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Abstract The authors consider the local smooth solutions to the isentropic relativistic
Euler equations in (3+1)-dimensional space-time for both non-vacuum and vacuum cases.
The local existence is proved by symmetrizing the system and applying the Friedrichs-
Lax-Kato theory of symmetric hyperbolic systems. For the non-vacuum case, according
to Godunov, firstly a strictly convex entropy function is solved out, then a suitable sym-
metrizer to symmetrize the system is constructed. For the vacuum case, since the coefficient
matrix blows-up near the vacuum, the authors use another symmetrization which is based
on the generalized Riemann invariants and the normalized velocity.
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1 Introduction

The Euler system of conservation laws for a perfect fluid in special relativity can be written
as follows (see, e.g., [1, 18, 26–27, 33, 39, 41–47]):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂t

( n√
1 − v2

c2

)
+ ∇ ·

( n√
1 − v2

c2

v
)

= 0,

∂t

( p
c2 + ρ

1 − v2

c2

v
)

+ ∇ ·
( p

c2 + ρ

1 − v2

c2

v ⊗ v
)

+ ∇p = 0,

∂t

( p
c2 + ρ

1 − v2

c2

− p

c2

)
+ ∇ ·

( p
c2 + ρ

1 − v2

c2

v
)

= 0,

(1.1)

where n and ρ are the rest mass density and the mass-energy density, respectively, satisfying

ρ = n
(
1 +

e

c2

)
(1.2)

with the specific internal energy e, and p represents the pressure. The constant c is the speed of
light, v = (v1, v2, v3)T denotes the particle speed, and v = |v| satisfies the relativistic constraint
v2 < c2. All these variables are the functions of (t,x) ∈ R

+ × R
3.
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For the classical Euler system which is the non-relativistic version of (1.1), Makino, Ukai
and Kawashima [31] introduced a new symmetrization to deduce the local-in-time solution even
for the case with vacuum states.

If the pressure p depends only on the mass-energy ρ, and the system of energy and mo-
mentum conservation laws is closed, (1.1) reduces to the following subsystem (see, e.g., [1, 18,
26–27, 33, 39, 41–47]):⎧⎪⎪⎨⎪⎪⎩

∂t

( p
c2 + ρ

1 − v2

c2

− p

c2

)
+ ∇ ·

( p
c2 + ρ

1 − v2

c2

v
)

= 0,

∂t

( p
c2 + ρ

1 − v2

c2

v
)

+ ∇ ·
( p

c2 + ρ

1 − v2

c2

v ⊗ v
)

+ ∇p = 0.
(1.3)

Great progress has been made with (1.3), yet mainly for the 1-dimensional or spherically
symmetric 3-dimensional cases (see [2–4, 6, 11–13, 15–17, 20, 22–25, 32, 34, 37–38, 40, 48–49]
and the references therein).

For general multi-dimensional cases of (1.3), Makino-Ukai [29–30] constructed a suitable
symmetrizer if a strictly convex entropy exists, and then by applying Friedrichs-Lax-Kato’s
theory (see [14, 28]), the authors established the local existence of solutions with the data
away from the vacuum. For the vacuum case of (1.3), since the coefficient matrix in [29–30] is
degenerate near the vacuum, Lefloch-Ukai [19] introduced a different symmetrization based on
the generalized Riemann invariants and the normalized velocity, and then established the local
existence results of smooth solutions by also using Friedrichs-Lax-Kato’s theory (see [14, 28]).
Moreover, for (1.3), the singularity formation of smooth solutions is studied in [10, 35, 37].

In this paper, we consider the system of isentropic relativistic Euler equations, which cor-
responds to the conservation of the baryon numbers and momentum and reads as (see, e.g., [1,
18, 26–27, 33, 39, 41–47]):⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t

( n√
1 − v2

c2

)
+ ∇ ·

( n√
1 − v2

c2

v
)

= 0,

∂t

( p
c2 + ρ

1 − v2

c2

v
)

+ ∇ ·
( p

c2 + ρ

1 − v2

c2

v ⊗ v
)

+ ∇p = 0.

(1.4)

We know that, formally, the Newtonian limit of (1.4) is the following classical system of
non-relativistic isentropic Euler equations (see [7, 26, 39]):{

∂tn + ∇ · (nv) = 0,

∂t(nv) + ∇ · (nv ⊗ v + p) = 0,
(1.5)

which is one of the motivation for our study on (1.4). Another motivation for our study is that
some special relativistic effects are revealed for 3-dimensional relativistic equations (see [8]),
which do not appear in the corresponding non-relativistic case.

We consider (1.4) with the equation of the state

p = p(ρ), (1.6)

satisfying
p(0) = 0, p(ρ) ≥ 0, 0 < pρ < c2, pρρ ≥ 0 for ρ ∈ (ρ∗, ρ∗),
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where 0 ≤ ρ∗ < ρ∗ ≤ ∞ are any non-negative constants subject to the subluminal condition
pρ(ρ∗) ≤ c2. Note that if p(ρ) = a2ργ , then ρ∗ = 0, ρ∗ = ∞ for γ = 1 and ρ∗ =

[
c2

γa2

] 1
γ−1 for

γ > 1.
The first law of thermodynamics (Gibb’s Equation) reads as

θdS =
dρ

n
−

p
c2 + ρ

n2
dn (1.7)

with temperature θ and the specific entropy S. For isentropic fluids (S ≡ const.), we have

dn

n
=

dρ
p
c2 + ρ

.

