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Abstract The problem for determining the exchange rate function of 2D CCPF model
by measurements on the partial boundary is considered and solved as one PDE-constraint
optimization problem. The optimal variant is the minimum of a cost functional that
quantifies the difference between the measurements and the exact solutions. Gradient-
based algorithm is used to solve this optimization problem. At each step, the derivative of
the cost functional with respect to the exchange rate function is calculated and only one
forward solution and one adjoint solution are needed. One method based on the adjoint
equation is developed and implemented. Numerical examples show the efficiency of the
adjoint method.
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1 Introduction

Groundwater, being one of the most useful water sources in worldwide human society, meets
one-third of the overall water needs in France and supplies up to 10%–15% of the water con-
sumption in China. Among several different types of groundwater, karst aquifer should be
mentioned here as one typical system. It mainly consists of the porous medium, referring to
the matrix, which serves to hold the water. And in this system, some water conduits or pipes
are embedded among the matrix which plays an important role in transporting the fluid flow
and the contaminates.

For modeling the karst aquifers, the most used approach for geological studies is referred to
as the coupled continuum pipe flow (CCPF, for short) model. The model is a coupled system
consisting of a two-(2D, for short) or three-dimensional (3D, for short) continuum domain Ωm,
namely the matrix. The flow in matrix is governed by a Darcy-type system. Inside the matrix
lies a one-dimensional (1D, for short) conduit Ωc, which is governed by the pipe flow model. It
was used in [2, 4, 15] to study the gensis of karst aquifers firstly. And the model, to some extent,
reaches success. In the literature [14], a modified continuous CCPF model was proposed, which
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was proved to be well-posed in the 2D case. Furthermore, Wang studied the well-posedness of
the model in 3D case (see [19]).

In the CCPF model, the fluid exchange between the conduit and the matrix is calculated via
an ad-hoc term α(hm−hc), where α is the exchange rate, and hm and hc are the hydraulic heads
in the matrix and conduit, respectively. Chen et al pointed out that as long as the exchange
rate was well selected, the relative error between the CCPF model and the Stokes-Darcy system
could be less than 1% (see [9]), which implied the validity of the CCPF model in describing
the fluid flows in karst aquifers as well as the significance of the exchange rate α. Since the
discharge of the exchange flow varies in different locations, a precise description of the model
entails α to be a function that depends on the horizontal variable x. For the forward problem,
the well-posedness and regularity of the weak solution have been obtained in [8, 14, 17, 19].
And for the inverse problem, in [16], Lu et al firstly verified the uniqueness of the exchange rate
and proposed an inverse problem of determining the exchange rate function α.

Usually, the inverse problem is often turned into one optimization problem and solved by the
gradient-based method, which is generally considered to be accurate but inefficient (see [6, 18]).
In this paper, we regard the inverse problem as a PDE-constraint optimization problem where
the exchange rate function minimizes a functional that measures the error between the computed
and measured data (see [13]). The solution of this constrained optimization problem is then
accomplished by one gradient-based optimization algorithm that requires the computation of
the derivative with satisfaction of the constraints. An auxiliary problem, called the adjoint
problem, is solved in order to calculate the derivative efficiently. The so-called adjoint method
has successfully applied in different fields (see [7, 11–12]). The forward and adjoint problems
are solved by using efficient finite difference methods and iterative solvers. Similar technique
has been used to reconstruct the interface of discontinuity in the conductivity (see [10]).

At each iteration of the optimization algorithm, the main computational cost of the deriva-
tive calculation is independent of the number of parameters used to represent the α since only
the solutions of a forward problem and an adjoint problem are needed, a new search direction
is calculated by the steepest descent update, and the exchange rate function is updated at each
iteration by new search direction.

The rest of this paper is organized as follows. In Section 2, the framework of adjoint method
for PDE-constraint optimization problem is presented. In Section 3, the froward problem and
inverse problem of the CCPF model are introduced, and the adjoint gradient representation
calculation and algorithm for the inverse problem are given in Section 4. Finally, numerical
results verify the algorithm in Section 5.

2 Framework of Adjoint Method for PDE-Constraint
Optimization Problem

In this section, the framework that will be used for reduced derivative computation is pre-
sented in a functional analytical setting (see [13]). We first transform the general optimization
problem into a reduced optimization problem, then the optimality conditions and an adjoint
based representation for the reduced gradient of the objective function are stated.
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2.1 Optimization problem

Formally, we will consider one problem having the following form:

min
w∈W

J(w) s.t. E(w) = 0, c(w) ∈ K, w ∈ C, (2.1)

where J : W → R is the objective function, E : W → Z and c : W → R are operators, W,Z,R
are real Banach spaces, K ⊂ R is a closed convex cone, C ⊂W is a closed convex set.

