative algebras in the basis {Eyji, 1 <1i,j,k < N} are as follows,
respectively,

Eijk #11 Eimn = 0i10km Eijin,

Eiji %21 Eimn = Okm Eijn,

Eijk *22 Eyn = bin Euji, (2.2)
Eiji *27 Etmn = OrxnElji,

Eijk *31 Eimn = Eimn, 1 <4, j,k,l,m,n < N.

Proof The result follows from the direct computations.

The determinant |A| of a cubic matrix A is defined as
|A] = det(A})-- - det(AL) Hdet (AD). (2.3)

Then we have |A %11 B| = |B x11 A| = |A||B|, |U(1 )| = 1. If [A] # 0, then A is called a
non-degenerate cubic matrix, the inverse cubic matrix of A is denoted by A=, that is,
A *11 A_l = A_l *11 A= U(l)
And for arbitrary non-degenerate cubic matrices A and B, we have (A4 #11 B)_1 =B ltx AL,
A7 = -
For constructing 3-Lie algebras by cubic matrices according to the multiplications 11, %21,

k92, *o7, *31, we define the “sth-trace” linear functions ( )s : Q@ — F, s = 1,2,3,4 as follows:
VA = (aijk) € Q,

N N N N
A = Z apgq, (A2 = Z Apgp,  (A)z = Z Appgs  (A)s = Z Apgr- (2.4)

p,q=1 p,q=1 p,q=1 p,q,r=1
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Theorem 2.2  For arbitrary cubic matrices A, B € Q, we have
(Eiji)1 = 0k, (EBijr)2 = 0,  (Eijr)z = 05,  (Eijr)a = 1,
(Ax11 B)1 = (B*11 A)1,  (Axo1 B)1 = (B *g1 A)1, (Axgp B)o = (B2 A)a,
<A *97 B>4 = <B *97 A>4, <A *31 B>4 = <B *31 A>4

Proof The result follows from the direct computations.

3 Construction of 3-Lie Algebras by Cubic Matrix

In this section we construct 3-Lie algebras by cubic matrices. First we introduce some
notions on n-Lie algebras (see [3]).
An n-Lie algebra J over a field F' is a vector space endowed with an n-ary multilinear skew-

symmetric multiplication which satisfies the n-Jacobi identity: Va1, , 2y, Y2, ,Yn € J,
n
[[1‘1, e ,$n],y2, T ayn] = Z[xla T [x%yQa e 7yn]7 e ,J)n]. (31)
i=1
The n-ary skew-symmetry of the operation [z1,- - , ;] means that
[xlv T 7xn] = Sgn(a)[xa(l)a T 7xa(n)]a vxlv T, T € J

for any permutation o € S,,. A subspace W of J is called a subalgebra if [W,... ., W] C W. In

particular, the subalgebra generated by the vectors [x1, - -, x,] for any z1,--- ,z, € J is called
the derived algebra of .J, which is denoted by J!. If J! = 0, then J is called an abelian n-Lie
algebra.

An ideal of an n-Lie algebra J is a subspace I such that [I,J,---,J] C I.

An ideal I of an n-Lie algebra .J is called nilpotent, if I* = 0 for some s > 0, where I° = I
and I°® is defined as I° = [[*"1 I, J,---,J] for s > 1. If I = J, then J is nilpotent n-Lie
algebra. If

Jr=1J -, J] =0,
then J is called a 2-step nilpotent n-Lie algebra.

The subset Z(J) ={x € L | [x,y1, - ,Yn—1] =0, Yy1, -+ ,yn—1 € L} is called the center
of J.