Denote

dρ

dn
:= ρ′ =

p + ρc2

nc2
. (1.8)

For simplicity, we denote ′ = d
dn in the sequel. From (1.8), we have

n = n(ρ) = Ce

∫
ρ
ρm

ds

s+ p(s)
c2 , (1.9)

with ρm being any fixed number in (ρ∗, ρ∗) and C = nm := n(ρm).
We consider the Cauchy problem (1.4) with initial data

t = 0 : n(0,x) = n0, v(0,x) = v0. (1.10)

Research results of (1.4) is not so rich as that of (1.3), and all results are about 1-dimensional
case (see [21, 23, 36, 39, 48]). Naturally, we are interested in the local existence of smooth
solutions to the Cauchy problem (1.4) and (1.10) for both vacuum and non-vacuum cases.

The main result of our paper is as follows.

Theorem 1.1 Suppose that the initial data (n0,v0) ∈ H l
ul(R

3), l ≥ 5
2 , and there exists a

positive constant δ0 which is sufficiently small, such that

n∗ + δ0 ≤ n0(x) ≤ n∗ − δ0, v2
0 = |v0|2 ≤ (1 − δ0)c2 for the non-vacuum case (1.11)

and

0 ≤ n0(x) ≤ n∗ − δ0, v2
0 = |v0|2 ≤ (1 − δ0)c2 for the vacuum case, (1.12)

where H l
ul(R

3) is the uniformly local Sobolev space defined in [14], n∗, n∗ are determined by
(1.9) with ρ(n∗) = ρ∗ or ρ(n∗) = ρ∗. Then, the Cauchy problem (1.4) and (1.10) admits a
unique solution (n(t,x),v(t,x)) with n∗ ≤ n(t,x) ≤ n∗, |v(t,x)| < c for the non-vacuum case
and 0 ≤ n(t,x) ≤ n∗, |v(t,x)| < c for the vacuum case, and

(n(t,x),v(t,x)) ∈ L∞([0, T ]; H l
ul) ∩ C([0, T ]; H l

ul) ∩ C1([0, T ]; H l−1
ul ),

where T depends only on δ and the H l
ul(R

3) norm ‖(n0,v0)‖Hl
ul

of the initial data.
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We shall prove the main theorem by symmetrizing (1.4) and applying the Friedrichs-Lax-
Kato theory (see [14, 28]) of symmetric hyperbolic systems. Thus for both the non-vacuum
and vacuum cases, the construction of a suitable symmetrizer is necessary and important. We
borrow some ideas from [19, 29–30], which are more complicated due to the structure of the
system itself, and different to some extent since we involve variables n and v instead of ρ and
v.

More precisely, in Section 2, we firstly solve out the strictly convex entropy function of
(1.4) for the non-vacuum case according to [9], then we construct a symmetrizer as in [29–
30]. In Section 3 for the vacuum case, due to the degeneracy of the symmetrized system near
the vacuum, as in [19], we transform (1.4) into a symmetric form in terms of the generalized
Riemann invariants and the normalized velocity.

2 Non-vacuum Case

In this section, we will establish the existence of local smooth solutions to the Cauchy
problem (1.4) and (1.10) for the non-vacuum case in Theorem 1.1. For clarity, we will divide it
into two subsections: Strictly convex entropy function and symmetrization.

2.1 Strictly convex entropy function

If an entropy-entropy flux pair of (1.4) exists, then we may construct a symmetrizer accord-
ingly. According to [9], we first find the strictly convex entropy function of (1.4). To do this,
we fit (1.4) into the following general form of conservation laws:

∂u
∂t

+
3∑

j=1

∂Fj(u)
∂xj

= 0, (2.1)

where

u = (u1, u2, u3, u4)T

=
(

nc√
c2 − v2

,
(p + ρc2)v1

c2 − v2
,
(p + ρc2)v2

c2 − v2
,
(p + ρc2)v3

c2 − v2

)T

,

Fj(u) =
(
F j

0 (u), F j
1 (u), F j

2 (u), F j
3 (u)

)T

and

F j
0 (u) =

ncvj√
c2 − v2

, F j
i (u) =

p + ρc2

c2 − v2
vivj + pδij , i, j = 1, 2, 3,

where δij is the Kronecker symbol.

