
Chin. Ann. Math.
35B(3), 2014, 319–336
DOI: 10.1007/s11401-014-0838-8

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2014

On the Error Estimate of the Harmonic Bz Algorithm in
MREIT from Noisy Magnetic Flux Field∗

Qun CHEN1 Jijun LIU2

Abstract Magnetic resonance electrical impedance tomography (MREIT, for short) is a
new medical imaging technique developed recently to visualize the cross-section conduc-
tivity of biologic tissues. A new MREIT image reconstruction method called harmonic Bz

algorithm was proposed in 2002 with the measurement of Bz that is a single component
of an induced magnetic flux density subject to an injection current. The key idea is to
solve a nonlinear integral equation by some iteration process. This paper deals with the
convergence analysis as well as the error estimate for noisy input data Bz, which is the
practical situation for MREIT. By analyzing the iteration process containing the Laplacian
operation on the input magnetic field rigorously, the authors give the error estimate for the
iterative solution in terms of the noisy level δ and the regularizing scheme for determining
ΔBz approximately from the noisy input data. The regularizing scheme for computing
the Laplacian from noisy input data is proposed with error analysis. Our results provide
both the theoretical basis and the implementable scheme for evaluating the reconstruction
accuracy using harmonic Bz algorithm with practical measurement data containing noise.
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1 Introduction

Magnetic resonance electrical impedance tomography (MREIT, for short) is a new electrical
conductivity imaging technique to visualize the cross-sectional images of a conductivity distri-
bution σ of biologic tissues. In contrast to the traditional electrical impedance tomography
(EIT, for short) technique (see [1, 7, 18]), this new technique applies essentially the internal
electrical current distribution to recover the conductivity, which weakens the ill-posedness of
EIT problem and provides a higher resolution of conductivity image.

In MREIT, we place a subject inside a magnetic resonance imaging (MRI, for short) scanner
and inject a current I between two electrodes attached on its boundary. Then there exists
the internal current J = (Jx, Jy, Jz) inside the subject, generating a magnetic flux density
B = (Bx, By, Bz). Here z-axis is the direction of the main magnetic field of the scanner. The
Bz data can be measured by using the MRI scanner, from which we try to reconstruct the
bio-tissue conductivity, see Figure 1 for the configuration of this system.

Recently, some reconstruction schemes using Bz data as inversion input have been proposed,
such as harmonic Bz method, gradient Bz method and variational gradient Bz method (see
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[2, 12, 17]). It has been proven that the measurements Bz,j corresponding to two incoherent
injection currents Ij with j = 1, 2 can determine the conductivity distribution σ uniquely in
2-dimensional case (see [3, 14]) under some a priori assumptions.

The harmonic Bz algorithm was the first constructive MREIT imaging method based on
Bz data (see [17]). From the Ampere law

μ0∇× J = −∇2B (1.1)

and

J = −σ∇u[σ], (1.2)

we have

∇2B = μ0∇× (σ∇u[σ]) = μ0∇σ ×∇u[σ], (1.3)

where μ0 is the magnetic permeability of the free space, u[σ] as a nonlinear function of σ is the
induced electrical potential satisfying a nonstandard PDE problem specified in Section 2.

Taking the z-component of (1.3), it follows that

1
μ0

∇2Bz =
(
∂u[σ]
∂y

−∂u[σ]
∂x

) ⎛
⎜⎜⎝
∂σ

∂x
∂σ

∂y

⎞
⎟⎟⎠ . (1.4)

Corresponding to two incoherent injected currents Ij , j = 1, 2 through two pairs of surface
electrodes ε±1 and ε±2 , it follows from (1.4) that⎡

⎢⎢⎣
∂σ

∂x
∂σ

∂y

⎤
⎥⎥⎦ =

1
μ0

A[σ]−1

[∇2Bz,1

∇2Bz,2

]
, (1.5)

where

A[σ] =:

⎡
⎢⎢⎣
∂u1[σ]
∂y

−∂u1[σ]
∂x

∂u2[σ]
∂y

−∂u2[σ]
∂x

⎤
⎥⎥⎦ (1.6)
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and uj[σ], Bz,j are the potential and the magnetic flux density, respectively, corresponding to
Ij with j = 1, 2.

The harmonic Bz algorithm is an explicit iteration scheme to approximate σ at each 2-
dimensional slice Ωz0 = Ω ∩ {z = z0} ⊂ R

2 based on the relation (1.5). Since the harmonic
Bz algorithm was proposed, it has been improved rapidly in various numerical simulations and
phantom experiments (see [8–11, 15–16]). In [4], the authors proved that, for a relatively small
contrast of the target conductivity, the iterative harmonic Bz algorithm based on (1.5) with a
good initial guess is stable and convergent in the continuous norm. In [5], the author improved
the convergence result based on the following equivalent equality of (1.5):

⎡
⎢⎢⎣
∂ lnσ
∂x
∂ lnσ
∂y

⎤
⎥⎥⎦ =

1
μ0

(σA[σ])−1

[∇2Bz,1

∇2Bz,2

]

and derived a posteriori error estimate of ‖ lnσn − lnσ∗‖, where σ∗ is the true conductivity.
However, these two convergence results are considered only for exact magnetic flux field Bz.

In practical situations, we can only acquire the noisy data Bδ
z of Bz using MRI equipment.

However, the harmonic Bz algorithm applies in fact the Laplacian of Bz as inversion input, the
noise contained in Bz will be amplified by such an operation and therefore has essential influence
on the approximation accuracy of the iteration solution. Such an influence depends not only on
the error level of noisy input data, but also on the regularizing strategy computing the Laplacian
from the noisy data Bδ

z . So it is necessary to give an error estimate on the iterative harmonic
Bz algorithm for the noisy input data Bδ

z corresponding to some regularization scheme for the
practical applications of harmonic Bz algorithm, which is the purpose of this paper.

This paper is organized as follows. In Section 2 we state the mathematical formulation of
the harmonic Bz algorithm. Then for a relatively small contrast of the target conductivity,
the iteration error of this algorithm is established in Section 3 for noisy input data, under
the assumption that a stable numerical differentiation process has been applied. In Section 4,
we propose a numerical regularizing scheme for the computation of Laplacian from the noisy
measurement data Bδ

z with error estimate, which provides the basis on computing the error of
iterative solution of conductivity.

2 Mathematical Model

Let Ω ⊂ R
3 be an electrically conducting subject with its smooth connected boundary ∂Ω.