In general, W,Z and R are generalized function spaces and the operator equation E(w) = 0
stands for a PDE or a system of coupled PDEs, constraint c(w) ∈ K is regarded as an abstract
inequality constraint. In some cases, it is convenient to write c(w) ∈ K as the form of w ∈ C,
where C ⊂W is a closed convex set, as a result, the inequality constraint is dropped:

min
w∈W

J(w) s.t. E(w) = 0, w ∈ C. (2.2)

For PDE-constraint problem, we will have one additional structure: Optimization variable
w could be divided into two parts, a state y ∈ Y and a control (or design) u ∈ U , where Y and
U are Banach spaces. Then W = Y × U , w = (y, u), and the problem becomes

min
y∈Y
u∈U

J(y, u) s.t. E(y, u) = 0, c(y, u) ∈ K. (2.3)

Here y ∈ Y is described by E(y, u) = 0 (usually a PDE). The control (or design) u ∈ U is a
parameter that shall be adapted in an optimal way.

2.2 Reduced problem and adjoint method

We consider again the optimal control (or design) problem of the form

min
y∈Y
u∈U

J(y, u) s.t. E(y, u) = 0, (y, u) ∈Wad, (2.4)

where J : Y ×U → R is the objective function, E : Y ×U → Z is an operator between Banach
spaces, Wad ⊂W := Y ×U is a nonempty closed set. Assuming that J and E are continuously
Fréchet-differentiable, and for any u ∈ U , the state equation E(y, u) = 0 has unique solution
y(u) ∈ Y . Thus, we have a solution operator u ∈ U �→ y(u) ∈ Y . Furthermore, we assume that
Ey(y(u), u) ∈ L(Y, Z) is continuously invertible, then the implicit function theorem ensures
that y(u) is continuously differentiable. By differentiating E(y(u), u) = 0 with respect to u, we
obtain an equation for y′(u):

Ey(y(u), u)y′(u) + Eu(y(u), u) = 0. (2.5)

After inserting y(u) into (2.4), we get one reduced problem:

min
u∈U

Ĵ(u) := J(y(u), u) s.t. u ∈ Uad := {u ∈ U : (y(u), u) ∈ Wad}. (2.6)

For the optimal problem, the computation of the derivative of the reduced objective function Ĵ
is very important. There are two methods to do this: one is the sensitivity approach, the other
is the adjoint approach. For the sensitivity approach, the computational cost grows linearly
with the dimension of U (see [13]).
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2.2.1 Adjoint approach

In fact, there is one efficient way to compute the derivative of Ĵ . From

〈Ĵ ′(u), s〉U∗,U = 〈Jy(y(u), u), y′(u)s〉Y ∗,Y + 〈Ju(y(u), u), s〉U∗,U

= 〈y′(u)∗Jy(y(u), u), s〉U∗,U + 〈Ju(y(u), u), s〉U∗,U ,

we see that Ĵ ′(u) = y′(u)∗Jy(y(u), u) + Ju(y(u), u). Consequently, the requirement of the op-
erator y′(u) ∈ L(U, Y ) can be weakened, and only the vector y′(u)∗Jy(y(u), u) ∈ U∗ is really
required. By (2.5), y′(u)∗Jy(y(u), u) = −Eu(y(u), u)∗Ey(y(u), u)−∗Jy(y(u), u), and by intro-
ducing an adjoint state λ = λ(u) ∈ Z∗, where λ(u) solves the adjoint equation

Ey(y(u), u)∗λ = −Jy(y(u), u), (2.7)

then y′(u)∗Jy(y(u), u) = Eu(y(u), u)∗λ(u). So we have Ĵ ′(u) = Eu(y(u), u)∗λ(u) + Ju(y(u), u).
The derivative dĴ(u, s) = 〈Ĵ ′(u), s〉U∗,U could be computed by the adjoint approach as follows:

1. For given u, we solve the state equation E(y(u), u) = 0, then we get the state variable
y(u).

2. By solving the adjoint equation (2.7), we get the adjoint variable λ(u).

3. Compute dĴ(u, s) = 〈Ĵ ′(u), s〉U∗,U by

dĴ(u, s) = 〈Eu(y(u), u)∗λ(u), s〉U∗,U + 〈Ju(y(u), u), s〉U∗,U ,

which is the adjoint gradient representation.

2.2.2 A Lagrangian-based view of the adjoint approach

The adjoint gradient representation could be derived in a more general way. For optimization
problem (2.4), let us define Lagrange function L : Y × U × Z∗ → R,

L(y, u, λ) = J(y, u) + 〈λ,E(y, u)〉Z∗,Z .