A scalar function η(u) is called the entropy to (2.1) if there exist scalar functions qj(u) (j =
1, 2, 3) satisfying

∇uη(u)∇uFj(u) = ∇uqj(u). (2.2)
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Let z = (n, v1, v2, v3)T. By direct but tedious computations, we have

∇zu

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c√
c2 − v2

ncv1

(
√

c2 − v2)3
ncv2

(
√

c2 − v2)3
ncv3

(
√

c2 − v2)3
p′ + ρ′c2

c2 − v2
v1

p + ρc2

c2 − v2

(
1 +

2v2
1

c2 − v2

) 2(p + ρc2)v1v2

(c2 − v2)2
2(p + ρc2)v1v3

(c2 − v2)2

p′ + ρ′c2

c2 − v2
v2

2(p + ρc2)v1v2

(c2 − v2)2
p + ρc2

c2 − v2

(
1 +

2v2
2

c2 − v2

) 2(p + ρc2)v2v3

(c2 − v2)2

p′ + ρ′c2

c2 − v2
v3

2(p + ρc2)v1v3

(c2 − v2)2
2(p + ρc2)v2v3

(c2 − v2)2
p + ρc2

c2 − v2

(
1 +

2v2
3

c2 − v2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.3)

and

(∇zu)−1 =

⎛⎜⎜⎜⎝
ρ′c(c2 + v2)

√
c2 − v2

ρ′c4 − p′v2

−(c2 − v2)
ρ′c4 − p′v2

vT

−(p′ + ρ′c2)(
√

c2 − v2)3

nc(ρ′c4 − p′v2)
v

c2 − v2

nρ′c2

(
I3 +

p′ − ρ′c2

(ρ′c4 − p′v2)
vvT

)
⎞⎟⎟⎟⎠ , (2.4)

where I3 stands for the 3 × 3 identity matrix.
Similarly, we have

∇zFj(u) =

⎛⎜⎜⎝
cvj√

c2 − v2

nc√
c2 − v2

3 vjvT +
nc√

c2 − v2
eT

j

(p′ + ρ′c2)
c2 − v2

vjv + p′ej
2(p + ρc2)
(c2 − v2)2

vjvvT +
p + ρc2

c2 − v2
veT

j +
p + ρc2

c2 − v2
vjI3

⎞⎟⎟⎠ , (2.5)

where ej = (δ1j , δ2j , δ3j)T.
Using (2.4) together with (2.5), we get

(∇zu)−1∇zFj =
(

B1vj B2eT
j

B3ej + B4v B5veT
j + vjI3

)
, (2.6)

where

B1 =
(ρ′c2 − p′)c2

ρ′c4 − p′v2
, B2 =

nρ′c4

ρ′c4 − p′v2
, B3 =

p′(c2 − c2)
nρ′c2

,

B4 =
p′(p′ − ρ′c2)(c2 − v2)vj

nρ′c2(ρ′c4 − p′v2)
, B5 =

−p′(c2 − v2)
ρ′c4 − p′v2

.

From (2.2), we have

∇zη(∇zu)−1∇zFj = ∇zq
j . (2.7)

Setting η = η(n, y) and qj = Q(n, y)vj , where y = v2 = v2
1 + v2

2 + v2
3 , (2.7) becomes

(ηn, 2vTηy)
(

B1vj B2eT
j

B3ej + B4v B5veT
j + vjI3

)
= (Qnvj , 2vTQyvj + QeT

j ), (2.8)

which yields ⎧⎪⎨⎪⎩
ηy = Qy,

B1ηn + 2B′
3ηy = Qn,

B2ηn + 2B5yηy = Q,

(2.9)
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where B′
3 = p′(c2−v2)2

n(ρ′c4−p′v2) . Furthermore, (2.9) leads to

Qy =
B2Qn − B1Q

2(B2B′
3 − B1B4y)

. (2.10)

It follows from the first equation of (2.9) that

η = Q(n, y) + G(n), (2.11)

where G depends only on n.
Inserting this equation into the third equation of (2.9), we have

G′(n) = −B2B
′
3 + B5y(1 − B1)

B2B′
3 − B1B5y

Qn +
B′

3Q

B2B′
3 − B1B5y

. (2.12)

Furthermore, plugging B1, B2, B
′
3 and B4 into (2.12), we obtain

G′(n) = −c2 − y

c2
Qn +

c2 − y

c2

1
n

Q. (2.13)

Assuming q(n, y) = c2−y
c2 Q, (2.13) becomes

G′(n) = −qn +
1
n

q. (2.14)

Integrating this equation with respect to the variable n, we have

q(n, y) =
n

nm

( ∫ n

nm

G′(s)
s

ds + h(y)
)

:=
n

nm
(g(n) + h(y)). (2.15)

Substituting (2.15) into (2.13) and separating variables, we get

p + ρc2

p′
g′(n) − g = 2(c2 − y)h′(y) + h(y), (2.16)

where the left-hand side of (2.16) depends only on n, and the right-hand side depends only on
y. So both sides of (2.16) should be equal to the same constant, assumed as D, which implies⎧⎨⎩

p + ρc2

p′
g′(n) − g = D,

2(c2 − y)h′(y) + h(y) = D.