In MREIT, we inject a current I through a pair of surface electrodes ε±, then it produces an
internal current density J = (Jx, Jy, Jz) inside the subject Ω satisfying the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · J = 0, r ∈ Ω,

I = −
∫

ε+
J · nds =

∫
ε−

J · nds,

J× n = 0, r ∈ ε+ ∪ ε−

J · n = 0, r ∈ ∂Ω\ε+ ∪ ε−,

(2.1)

where n is the outward unit normal vector on ∂Ω and ds is the surface area element.
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Since J = −σ∇u[σ], (2.1) can be converted to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (σ∇u[σ]) = 0, r ∈ Ω,

I =
∫

ε+
σ
∂u

∂n
ds = −

∫
ε−
σ
∂u

∂n
ds,

∇u× n = 0, r ∈ ε+ ∪ ε−,

−σ∂u[σ]
∂n

= 0, r ∈ ∂Ω\ε+ ∪ ε−.

(2.2)

This exact model (2.2) can be solved in terms of the following standard problem (see [4]):⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇ · (σ∇ũ) = 0, r ∈ Ω,
ũ|ε+ = 1, ũ|ε− = 0,

−σ ∂ũ
∂n

= 0, r ∈ ∂Ω\ε+ ∪ ε−.
(2.3)

More precisely, if u[σ] and ũ[σ] are the solution of problems (2.2)–(2.3), respectively, then

u[σ] =
I∫

ε+ σ
∂ũ[σ]
∂n ds

ũ[σ] + C in Ω,

where C is a constant decided by the electric potential specified at one point.
We now consider the magnetic field produced by the injection current I. From the Biot-

Savart law, it follows that

B(r) =
μ0

4π

∫
Ω

J(r′) × r− r′

|r − r′|3 dr′, (2.4)

which generates the following relation between Bz and σ from (1.2):

Bz(r) =
μ0

4π

∫
Ω

σ(r′)
[
(x− x′)

∂u[σ(r′)]
∂y

− (y − y′)
∂u[σ(r′)]

∂x

]
|r − r′|3 dr′, r = (x, y, z) ∈ Ω. (2.5)

Recently, a new iteration scheme based on the nonlinear integral equation (2.5) was proposed
in [6], which applies the Bz data as the inversion data directly in the algorithm, without the
computation of Laplacian on the magnetic flux.

The harmonic Bz algorithm is an iterative scheme at each 2-dimensional slice Ωz0 = Ω ∩
{z = z0} based on the identity (1.5). To give the complete iteration scheme, we introduce
the fundamental solution of 2-dimensional Laplace operator Φ(r, r′) := − 1

2π ln 1
|r−r′| satisfying

Δr′Φ(r, r′) = δ(r − r′) for r ∈ R
2, then at each 2-dimensional slice, it holds that

σ(x, y, z0) =
1

2πμ0

∫
Ωz0

(x − x′, y − y′)
|x− x′|2 + |y − y′|2 · ∇σ(x′, y′, z0)dx′dy′ −H(σ), (2.6)

where ∇ = (∂x′ , ∂y′), H(σ) := 1
2π

∫
∂Ωz0

(x−x′,y−y′)·n
|x−x′|2+|y−y′|2 · σ(x′, y′, z0)dl.

It has been noticed that A[σ]−1(x, y, z0) may be large near ∂Ωz0 due to the fact that two
induced currents σ∇u1[σ], σ∇u2[σ] are probably almost parallel for some configuration. This
phenomena may lead to the unconvergence of the iteration scheme. To avoid this difficulty, we
assume as usual that the unknown true conductivity is constant in Ωz0\Ω̃z0 for some interior
domain Ω̃z0 . Then it is easy to see from (1.4) that ∇2Bz,1 ≡ ∇2Bz,2 ≡ 0 in Ωz0\Ω̃z0 .
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We denote by σ∗ the true unknown conductivity and assume that its value on ∂Ωz0 , still
denoted as σ∗, is known. Let Bz,j , j = 1, 2 be the exact magnetic flux density corresponding to
σ∗ for two inject currents. For given initial guess σ0(x, y, z0) in Ωz0 with exact values in Ωz0\Ω̃z0 ,
the harmonic Bz iteration algorithm constructs an approximation sequence {σn(x, y, z0) : n =
0, 1, 2, · · · } from⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇σn+1(x, y, z0) :=

1
μ0

A[σn]−1

[∇2Bz,1

∇2Bz,2

]
,

σn+1(x, y, z0) =
1
2π

∫
Ω̃z0

(x− x′, y − y′)
|x− x′|2 + |y − y′|2 · ∇σn+1(x′, y′, z0)dx′dy′ − H̃(σ∗)

(2.7)

for (x, y) ∈ Ω̃z0 based on the relations (1.5) and (2.6), where H̃(σ∗) is H(σ∗) with ∂Ωz0

replaced by ∂Ω̃z0 . For (x, y) ∈ Ωz0\Ω̃z0 , it is obvious that σn(x, y, z0) ≡ σ∗(x, y, z0) from the
first equation in (2.7) since ∇2B1

z ≡ ∇2B2
z ≡ 0 in Ωz0\Ω̃z0 .

To give the error estimate for the iteration solution with noisy input data in the next section,
we need two regularity results for direct problems.

Lemma 2.1 Denote by E the regular open subsurface of the boundary ∂Ω of Ω ⊂ R
2. Then

for the boundary value problem⎧⎪⎨
⎪⎩
∇ · (σ∇u) = ∇ · f, r ∈ Ω,
u|E = h, r ∈ E ,
−σ∇u · n = g, r ∈ ∂Ω\E

with σ ∈ L∞(Ω) satisfying inf
Ω
σ > 0, h ∈ H

1
2 (E) and g ∈ H− 1

2 (∂Ω\E), the following estimates

hold:
If f ∈ (L2(Ω))2 and σ ∈ C(Ω), then u ∈ H1(Ω) and

‖u‖H1(Ω) ≤ C1(σ)[‖f‖L2(Ω) + ‖h‖
H

1
2 (E)

+ ‖g‖
H− 1

2 (∂Ω\E)
]; (2.8)

if f ∈ (H1(Ω))2 and σ ∈ C1(Ω), then u ∈ H2(Ω̃) and

‖u‖H2(Ω̃) ≤ C2(σ)[‖u‖H1(Ω) + ‖∇ · f‖L2(Ω)]; (2.9)

if f ∈ (C0,α(Ω))2 with α ∈ (0, 1) and σ ∈ C1(Ω), then u ∈ C1,α(˜̃Ω) and

‖∇u‖C0,α(Ω̃) ≤ C3(σ)[‖u‖
C0,α(

˜̃
Ω)

+ ‖f‖
C0,α(

˜̃
Ω)

]; (2.10)

if f ∈ (Lp(Ω))2 with p > 1and σ ∈ C(Ω), then u ∈W 1,p(˜̃Ω) and

‖∇u‖
Lp(

˜̃
Ω)

≤ C4(σ)[‖u‖
Lp(

˜̃
Ω)

+ ‖f‖
Lp(

˜̃
Ω)

], (2.11)

where Ω̃ ⊂⊂ ˜̃Ω ⊂⊂ Ω are regular domains, and Ci(Ω) have the following forms:

Ci(σ) = Fi

(
‖σ‖C(Ω), ‖∇σ‖C(Ω),

1
inf
Ω
σ

)
, i = 2, 3, (2.12)

Ci(σ) = Fi

(
‖σ‖C(Ω),

1
inf
Ω
σ

)
, i = 1, 4. (2.13)

The functions Fi (i = 1, 2, 3, 4) are known bounded continuous functions with respect to the
arguments.
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This result can be found in [4].