Substituting y = y(u) gives, for arbitary λ ∈ Z∗,

Ĵ(u) = J(y(u), u) = J(y(u), u) + 〈λ,E(y(u), u)〉Z∗,Z = L(y(u), u, λ).

And differentiating the above equation gives

〈Ĵ ′(u), s〉U∗,U = 〈Ly(y(u), u, λ), y′(u)s〉Y ∗,Y + 〈Lu(y(u), u, λ), s〉U∗,U . (2.8)

One special λ = λ(u) can be chosen such that

Ly(y(u), u, λ) = 0. (2.9)

This is the adjoint equation, actually, for one variational direction d ∈ Y ,

〈Ly(y, u, λ), d〉 = 〈Jy(y, u), d〉Y ∗,Y + 〈λ,Ey(y, u)d〉Z∗,Z = 〈Jy(y, u) + Ey(y, u)∗λ, d〉,
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then Ly(y(u), u, λ) = Jy(y(u), u) + Ey(y(u), u)∗λ. According to (2.9), we obtain that

Ey(y(u), u)∗λ = −Jy(y(u), u).

By solving E(y, u) = 0, we get y. Furthermore by solving adjoint equation Ey(y(u), u)∗λ =
−Jy(y(u), u), we get λ. By (2.8), the adjoint gradient representation reads

Ĵ ′(u) = Lu(y(u), u, λ(u)) = Ju(y(u), u) + Eu(y(u), u)∗λ(u). (2.10)

2.3 Optimality conditions

Let us consider the problem (2.4). By the definition of Uad in (2.6), the optimization problem
is equal to min

(y,u)∈Y ×U
J(y, u) s.t. E(y, u) = 0, u ∈ Uad. We introduce the following assumption.

Assumption 2.1 Assume that

1. Uad ⊂ U is nonempty, convex and closed.

2. J : Y × U → R and E : Y × U → Z are continuously Fréchet-differentiable, and U, Y, Z

are Banach spaces.

3. For all u ∈ U ′
ad, there exists a neighborhood U ′

ad of Uad, and E(y, u) = 0 has a unique
solution y = y(u) ∈ Y .

4. For all u ∈ U ′
ad, derivative Ey(y(u), u) ∈ L(Y, Z) is continuously invertible.

For the reduced problem (2.6), we have the following general result (see [7, 13]).

Theorem 2.1 Assume Assumption 2.1 holds. If u is a local solution of the reduced problem
(2.6), then u satisfies the variational inequality

u ∈ Uad, 〈Ĵ ′(u), u− u〉U∗,U ≥ 0, ∀u ∈ Uad. (2.11)

Next, we use the adjoint representation of derivative (2.10)

Ĵ ′(u) = Lu(y(u), u, λ(u)) = Ju(y(u), u) + Eu(y(u), u)∗λ(u),

where λ(u) ∈ Z∗ is the solution of the adjoint equation Ey(y(u), u)∗λ = −Jy(y(u), u). Recalling
the Lagrange function associated with (2.6) L : Y × U × Z∗ → R,

L(y, u, λ) = J(y, u) + 〈λ,E(y, u)〉Z∗,Z ,

we get the corollary of Theorem 2.1.

Corollary 2.1 Let (y, u) be an optimal solution of (2.6) and assume Assumption 2.1 holds.
Then there exists an adjoint state (or Lagrange multiplier) λ ∈ Z∗, such that the following
conditions hold:

E(y, u) = 0, (2.12)

Ey(y, u)∗λ = −Jy(y, u), (2.13)

u ∈ Uad, 〈Ju(y, u) + Eu(y, u)∗λ, u− u〉U∗,U ≥ 0, ∀u ∈ Uad. (2.14)
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Using Lagrange function, the above equations could be written in the compact form:

Lλ(y, u, λ) = E(y, u) = 0, (2.15)

Ly(y, u, λ) = 0, (2.16)

u ∈ Uad, 〈Lu(y, u, λ), u− u〉U∗,U ≥ 0, ∀u ∈ Uad. (2.17)

In this paper, we are interested in the numerical efficiency of the adjoint approach to solve
the inverse problem, and do not want to verify Assumption 2.1, which can be verified in [13].

3 Analysis on the Mathematical Model

3.1 CCPF model

CCPF model is a coupled system consisting of a 2D or 3D continuum domain Ωm, which
stands for the matrix. There exists a 1D conduit Ωc in the matrix, and the situation in the
conduit is governed by pipe flow model. In practice, the matrix is soil or rock aquifers, the fluid
exchanges between the matrix and the conduit (see Figure 1). In this paper, we assume that
the matrix domain is Ωm := (0, L) × (−M,M), Ωc is the conduit domain, and ν denotes the
tangential direction along the 1D pipe/channel conduit.

