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1 Introduction

After the works of Shor [11] and Steane [12–13] in 1995–1996, the theory of quantum error-
correcting codes developed rapidly. In 1998, Calderbank et al. [2] presented systematic methods
to construct binary quantum codes, called stabilizer codes or additive codes, from classical error-
correcting codes. At the same time, the stabilizer method was generalized to non-binary quan-
tum codes and new methods were found to construct non-additive quantum codes. Recently,
a number of new types of quantum codes, such as convolutional quantum codes, subsystem
quantum codes and asymmetric quantum codes, were studied and the stabilizer method was
extended to these variations of quantum codes. In particular, there were intensive activities in
the area of asymmetric quantum codes (see [1, 3, 8–9, 16]).

The current paper concentrates on the asymmetric quantum codes which deal with the
case, in which dephasing errors (Z-errors) happen more frequently than qubit-flipping errors
(X-errors) (see [12–13]). Such codes are used in fault tolerant operations of a quantum com-
puter carrying controlled and measured quantum information over asymmetric channels (see
[14]). The characterization of non-additive symmetric quantum codes was given in [5–6] to the
asymmetric case, and several examples of good asymmetric quantum codes were shown in [15].

In this paper, we deal with the asymmetric case of the more general quantum codes,
called inhomogeneous quantum codes. An inhomogeneous quantum code is a subspace of
C

q1 ⊗ Cq2 ⊗ · · · ⊗ Cqn , where q1, · · · , qn may take different positive integers. Inhomogeneous
quantum codes were researched as early as in 1999 (see [7, 9]), and it seems that such kind of
quantum codes has not been well-developed since then. The general formulation of symmetric
inhomogeneous quantum codes was defined, and the stabilizer (additive) construction and non-
additive construction were extended to the symmetric inhomogeneous case in [4, 15]. The main
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aim of this paper is to establish the stabilizer and non-additive constructions for asymmetric
inhomogeneous quantum codes and present several series of good asymmetric inhomogeneous
quantum codes by using these constructions.

This paper is organized as follows. In Section 2, we recall the basic facts on mixed classical
codes and inhomogeneous (symmetric) quantum codes introduced in [4]. Then we define asym-
metric inhomogeneous quantum codes as a slight variation of the symmetric ones. In Section 3,
we establish the stabilizer construction of asymmetric inhomogeneous quantum codes and show
some examples of good (additive) asymmetric inhomogeneous quantum codes by using the sta-
bilizer method. In Section 4, we present a new characterization of asymmetric inhomogeneous
quantum codes and show some non-additive asymmetric inhomogeneous quantum codes as an
application of the new characterization.

2 Preliminaries

2.1 Mixed classical codes

We recall some basic facts on mixed classical codes introduced in [4]. These facts will be
used to construct asymmetric inhomogeneous quantum codes in the next two sections. Let
A = A1 ⊕A2 ⊕ · · · ⊕An be a finite abelian group and |Ai| = qi (1 ≤ i ≤ n). We assume that

2 ≤ q1 ≤ q2 ≤ · · · ≤ qn. (2.1)

For a = (a1, · · · , an) and b = (b1, · · · , bn) in A (ai, bi ∈ Ai), 1 ≤ i ≤ n, we define the Hamming
weight of a by

wH(a) = �{i : 1 ≤ i ≤ n, ai �= 0},
and the Hamming distance between a and b by

dH(a, b) = �{i : 1 ≤ i ≤ n, ai �= bi} = wH(a− b).

Definition 2.1 A (classical) mixed code C on A is a subset of A with the size K = |C| ≥ 2.
The minimal distance of C is defined by

d = d(C) = min{wH(c− c′) : c, c′ ∈, c �= c′}.

We call (A,K, d) the parameters of C. A mixed code C on A is called additive if C is a
subgroup of A. For the additive code C, we have d(C) = min{wH(C) : 0 �= c ∈ C}. A mixed
code C with the minimal distance d can detect ≤ d− 1 digits of errors or correct ≤ [d−1

2 ] digits
of errors. One of the basic problems in the classical coding theory is to construct mixed codes
having larger efficiency |C|

|A| = K
N (N = q1 · · · qn) and larger d = d(C). We have the following

Singleton bound (see [4, Lemma 3.2]):

K ≤ q1q2 · · · qn−d+1. (2.2)

One of the best classes of mixed codes is called MDS code which meets the Singleton
bound: K = q1q2 · · · qn−d+1. Some examples of the mixed MDS (algebraic geometry) codes
were presented in [4, Theorem 4.3].

Let Â = Hom(A,C∗) be the group of characters of A. It is known that we have an isomor-
phism of groups A→ Â, a 	→ χa and such isomorphism can be chosen to satisfy

χa(b) = χb(a), a, b ∈ A. (2.3)
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For an additive code C on A, the dual code C⊥ of C is defined by

C⊥ = {a ∈ A : χa(c) = 1 for all c ∈ C},

where C⊥ is additive and |C| · |C⊥| = |A|. In the next section, we use the following “symplectic”
mapping ( , )s to analyse and construct asymmetric inhomogeneous quantum codes

( , )s : A2 ×A2 → C
∗(= C\{0}),

where for v = (a|b), v′ = (a′|b′) (a, a′, b, b′ ∈ A),

(v, v′)s = χa(b′)−1χb(a′).