(2.17)

Noting (1.8), we solve the first equation of (2.17) to have

g = D̃1 exp
∫ n

nm

p′

p + ρc2
dn = D̃1 exp

∫ n

nm

p′

ρ′nc2
dn

= D̃1 exp
∫ n

nm

pρ

nc2
dn = D̃1 exp

∫ ρ

ρm

pρ

p + ρc2
dρ,

(2.18)

where D̃1 is a constant.
From the fact that

n = nm exp
∫ n

nm

1
n

dn = nm exp
∫ ρ

ρm

c2

p + ρc2
dρ, (2.19)
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it holds that

ng = D̃1nm exp
∫ ρ

ρm

pρ + c2

p + ρc2
dρ = D̃1nm(p + ρc2). (2.20)

Solving the second ordinary differential equation of (2.17), we have

h(y) = −D̃2

√
c2 − y, (2.21)

where D̃2 is a constant.
Inserting (2.20) and (2.21) into (2.15), we have

q = D̃1(p + ρc2) − D̃2
n

nm

√
c2 − y, (2.22)

where nm ∈ (n∗, n∗) is an integration constant. Noting q(n, y) = c2−y
c2 Q, we obtain

Q = D1
p + ρc2

c2 − v2
+ D2

n

nm

√
c2 − v2

. (2.23)

Inserting (2.22) into (2.14) and using (1.8), we get

G′(n) = −D̃1p
′.

Integrating this equation yields

G = −D1

c2
p + D3. (2.24)

Thus substituting (2.23)–(2.24) into (2.11) leads to

η = D1
p + ρc2

c2 − v2
+ D2

n

nm

√
c2 − v2

− D1

c2
p + D3, (2.25)

where D1 = c2D̃1, D2 = c2D̃2, and D3 is a constant.
Noting that ∫ ρ

ρm

c2

p + ρc2
dρ = ln

p + ρc2

pm + ρmc2
−

∫ ρ

ρm

p′ρ
p + ρc2

dρ, (2.26)

we define

K exp
∫ ρ

ρm

c2

p+ρc2 dρ

p + ρc2
= exp

∫ ρ

ρm

−p′ρ
p + ρc2

dρ := Φ(ρ), (2.27)

where K := pm + ρmc2, with ρm = ρ(nm) ∈ (ρ(n∗), ρ(n∗)). Together with (2.19), we have

K

p + ρc2

n

nm
= Φ(ρ). (2.28)

Φ(ρ) can be expanded with respect to 1
c2 at 0 as

Φ(ρ) = 1 −
∫ ρ

ρm

p′ρ
ρ

dρ
1
c2

+ O
( 1

c4

)
. (2.29)



308 Y. C. Geng and Y. C. Li

Similarly, we also expand 1√
1− v2

c2

with respect to 1
c2 at 0 as

1√
1 − v2

c2

= 1 +
v2

2
1
c2

+ O
( 1

c4

)
. (2.30)

From (2.25) and (2.28)–(2.9), we have

η =
p
c2 + ρ√
1 − v2

c2

( D1√
1 − v2

c2

+
cD2

K
− D2

cK

∫ ρ

ρm

p′ρ
ρ

dρ
)
− D1

c2
p + D3. (2.31)

To choose the constants D1, D2, D3, we consider the entropy function of the corresponding
non-relativistic fluid, which is

η∞ =
1
2
nv2 + n

∫ n

nm

dp

n
− p, (2.32)

which can be obtained in exactly the same way as (2.31).
Letting c → ∞ in (2.31) and comparing with (2.32), we choose D1 = c2, D2 = −cK, D3 = 0.

Then it holds that

η = c2
(p + ρc2

c2 − v2
− p

c2

)
−

cK exp
∫ ρ

ρm

c2dρ
p+ρc2√

c2 − v2
. (2.33)

2.2 Symmetrization

In this subsection, we use the obtained strictly convex entropy function to construct a
suitable symmetrization of (1.4) and verify the positive definiteness of the coefficient matrix.

Define
Ωz = {z : n∗ < n < n∗, v2 < c2}.

The existence of a strictly convex entropy guarantees that classical solutions to the initial-
value problem depend continuously on the initial data, even within the broader class of admis-
sible bounded weak solutions (see [5, Theorem 5.2.1] or [35, Theorem B]). Thus, if the initial
data (n0,v0) take values in any compact subset D of Ωz = {z : n∗ < n < n∗, v2 < c2}, then
there exists a classical solution (n,v) taking values in Ωz.

Let w = (∇uη)T = (w0, w1, w2, w3)T. It holds that

∂αu = (∇uw)−1∂αw = (∇2
uη)−1∂αw, (2.34)

where α stands for one of the arguments t, x1, x2, x3. Then the system (2.1) reduces to

(∇2
uη)−1∂tw +

3∑
j=1

(∇uFj)(∇2
uη)−1∂xjw = 0. (2.35)

If we set

A0(w) = (∇2
uη)−1, Aj(w) = (∇uFj)(∇2

uη)−1, (2.36)
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(2.35) can be rewritten as

A0(w)∂tw +
3∑

j=1

Aj(w)∂xj w = 0, (2.37)

whose coefficient matrices Aα(w) (α = 0, 1, 2, 3) satisfy the following:

(i) They are all real symmetric and smooth in w,

(ii) A0(w) is positively definite.
(2.38)

A hyperbolic system (2.37) satisfying (2.38) is called a symmetric hyperbolic system (see [15,
29]).