Ω

Ω−

Ω

Figure 1 The geological description of the karst aquifers. hm is the hydraulic head
in the matrix, and hc is the hydraulic head in the conduit Ωm = Ω+

m ∪ Ω−
m.

We first review the formulation of the coupled pipe flow/Darcy model. The flow in the
porous matrix is modeled by Boussinesq equation (see [3]):

−∇ · (K∇hm) = S
∂hm

∂t
− γ, (3.1)
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where hm denotes the hydraulic head in the porous matrix, K ∈ R
2×2 is a hydraulic conductivity

tensor. S is the storativity, and γ represents the volumetric rate of fluid transfering to the porous
matrix from the conduit system per unit length.

For conduit flow, the discharge is related to the head difference in the tube by applying the
Darcy-Weisbach equation (see [5])

Q = −D∂hc

∂ν
, (3.2)

where hc is the hydraulic head in the conduit, Poisieulle constant D = d3g
12ρ , here d is the pipe

diameter (channel width for 2D), Q is the total discharge in the pipe. Conversation of mass in
the pipe implies ∂Q

∂ν = −γ, then we have − ∂
∂ν

(
D ∂hc

∂ν

)
= −γ, The matrix and conduit flows are

coupled at their intersection by the quasi-steady-state exchange term (see [8, 17, 19]),

γ = α(hc − hm), (3.3)

where α > 0 is the exchange rate function, this means that the process in the conduit is enslaved
by that in the porous matrix.

As a result, in the steady-state case, we have the system⎧⎨
⎩
−∇ · (K∇hm) = −α(hm − hc)δΩc + fm in Ωm,

− ∂

∂ν
(D

∂hc

∂ν
) = α(hm|Ωc− hc) + fc in Ωc,

(3.4)

where hm is the hydraulic head in matrix, hc is the hydraulic head in conduit, δΩc is Dirac
δ function concentrated on Ωc, fm and fc represent the external source or sink. Laminar
Poisieulle constantD = d3g

12ρ , where d is the diameter of the conduit, g is the earth’s gravitational
acceleration, and ρ is the kinematic viscosity of water, α(s) ∈ L∞

+ (Ωc) is the exchange rate
function where s denotes arc length variable.

3.2 Well-Posedness and regularity

Under the case of Dirichlet boundary condition, fixed hydraulic heads on the boundaries in
both domains are introduced by {

hm = gm, ∂Ωm,
hc = gc, ∂Ωc,

(3.5)

where gm and gc are given a priori.
Define the space H := H1

0 (Ωm) ×H1
0 (Ωc)(see [1]). We introduce a bilinear form as follows:

a(h,v) : =
∫

Ωm

K∇hm(x, y) · ∇vm(x, y)dxdy +
∫

Ωc

D
∂hc(s)
∂ν

∂vc(s)
∂ν

ds

+
∫

Ωc

α(s)(hm|Ωc − hc(s))vm(s)ds−
∫

Ωc

α(s)(hm|Ωc − hc(s))vc(s)ds, (3.6)

where h = (hm, hc) ∈ H, and the test functions v = (hm, hc) ∈ H. Then for all h ∈ H, the
weak solution of (3.4) h yields

a(h,v) = 〈fm, vm〉L2(Ωm) + 〈fc, vc〉L2(Ωc). (3.7)
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The following theorem shows that the weak solution uniquely exists under appropriate
assumptions.

Theorem 3.1 Assume that fm ∈ H−1(Ωm), fc ∈ H−1(Ωc) and α ∈ L∞
+ (Ωc). Then the

weak solution of (3.4) h uniquely exists, satisfying the following estimation:

‖h‖H ≤ C(‖fm‖H−1(Ωm) + ‖fc‖H−1(Ωc)),

where C is a constant independent of fm and fc.

Higher regularity of the solution is possible, the proof of the theorem can be found in
[8, 17, 19]. The well-posedness of the weak solution for Neumann boundary conditions is
similarly compared with the Dirichlet boundary conditions.

3.3 Inverse problem of determining the exchange rate function α

In CCPF model, the fluid exchange rate between the matrix and the conduit is calculated by
an ad-hoc term α(hm|Ωc −hc), where α := α(s) is the exchange function defined on the conduit
domain Ωc, and s stands for arc parameter. For anisotropic exchange rate function α(s) ∈ L∞

+ ,
Theorem 3.1 ensures the well-posedness of CCPF model. Now we discuss the uniqueness of the
exchange rate by measuring the Cauchy data along one side of the boundary.