It can be seen that this mapping is a non-degenerate pairing which means that
(1) (v1 + v2, v

′)s = (v1, v′)s(v2, v′)s, (v, v′)s = (v′, v)−1
s ,

(2) (v, v′)s = 1 for all v′ ∈ A2 if and only if v = 0.
For a subgroup G of A2, the set

G⊥s = {v ∈ A2 : (v, v′)s = 1 for all v′ ∈ G}

is also a subgroup of A2, called the symplectic dual of G. It can be seen that |G| · |G⊥s | = |A2|
and (G⊥s)⊥s = G.

2.2 Asymmetric inhomogeneous quantum codes

Now we recall the notations on (symmetric) inhomogeneous quantum codes given in [4]. Let

V = V1 ⊗ V2 ⊗ · · · ⊗ Vn, Vi = C
qi , 1 ≤ i ≤ n.

For each i, let {|c〉 : c ∈ Ai} be a fixed orthonormal basis of Vi. Namely, for c, c′ ∈ Ai,

〈c | c′〉 =
{

1, if c = c′,
0, otherwise,

where 〈 | 〉 denotes the Hermitian inner product on the complex vector space Vi. Then V has
the following orthonormal basis:

{|c〉 = |c1c2 · · · cn〉 = |c1〉 ⊗ |c2〉 ⊗ · · · ⊗ |cn〉 : c = (c1, c2, · · · , cn) ∈ A} (2.4)

and |ci〉 is called the i-th quantum digit qubit of |c〉. An A-ary (inhomogeneous) quantum state
is a non-zero vector in V which is uniquely expressed by

|v〉 =
∑
c∈A

ϕ(c)|c〉, ϕ(c) ∈ C.

In quantum physics, two quantum states |v〉 =
∑
c
ϕ(c)|c〉 and |u〉 =

∑
c
ψ(c)|c〉 are called

indistinguishable if |v〉 = α|u〉 for some nonzero complex number α, namely, ϕ(c) = αψ(c) for
all c ∈ A. Such two quantum states are assumed the same in the quantum world. On the other
hand, |v〉 and |u〉 are called totally distinguishable if 〈v|u〉 =

∑
c∈A

ϕ(c)ψ(c) = 0, where ϕ(c) is

the complex conjugate of ϕ(c).
Now we introduce the quantum error group acting on V . Each quantum error is a unitary

(linear) operator on the complex vector space V . At each qudit, there are two types of errors
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X(ai) and Z(bi) (ai, bi ∈ Vi) acting on Vi = Cqi defined by their action on the basis {|c〉 : c ∈
Ai}:

X(ai)|c〉 = |ai + c〉, Z(bi)|c〉 = χbi(c)|c〉. (2.5)

On the quantum state space V = V1 ⊗V2 ⊗· · ·⊗Vn, we have quantum error operators X(a)
and Z(b), a = (a1, · · · , an), b = (b1, · · · , bn) ∈ A (ai, bi ∈ Ai) defined by their action on the
basis (2.4) as, for |c〉 = |c1c2 · · · cn〉 (ci ∈ Ai),

X(a)|c〉 = X(a1)|c1〉 ⊗X(a2)|c2〉 ⊗ · · · ⊗X(an)|cn〉
= |a1 + c1〉 ⊗ |a2 + c2〉 ⊗ · · · ⊗ |an + cn〉 = |a+ c〉,

Z(b)|c〉 = Z(b1)|c1〉 ⊗ Z(b2)|c2〉 ⊗ · · · ⊗ Z(bn)|cn〉
= χb1(c1)|c1〉 ⊗ χb2(c2)|c2〉 ⊗ · · · ⊗ χbn(cn)|cn〉
= χb(c)|c〉. (2.6)

Let m be the exponent of the group A. Namely, m is the smallest positive integer, such that
ma = 0 for all a ∈ A. Then the values of all characters χ ∈ Â are the power of ω = e

2π
√−1
m .

The (non-abelian) quantum error group of V is

En = {ωλX(a)Z(b) : λ ∈ {0, 1, · · · ,m− 1}, a, b ∈ A}.

The mapping
En → En = A2, ε = ωλX(a)Z(b) 	→ ε = (a | b)

is an epimorphism from the group En to the additive group A2 = A⊕A. The following result
is a starting point on the stabilizer construction of inhomogeneous quantum codes.

Lemma 2.1 A subgroup G of En is abelian if and only if G = {e : e ∈ G} is a symplective
self-orthogonal subgroup of A2 (namely, G ⊆ (G

⊥s)).

Definition 2.2 For a quantum error e = ωλX(a)Z(b) ∈ En and e = (a | b) ∈ En = A2

(a = (a1, · · · , an), b = (b1, · · · bn), ai, bi ∈ A), we define their quantum weight wQ, X-weight
wX and Z-weight wZ by

wQ(e) = wQ(e) = �{i : 1 ≤ i ≤ n, (ai, bi) �= (0, 0) ∈ A2
i },

wX(e) = wX(e) = �{i : 1 ≤ i ≤ n, ai �= 0},
wZ(e) = wZ(e) = �{i : 1 ≤ i ≤ n, bi �= 0},

respectively. Namely, wQ is the number of qubits, where the quantum error X(ai)Z(bi) �=
I occurs. wX and wZ are the numbers of qubits, where the X-error and the Z-error occur
respectively.