Lemma 2.2 Let ũ be the solution of the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇ · (σ∇ũ) = 0, r ∈ Ω,
ũ|ε+ = 1, ũ|ε− = 0,

−σ ∂ũ
∂n

= 0, r ∈ ∂Ω\ε+ ∪ ε−.

Then there exists a constant C(σ) such that

‖∇ũ‖C(Ω̃) + ‖ũ‖H2(Ω̃) ≤ C(σ), (2.14)

where C(σ) = (CsC3(σ) + 1)C1(σ)C2(σ), Ω̃ ⊂⊂ Ω.

Proof It follows from (2.8)–(2.9) that

‖ũ‖
H2(

˜̃
Ω)

≤ C2(σ)‖ũ‖H1(Ω) ≤ C2(σ)C1(σ),

where Ω̃ ⊂⊂ ˜̃Ω ⊂⊂ Ω. By the Sobolev imbedding theorem, we can obtain

‖ũ‖
C0,α(

˜̃
Ω)

≤ Cs‖ũ‖
H2(

˜̃
Ω)

≤ CsC2(σ)C1(σ)

for every α ∈ (0, 1).
Finally, combining these two estimates with (2.10), we have

‖∇ũ‖C(Ω̃) + ‖ũ‖H2(Ω̃) ≤ (CsC3(σ) + 1)C1(σ)C2(σ) := C(σ),

which leads to (2.14).

3 Error Estimate for Noisy Input Data

We consider the error estimate of harmonic Bz iteration algorithm in axially symmetric
cylindrical sections. Let Ω be a cylinder along the z direction with infinite length and the
electrode pair be parallel to the z direction. Moreover we assume that the conductivity σ∗ in
Ω does not change along z direction. Then the conductivity is actually reconstructed in the
2-dimensional domain. To unify the notations, we still use Ω in the sequel to represent the
2-dimensional domain Ωz0 .

In this section, we consider the error estimate of harmonic Bz algorithm for noisy input data
Bδ

z . In this noise input data situation, for given initial guess σ0(x, y) in Ω with exact values in
Ω\Ω̃, where Ω̃ ⊂⊂ Ω, the iterative sequence {σn,δ : n = 1, 2, · · · } is generated from⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇σ1,δ :=

1
μ0

A[σ0]−1

[∇2Bδ
z,1

∇2Bδ
z,2

]
,

σ1,δ(x, y) =
1
2π

∫
Ω̃

(x− x′, y − y′)
|x− x′|2 + |y − y′|2 · ∇σ1,δ(x′, y′)dx′dy′ − H̃(σ∗),

(3.1)

and then for n = 1, 2, · · · ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇σn+1,δ :=

1
μ0

A[σn,δ]−1

[∇2Bδ
z,1

∇2Bδ
z,2

]
,

σn+1,δ(x, y) =
1
2π

∫
Ω̃

(x− x′, y − y′)
|x− x′|2 + |y − y′|2 · ∇σn+1,δ(x′, y′)dx′dy′ − H̃(σ∗),

(3.2)



On the Error Estimate of the Harmonic Bz Algorithm in MREIT 325

where the notation ∇2Bδ
z is the approximation to ∇2Bz, for which we will propose a regularizing

scheme in Section 4.
We firstly give two known results related to the convergence for the exact magnetic field,

which will be applied in our error estimate.

Lemma 3.1 For Ω̃ ⊂⊂ Ω, if σ lies in the set

Ξ[σ0, λ, ε0] =:
{
σ ∈ C1(Ω) :

1
λ
< σ < λ, ‖∇σ‖C(Ω) < ε0, σ|Ω\Ω̃ = σ0

}
,

where σ0, λ, ε0 are positive constants, then there exists a constant d∗− depending only on λ, ε0,Ω,
dist(∂Ω, Ω̃) and ε±j , such that

inf
Ω̃

| detA[σ]| ≥ d∗− > 0. (3.3)

Lemma 3.2 Assume that the target conductivity σ∗(x, y) ∈ C1(Ω) meets the following
conditions:

(H1) 0 < σ∗− ≤ σ∗ ≤ σ∗
+ for known constants σ∗±;

(H2) there exists Ω̃ ⊂⊂ Ω such that σ∗ is a known constant in Ω\Ω̃;
(H3) | detA[σ∗](x, y)| ≥ d∗− > 0 in Ω̃, where d∗− is a known constant.

Under these hypotheses, there exist constants ε = ε(σ∗
±, d

∗
−) > 0 small enough and θ =

θ(ε, σ∗±, d∗−) ∈ (0, 1), such that if we take the initial guess σ0 as the constant σ∗|Ω\Ω̃, then
the sequence σn given by the harmonic Bz iteration algorithm using exact input data holds for
‖∇σ∗‖C(Ω̃) ≤ ε that

σn ≡ σ∗ in Ω\Ω̃, ‖σn − σ∗‖C1(Ω̃) ≤ Kθnε, n = 1, 2, · · · ,

where K := diam(Ω) + 1.