Now we figure out the expressions of A0(w) and Aj(w) (j = 1, 2, 3), and verify the positive
definiteness of A0(w). w can be written as

w = (∇uη)T = (∇uz)T(∇zη) = ((∇zu)T)−1(∇zη)

=
(

ρ′c
√

c2 − v2 − K

nm
,vT

)T

=
(

p + ρc2

nc

√
c2 − v2 − K

nm
,vT

)T

, (2.39)

then we can compute that

∇2
uη = ∇uw = (∇zw)(∇zu)−1

=
c2 − v2

nc(ρ′c4 − p′v2)

⎛⎜⎝ρ′c(p′c2 + 2p′v2 + ρ′c2v2) −(p′ + ρ′c2)
√

c2 − v2vT

−(p′ + ρ′c2)
√

c2 − v2v
ρ′c4 − p′v2

ρ′c
I3 +

p′ − ρ′c2

ρ′c
vvT

⎞⎟⎠ . (2.40)

It is not easy to show by direct calculation that

A0(w) =

⎛⎜⎜⎜⎝
nc2

(c2 − v2)p′
nc(p′ + ρ′c2)vT

p′(
√

c2 − v2)3

nc(p′ + ρ′c2)v
p′(

√
c2 − v2)3

nρ′c2

c2 − v2

(
I3 +

(3p′ + ρ′c2)vvT

p′(c2 − v2)

)
⎞⎟⎟⎟⎠ (2.41)

and

Aj(w)

=

⎛⎜⎜⎜⎜⎝
nc2vj

p′(c2 − v2)
nc(p′ + ρ′c2)vjvT

p′
√

c2 − v2
3 +

nceT
j√

c2 − v2

nc(p′ + ρ′c2)vjv

p′
√

c2 − v2
3 +

ncej√
c2 − v2

nρ′c2(3p′ + ρ′c2)vjvvT

p′(c2 − v2)2
+

nρ′c2(veT
j + ejvT + vjI3)
c2 − v2

⎞⎟⎟⎟⎟⎠ . (2.42)

It is obvious that Aj(w) (j = 1, 2, 3) are symmetric forms. Now we prove that (A0(w))−1

is uniformly bounded. Firstly, we verify that A0(w) has a strict lower bound. In fact, for any
given four-dimensional vector r = (r0, r̃T) = (r0, r1, r2, r3), it holds

rTA0(w)r = (r0, r̃T)
(

a1 a2vT

a2v a3vvT + a4I3

)
(r0, r̃)T

= a1r
2
0 + 2a2r0vTr̃ + a3(vTr̃)2 + a4|r̃|2,
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where

a1 =
nc2

(c2 − v2)p′
, a2 =

nc(p′ + ρ′c2)

p′
√

c2 − v2
3 ,

a3 =
nρ′c2(3p′ + ρ′c2)

p′(c2 − v2)2
, a4 =

nρ′c2

c2 − v2
.

Setting ã1 = (1 − δ)a1 with 0 < δ < 1
2 to be determined later, it holds that

rTA0(w)r = a1r
2
0 + 2a2r0vTr̃ + a3(vTr̃)2 + a4|r̃|2

= ã1

(
r0 +

a2

ã1
vTr̃

)2

−
( 1

a1
(a2

2 − a1a3) +
δ

1 − δ

a2
2

a1

)
(vTr̃)2 + δa1r

2
0 + a4|r̃|2

≥
(
a4 − 1

a1
(a2

2 − a1a3)v2 − δ

1 − δ

a2
2

a1
v2

)
|r̃|2 + δa1r

2
0

=
(n(ρ′c4 + ρ′c2v2 − p′v2)

(c2 − v2)2
− 2δ

a2
2

a1
v2

)
|r̃|2 + δa1r

2
0

≥ δa1r
2
0 + δa1|r̃|2

under the condition that

0 < a1 + 2δ
a2
2

a1
v2 <

n(ρ′c4 + ρ′c2v2 − p′v2)
(c2 − v2)2

, (2.43)

i.e.,

0 < δ <
p′(ρ′c4 + ρ′c2v2 − p′v2)

c2(c2 − v2) + 2(p′ + ρ′c2)2v2
.

Since the right-hand side of the above inequality has a positive lower bound, denoted by δ∗, we
can take δ < min

(
1
2 , δ∗

)
. Noting that

δa1 ≥ δ
n

p′
= δ

n2c2

c2
s(p + ρc2)

≥ δ
n2
∗

p∗ + ρ∗c2
:= δ∗∗,

we have
rTA0(w)r ≥ δ∗∗|r|2.

Thanks to the fact that (n,v) ∈ Ωz, we get the upper bound of (A0(w))−1.
Then the local existence of smooth solutions to the Cauchy problem (1.4) and (1.10) for the

non-vacuum case follows from Friedrichs-Lax-Kato theory (see [14, 28]).

3 The Vacuum Case

In this section, when the initial data (n0,v0) are allowed to contain vacuum states, the
coefficients A0(w) for (1.4) will blow-up near the vacuum. Thus the symmetric method to the
non-vacuum case will not be valid any longer. To overcome this difficulty, we adopt Lefloch-
Ukai’s symmetrization (see [19]) for (1.3), however our transformation is about variables of n

and v instead of variables of ρ and v in [19]. The coefficient matrix of the new system under
this transformation is no longer degenerate near vacuum. Then we use Friedrichs-Lax-Kato
theory (see [14, 28]) to prove the local existence of smooth solutions to (1.4) and (1.10) with
the initial data of the vacuum case.
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Now our initial data n0,v0 satisfy the condition (1.12). Before proceeding, we first introduce
some notations as in [19].