Now we define the inhomogeneous quantum codes over A.

Definition 2.3 An inhomogeneous quantum code Q over A is a complex vector subspace of
V with dimension K = dimC Q ≥ 1. Each non-zero vector in Q is called a codeword.

For K ≥ 2, we call that a quantum error e ∈ En can be detected by Q, if for any |v〉 and
|v′〉 in Q such that 〈v|v′〉 = 0 (i.e., |v〉 and |v′〉 are totally distinguishable), we have 〈v|e|v′〉 = 0
(i.e., |v〉 and e|v′〉 are distinguishable). More generally, for a subset S of En, we call that S can
be detected by Q, if each e ∈ S can be detected by Q.
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A (symmetric) inhomogeneous quantum code Q over A is called to have parameters (A,K, d)
(d ≥ 1) if K = dimQ and the set of quantum errors

En(d− 1) = {e ∈ En : wQ(e) ≤ d− 1}
can be detected by Q.

The Asymmetric quantum code is a slight variation of the symmetric one. Let dX , dZ ≥ 1.

Definition 2.4 An inhomogeneous quantum code Q over A is called asymmetric with pa-
rameters

(
A,K, dz

dx

)
, if the set of quantum errors

En

(
dz − 1

dx
− 1

)
= {e ∈ En : wZ(e) ≤ dz − 1, wX(e) ≤ dx − 1}

can be detected by Q. Such a code Q is called pure for dz

dx
, if for any |v〉 and |v′〉 in Q (not

necessarily 〈v|v′〉 = 0) and any e ∈ En

(
dz − 1

dx
− 1

)
, wQ(e) ≥ 1, we have 〈v|e|v′〉 = 0. When

K = 1, an asymmetric inhomogeneous quantum code with parameters
(
A, 1, dz

dx

)
is always pure

for dz

dx
.

One of the basic problems in the quantum code theory is to construct asymmetric inho-
mogeneous quantum codes with large efficiency dim Q

dim V = K
N (N = |A| = q1 · · · qn) and larger

dX , dZ (good ability to detect and correct quantum errors). As the cases of usual classical
and quantum codes, we have bounds of the parameters to judge the goodness of asymmetric
inhomogeneous quantum codes. Let Q be a pure quantum code with parameters

(
A,K, dz

dx

)
.

By the definition of pure quantum codes and the inequalities wX(ee′) ≤ wX(e) + wX(e′) and
wZ(ee′) ≤ wZ(e) + wZ(e′) for e, e′ ∈ En, we have that the N(dz , dx) subspaces of V

e(Q) = {e|v〉 : |v〉 ∈ Q}, e ∈ En

([
dz−1

2

][
dx−1

2

])

are orthogonal to each other, where

N(dz, dx) =
∣∣∣En

([
dz−1

2

][
dx−1

2

])∣∣∣ = N(dz)N(dx)

with

N(d) =
[ d−1

2 ]∑
λ=0

∑
1≤i1<···<iλ≤n

(qi1 − 1) · · · (qiλ
− 1)

(
n
λ

)
.

Therefore, we get the following Hamming bound for pure quantum codes:

|A|(= q1 · · · qn) ≥ K ·N(dx)N(dz).

The quantum code with parameters
(
A,K, dz

dx

)
is called perfect if |A| = K · N(dx)N(dz). On

the other hand, we will show that for some asymmetric quantum codes constructed in Sections
3 and 4, we have the following Singleton bound:

K ≤ q1q2 · · · qn−dX+1q1q2 · · · qn−dZ+1

q1q2 · · · qn . (2.7)

It seems that this Singleton bound may be true for all asymmetric inhomogeneous quantum
codes. As in the classical case, an asymmetric inhomogeneous quantum code is called an MDS
code, if the equality in (2.7) holds.
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In the next section, we establish the stabilizer construction of asymmetric inhomogeneous
quantum codes and present examples of perfect or MDS codes by using this construction.

At the end of this section, we remark that the asymmetric quantum code with parame-
ters

(
A,K, dz

dx

)
has more powerful ability than the symmetric quantum code with parameters

(A,K, d), since the detected set En

(
d− 1

d − 1
)

is usually larger than the set En(d− 1).

3 Stabilizer (Additive) Asymmetric Inhomogeneous Quantum Codes

In this section, we give the stabilizer construction of asymmetric inhomogeneous quantum
codes as a generalization of such construction in the symmetric case (see [2, 4]) and the asym-
metric usual case (see [16] for Ai = Fq (1 ≤ i ≤ n)). As in Section 2, let A = A1 ⊕ · · · ⊕An, Ai

be an abelian group and |Ai| = qi. We fix an isomorphism A→ Â, a 	→ χa, such that formula
(2.3) holds.

Theorem 3.1 If there exists a classical additive mixed code C in A ⊕ A and C ⊆ C⊥s ,
then there exists an asymmetric inhomogeneous quantum code Q in V with dimQ = |A|

|C| and
S = {e ∈ En : wX(e) ≤ wX(C⊥s\C) − 1 or wZ(e) ≤ wZ(C⊥s\C) − 1} can be detected by Q.
Particularly, Q has parameters

(
A,K, dz

dx

)
, where

K =
|A|
|C| , dx = wX(C⊥s\C), dz = wZ(C⊥s\C),

where for a subset S of A⊕A,

wX(S) = min{wX(v) : v ∈ S}, wZ(S) = min{wZ(v) : v ∈ S}.