These two results can be found in [4–5], respectively.
From Lemma 3.2, for true conductivity σ∗ lying in the set

S1 := {σ(x, y) : 0 < σ∗
− ≤ σ ≤ σ∗

+, ‖∇σ‖C(Ω̃) ≤ ε, (x, y) ∈ Ω}, (3.4)

the iterative sequence {σn : n = 1, 2, · · · } using exact input data lies in

S2 :=
{
σ(x, y) :

1
2
σ∗
− ≤ σ ≤ 1

2
σ∗
− + σ∗

+, ‖∇σ‖C(Ω̃) ≤
K + 1
2K

σ∗
−, (x, y) ∈ Ω

}
(3.5)

for any ε ∈ (0, 1
2Kσ

∗−).
In fact, for any ε ∈ (0, 1

2Kσ
∗
−) and θ ∈ (0, 1), it follows from Lemma 3.2 that

|σn − σ∗| ≤ ‖σn − σ∗‖C(Ω̃) ≤ ‖σn − σ∗‖C1(Ω̃) ≤ Kθnε ≤ 1
2
σ∗
−

and ‖∇(σn − σ∗)‖C(Ω̃) ≤ Kθnε ≤ 1
2σ

∗
−. Then we have

1
2
σ∗
− ≤ σ∗ − 1

2
σ∗
− ≤ σn ≤ σ∗ +

1
2
σ∗
− ≤ σ∗

+ +
1
2
σ∗
−

in Ω̃ and

‖∇σn‖C(Ω̃) ≤ ‖∇σ∗‖C(Ω̃) +
1
2
σ∗
− ≤ K + 1

2K
σ∗
−.
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Noticing that σn ≡ σ∗ in Ω\Ω̃, we get (3.5).
For practical measurement data with noise, the input data for the iteration scheme is in fact

the Laplacian operation ∇2Bδ
z from (3.1)–(3.2). When presenting our error estimate, we must

firstly analyze the error ρ(δ) of computing ∇2Bz from the noisy measurement data Bδ
z , which

depends on the regularizing scheme. Since we generally measure the error of magnetic field
itself in L2-norm, while we need the error estimate of Laplacian in C-norm in our iteration, we
give the following approximation for our computation on Laplacian:

(H4) For the noisy data Bδ
z,j satisfying

‖Bδ
z,j −Bz,j‖L2(Ω) ≤ δ,

a stable differentiation scheme is used to compute ∇2Bδ
z,j such that

∥∥∥ [∇2e1
∇2e2

] ∥∥∥
H2

0 (Ω̃)
≤ ρ(δ) → 0 as δ → 0, (3.6)

where ∇2ej := ∇2Bδ
z,j −∇2Bz,j , j = 1, 2.

(H5) ∇2Bδ
z,j (j = 1, 2) is understood such that ∇2Bδ

z,1 = ∇2Bδ
z,2 = 0 in Ω\Ω̃, which is a

natural condition if the conductivity is assumed to be a known constant in the domain Ω\Ω̃
implying ∇2Bz,j ≡ 0 in Ω\Ω̃.

An implementable regularizing scheme to compute ΔBz approximately from Bδ
z to reach

(3.6) with ρ(δ) =
√
δ as well as the regularity requirement on the target conductivity will be

given in Section 4.
Now we can state the main result of our work as follows.

Theorem 3.1 Assume that the target conductivity σ∗(x, y) ∈ C1(Ω) meets the three hy-
potheses in Lemma 3.2 and (H4)–(H5). Then there exist constants ε = ε(σ∗

±, d
∗
−) > 0 small

enough and θ = θ(ε, σ∗
±, d

∗
−) ∈ (0, 1), M = M(σ∗

±, d
∗
−) such that if we take the initial guess σ0

as the constant σ∗|Ω\Ω̃, the sequence {σn,δ} given by (3.1)–(3.2) with noisy input data holds for
‖∇σ∗‖C(Ω̃) ≤ ε and δ small enough that

σn,δ ≡ σ∗ in Ω\Ω̃, ‖σn,δ − σ∗‖C1(Ω̃) ≤Mρ(δ) +Kθnε, n = 1, 2, · · · .

Proof Let us take ε ∈ (0, 1
2Kσ

∗−). Denote by u∗j and un
j the solutions of the direct problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · (σ∇uj) = 0, r ∈ Ω,
uj |ε+

j
= 1, uj |ε−

j
= 0,

−σ∂uj

∂n
= 0, r ∈ ∂Ω\ε+j ∪ ε−j

(3.7)

with σ = σ∗ and σ = σn, respectively. It follows from Lemma 2.2 that

‖∇u∗j‖C(Ω̃) + ‖u∗j‖H2(Ω̃) ≤ C(σ∗) (3.8)

and

‖∇un
j ‖C(Ω̃) + ‖un

j ‖H2(Ω̃) ≤ C(σn). (3.9)

However, Lemma 3.2 says that {σn : n = 1, 2, · · · } ⊂ S2. So it follows from the expressions
of C(σ∗) and C(σn) in Lemma 2.2 that the constants are of a uniform upper bound:

C(σ∗), C(σn) ≤ C∗ := sup
(t1,t2,t3)∈S

[CsF3(t1, t2, t3) + 1]F1(t1, t3)F2(t1, t2, t3)
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with
S =

[1
2
σ∗
−,

1
2
σ∗
− + σ∗

+

]
×

[
0,

2K + 1
2K

σ∗
−

]
×

[ 1
1
2σ

∗− + σ∗
+

,
1

1
2σ

∗−

]
.

Step 1 Estimate ‖σ1,δ − σ1‖C1(Ω̃).
Firstly, expand the initial guess σ0 at σ∗ as σ0 = σ∗ +e0. Since ‖∇σ∗‖C(Ω̃) ≤ ε and σ0 = σ∗

in Ω\Ω̃, it follows that

‖e0‖C(Ω) ≤ diam(Ω)‖∇e0‖C(Ω) ≤ diam(Ω)ε.

Hence, ‖e0‖C1(Ω) = ‖e0‖C(Ω) + ‖∇e0‖C(Ω) ≤ (diam(Ω) + 1)ε =: Kε.
We expand u0

j at u∗j as

u0
j = u∗j + w0

j . (3.10)

Noticing that σ0 = σ∗ in Ω\Ω̃, w0
j meets

⎧⎪⎨
⎪⎩
∇ · (σ0∇w0

j ) = −∇ · (e0∇u∗j ), r ∈ Ω,
w0

j |ε+
j

= 0, w0
j |ε−

j
= 0,

−σ0∇w0
j · n = e0∇u0

j · n = 0, r ∈ ∂Ω\ε+ ∪ ε−.
(3.11)

Since ‖e0‖C1(Ω) ≤ Kε and e0 = 0 in Ω\Ω̃, it follows from (3.8) that the right-hand side of the
first equation in (3.11) satisfies

‖∇ · (e0∇u∗j )‖L2(Ω) ≤ C∗‖e0‖C1(Ω̃).