The modified mass density variable w is

w = w(ρ) :=
∫ ρ

0

cs

q(s)
ds, (3.1)

where cs is the local sound speed in the fluid.
The modified velocity scalar is

u = u(|v|) = u(v) :=
c2

2
ln

(c + v

c − v

)
, (3.2)

and we refer to

z± := w ± u (3.3)

as the generalized Riemann invariant variables.
We also introduce the normalized velocity ṽ and the associated projection operator P (v)

as follows:

ṽ = (ṽ1, ṽ2, ṽ3) :=
v
v

, P (v) := I3 − ṽ ⊗ ṽ. (3.4)

Here we present some useful identities in [19],

Proposition 3.1

(1) P (v)v = 0,

(2) P (v)∂tv = v∂tṽ,

(3) P (v)((v · ∇)v) = v(v · ∇)ṽ,

(4) ∇ · v = tr(P(v)∇ṽ) = tr(P(ṽ)∇ṽ).

(3.5)

For the convenience of the reader, we give a simple proof here.

Proof of Proposition 3.1
(1)

P (v)v =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − v2

1

v2
−v1v2

v2
−v1v3

v2

−v1v2

v2
1 − v2

2

v2
−v2v3

v2

−v1v3

v2
−v2v3

v2
1 − v2

3

v2

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝v1

v2

v3

⎞⎠ = 0.

(2)

P (v)∂tv =

⎛⎜⎜⎜⎜⎜⎜⎝
∂tv1 − v2

1∂tv1

v2
− v1v2∂tv1

v2
− v1v3∂tv1

v2

−v1v2∂tv2

v2
+ ∂tv2 − v2

2∂tv2

v2
− v2v3∂tv2

v2

−v1v3∂tv3

v2
− v2v3∂tv3

v2
+ ∂tv3 − v2

3∂tv3

v2

⎞⎟⎟⎟⎟⎟⎟⎠
= ∂tv − v

2
∂tv

2

v
= ∂tv − ṽ∂tv = v∂tṽ,
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where we used ∂tv = ∂t(ṽv) = v∂tṽ + ṽ∂tv.

(3) Similarly to (2), we get

P (v)∂t((v · ∇)v) = v(v · ∇)ṽ.

(4) On the one hand, noting that |ṽ| = 1, we have

(∇ · ṽ) = ∇ · ṽ − ṽ · ∇|ṽ|2
2

.

On the other hand, it holds that

tr(P (v)∇ṽ) = tr(∇ṽI3) − tr(ṽ ⊗ ṽ∇ṽI3)

= ∇ · ṽ − tr

⎛⎝⎛⎝ ṽ2
1 ṽ1ṽ2 ṽ1ṽ3

ṽ2ṽ1 ṽ2
2 ṽ2ṽ3

ṽ3ṽ1 ṽ3ṽ2 ṽ2
3

⎞⎠ ⎛⎝∂x1 ṽ1 ∂x2 ṽ1 ∂x3 ṽ1

∂x1 ṽ2 ∂x2 ṽ2 ∂x3 ṽ2

∂x1 ṽ3 ∂x2 ṽ3 ∂x3 ṽ3

⎞⎠⎞⎠
= ∇ · ṽ − ṽ · ∇|ṽ|2

2
.

From the definition of P (v) in (3.4), (4) is proved.

3.1 Symmetric form of Euler equations

In this section, we will deduce a symmetric formulation of (1.4) with respect to the general
Riemann invariants and the normalized velocity defined by (3.1)–(3.2). We conclude as follows.

Lemma 3.1 In terms of the generalized Riemann invariant variables (z+, z−) and the nor-
malized velocity ṽ defined by (3.3)–(3.4), respectively, the relativistic Euler equations reduce to
the following symmetric form:

(
1 +

vcs

c2

)
∂tz+ +

1 − c2
s

c2

1 − vcs

c2

(v + cs)ṽ · ∇z+ + csvtr(P(ṽ)∇ṽ) = 0,

(
1 − vcs

c2

)
∂tz− +

1 − c2
s

c2

1 + vcs

c2

(v − cs)ṽ · ∇z− − csvtr(P(ṽ)∇ṽ) = 0,

2v2

1 − v2

c2

(∂tṽ + v · ∇ṽ) + csvP (ṽ)∇z+ − csvP (ṽ)∇z− = 0,

(3.6)

where z± are real valued and ṽ is a unit vector satisfying |ṽ| = 1.

Proof In Section 1, we know from (1.8) that

dρ

dn
=

q

n
, (3.7)

where q is defined as q := p
c2 + ρ.