Moreover, Q is pure for d′
z

d′
x
, where d′x = wX(C⊥s\{0}), d′z = wZ(C⊥s\{0}).

Proof The following proof is a minor modification of the proof in [2; 4, Theorem 4.1]. We
omit some details. Firstly by Lemma 2.2 and the assumption C ⊆ C⊥s , we can lift C to an
abelian subgroup G of En, such that G = C and |G| = |C|. Then the complex vector space
V = V1 ⊗ V2 ⊗ · · · ⊗ Vn (Vi = C

qi) has the following orthogonal decomposition:

V =
⊕
χ∈Ĝ

V (χ),

where for each χ ∈ Ĝ,

V (χ) = {|v〉 ∈ V : g|v〉 = χ(g)|v〉 for each g ∈ G}.
We show that each Q = V (χ) is a quantum code with the required parameters

(
A,K, dz

dx

)
.

In order to determine the dimension dimQ = dimV (χ), it can be proved that each quantum
error operator e ∈ En is a permutation of the set Σ = {V (χ) : χ ∈ Ĝ} and the group En acts
on Σ transitively. Therefore, all V (χ) (χ ∈ Ĝ) have the same dimension, so that dimQ =
dimV (χ) = dim V

|Ĝ| = |A|
|C| = K.

Next we determine the parameters dx and dz. We need to show that if |v〉, |v′〉 ∈ Q =
V (χ) and 〈v|v′〉 = 0, then for any e ∈ En = A ⊕ A with wX(e) ≤ wX(C⊥s\C) − 1 and
wZ(e) ≤ wZ(C⊥s\C) − 1, we have 〈v|e|v′〉 = 0. If e ∈ C = G, then e|v′〉 = χ(e)|v′〉, so that
〈v|e|v′〉 = χ(e)〈v|v′〉 = 0. If e �∈ C, then e �∈ C⊥s which means that there exists an e′ ∈ C, such
that 〈e, e′〉s �= 1. For |v〉 ∈ Q = V (χ),

e′(e|v〉) = (e′e)|v〉 = 〈e, e′〉se e′|v〉 = χ(e′)〈e, e′〉se|v〉 = χ′(e′)e|v〉,



Inhomogeneous Quantum Codes (III): The Asymmetric Case 277

where χ′ ∈ Ĝ and χ′ �= χ. Therefore, e is a mapping from Q = V (χ) to V (χ′). Since |v〉 ∈ V (χ),
e|v′〉 ∈ V (χ′) and V (χ)⊥V (χ′), we have 〈v|e|v′〉 = 0.

At last we show that Q = V (χ) is pure for dx = wX(C⊥s\{0}) and dz = wZ(C⊥s\{0}).
By the definition, for any |v〉, |v′〉 ∈ Q, any 0 �= e ∈ En with wX(e) ≤ wX(C⊥s\{0}) − 1 and
wZ(e) ≤ wZ(C⊥s\{0})− 1, we need to show that 〈v|e|v′〉 = 0. From the assumption, we know
that e �∈ C⊥s . Then, by the above argument, e|v′〉 ∈ V (χ′), χ′ �= χ, so that 〈v|e|v′〉 = 0. This
completes the proof of Theorem 3.1.

As a usual case, the asymmetric inhomogeneous quantum codes constructed by Theorem 3.1
are called additive codes since they come from the classical additive codes over A⊕A. We need
C to be symplectic self-orthogonal and dz

dx
to be determined by the minimum quantum weights

wX and wZ of C⊥s\C. The next result shows that we can get asymmetric inhomogeneous
quantum codes from a pair of classical additive codes C1 and C2 over A with C⊥

2 ⊆ C1, where
C⊥

2 is the usual dual of C2 and dz

dx
can be determined by the Hamming weights of C1 and C2.

Theorem 3.2 If there exist (mixed ) additive codes C1 and C2 with parameters (A,K1, d1)
and (A,K2, d2) respectively and C⊥

2 ⊆ C1, then there exists an asymmetric inhomogeneous quan-
tum code Q with parameters

(
A, K1K2

|A| ,
dz

dx

)
, where dx = wH(C2\C⊥

1 ) and dz = wH(C1\C⊥
2 ).

Moreover, Q is pure for d′x = d2 and d′z = d1.

Proof Consider the additive code C = C⊥
1 ⊕ C⊥

2 over A ⊕ A. The assumption C⊥
2 ⊆ C1

implies C⊥
1 ⊆ C2 and C⊥s = C2 ⊕C1 ⊇ C. By Theorem 3.1, we have the asymmetric quantum

code Q with parameters
(
A,K, dz

dx

)
, where

K =
|A|
|C| =

|A| · |C1| · |C2|
|A|2 =

K1K2

|A| ,

and Q can detect the set

{e ∈ En = A⊕A : wX(e) ≤ wX(C2 ⊕ C1\C⊥
1 ⊕ C⊥

2 ) − 1 and

wZ(e) ≤ wZ(C2 ⊕ C1\C⊥
1 ⊕ C⊥

2 ) − 1}
= {e ∈ A⊕A : wX(e) ≤ wX(C2\C⊥

1 ) − 1 and wZ(e) ≤ wZ(C1\C⊥
2 ) − 1}.