Therefore it follows from Lemma 2.1 and the Sobolev imbedding theorem that

‖w0
j ‖C0,α(

˜̃
Ω)

≤ Cs‖w0
j ‖H2(

˜̃
Ω)

≤ CsC2(σ0)[‖w0
j ‖H1(Ω̃) + ‖∇ · (e0∇u∗j )‖L2(Ω̃)]

≤ CsC2(σ0)[C1(σ0)‖e0∇u∗j‖L2(Ω) + C∗‖e0‖C1(Ω̃)]

≤ CsC2(σ0)[C1(σ0)C1(σ∗) + C∗]‖e0‖C1(Ω̃).

According to the above estimate and (2.10), we have for Ω̃ ⊂⊂ ˜̃Ω ⊂⊂ Ω that

‖∇w0
j ‖C(Ω̃) ≤ C3(σ0)[‖w0

j ‖Cα(
˜̃
Ω)

+ ‖e0∇u∗j‖C(
˜̃
Ω)

]

≤ C3(σ0){CsC2(σ0)[C1(σ0)C1(σ∗) + C∗] + ‖∇u∗j‖C(
˜̃
Ω)
}‖e0‖C1(Ω̃).

Using the same arguments as those in deriving (3.8), we can get

‖∇u∗j‖C(
˜̃
Ω)

≤ C̃∗ = C̃∗(σ∗
±,K,

˜̃Ω).

Therefore we have

‖∇w0
j ‖C(Ω̃) ≤ C3(σ0){CsC2(σ0)[C1(σ0)C1(σ∗) + C∗] + C̃∗}‖e0‖C1(Ω̃). (3.12)

Denote by

F (σ) := C3(σ)
{
CsC2(σ)

[
C1(σ) sup

[σ∗
−,σ∗

+]×[ 1
σ∗
+

, 1
σ∗−

]

C1(σ∗) + C∗
]

+ C̃∗
}

(3.13)
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a known function due to Lemma 2.1. For ε ∈ (0, 1
2Kσ

∗−), we introduce the constant

Cε(σ∗) := sup
‖σ−σ∗‖C1(Ω)≤Kε

F (σ), (3.14)

which is well defined. Noticing that‖σ − σ∗‖C1(Ω) ≤ Kε, we have σ > 1
2σ

∗
− > 0 for 0 < ε <

1
2Kσ

∗
−due to (H1) in Lemma 3.2. Moreover, this constant can be estimated by a known constant

as

Cε(σ∗) ≤ sup
S2

F (σ) =: G(σ∗
±). (3.15)

Now it follows from (3.12)–(3.15) that

‖∇w0
j‖C(Ω̃) ≤ G(σ∗

±)‖e0‖C1(Ω̃). (3.16)

Since ‖e0‖C1(Ω) ≤ Kε, it follows that

‖∇w0
j‖C(Ω̃) ≤ G(σ∗

±)Kε. (3.17)

On the other hand, it follows from (2.7) and (3.1) that

A[σ0]∇(σ1,δ − σ1) =
1
μ0

[ ∇2e1
∇2e2

]
, (3.18)

which can be written as⎛
⎜⎜⎝I + A[σ∗]−1

⎡
⎢⎢⎣
∂w0

1

∂y
−∂w

0
1

∂x

∂w0
2

∂y
−∂w

0
2

∂x

⎤
⎥⎥⎦
⎞
⎟⎟⎠∇(σ1,δ −∇σ1) =

1
μ0

A[σ∗]−1

(∇2e1
∇2e2

)
(3.19)

due to the definition of the matrix A[σ0] and (3.10).
However, it is obvious from (3.17) that∥∥∥∥∥∥∥∥

A[σ∗]−1

⎡
⎢⎢⎣
∂w0

1

∂y
−∂w

0
1

∂x

∂w0
2

∂y
−∂w

0
2

∂x

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥

C(Ω̃)

≤ ‖A[σ∗]−1‖C(Ω̃) max
j=1,2

‖∇w0
j‖C(Ω̃)

≤ ‖A[σ∗]−1‖C(Ω̃)G(σ∗
±)Kε. (3.20)

A direct computation leads to ‖A[σ∗]−1‖C(Ω̃) ≤
max
j=1,2

‖∇u∗
j ‖C(Ω̃)

| detA[σ∗]| , from which we deduce

‖A[σ∗]−1‖C(Ω̃) ≤
C∗
d∗−

(3.21)

due to (3.8) and (H3).
Now we take ε ∈ (0, 1

2Kσ
∗
−) small enough such that

C∗
d∗−

G(σ∗
±)Kε <

1
2
,
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which implies from (3.20) that∥∥∥∥∥∥∥∥
A[σ∗]−1

⎡
⎢⎢⎣
∂w0

1

∂y
−∂w

0
1

∂x

∂w0
2

∂y
−∂w

0
2

∂x

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥

C(Ω̃)

<
1
2
. (3.22)

Now it follows from (3.19), (3.21)–(3.22) that

‖∇(σ1,δ − σ1)‖C(Ω̃) ≤
2
μ0

C∗
d∗−

ρ(δ),

where the Sobolev embedding theorem H2
0 (Ω̃) ↪→ Cβ(Ω̃) with β ∈ [0, 1) on ∇2ej based on (3.6)

is applied. This last estimate generates

‖σ1,δ − σ1‖C1(Ω̃) ≤ K‖∇(σ1,δ − σ1)‖C(Ω̃) ≤
2K
μ0

C∗
d∗−

ρ(δ). (3.23)

Introduce a new constant

M = M(σ∗
±, d

∗
−) =:

2K
μ0

C∗
d∗−

,

then the estimate (3.23) becomes

‖σ1,δ − σ1‖C1(Ω̃) ≤Mρ(δ). (3.24)

On the other hand, it follows from (3.1) and (H5) that ∇σ1,δ = 0 in Ω\Ω̃, and therefore
σ1,δ = σ∗ in Ω\Ω̃.