Using (3.7), we expand the conservation equation of baryon numbers in (1.4) as follows:

n

q
√

1 − v2

c2

∂tρ +
n

q
√

1 − v2

c2

v · ∇ρ

+
n

2c2
(√

1 − v2

c2

)3 (∂tv
2 + v · ∇v2) +

n∇ · v√
1 − v2

c2

= 0.
(3.8)
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Multiplying (3.8) by
q
√

1− v2
c2

n , we have

∂tρ = −v · ∇ρ − q

2c2(1 − v2

c2 )
(∂tv

2 + v · ∇v2) − q∇ · v. (3.9)

Expanding the momentum conservation equation of (1.4) and using (3.7), we have

(1 + c2
s

c2

1 − v2

c2

(∂tρ + v · ∇ρ) +
q

c2(1 − v2

c2 )2
(∂tv

2 + v · ∇v2) +
q∇ · v
1 − v2

c2

)
v

+
q

1 − v2

c2

(∂tv + (v · ∇)v) + p′(ρ)∇ρ = 0,

(3.10)

where we used
3∑

k=1

∂xk

( p
c2 + ρ

1 − v2

c2

vkv
)

= ∇ ·
( p

c2 + ρ

1 − v2

c2

v
)
v +

p
c2 + ρ

1 − v2

c2

(v · ∇)v.

From (3.9)–(3.10), we have

q(1 − c2
s

c2 )

2c2(1 − v2

c2 )2
v(∂tv

2 + v · ∇v2) +
q

1 − v2

c2

(∂tv + (v · ∇)v)

− qc2
s

c2(1 − v2

c2 )
v∇ · v + p′(ρ)∇ρ = 0.

(3.11)

Moreover, multiplying (3.9) by w′(ρ), (3.11) can be simplified as

∂tw + v · ∇w +
cs

2c2(1 − v2

c2 )
(∂tv

2 + v · ∇v2) + cs∇ · v = 0. (3.12)

From the definition of u in (3.2), we have

du =
1

1 − v2

c2

dv, (3.13)

then (3.12) reduces to

∂tw + v · ∇w +
csv

c2
(∂tu + v · ∇u) + cs∇ · v = 0. (3.14)

By ·2vq , (3.11) can be rewritten as

1 − c2
sv2

c4

(1 − v2

c2 )2
(∂tv

2 + v · ∇v2) − 2 c2
sv2

c2

1 − v2

c2

∇ · v + 2csv · ∇w = 0. (3.15)

Multiplying this equation by 1
2v and using (3.13), (3.15) becomes

1 − c2
sv2

c4

1 − v2

c2

(∂tu + v · ∇u) −
c2

sv2

c2

(1 − v2

c2 )v
∇ · v + csṽ · ∇w = 0. (3.16)

To obtain the expression of ṽ, we multiply (3.11) by the projection P (ṽ), and due to (3.5)
and the definition of w, we get

|v|
1 − v2

c2

(∂tṽ + (v · ∇)ṽ) + csP (ṽ)∇w = 0. (3.17)
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To obtain the expression of w, we combine (3.14) and (3.16) to give(
1 − c2

sv
2

c4

)
∂tw +

(
1 − c2

s

c2

)
v · ∇w + cs∇ · v = 0. (3.18)

Using the definition of u in (3.2) again, we have

∇ · v = ∇ · (vṽ) = v∇ · ṽ + ṽ · ∇v = v∇ · ṽ +
(
1 − v2

c2

)
ṽ · ∇u. (3.19)

Plugging this into (3.16), we have(
1 − c2

sv
2

c4

)
∂tu + cs

(
1 − v2

c2

)
ṽ · ∇w +

(
1 − c2

s

c2

)
v · ∇u − c2

sv
2

c2
∇ · ṽ = 0. (3.20)

Substituting (3.19) for (3.18) leads to(
1 − c2

sv
2

c4

)
∂tw +

(
1 − c2

s

c2

)
v · ∇w + csv∇ · ṽ +

(
1 − v2

c2

)
ṽ · ∇u = 0. (3.21)

To derive our desired symmetric form, ∇· ṽ needs to be transformed, and from (4) in (3.5),
we have

∇ · ṽ = ∇ · ṽ − ṽ · ∇ ṽ2

2
= tr(E(v)∇ṽ).

Plugging this identity into (3.20)–(3.21), and together with (3.17), we have(
1 − c2

sv
2

c4

)
wt +

(
1 − c2

s

c2

)
v · ∇w + cs

(
1 − v2

c2

)
ṽ · ∇u + csvtr(P (ṽ)∇ṽ) = 0,(

1 − c2
sv

2

c4

)
ut +

(
1 − c2

s

c2

)
v · ∇u + cs

(
1 − v2

c2

)
ṽ · ∇w − c2

sv
2

c2
tr(P (ṽ)∇ṽ) = 0,

v

1 − v2

c2

(ṽt + (v · ∇)ṽ) + csP (ṽ)∇w = 0.

(3.22)

Using the generalized Riemann invariant variables z± = u ± w, it is easy to obtain the
symmetric formulation (3.6).

Moreover, (3.6) can be written as the symmetric form (2.37), in which A0(w) and Aj(w)
are, respectively,

A0(w) =

⎛⎝a0 0 0
0 b0 0
0 0 c0I3

⎞⎠ , Aj(w) =

⎛⎝ a1ṽj 0 a2vPj

0 b1ṽj −a2vPj

a2vPj −a2vPj c0vjI3

⎞⎠ , (3.23)

where

a0 = 1 +
vcs

c2
, b0 = 1 − vcs

c2
, c0 =

2v2

1 − v2

c2

, (3.24)

a1 =
1 − c2

s

c2

1 − csv
c2

(v + cs), b1 =
1 − c2

s

c2

1 + csv
c2

(v − cs), a2 = cs,

Pj = (Pj1(v), Pj2(v), Pj3(v)), j = 1, 2, 3.