In the numerical realization, the geometry is described as following: The matrix Ωm is a
rectangle domain, Ωm := (0, L)×(−M,M), and the conduit Ωc could be expressed by y = ψ(x),
where ψ(x) ∈ C2([0, L]) and ψ(0) = ψ(L) = 0. Furthermore, we assume that the choice of ψ(x)
allows the well-posedness of the elliptic problem in a Lipschitz subdomain Ω′

m, where Ω′
m

satisfies Ω′
m ⊂ Ωm, ∂Ω′

m ∩ ∂Ωm = Γ, Ωc ⊂ Ω′
m. Let Γ := {0} × (−M,M). The Cauchy data of

partial boundaries of conduit domain Ωc and matrix domian Ωm are measured:

hm(0, y)|Γ = p(y)|Γ, (3.8)
∂hm(x, y)

∂x

∣∣∣
x=0,Γ

= q(y)|Γ, (3.9)

hc(0) = b, (3.10)
∂hc(s)
∂ν

∣∣∣
s=0

= b1. (3.11)

Theorem 3.2 Let us define k(x) = α(s(x))(hm(x, ψ(x)) − hc(s(x))). If there exist two
functions k1(x) and k2(x) satisfying CCPF model⎧⎨

⎩
−∇ · (K∇hm) = −α(hm − hc)δΩc + fm in Ωm,

− ∂

∂ν

(
D
∂hc

∂ν

)
= α(hm|Ωc − hc) + fc in Ωc

with the same Cauchy data (3.8)–(3.11), there holds k1(x)=k2(x) almost everywhere.

The proof of the theorem can be found in [16]. In addition, if k(x) = α(s(x))(hm(x, ψ(x))−
hc(s(x))), let us define⎧⎪⎨

⎪⎩
α(s(x)) = α0, α0 is a positive constant, if hm(x, y)|Ωc = hc(s(x)),

α(s(x)) =
k(x)

hm(x, y)δΩc − hc(s(x))
, else.
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Under some assumptions, if there exist two exchange rate functions α1(s) and α2(s) having the
same Cauchy data (3.8)–(3.11), there holds α1(s)=α2(s) almost everywhere (see [16]).

Then the inverse problem could be expressed as follows: if the Cauchy data are given on
partial boundaries of matrix and conduit, we try to find an exchange rate function α(s) such
that the associated weak solution h equals to the Cauchy data on the partial boundary.

4 Adjoint Method for Inverse Problem of CCPF Model

The inverse problem of CCPF model can be posed as optimization problem with the con-
straint given by a variational equation. The cost functional is the mismatch between the state
obtained from a trial solution and the measured one:

J(h, α) =
1
2
‖hm − hm

d ‖2
L2(Ω1) +

1
2
‖hc − hc

d‖2
L2(Ω2) +

γ2

2
‖α‖2

H(Ωc)
,

where Ω1 and Ω2 are the parts of ∂Ωm and ∂Ωc, respectively. Let hd = (hm
d , h

c
d) be the

measured data and h = (hm, hc) the weak solution of (3.4). For instance, let us consider the
Neumann boundary conditions:

(K∇hm) ·nnn|Γ = q(y)|Γ, (4.1)

(K∇hm) ·nnn|Γ1 = q1(y)|Γ1 , (4.2)

D
∂hc(s)
∂ν

∣∣∣
s=0

= b1, (4.3)

D
∂hc(s)
∂ν

∣∣∣
s=S

= b2, (4.4)

where Γ1 := L × (−M,M) is the right boundary of Ωm, and S is the length of Ωc (see Figure
2).

Ω

Γ Γ

Ω−

Ω

Figure 2 Domain and boundaries.

Usually, we consider the no flow boundary condition at y = ±M ,

(K∇hm) ·nnn|y=M = 0,
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(K∇hm) ·nnn|y=−M = 0.

The physical background for this particular Neumann condition is that we assume there is no
flows through the matrix on the upper and lower boundaries.

Define the space H := H1(Ωm) × H1(Ωc). The weak formulation is now: finding h ∈ H
such that

a(h,v) = 〈fm, vm〉L2(Ωm) + 〈fc, vc〉L2(Ωc) + 〈q, vc〉L2(Γ) + 〈q1, vc〉L2(Γ1)

+ (b2hc(S) − b1hc(0)), ∀v ∈ H, (4.5)

which is one PDE-constraint. Consequently, solving the inverse problem equals to solving an
optimization problem with the PDE-constraint,

min
h∈H

α∈L∞
+ (Ωc)

J(h, α) s.t. E(h, α) = 0, (h, α) ∈ Wad. (4.6)

Define the spaces

Z := H−1(Ωm) ×H−1(Ωc), Z∗ := H1(Ωm) ×H1(Ωc). (4.7)