Now we define the 3-ary linear multiplications on €2 as follows according to the multiplica-
tions *11, %21, %22, *97 and x31: VA, B,C € Q,

[A,B,C]11 = (A)1(B#11 C —C %11 B) + (B)1(C %11 A — Ax1; C)
+(C)1(A %11 B — B*11 A),

[A, B,Cla1 = (A)1(B %21 C — C %21 B) + (B)1(C %91 A — A %91 C)

+(C)1(A %21 B — B %91 A),

[A, B,Cla2 = (A)2(B #32 C — C %92 B) + (B)2(C %22 A — A %92 C)

+(C)2(A %92 B — B *9g A),

[A, B,Clar = (A)4(B %27 C — C %27 B) + (B)4(C %97 A — A %97 C)

+(C)4(A %37 B — B %97 A),

[A,B,Cl31 = (AY4(B 31 C — C %31 B) 4+ (B)4(C %31 A — A %31 C)

+(C)4(Ax31 B— B3, A).
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Theorem 3.1 The 3-ary algebras (2, [,,]11), (2, 1[,,]21), (2, 1],,]22), (2, 1],,]27) and (2, [,,]31)
are 3-Lie algebras, which are denoted by Ji1, Jo1, Jao, Jor and Jsq, respectively.

Proof Thanks to Proposition 2.2, VA, B € (,

<A*22B—B*22A> ZO <A*11B—B*11A>1:<A*21B—B*21A>1:O,
<A *27B B*27 A>4— <A *31B—B*31 A>4:

Following from Theorems 2.1 and 3.1 in [5], (2, [,,]11), (%, [,,]21), (%, [,,]22), (£,],,]27) and
(Q,[,,]31) are 3-Lie algebras.

Define the linear isomorphism w:  — €, that is, VA = (a,) € Q, w(A) = (a};;), where
(w(A))ijr = a;jk = ajit = (A)jik, 1 < i,75,k < N. Then by Theorems 2.1-2.2, for arbitrary
A,B € Q, w(Axge B) = w(B) x21 w(A), (A)2 = (w(A))1. Then

w([A, B,C22) = w({A)2(B %23 C' — C %99 B) + (B)a(C %32 A — A %95 C)
+ (CY2(A %99 B — B x99 A))
—(A)2(w(B) *21 w(C) = w(C) *21 w(B)) = (B)a(w(C) *21 w(A)
— w(A) 521 0(C)) = (C)a (W(A) ¥a1 w(B) — w(B) 21 w(A))
—[w(4),w(B),w(C)]a21-
Therefore, 3-Lie algebra Jso is anti-isomorphic to 3-Lie algebra Js; in the isomorphism w :
Jag — Joi, that is, VA, B,C € Q, w([A, B, Cla2) = —[w(A),w(B),w(C)]21.

Following from the multiplications 11, *21, %97 and *31, the multiplication tables of the
3-Lie algebras in the basis {E;jx,1 < 7,7,k < N} are as follows:

[Eijlm EleH qur]ll = 5jk51p(5anlmr - 5rmElqn) + 5mn5pi (5rjEiqk - 5quijr)

+ 0gr-01i (Okm Eijn — 6nj Eimk), (3.3)
[Eijks Etmns Epgrl21 = 6jk0ng Epmr — SmnOkq Epjr + 0grOkm Eijn

— 0k0rmEign + 0mn0rj Eigk — 0gr0nj Eimk, (3.4)
[Eijkv Eimn, quv"]27 = 0rn(E pmn Elqn) + 5kr(Eiqv" - Epjr) + 5kn(Eljk — Eimk), (3.5)
[Eijks Eimns Erpglst = Eipg — Eipg + Eimn — Ermn + Erji — Eij, (3.6)

Where 1 Si)j7k)l)m7n’p7q’/r§N'

4 Structures of 3-Lie Algebras J,.

Now we study the structures of the 3-Lie algebras Ji1, Jo1, Jo7 and J31. First, we study the
structure of 3-Lie algebra J;1. Denote

JllL:{A€Q|A:(A%7"' 7A}V):(OavAllv 70)}a l:]-a"'vN~
For every A € Ji1, A= (A},0,---,0) + (0,A43,0,---,0) + -+ (0,---,0, AY), then

Ji = Jiy 4y
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as the direct sum of subspaces. From the multiplication (3.3), we have