Thus we can take dx = wX(C2\C⊥
1 ) and dz = wZ(C1\C⊥

2 ). Moreover, for any |v〉 and |v′〉 ∈ Q

we have 〈v|e|v′〉 = 0 for any e in the set

{0 �= e ∈ En = A⊕A : wX(e) ≤ wX(C2 ⊕ C1\{0})− 1 and

wZ(e) ≤ wZ(C2 ⊕ C1\{0})− 1}
⊇ {0 �= e ∈ En : wX ≤ wH(C2\{0})− 1 = d2 − 1 and wZ(e) ≤ wH(C1\{0})− 1 = d1 − 1}.

Therefore, Q is pure for d′x = d2 and d′z = d1.

Remark 3.1 In Theorem 3.2, if d⊥1 = wH(C⊥
1 \{0}) > wH(C2\C⊥

1 ) and d⊥2 = wH(C⊥
2 \{0})

> wH(C1\C⊥
2 ), then Q is pure quantum code with parameters

(
A,K, dz

dx

)
, dx = d2 and dz = d1.

For the classical mixed codes C1 and C2, we have the Singleton bound

K1 ≤ q1q2 · · · qn−dz+1, K2 ≤ q1q2 · · · qn−dx+1.

Thus the asymmetric quantum code Q satisfies the Singleton bound (2.7),

K =
K1K2

|A| ≤ q1q2 · · · qn−dx+1q1q2 · · · qn−dz+1

q1q2 · · · qn .
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In fact, Q is an MDS code if and only if both C1 and C2 are MDS codes. On the other hand,
we can see similarly that the quantum code Q is perfect (|A| = K ·N(d1)N(d2)) if and only if
both the classical codes C1 and C2 are perfect (|A| = K1N(d1) and |A| = K2N(d2)).

(2) Taking C = C⊥
2 ⊕ C⊥

1 in the proof of Theorem 3.2, we get the asymmetric quantum
code Q with parameters

(
A,K, dz

dx

)
, where dx = wH(C1\C⊥

2 ), dz = wH(C2\C⊥
1 ), and the code

Q′ is pure for dx = d1 and dz = d2.

Example 3.1 (Perfect Quantum Codes) Suppose that there exists a perfect (MDS) additive
code C in A with parameters (A,K, d), K = q1 · · · qn−d+1. Take C1 = C and C2 = A in
Theorem 3.2. Then C⊥

2 = {0} ⊆ C1 and C2 is a trivial perfect (MDS) code with parameters
(A, |A|, 1). By Remark 3.1, we get a perfect (MDS) quantum code with parameters

(
A,K, dz

dx

)
where {dx, dz} = {d, 1}. Such a quantum code can detect only the X-error (Z-error) for dx = d

and dz = 1 (for dx = 1 and dz = d).
It is known that for the usual q-ary case (A = A1 ⊕ · · · ⊕An = Fn

q , Ai = Fq, 1 ≤ i ≤ n), all
the nontrivial parameters of perfect additive classical codes are

(Fn
q , q

n−m, 3), n =
qm − 1
q − 1

, Hamming codes,

(F23
2 , 2

11, 7), (F11
3 , 3

5, 5), Golay codes.

For the more general mixed case, Herzog and Schonheim [17] presented a group-partition
method to construct classical mixed codes with d = 3. We introduce this construction briefly
now.

Let G be a finite (additive) abelian group and G1, · · · , Gn be subgroups of G. {G1, · · · , Gn}
is called a partition of G, if Gi\{0} (1 ≤ i ≤ n) is a partition of G\{0}. Namely,

G\{0} =
n⋃

i=1

(Gi\{0}) (disjoint),

which implies that

(∗) |G| − 1 =
n∑

i=1

(|Gi| − 1).

For a partition {G1, · · · , Gn} of G, consider the mapping

ϕ : A = G1 ⊕G2 ⊕ · · · ⊕Gn → G,

(g1, g2, · · · , gn) 	→ g1 + g2 + · · · + gn.

Then ϕ is an epimorphism of groups, so that C = kerϕ is an additive code in A and K =
|C| = |A|

|G| = |G1|···|Gn|
|G| . By a simple computation and (∗), we know that C is a perfect code with

parameters (A,K, 3).
It is proved that if G has a partition (n ≥ 2), then G should be an elementary p-group.

Namely, G is an additive group Fm
p for some prime number p and m ≥ 2. Several partitions of

(Fm
q ,+) were constructed in [17–18, 20–21]. From these constructions, we get several perfect

quantum codes with parameters
(
A,K, dz

dx

)
for some group A = A1 ⊕ · · · ⊕ An, Ai = (Fmi

p ,+)
(1 ≤ i ≤ n) and {dx, dz} = {1, 3}.