Take δ small enough such that Mρ(δ) ≤ 1
4σ

∗
−. Then it follows from the above estimate and

Lemma 3.2 that

‖σ1,δ − σ∗‖C1(Ω̃) ≤ ‖σ1,δ − σ1‖C1(Ω̃) + ‖σ1 − σ∗‖C1(Ω̃) ≤
1
4
σ∗
− +Kε ≤ 3

4
σ∗
−

for any ε ∈ (0, 1
2Kσ

∗−). So σ1,δ lies in the set

S3 :=
{
σ(x, y) :

1
4
σ∗
− < σ < σ∗

+ +
3
4
σ∗
−, ‖∇σ‖C(Ω̃) ≤

3K + 2
4K

σ∗
−, (x, y) ∈ Ω

}
. (3.25)

Now we can apply the induction argument to prove the theorem. That is, assume that the
following properties

σk,δ = σ∗ in Ω\Ω̃ and ‖σk,δ − σk‖C1(Ω̃) ≤Mρ(δ) (3.26)

hold for k = n, which specially yields that

σn,δ ∈ S3 and σn,δ = σ∗ in Ω\Ω̃, (3.27)

noticing σn ∈ S2. Then we need to prove that these properties are also true for k = n+ 1.
Step 2 Expand σn,δ at σn.
Let un,δ

j (j = 1, 2) be the solutions of the problem (3.7) with σ = σn,δ. It follows from
Lemma 2.2 that

‖∇un,δ
j ‖C(Ω̃) + ‖un,δ

j ‖H2
0(Ω̃) ≤ C(σn,δ).
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Since σn,δ ∈ S3, similarly to the estimate of C(σn) in (3.9), there exists a constant C∗,3

depending only on the upper and lower bounds σ∗± of σ∗, K and domain Ω̃, still denoted by C∗
for the simplicity of notation, such that

‖∇un,δ
j ‖C(Ω̃) + ‖un,δ

j ‖H2
0(Ω̃) ≤ C∗. (3.28)

We expand σn,δ at σn as σn,δ = σn + en,δ and un,δ
j at un

j as un,δ
j = un

j + wn,δ
j .

Since σn,δ = σn = σ∗ in Ω\Ω̃, wn,δ
j satisfies the following problem:⎧⎪⎨

⎪⎩
∇ · (σn,δ∇wn,δ

j ) = −∇ · (en,δ∇un
j ), r ∈ Ω,

wn,δ
j |ε+ = 0, wn,δ

j |ε− = 0,
−σn,δ∇wn,δ

j · n = en,δ∇un
j · n = 0, r ∈ ∂Ω\ε+ ∪ ε−.

Similarly to the derivation of (3.16), we have

‖∇(un,δ
j − un

j )‖C(Ω̃) = ‖∇wn,δ
j ‖C(Ω̃) ≤ G1(σ∗

±)‖σn,δ − σn‖C1(Ω̃), (3.29)

where the definition of G1(σ∗
±) is similar to G(σ∗

±) and G(σ∗
±) ≤ G1(σ∗

±) due to S2 ⊂ S3.
On the other hand, it follows from σn ∈ S2, σn,δ ∈ S3 and Lemma 3.1 that

inf | detA[σn]| ≥ d∗− > 0, inf | detA[σn,δ]| ≥ d∗− > 0, (3.30)

where d∗− is a constant depending only on σ∗
±, ε, Ω, dist(∂Ω, Ω̃) and ε±j .

Step 3 Estimate ‖σn,δ − σn‖C1(Ω̃).
It follows from (3.2) and (2.7) that

∇(σn+1,δ − σn+1)

=
1
μ0

(A[σn,δ]−1 − A[σn]−1)
[∇2Bz,1

∇2Bz,2

]
+

1
μ0

A[σn,δ]−1

[∇2e1

∇2e2

]
. (3.31)

Hence we have

‖∇(σn+1,δ − σn+1)‖C(Ω̃) ≤
1
μ0

‖A[σn,δ]−1 − A[σn]−1‖C(Ω̃)

∥∥∥ [∇2Bz,1

∇2Bz,2

] ∥∥∥
C(Ω̃)

+

1
μ0

‖A[σn,δ]−1‖C(Ω̃)

∥∥∥ [∇2e1
∇2e2

] ∥∥∥
C(Ω̃)

=: I + II. (3.32)

Firstly, we estimate II. From the definition of A[σ] in (1.6), we have

‖A[σn,δ]−1‖C(Ω̃) ≤
1

| detA[σn,δ]| max
j=1,2

‖∇un,δ
j ‖C(Ω̃). (3.33)

On the other hand, the Sobolev imbedding theorem and (H4) yield

∥∥∥ [∇2e1
∇2e2

] ∥∥∥
C(Ω̃)

≤ Cs

∥∥∥ [∇2e1
∇2e2

] ∥∥∥
H2

0 (Ω̃)
≤ Csρ(δ) =: ρ(δ) (3.34)

for the simplicity of notation. So it follows from (3.28), (3.30) and (3.34) that

II ≤ 1
μ0

C∗
d∗−

ρ(δ). (3.35)
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Then we estimate I in (3.32). Again using the definition of A[σ], we get that

‖A[σn,δ]−1 − A[σn]−1‖C(Ω̃)

≤
∥∥∥ 1

detA[σn,δ]
− 1

detA[σn]

∥∥∥
C(Ω̃)

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
−∂u

n,δ
2

∂x

∂un,δ
1

∂x

−∂u
n,δ
2

∂y

∂un,δ
1

∂y

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
C(Ω̃)

+
∥∥∥ 1

detA[σn]

∥∥∥
C(Ω̃)

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
−∂(un,δ

2 − un
2 )

∂x

∂(un,δ
1 − un

1 )
∂x

−∂(un,δ
2 − un

2 )
∂y

∂(un,δ
1 − un

1 )
∂y

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
C(Ω̃)

≤
∥∥∥ 1

detA[σn,δ]
− 1

detA[σn]

∥∥∥
C(Ω̃)

max
j=1,2

‖∇un,δ
i ‖C(Ω̃)

+
∥∥∥ 1

detA[σn]

∥∥∥
C(Ω̃)

max
j=1,2

‖∇un,δ
i − un

i ‖C(Ω̃)

=: III + IV. (3.36)

A direct computation leads to

detA[σn] − detA[σn,δ] =
∂un,δ

2

∂x

∂(un,δ
1 − un

1 )
∂y

+
∂(un,δ

2 − un
2 )

∂x

∂un
1

∂y

+
∂un

1

∂x

∂(un
2 − un,δ

2 )
∂y

+
∂(un

1 − un,δ
1 )

∂x

∂un,δ
2

∂y
,

which yields ∥∥∥ 1
detA[σn,δ]

− 1
detA[σn]

∥∥∥
C(Ω̃)

≤
∥∥∥ 1

detA[σn,δ] detA[σn]

∥∥∥
C(Ω̃)

‖ detA[σn] − detA[σn,δ]‖C(Ω̃)

≤ 4C∗
(d∗−)2

max
j=1,2

‖∇(un,δ
j − un

j )‖C(Ω̃) (3.37)

from (3.9), (3.28) and (3.30). Therefore it follows from (3.28) and (3.37) that

III ≤ 4
(C∗
d∗−

)2

max
j=1,2

‖∇(un,δ
j − un

j )‖C(Ω̃). (3.38)

Again from (3.28), we have

IV ≤ 1
d∗−

max
j=1,2

‖∇(un,δ
j − un

j )‖C(Ω̃). (3.39)