Then the weak formulation (4.5) is equivalent to: finding h ∈ H such that

〈v, E(h, α)〉Z∗,Z

=
∫

Ωm

K∇hm(x, y) · ∇vm(x, y)dxdy +
∫

Ωc

D
∂hc(s)
∂ν

∂vc(s)
∂ν

ds

+
∫

Ωc

α(s)(hm|Ωc− hc(s))vm(s)ds

−
∫

Ωc

α(s)(hm|Ωc− hc(s))vc(s)ds−
∫

Ωm

fmvmdxdy −
∫

Ωc

fcvcds

−
∫

Γ

qvm|x=0dxdy −
∫

Γ1

q1vm|x=Lds− (b2hc(S) − b1hc(0)) = 0, ∀v ∈ Z∗. (4.8)

The formulation now defines the state equation operator

E : {(h, α) : h ∈ H, α ∈ Wad} → {z : z ∈ Z, α ∈Wad}.

Thus, we can define the reduced problem

min
α∈Aad

Ĵ(α) := J(h(α), α) s.t. α ∈ Aad := {α ∈ A : (h, α) ∈Wad}. (4.9)

4.1 Calculation of the gradient

From the adjoint gradient representation (2.10), we have to compute the Lagrange multiplier
λλλ = (λm, λc) ∈ Z∗ by solving the adjoint system (2.7), which reads as

〈λλλ,Eh(h, α)(ωωω)〉Z∗,Z = −〈Jh(h, α),ωωω〉H∗
,H, ∀ω ∈ H
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with the given weak solution h of the state equation. The partial derivative Eh with respect to
h is Fréchet derivative with the direction of ωωω = (ωm, ωc). For the forward problem (4.8), the
adjoint equation is: for all ω ∈ H,∫

Ωm

K∇ωm(x, y) · ∇λm(x, y)dxdy +
∫

Ωc

D
∂ωc(s)
∂ν

∂λc(s)
∂ν

ds+
∫

Ωc

α(s)(ωm|Ωc

− ωc(s))λm(s)ds−
∫

Ωc

α(s)(ωm|Ωc− ωc(s))λc(s)ds = −〈Jh(h, α), ω〉H∗
,H, (4.10)

where 〈Jh(h, α), ω〉H∗
,H =

∫
Ωm

(hm − hm
d )δΩ1ωmdxdy +

∫
Ωc

(hc − hc
d)δΩ2ωcdxdy.

If Δα is the variational direction of the derivative, then

〈v, Eα(h, α)Δα〉Z∗ ,Z =
∫

Ωc

(hm|Ωc− hc(s))vm(s)Δαds

−
∫

Ωc

(hm|Ωc− hc(s))vc(s)Δαds. (4.11)

We consider an objective functional of the type

J(h, α) =
1
2
‖hm − hm

d ‖2
L2(Ω1) +

1
2
‖hc − hc

d‖2
L2(Ω2) +

γ2

2
‖α‖2

L2(Ωc)
. (4.12)

If Δα is the variaitonal direction of α, then

〈Jα(h, α),Δα〉A∗ ,A =
∫

Ωc

γαΔαds. (4.13)

Finally, we get the adjoint gradient representation

〈Ĵ ′(α),Δα〉 = 〈Jα(h, α),Δα〉A∗,A + 〈λλλ,Eα(h, α)Δα〉Z∗ ,Z

=
∫

Ωc

(hm|Ωc− hc(s))λm(s)Δαds −
∫

Ωc

(hm|Ωc− hc(s))λc(s)Δαds

+
∫

Ωc

γαΔαds. (4.14)

4.2 Optimization algorithm

Practically, the optimal variable α(s) is defined by the design parameter u ∈ U with a finite
or infinite dimensional design space U . Thus, we have a map α : u → α(u). Using the chain
rule, derivatives of the objective function Ĵ are obtained as〈 d

du
Ĵ(α), ·

〉
U∗,U

= 〈Ĵ ′(α), αu(u)·〉U∗,U . (4.15)

If the design space of α(s) is finite dimensional, α(s) =
d∑

i=1

φi(s)αi, where (φ1, · · · , φd) is a basis

of design space U , and then Ĵ ′
u(α(u)) · V =

d∑
i=1

G(h,λλλ, φi)Vi, with G(h,λλλ, φi) = 〈Ĵ ′(α), φi〉,
where h and λλλ are solutions of the state equation and the adjoint equation, respectively, Gi =
G(h,λλλ, φi) is the element of the gradient, and will be supplied to an optimization algorithm
which is used in the solution of the inverse problem. For example, for the steepest decent
method, we have the following algorithm.
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Algorithm 4.1 (Steepest Decent Method) Choose an initial vector u0 = (α0
1, · · · , α0

d)
associated with the initial guess α0(s).