Example 3.2 (MDS Quantum Codes) By using the Riemann-Roch theorem for a function
field M with a constant field Fq, the following classical mixed (algebraic-geometric) codes were
constructed in [4].
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Lemma 3.1 (see [4, Theorem 3.2] or [19]) Let A = Fq1⊕Fq2⊕· · ·⊕Fqn , qi = qmi (1 ≤ i ≤ n)
and m1 ≤ m2 ≤ · · · ≤ mn, M be a function field with a constant field Fq, g = g(M) be the
genus of M , Pi (1 ≤ i ≤ n) be distinct prime divisors of M , degPi = mi (1 ≤ i ≤ n),
D = P1 + P2 + · · · + Pn, and m = degD = m1 +m2 + · · · +mn. Let G be a divisor of M and
vPi(G) = 0 (1 ≤ i ≤ n). Then

(1) If degG ≤ m− 1, then

C(D,G) = {cf = (f(P1), f(P1), · · · , f(Pn)) ∈ A : f ∈ L(G)}

is an Fq-linear code with parameters (A,K, d), where K = qk, k = l(G) ≥ degG + 1 − g and
d ≥ t, where t is determined by

m1 +m2 + · · · +mn−t − 1 < degG ≤ m1 +m2 + · · · +mn−t+1 − 1.

Moreover, l(G) = degG + 1 − g if degG ≥ 2g − 1; and d = t if degG > m1 + m2 + · · · +
mn−t − 1 + g.

(2) If degG ≥ 2g − 1, then

C′(D,G) = {cω = (resP1ω, resP2ω, · · · , resPnω) ∈ A : ω ∈ Ω(G−D)}

is an Fq-linear code with parameters (A,K ′, d′), where K ′ = qk′
, k′ = l(W + D − G) =

degD−degG+ g− 1+ l(G−D) ≥ degD−degG+ g− 1 and d′ ≥ t′, where t′ is determined by

mn +mn−1 + · · · +mn−t′+2 + 2g − 1 ≤ degG < mn + · · · +mn−t′+2 +mn−t′+1 + 2g − 1.

Moreover, k′ = degD− degG+ g− 1 if degG ≤ m− 1; and d′ = t′ if degG < mn +mn−1 +
· · · +mn−t′+1 + g − 1.

(3) If 2g − 1 ≤ degG ≤ m− 1, then C(D,G)⊥ = C′(D,G).

Wang and Feng [4] constructed a class of (symmetric) inhomogeneous quantum codes by
the classical mixed algebraic-geometric codes.

Theorem 3.3 Let q = ps, where p is a prime number and s ≥ 1. Let t be a positive integer.
Let d1, d2, · · · , dl be all the positive divisors of t, such that

1 = d1 < d2 < · · · < dl = t,

and m1,m2, · · · ,mn be the following integers:

m1 = m2 = · · · = mNq(d1) = d1(= 1),

mNq(d1)+1 = mNq(d1)+2 = · · · = mNq(d1)+Nq(d2) = d2,

...

mNq(d1)+···+Nq(dl−1)+1 = · · · = mn = dl,

where

n =
l∑

λ=1

Nq(dλ) =
∑
e|d

Nq(e).

Nq(e) is the number of monic irreducible polynomials of degree e in Fq[x] and the number of
finite prime divisors of degree e in the rational function field Fq(x). Let A = A1 ⊕ · · · ⊕ An,
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where Ai = Fqmi (1 ≤ i ≤ n). Then for each integer k, qd

2 ≤ k ≤ qd, there exists a mixed
additive quantum code Q with parameters (A,K, d), where K = q2k−qd

, d is determined by

m1 +m2 · · · +mn−d < k ≤ m1 +m2 + · · · +mn−d +mn−d+1,

and Q is pure for d. Moreover, if k = m1 +m2 + · · · +mn−d+1, then Q is an MDS code.

Actually, the inhomogeneous quantum code constructed in Theorem 3.3 is also an asym-
metric inhomogeneous quantum code with parameters

(
A,K, dz

dx

)
. In the proof of this theorem

in [4], an additive mixed classical code Ck was constructed. Ck has parameters (A, qk, d),
C⊥

k ⊆ Ck and wH(Ck\C⊥
k ) = wH(Ck\{0}) = d. Letting C1 = C2 = Ck, we can get an

asymmetric inhomogeneous quantum code with parameters
(
A,K, dz

dx

)
.

4 Non-additive Asymmetric Inhomogeneous Quantum Codes

In this section, we present a new characterization of asymmetric inhomogeneous quantum
codes and show some methods to construct such non-additive codes. The new characterization
is a generalization of symmetric cases given in [16].

Each A-ary quantum state |v〉 =
∑
c∈A

αc|c〉 can be identified with a nonzero mapping ϕ : A→
C defined by ϕ(c) = αc for all c ∈ A. For a subset S of {1, 2, · · · , n} and c = (c1, c2, · · · , cn) ∈
A (ci ∈ Ai), cS is the sub vector of c whose coordinate positions belong to S. Namely, cS =
(ci)i∈S . And AS =

⊕
i∈S

Ai can be viewed as a subgroup of A. For ϕ, ψ : A→ C, we define their

Hermitian inner product by
(ϕ, ψ) =

∑
c∈A

ϕ(c)ψ(c) ∈ C,

where ϕ(c) stands for the conjugate of the complex number ϕ(c).
Let Â = {χa : a ∈ A} be the character group of A. For a function f : A → C, the Fourier

transform of f is F : A→ C, where

F (b) =
∑
a∈A

f(a)χb(a),

and we have the following inverse transform:

f(a) =
1
|A|

∑
b∈A

F (b)χa(b).