[Elnm;Eljj;Elmn]ll = _Elnn + Elmm7 1 <m 7é n < N,

[Elpm7Eljj7Elmn]1l = _Elpvu 1 < p 7& m,p 7& n,m 7& n < N,
[Elnq;EljjaElmn]llelmqa 1§(I7ém7Q#nam7én§Na
[ElpmvEljjaElmm]ll:_Elpma ]_Sp#mvp#],m;éjgj\f’
[Etjms Eijj, Etmml11 = —2Eijm, 1<m#j<N, (4.1)
[Elmq;EljjvElmm]llelmm 1§q7ém7m7éj7q7éj§N,

[Eijq> Eijjs Eimmlin = —Eijq, I1<q#jq#mm#j<N,

[Eipj> Eijjs Eimm]11 = Ep;, I<p#jp#mm#j<N,

[Eijjs Eigm, Eimn]11 = Eign, 1<qg#n,i#l<N.

Then Jy1,,1 <1 < N are subalgebras and satisfy

N N-1
Jh, =Y FE;+ Y F(Eui — Eipiiq1), 1<1<N, (42)
i=1 i=1

i
[Jlli’Jllj)Jlll,]:ll:O’ [JlllaJllmJllj]U:Jllllv ]-SZ#]a ]#la Z#ZSN (43)

And the center of Jqq is

N N
Z(Ju)=)» F(BEyi—E), E =Y Ej, 1<i<N (4.4)
=2 j=1

Summarizing above discussions, we obtain the following result.

Theorem 4.1 (1) The 3-Lie algebra Ji1 can be decomposed into the direct sum of subal-
gebras

J11:J1114‘J112+""5‘J11N, J111:J1111+J1112+"'+J111N7 [JlllaJlllvjlll]llzov

and the derived algebra Jllll of Ji1, are minimal ideals of J11, 1 <1< N.

(2) For arbitrary 1 < p; < pa < -+ < pr < N, the subspace Ji, - —i—.]npk is a subalgebra
of Ji1-

(3) Ju1 is the semidirect product Ji1 = I+FEy, where I = J}+Z(J11) is the mazimal ideal
of J11 with codimension one.

Proof The result follows from identities (4.1)—(4.4).

Next we study the structure of the 3-Lie algebra Jo;. For every A € €,

N N
=2 1=2
Denote

N
O={AcQ|A=(A]l--- Ay) = (A0, ,0)} = Y  FEimn,

m,n=1

N
qz:{AemA:(A}-.-,A}V), ;A}ZO}.
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N
Then 2 = &4V as the direct sum of subspaces and for every A € ¥, (A); = 3 apqq = 0.
p,q=1
Since identity (3.4) and (A); = 0 for A € ¥, ¥ is an (N? — N?)-dimensional abelian ideal

of Ja1, that is, [¥, U, Jo1]21 = 0, and @ is a subalgebra with

N N
' = [0,D, Py = Z FEim, + Z F(Er1 — Bunm)-
m,n=1 m=2

m£n

Summarizing the above discussions, we obtain the following result.

Theorem 4.2 (1) The 3-Lie algebra Joy = J3, + FE111, where

N N N N

Ty = Z FEpij + Z Z F(Ei — Bpii) + Z F(Ein — Eui), (4.5)

hyij=1, i h=2 i=1 i=2
[J2117J211aJ21]21:J211a [J2117J2117J211]21:O'

N N
(2) The 3-Lie algebra Jop is the semidirect product Jo; = U+®, and ¥ = > 3 Q7 is an

1=2n=1
(N3 — N?)-dimensional abelian ideal of Jo1, and ® is a subalgebra with

N N
' = [0,D, Py = Z FEim, + Z F(Er1 — Bunm)-

m,n=1 m=2
m#n

N N
(3) The abelian ideal ¥ has a decomposition ¥ = >~ >~ QF, where

i=2n=1

N
QF =Y F(Bimn — Bimn), i=2,--,N, n=1,---,N
m=1

are (N — 1)-dimensional minimal ideals of Jo1. Therefore, QF, i = 2,--- N, n=1,--- N,

are irreducible modules of Ja1.