For k = 0, 1, 2, · · · ,

1. If Ĵ ′(uk) = 0, STOP.

2. Choose a descent direction dk ∈ U , such that 〈Ĵ ′
u(uk), dk〉U∗,U < 0: dk = −(G1, · · · , Gd)T.

3. Choose a step size σk > 0 such that Ĵ(uk + σkd
k) < Ĵ(uk).

4. Set uk+1 := uk + σkd
k.

In our numerical experiments, the step size rule we used here is the Armijo rule.

Armijo Rule Given a descent direction Δα of Ĵ , choose the maximum ζ ∈ {1, 1
2 ,

1
4 , · · · }

for which

Ĵ(α+ ζΔα) − Ĵ(α) ≤ γζ〈Ĵ ′(α),Δα〉,

where γ ∈ (0, 1) is a constant.

On the other hand, the descent direction Δα could be chosen by a special rule.

Lemma 4.1 If A is a Hilbert space, b(·, ·) is a uniformly bounded and coercive bilinear form
in A that satisfies

b(φ, φ) ≥ α0‖φ‖2
A, ∀φ ∈ A, (4.16)

b(φ, ϕ) ≤ β0‖φ‖A‖ϕ‖A, ∀φ, ϕ ∈ A, (4.17)

where α0, β0 > 0, and Δα satisfies

b(Δα, φ) = −〈Ĵ ′(α), φ〉A, ∀φ ∈ A,

then it is guaranteed that ζΔα decreases the cost functional J , where ζ is a small enough positive
number.

Proof From the definition, for any Δα ∈ A,

〈Ĵ ′(α),Δα〉 = lim
ζ→0

1
ζ
(Ĵ(α+ ζΔα) − Ĵ(α))

and

Ĵ(α+ ζΔα) = Ĵ(α) + 〈Ĵ ′(α), ζΔα〉 + o(ζ)

= Ĵ(α) − b(Δα, ζΔα) + o(ζ)

≤ Ĵ(α) − α0ζ‖Δα‖2 + o(ζ).

Indeed, the second term on the right side of inequality is strictly negative and the third term
can be chosen such that lim

ζ→0

1
ζ o(ζ) = 0.



Adjoint Method for an Inverse Problem of CCPF Model 349

Theorem 4.1 (Choice of the Descent Direction) If h = (hm, hc) is the weak solution of
(4.8), λλλ = (λm, λc) is the weak solution of adjoint equation (4.10), then we can choose

Δα = −(hm|Ωc− hc)(λm|Ωc− λc) − γα

such that

Ĵ(α+ ζΔα) < Ĵ(α),

where ζ is small enough. Choice of ζ could use the Armijo rule.

Proof From Lemma 4.1, the bilinear form is b(Δα, φ) = 〈Δα, φ〉, and obviously it satisfies
(4.16)–(4.17). The adjoint gradient representation gives

〈Ĵ ′(α), φ〉 = 〈Jα(h, α), φ〉A∗,A + 〈λλλ,Eα(h, α)φ〉Z∗ ,Z

=
∫

Ωc

((hm|Ωc− hc)(λm|Ωc− λc) + γα)φds.

Because of the choice of the Δα,

b(Δα, φ) = −〈Ĵ ′(α), φ〉A, ∀φ ∈ A,

we get

Δα = −(hm|Ωc− hc)(λm|Ωc− λc) − γα.

5 Numerical Results

In this section, we demonstrate the adjoint derivative calculus on a numerical model problem.
We choose the decent direction Δα(s) by Theorem 4.1. Numerical results show the efficiency.

5.1 Problem description

For convenience and simplicity, the computational domain in the model is the matrix domain
Ωm := [0, 1] × [−1, 1] with the upper section Ω+

m = [0, 1] × [0, 1] and the lower section Ω−
m =

[0, 1]× [−1, 0], and the conduit domain is Ωc = [0, 1] × {0} (see Figure 3).
We begin to construct one exact solution of the model with a target exchange rate function,

for convenience of numerical experiments, the hydraulic conductivity tensor K is set to be I,
and the Poisieulle constant D is set to be 1. Furthermore, considering the fact that the domain
Ωc is a straight line in the experiments, the CCPF model in this section is⎧⎨

⎩
−Δhm = −α(hm − hc)δΩc + fm in Ωm,

−d2hc

dx2
= α(hm|Ωc− hc) + fc, in Ωc.