In the proof of the following Theorem 4.2, we need the following two simple facts on Fourier
transform.

Lemma 4.1 Let F : A→ C be the Fourier transform of f : A→ C. Then
(1) F ≡ 0 if and only if f ≡ 0.
(2) F (a) = 0 for all 0 �= a �∈ A if and only if f is a constant.

Theorem 4.1 (i) There exists an asymmetric inhomogeneous quantum code with parame-
ters

(
A,K, dz

dx

)
(K ≥ 2, dx, dz ≥ 1) if and only if there exist K nonzero mappings

ϕi : A→ C, 1 ≤ i ≤ K, (4.1)
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satisfying the following conditions: for each d, 1 ≤ d ≤ min{dx, dz} and each partition of
{1, 2, · · · , n}, ⎧⎨

⎩
{1, 2, · · · , n} = S ∪X ∪ Z ∪ T,
|S| = d− 1, |X | = dx − d,
|Z| = dz − d, |T | = n+ d− dx − dz + 1,

(4.2)

and cS , c′S ∈ AS, cZ ∈ AZ , aX ∈ AX , we have the equality∑
cX∈AX ,cT∈AT

ϕi(cS , cX , cZ , cT )ϕj(c′S , cX − aX , cZ , cT )

=
{

0 for i �= j,
f(cS , c′S , cZ , aX) for i = j,

(4.3)

where the complex number f(cS, c′S , cZ , aX) is independent of i.
(ii) There exists a pure asymmetric inhomogeneous quantum code with parameters

(
A,K, dz

dx

)
(K, dx, dz ≥ 1) if and only if there exist K non-zero mappings ϕi (1 ≤ i ≤ K) as shown in
(4.1) such that

(a) ϕi (1 ≤ i ≤ K) are linear independent, namely, the rank of the K × |A| matrix
(ϕi(a))1≤i≤K,a∈A is K,

(b) for each d, 1 ≤ d ≤ min{dx, dz}, a partition (4.2) and cS , aS ∈ AS , cZ ∈ AZ , aX ∈ AX ,∑
cX∈AX ,cT∈AT

ϕi(cS , cX , cZ , cT )ϕj(cS + aS , cZ + aX , cZ , cT )

=

⎧⎨
⎩

0 for (aS , aX) �= (0, 0),
(ϕi, ϕj)
|AZ∪S | for (aS , aX) = (0, 0). (4.4)

Proof We follow the argument in the proof of [5, Theorem 2.2] or [16, Theorem 2.1]. We
omit some computational details.

(i) Let Q be a K-dimensional subspace of V = Cq1 ⊗ · · · ⊗ Cqn with the orthogonal basis

|vi〉 =
∑
a∈A

ϕi(a)|a〉, 1 ≤ i ≤ K.

Then

(ϕi, ϕj) =
∑
a∈A

ϕi(a)ϕj(a) = 〈vi|vj〉 =
{

0, if i �= j,
1, if i = j.

For two vectors in Q,

|u〉 =
K∑

i=1

αi|vi〉, |u′〉 =
K∑

i=1

α′
i|vi〉, αi, α

′
i ∈ C,

we have

〈u|u′〉 =
K∑

i,j=1

αiα
′
i.

For each e = X(a)Z(b) (a, b ∈ A) with wX(e) ≤ dx − 1 and wZ(e) ≤ dz − 1, we can find a
partition (4.2), such that e can be expressed by

e = X(aS, aX , 0Z , 0T )Z(bS , 0X , bZ , 0T ). (4.5)
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The action of e on |u′〉 can be computed by (2.5)

e|u′〉 =
K∑

j=1

α′
j

∑
cS,cX ,cZ,cT

ϕj(cS − aS , cX − aX , cZ , cT ) · χbS (cS)χbZ (cZ)|cS , cX , cZ , cT 〉.

By Definition 2.4, Q has parameters
(
A,K, dz

dx

)
if and only if

0 = 〈u|e|u′〉

= χbS (−aS)
K∑

i,j=1

αiα
′
j

×
∑

cS,cX ,cZ ,cT

ϕi(cS , cX , cZ , cT )ϕj(cS − aS , cX − aX , cZ , cB)χbS (cS)χbZ (cZ).

Since bS and bZ are arbitrary elements in AS and AZ , respectively, by Lemma 4.1(1), we know
that the above equality is equivalent to

K∑
i,j=1

αiα
′
j

∑
cX ,cT

ϕi(cS , cX , cZ , cT )ϕj(c′S , cX − aX , cZ , cT ) = 0

for any cS , c′S , aX and aZ . Consider the matrix

M = (mij)1≤i,j≤K , mij =
∑

cX ,cT

ϕi(cS , cX , cZ , cT )ϕj(c′S , cX − aX , cZ , cT ).

Our statement now becomes that for any α, α′ ∈ CK , α · α′T = 0 implies αMα′T = 0. It is
easy to see that under the assumption K ≥ 2, M = fI, where I is the identity matrix and
f = f(cS , c′S , cZ , aX) ∈ C. This is the condition (4.3).

(b) can be proved by the same argument as in the proof of [16, Theorem 2.1(ii)].