N
Proof The results (1) and (2) follow from the identity (3.4). Denote QF = > F(Eimn —
m=1

N N
Eimn),i1=2,--- ,N,n=1,--- N, then ¥ = ) > QF is the direct sum of subspaces. Since

i=2n=1

the identity (2.2) and Proposition 2.2,
[Evmn — Eimn, Eiji, Erpglat
= (Eijk)1(Erpq *21 (Bimn — Eimn) — (E1mn — Eimn) %21 Erpg)
+ (Erpg) 1 (Bimn — Eimn) *21 Eijk — Eijk %21 (Evmn — Eimn))
= jk(sqm(Elpn - Eipn) + 5pq5km(E1jn - Eun)
Therefore, Q7, i =2,--- ,N, n=1,---, N, are minimal ideals of Js;.
Now we study the structure of the 3-Lie algebra Jo7. Denote

N
Jor, ={A€ Q| A= (Sppaijp) = (0, A3.0,---,0)}, Q=) FEjj,, 1<i,p<N.

J=1
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Since identity (3.5),

[Eijks Etmn, Epgrlor

0, k#r, k#n, n#r,
= Epmn - Elqn7 k 7é n,n=r, (46)
Epmn - Elqn + Eiqn - Epjn + Eljn - Eimn; k=n=r.

Then Jo7,, 1 < p < N, are subalgebras and J217p = > F(Eup— Eijp). Since
itj>2

[Eijks Eimks Binkl2r = —Eimk + Eijk — Eink + Eimk — Eiji + Eing, = 0,

[ ;, ;, Q;]W = 0. Therefore, Q¥ are abelian subalgebras, 1 < i,p < N. And

N N
Jor = Z Z F(Evy, — Eyr), dimJy, = N? — 1.
k=1i+j>2

Theorem 4.3 The 3-Lie algebra Jor is an indecomposable 3-Lie algebra, and Jo7 can be

decomposed into the direct sum of subalgebras
Jor = Jor,+ -+ oz, + - FJory
For arbitrary 1 < p1,--+ ,pm < N, Jog, +---4Jor, and QV'+Q+- - +QV™ are subalgebras
of Joz.
Proof The result follows from identities (3.5) and (4.6).
Lastly, we study the structure of the 3-Lie algebra Js;. Denote

J31p:{A€J31|A:(A%7"'7A;(1;a"'aA}V):(Ov"'aovAgl;"'aO)}v 1<p<N.

Theorem 4.4 (1) The 3-Lie algebra Js1 is a 2-step-nilpotent 3-Lie algebra,

N N N
J3 = Z Z F(Evji — Epji + Epi1 — Ein) + Z F(Evk — Epik + Ep11 — En1). (4.7)
p,j=2k=1 p,k=2

(2) The 3-Lie algebra Js1 can be decomposed into the direct sum of abelian subalgebras

J31 = Ja1, Tz, ATy

Proof The identity (4.7) follows from the direct computation according to the multiplication
(3.6). By the identities (2.2) and (2.4), we have Ejji *31 Eimn = Eimn and (Ejjg)a = 1,
1<4,4,k,l,m,n <N. Then for arbitrary Eiji, Eimn, Erpgs Eeyzs Buvw,

([Eijk, Etmns Erpglst, Ezyz, Euvw]31
= [Eipg — Ermn — Eijk + Eimn — Eipqg + Erjk, Evyzy Euvw]s1
= (Eipg — Ermn — Eiji + Eimn — Eipg + Erji) *#31 Egy-
— Euyz %31 (Eipg — Ermn — Eiji + Eimn — Eipg + Erji)
+ Euvw *31 (Eipg — Ermn — Eiji + Eimn — Eipg + Erji)
— (Eipqg — Ermn — Eijie + Eimn — Eipg + Erji) #31 Eyvw = 0.
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Therefore, Js; is 2-step-nilpotent. The result (1) holds.
It is clear that
Js1 = Js1, s, 1y

as the direct sum of subspaces. For 1 <, j,k,l,m,n,p,q,r < N, from identity (3.6),
[Eijks Eimn, Eipgls1 = Eipg — Pipg + Eimn — Eimn + Eiji — Eiji =0,

then J3;,, 1 <p < N are abelian subalgebras but non-ideals. It follows the result (2).
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