(5.1)

We adjust the forcing fm and fc in Ωm and Ωc, respectively, such that the exact solution is⎧⎨
⎩
hc = 2 sin(πx) in Ωc,
hm = sin(πx) in Ω−

m,
hm = (−(2 + sin(πx))y + 1) sin(πx) in Ω+

m.
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Ω

Ω−

Ω

−

Figure 3 Computational domain in the numerical examples.

As a result, the target exchange rate function is 2 + sin(πx), fm and fc in (5.1) are⎧⎨
⎩
fc = 2π2 sin(πx) + (2 + sin(πx)) sin(πx) in Ωc,
fm = π2 sin(πx) in Ω−

m,
fm = y(−2π2 sin(πx) + 2π2 cos(2πx)) + π2 sin(πx) in Ω+

m.

5.2 Convergence of the finite difference method

For the forward problem and the adjoint problem, we use finite difference method to solve
them. Here we present the convergence of the finite difference method, i.e., we will prove that the
numerical approach is accurate for solving the partial differential equation systems. We compute
the finite difference approximation by using the sequence of grid sizes h = 2k, k = 1, · · · , 6.
Errors are measured by the discrete l2 norm.

Definition 5.1 The convergence factor is given as convergence factor = ‖h−hk‖
‖h−hk+1‖ , where

hk denotes the solution under grid size 2k.

In Figure 4, the convergence factor is plotted versus k. From the figure, we know that the
solver to the forward problem has second order accuracy.

5.3 Results of inverse problem

If the regular term γ
2 ‖α‖2

L2(Ωc) is ignored, we recast the problem as a PDE-constraint opti-
mization problem

min J(hm(α), hc(α), α) =
1
2
‖hm − hm

d ‖2
L2(Ω1)

+
1
2
‖hc − hc

d‖2
L2(Ω2),

s.t.

⎧⎨
⎩
−Δhm = −α(hm − hc)δΩc + fm in Ωm,

−d2hc

dx2
= α(hm|Ωc− hc) + fc in Ωc,

where hm
d and hc

d are the measured data, i.e., the exact solution of (5.1) with the target exchange
rate function 2 + sin(πx). At every step of the iteration, Δα is chosen by Theorem 4.1. And
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Figure 4 Convergence factor of finite difference approximation of h versus k
for forward problem.

the initial guess of α is y = 2. The iteration stops when

|J(i) − J(i− 1)|
|J(i)| < 10−5

or the number of the iteration reaches the maximal step, where J(i) denotes the energy of step
i. The numerical results are sorted according to Ω1 and Ω2.

Case 1: Ω1 = {0} × [−1, 1], Ω2 = {0}, i.e., measured data on the left side of the boundary
are given. Boundary conditions: {

Neumann, {0} × [−1, 1],
Dirichlet, else.

Case 2: Ω1 = {0} × [−1, 1] ∪ {1} × [−1, 1], Ω2 = {0} ∪ {1}, i.e., measured data on the left
and right sides of the boundary are given. Boundary conditions:{

Neumann, Ω1, Ω2,
Dirichlet, else.

Case 3: For ideal case, Ω1 = Ωm, Ω2 = Ωc, i.e., all the measured data are given and the
boundary condition is Dirichlet boundary condition.

Figures 5–7 correspond to Cases 1–3, respectively. Comparing these three results, we can find
more accuracy of the unknown value if we know more information of the solutions. Specially
for the Case 3 where the solutions are known in whole domain. Based on the results from
Figure 7, it is hopeful to get one theoretical convergence analysis for the unknown α. But if
only partially data (such as boundary values of the solutions) are measured as Case 1 and Case
2, the problems turn to be ill-posed, and it is hard to get enough accuracy.

Next, we discuss the case that the measured data are perturbed by noise. For the above
three cases, we add ±5% noise to the measure data, the numerical results are reported in Figure
8 (Case 1), Figure 9 (Case 2) and Figure 10 (Case 3). In the cases with noises, these figures
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Figure 5 Iteration process (left) and log of the energy (right), k = 5, measured
data of left side are known, iteration number is 20700.
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Figure 6 Iteration process (left) and log of the energy (right), k = 5, measured
data of left and right sides are known, iteration number is 592.
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Figure 7 Iteration process (left) and log of the energy (right), k = 5, measured
data of all the domain are known, iteration number is 40000.
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Figure 8 k = 4, measured data of left side are known, noise level: ±5%,
iteration number is 1098.
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Figure 9 k = 4, measured data of left and right sides are known, noise level: ±5%,
iteration number is 1098.
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Figure 10 k = 4, measured data of all the domain are known, noise level: ±5%,
iteration number is 550.
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show that the energy functional stagnates in the higher level than the cases without noises,
while the inversion results can still be acceptable.
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