Now we give an interesting application of Theorem 4.1, where the parameters dx and dz are
symmetric.

Theorem 4.2 Let d1, d2 ≥ 1. Then there exists a (pure) quantum code Q with parameters
(A,K, dz , dx), dx = d1 and dz = d2 if and only if there exists a (pure) quantum code Q̂ with
parameters

(
A,K, dz

dx

)
, dx = d2 and dz = d1.

Proof (i) If Q is a quantum code with parameters
(
A,K, dz

dx

)
, where K ≥ 2, dx = d1 and

dz = d2. By Theorem 4.1, we have K nonzero mappings ϕi : A→ C (1 ≤ i ≤ K) satisfying the
condition (4.3) in Theorem 4.1. Let Φi : A→ C be the Fourier transform of ϕi,

Φi(b) =
∑
a∈A

χb(a)ϕi(a), b ∈ A, 1 ≤ i ≤ K.

We show that Φi (1 ≤ i ≤ K) give the required quantum codes. Namely, for each partition
(4.2), we need to show that∑

cZ ,cT

Φi(cS , cX , cZ , cT )Φj(cS + aS , cX , cZ + aZ , cT )

=
{

0 for i �= j,
I(cS , cX , aS, aZ) for i = j.

(4.6)
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The left-hand side of (4.6) is∑
cZ ,cT

[ ∑
αS ,αX ,αZ ,αT

χcS (αS)χcX (αX)χcZ (αZ)χcT (αT )ϕi(αS , αX , αZ , αT )

×
∑

βS ,βX,βZ ,βT

χcS+aS (βS)χcX (βX)χcZ+aZ (βZ)χcT (βT )ϕj(βS , βX , βZ , βT )
]

=
∑

αS ,αX ,αZ ,αT ,βS,βX ,βZ,βT

χcS (βS − αS)χaS (βS)χcX (βX − αX)χaZ (βZ)

× ϕi(αS , αX , αZ , αT )ϕj(βS , βX , βZ , βT )
∑

cZ ,cT

χcZ (βZ − αZ)χcT (βT − αT )

= |AZ∪T |
∑

αS ,αX ,αZ ,αT ,βS ,βX

χcS (βS − αS)χaS (βS)χcX (βX − αX)χaZ (αZ)

× ϕi(αS , αX , αZ , αT )ϕj(βS , βX , αZ , αT )

=
∑

αS ,αZ ,bS,bX

χcS(bS)χaS (αS + bS)χcX (bX)χaZ (αZ)

×
∑

αX ,αT

ϕi(αS , αX , αZ , αT )ϕj(αS + bS , αX + bX , αZ , αT ). (4.7)

By (4.3), the right-hand side of (4.7) is zero for i �= j, and for i = j it is independent of i.
Therefore, the equality (4.6) is true. If Q is pure, then ϕi (1 ≤ i ≤ K) satisfies condition (4.4).
ϕi (1 ≤ i ≤ K) are linear independent, so are Φi (1 ≤ i ≤ K). Then we need to show that, for
each partition (4.2),

∑
cZ ,cT

Φi(cS , cX , cZ , cT )Φj(cS + aS , cX , cZ + aZ , cT ) =
{

0 for (aS , aZ) �= (0, 0),
Iij for (aS , aZ) = (0, 0), (4.8)

where Iij is independent of cS and cX .
We also have (4.7). Since ϕi (1 ≤ i ≤ K) satisfies (4.4), the right-hand side of (4.7) is

∑
αS ,αZ

NijχaS (αS)χaZ (αZ) =
{

0 for (aS , aZ) �= (0, 0),
Iij for (aS , aZ) = (0, 0),

where Iij = Nij |AS∪Z | and Nij = (ϕi,ϕj)
|AZ∪S | . This completes the proof of Theorem 4.2.

By this result, from now on we denote the parameter dz

dx
by {dx, dz}. Now we give another

application of Theorem 4.1.

Theorem 4.3 Let C be a mixed classical additive code in A, d⊥ be the minimal distance
of the dual code C⊥ of C, and V = {vi : 1 ≤ i ≤ K} be a set of K distinct vectors in A, such
that

dV = min{wH(vi − vj + c) : 1 ≤ i �= j ≤ K, c ∈ C} ≥ 1.

Then there exists a pure asymmetric inhomogeneous code with parameters (A,K, {d⊥, dV }).
Proof The proof is similar to that of [16, Theorem 3.2] (for the asymmetric q-ary case) or

[15, Theorem 3.4] (for the inhomogeneous symmetric case). We omit the details.

Example 4.1 Let d, n ≥ 2 and A = A1 ⊕ · · · ⊕ An, Ai = Zd(= Z/dZ) (1 ≤ i ≤ n). Let
Ad(n, 2, l) be the maximum size of the d-ary constant weight codes with length n, distance 2
and weight l.
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Let C(l) be a d-ary constant weight code with length n, distance 2, weight l and size
Ad(n, 2, l). Taking

V =
[ n−2

4 ]⋃
i=0

C
([n

2

]
− 2i− 1

)
in Theorem 4.4, we have dV ≥ 2. Then we get a pure quantum code with parameters (A,K,

{2, dV }), where K =
[ n−2

4 ]∑
i=0

Ad(n, 2, [n
2 ] − 2i− 1), dV ≥ 2.
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