By (3.36), (3.38)–(3.39), we obtain that

‖A[σn,δ]−1 − A[σn]−1‖C(Ω̃) ≤
[
4
(C∗
d∗−

)2

+
1
d∗−

]
max
j=1,2

‖∇(un,δ
j − un

j )‖C(Ω̃). (3.40)

So it follows from (3.29) and (3.40) that

‖A[σn,δ]−1 − A[σn]−1‖C(Ω̃) ≤
[
4
(C∗
d∗−

)2

+
1
d∗−

]
G1(σ∗

±)‖σn,δ − σn‖C1(Ω̃). (3.41)
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On the other hand, (1.5) yields

∥∥∥ (∇2Bz,1

∇2Bz,2

) ∥∥∥
C(Ω̃)

≤ μ0

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝
∂u∗1
∂y

−∂u
∗
1

∂x
∂u∗2
∂y

−∂u
∗
2

∂x

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
C(Ω̃)

‖∇σ∗‖C(Ω̃)

≤ μ0 max
j=1,2

‖∇u∗j‖C(Ω)‖∇σ∗‖C(Ω̃) ≤ μ0C∗ε (3.42)

from (3.8) and the condition ‖∇σ∗‖C(Ω̃) ≤ ε.
Finally combining (3.41) and (3.42) together yields

I ≤ G1(σ∗
±)ε

[
4
(C∗)3

(d∗−)2
+
C∗
d∗−

]
‖σn,δ − σn‖C1(Ω̃). (3.43)

Inserting (3.35) and (3.43) into (3.32), we get

‖∇(σn+1,δ − σn+1)‖C(Ω̃) ≤ εG1(σ∗
±)

[4(C∗)3

(d∗−)2
+
C∗
d∗−

]
‖σn,δ − σn‖C1(Ω̃) +

1
μ0

C∗
d∗−

ρ(δ).

This estimate together with ‖σn,δ − σn‖C1(Ω̃) ≤ K‖∇(σn,δ − σn)‖C(Ω̃) leads to

‖σn+1,δ − σn+1‖C1(Ω̃) ≤ KεG1(σ∗
±)

[4(C∗)3

(d∗−)2
+
C∗
d∗−

]
‖σn,δ − σn‖C1(Ω̃) +

K

μ0

C∗
d∗−

ρ(δ). (3.44)

Now we take ε ∈ (0, 1
2Kσ

∗
−) small enough such that

KεG1(σ∗
±)

[4(C∗)3

(d∗−)2
+
C∗
d∗−

]
<

1
2

and then it follows from (3.44) that

‖σn+1,δ − σn+1‖C1(Ω̃) ≤
1
2
‖σn,δ − σn‖C1(Ω̃) +

M

2
ρ(δ). (3.45)

Inserting (3.26) for k = n into (3.45), we can get

‖σn+1,δ − σn+1‖C1(Ω̃) ≤
M

2
ρ(δ) +

M

2
ρ(δ) = Mρ(δ). (3.46)

Moreover, we conclude that ∇σn+1,δ = 0 in Ω\Ω̃ from (3.2) and (H5), and therefore σn+1,δ = σ∗

in Ω\Ω̃.
Then it follows from Lemma 3.2, (3.46) and the triangle inequality that

σn+1,δ ≡ σ∗ in Ω\Ω̃, ‖σn+1,δ − σ∗‖C1(Ω̃) ≤Mρ(δ) +Kθn+1ε.

The proof is complete.

The important conclusion derived from Theorem 3.3 is that, different from using the exact
input magnetic field, the iteration solution σn,δ of harmonic Bz algorithm using noisy magnetic
field Bδ

z can only approximate the exact conductivity σ∗ up to a finite accuracy. More precisely,
it follows from Theorem 3.3 that

lim
n→∞ ‖σn,δ − σ∗‖C1(Ω̃) ≤Mρ(δ) (3.47)
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for any fixed error level δ > 0. This is reasonable from the general iteration scheme based on
nonlinear integral equation of the second kind that the accuracy of the kernel determines the
accuracy of solution, which can not be improved by increasing the iteration times.

To have ‖σn,δ − σ∗‖C1(Ω̃) → 0, we must choose n → ∞ and ρ(δ) → 0 simultaneously. The
total error ‖σn,δ − σ∗‖C1(Ω̃) constitutes of two parts: Mρ(δ) and Kθnε. The former depends
on the noise level δ and the strategy computing the Laplacian such that ρ(δ) → 0; while the
later describes the iteration error which can be improved by increasing n. Notice that we
need to distinguish two different input errors: Input data error δ for our MREIT problem and
input error ρ(δ) for the harmonic Bz algorithm of MREIT problem. The efficient realization
of harmonic Bz algorithm depends on decreasing both the iteration error Kθn and the input
error ρ(δ) for the algorithm. In the next section, we will analyze the input data error ρ(δ).

4 Stable Computation for Laplacian of Bδ
z

We propose a regularizing scheme for computing 2-dimensional ∇2Bz approximately from
the noisy input data Bδ

z in Ω̃. Noticing that we can take Ω̃ ⊂⊂ Ω such that ∂Ω̃ locates in the
domain, where σ∗ is a known constant, we can assume that Bz(x) is exactly specified near ∂Ω̃,
which means

Bδ
z(x) = Bz(x) in the neighbourhood of ∂Ω̃. (4.1)

Since we need the H2
0 (Ω̃) (:= W 2,2

0 (Ω̃)) estimate for the Laplacian computation in Theorem
3.3, we assume that the exact magnetic field is approximated by its noisy measurement data in
the sense

‖Bδ
z −Bz‖L2(Ω̃) ≤ δ (4.2)

due to (4.1). Notice that the space Hk
0 (Ω̃) can be characterized in terms of boundary conditions

for ∂Ω̃ ∈ Ck (see [13, Theorem 7.41]):

Hk
0 (Ω̃) ≡

{
u ∈ Hk(Ω̃), u =

∂u

∂n
= · · · =

∂k−1u

∂nk−1
= 0 on ∂Ω̃

}
. (4.3)

Denote by G(x, y) := 1
2π ln 1

|x−y| the fundamental solution of −Δ operator, i.e.,

−ΔG(x, y) = δ(x− y), x, y ∈ Ω̃.

Then for exact Bz(x), its Laplacian ΔBz(x) := f(x) in Ω̃ meets∫
Ω̃

f(y)G(x, y)dy =
∫

∂Ω̃

G(x, y)
∂Bz(y)
∂n(y)

ds(y) −
∫

∂Ω̃

Bz(y)
∂G(x, y)
∂n(y)

ds(y) −Bz(x)

:= F [Bz ](x), x ∈ Ω̃. (4.4)

Moreover, by the Newtonian potential method for Poisson’s equation, we know that Bz(x) ∈
H4(Ω̃) for f(x) ∈ H2(Ω̃), noticing f(x) ≡ 0 near ∂Ω̃ from (1.4) and the choice of ∂Ω̃.