Remark 3.1 By this lemma, although (1.3)–(1.4) are different, they are symmetrized to
the same form (3.6).



Local Smooth Solutions 315

The following proof is the same as that in [19] and for the reader’s convenience, here we
briefly list the main steps.

Observe that the above matrix A0(w) allows the density to vanish, since the coefficients
remain bounded as the density approaches to zero.

Moreover, from (3.23), we observe that

〈A0(w)ξ, ξ〉 = a0|ξ1|2 + b0|ξ2|2 + c0|v|2|ξ̂|2, (3.25)

where 〈 · , · 〉 denotes the Eucilidian inner product in R
5 and

ξ = (ξ1, ξ2, · · · , ξ5) = (ξ1, ξ2, ξ̂) ∈ R
5, ξ̂ = (ξ3, ξ4, ξ5) ∈ R

3.

From (3.24), the matrix A0(w) is positively definite as long as the velocity v never vanishes.
According to the Friedrichs-Lax-Kato theory (see [14, 28]), a local in-time solution exists.

However, the matrix A0(w) may lose its positive definiteness, since the coefficient c0 of ∂tṽ
in the third equation vanishes at v = 0. On this occasion, we apply a well-chosen Lorentz
transformation, which allows the Lorentz-transformed velocity not to exceed the light speed
and remain bounded away from zero.

For the reader’s convenience, we list some technical results about the Lorentz-transformed
velocity (see [19]).

3.2 Lorentz transformation

Assume that K and K are two reference frames, in which (t,x) and (t,x) represent the
space-time coordinates corresponding to K and K, respectively. K moves with respect to K at
the velocity V. The transformation⎧⎪⎨⎪⎩

t = 

(
t − V · x

c2

)
,

x = −
Vt +
(
I3 + (
 − 1)

V ⊗ V
V 2

)
x

(3.26)

is called a Lorentz transformation, where 
 = 1√
1− v2

c2

is the Lorentz factor.

From (3.26), there holds the velocity transformation law

v =
dx
dt

=
1

1 − V · v
c2

(−V + (
I3 + (1 − 
−1)Ṽ ⊗ Ṽ)v), (3.27)

where v = dx
dt . Denote

cΦ
(v

c
,
V
c

)
:= v =

(
− V

c
1
c

+
(

I3 + (1 − 
−1)

V
c

|V|
c

⊗ V
c

|V|
c

)
v
c
1
c

)
1 − V · v

c2

. (3.28)

Then we have the following lemma.

Lemma 3.2 (Uniform Bounds for the Velocity) (see [19]) Given any r0 ∈ (0, 1) and any
vector V ∈ R

3 satisfying r0 < |V|
c < 1, there exist positive constants 0 < δ1 < δ2 < 1 depending

only on r0 and V
c , such that the Lorentz-transformed velocity (3.27) is uniform bound away

from both the origin and the light speed, i.e.,

δ1 ≤
∣∣∣Φ(v

c
,
V
c

)∣∣∣ ≤ δ2 (3.29)

holds for any V
c ∈ Br0 , where Br0 := {y ∈ R

3 | |y| ≤ r0}.
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Using the Lorentz invariance of relativistic Euler equations, (2.37) can also be expressed in
the transformed coordinates (x, t ) defined by (3.26), that is,

A0(w)∂tw +
3∑

j=1

Aj(w)∂xj
w = 0, (3.30)

and (3.25) becomes

〈A0(w)ξ, ξ〉 = a0|ξ1|2 + b0|ξ2|2 + c0|v|2|ξ̂|2. (3.31)

In view of the upper and lower bounds (3.29), we conclude that the transformed matrix
A0(w) is positively definite in the coordinate system (x, t). Hence the Friedrichs-Lax-Kato
theory (see [14, 28]) applies to the initial-value problem (3.30), provided that the initial data
are imposed on the initial hypersurface t = 0. In the relativistic setting, the initial plane
H0 : t = 0 is not preserved under the transformation (3.26). However, in the new coordinate
system (t,x), the initial plane becomes

H ′
0 : t = −V · x

c2
.

In order to prove the local well-posedness of the oblique initial-value problem (3.30) with
the data on H ′

0, it is convenient to introduce a further change of the coordinates

t = t +
V · x

c2
, x = x, (3.32)

which maps the hyperplane H ′
0 to the hyperplane

H ′′
0 : t = 0.

This transformation puts (3.31) into the following form:

B0(w)∂
t
w +

3∑
j=1

Bj(w)∂xj
w = 0, (3.33)

where the matrix B0(w) is still positively definite (see [19]).
Now Friedrichs-Lax-Kato theory (see [14, 28]) guarantees the existence of a solution defined

in a small neighborhood of this hyperplane H ′′
0 . Making the transformation back to the original

variables, we obtain a solution in a small neighborhood of the initial line t = 0. This completes
the proof of the main theorem for the vacuum case.
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