Now let us define a linear bounded map K : H2
0 (Ω̃) → L2(Ω̃) by

K[g](x) :=
∫

Ω̃

g(y)G(x, y)dy, ∀g(x) ∈ H2
0 (Ω̃). (4.5)

Then (4.4) can be written as

K[f ](x) = F [Bz](x), x ∈ Ω̃ (4.6)
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from (4.3) and f(x) ≡ 0 near ∂Ω̃.
For noisy input data Bδ

z satisfying (4.1)–(4.2), we define ΔBδ
z := f δ = gα(δ),δ as the solution

to the following integral equation of the second kind:

αgα,δ + K̃∗K[gα,δ] = K̃∗[F [Bδ
z ](x)] (4.7)

for some suitable regularizing parameter α = α(δ) > 0, where K̃∗ : L2(Ω̃) → H2
0 (Ω̃) is the

adjoint operator of K : H2
0 (Ω̃) → L2(Ω̃). Obviously, (4.7) is the Tikhonov regularizing equation

to the following integral equation of the first kind:

K[g](x) = F [Bδ
z ](x), x ∈ Ω̃. (4.8)

The unique solvability of (4.7) follows from the standard Tikhonov regularizing theory. Notice
that K : H2

0 (Ω̃) → L2(Ω̃) is neither self-adjoint nor nonnegative.
The first result in this section is the error estimate on f δ − f .

Theorem 4.1 Assume that f ∈ K̃∗(L2(Ω̃)). If we choose the regularizing α = δ, then we
have for the noisy input data Bδ

z satisfying (4.2) that

‖f δ − f‖H2
0 (Ω̃) ≤ Cδ

1
2 . (4.9)

Proof It follows from (4.6) and (4.7) that

α(gα,δ − f) + K̃∗K[gα,δ − f ] = K̃∗[Bz −Bδ
z ] − αf,

noticing (4.1). Since f = K̃∗φ0 for some φ0 ∈ L2(Ω̃) due to f ∈ K̃∗(L2(Ω̃)), the above equation
becomes

gα,δ − f = (αI + K̃∗K)−1K̃∗[(Bz −Bδ
z) − αφ0]. (4.10)

Then we have

‖gα,δ − f‖H2
0(Ω̃) ≤ ‖(αI + K̃∗K)−1K̃∗‖L(L2,H2

0 )(‖Bz −Bδ
z‖L2(Ω̃) + α‖φ0‖L2(Ω̃))

≤ C√
α

(δ + α) (4.11)

from the standard estimate on the Tikhonov regularizing operator. The proof is complete by
taking α = δ.

Remark 4.1 This result is a classical a priori choice strategy for Tikhonov regularization.
The source condition ΔBz = f ∈ K̃∗(L2(Ω̃)) implies the requirement that Bz should be very
smooth, not necessarily in L2(Ω). The other a posterior strategies such as discrepancy prin-
ciple can also be considered under the framework of Tikhonov regularizing. However, since
K : H2

0 (Ω̃) → L2(Ω̃) is not nonnegative, the scheme applying the Lavrentive regularizing for
computing the Laplacian (see [19]) does not work.

To avoid the explicit expression of the adjoint operator K̃∗ : L2(Ω̃) → H2
0 (Ω̃), we consider

(4.7) directly. Using the property of definition of H2
0 (Ω̃) inner product, it follows for all χ ∈

L2(Ω̃) and ψ ∈ H2
0 (Ω̃) that

〈K̃∗χ, ψ〉H2
0 (Ω̃) = 〈χ,Kψ〉L2(Ω̃) = 〈K∗χ, ψ〉L2(Ω̃),
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where K∗ is the adjoint operator of K in the sense mapping L2(Ω̃) to itself. Therefore the
regularizing equation (4.7) in H2

0 (Ω̃) has the following equivalent weak form:

α〈gα,δ, ψ〉H2
0 (Ω̃) + 〈K∗Kgα,δ, ψ〉L2(Ω̃) = 〈K∗L[Bδ

z ], ψ〉L2(Ω̃), ∀ψ ∈ H2
0 (Ω̃). (4.12)

However, it is easy to verify that K : L2(Ω̃) → L2(Ω̃) is self-adjoint. In fact, for any
h, g ∈ L2(Ω̃), we have

〈Kh, g〉L2(Ω̃) =
∫

Ω̃

∫
Ω̃

G(x, y)h(y)dyg(x)dx =
∫

Ω̃

∫
Ω̃

G(x, y)g(x)dxh(y)dy

=
∫

Ω̃

∫
Ω̃

G(y, x)g(x)dxh(y)dy = 〈h,Kg〉L2(Ω̃).

Therefore (4.12) is equivalent to

α〈gα,δ, ψ〉H2
0 (Ω̃) + 〈K2gα,δ, ψ〉L2(Ω̃) = 〈KL[Bδ

z ], ψ〉L2(Ω̃), ∀ψ ∈ H2
0 (Ω̃) (4.13)

with gα,δ, Bδ
z ∈ H2

0 (Ω).
Now we consider how to solve (4.13). We define the inner product in Hilbert space H2

0 (Ω̃)
by

〈h, g〉H2
0 (Ω̃) :=

∫
Ω̃

(Δh(x) Δg(x) + ∇h(x) · ∇g(x) + h(x)g(x))dx, ∀h, g ∈ H2
0 (Ω̃),

which yields the equivalent norm to ‖h‖H2
0(Ω̃). Integrating by parts yields

〈h, g〉H2
0 (Ω̃) = 〈Δ2h− Δh+ h, g〉L2(Ω̃) := 〈Lh, g〉L2(Ω̃), ∀h, g ∈ H2

0 (Ω̃).

Therefore (4.13) is equivalent to the following integral-differential system:⎧⎪⎨
⎪⎩
αLgα,δ + K2gα,δ = KL[Bδ

z ] in Ω̃,

gα,δ =
∂gα,δ

∂n
= 0 on ∂Ω̃,

(4.14)

noticing that H2
0 (Ω̃) is dense in L2(Ω̃).

We can solve this well-posed system to get the approximation of ∇2Bz from noisy data
Bδ

z . Once we generate ∇2Bz from this system, which is a good approximation to ∇2Bz, the
harmonic Bz algorithm can be implemented efficiently.
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