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Abstract The authors investigate an inverse problem of determining the radiative coeffi-
cient in a degenerate parabolic equation from the final overspecified data. Being different
from other inverse coefficient problems in which the principle coefficients are assumed to
be strictly positive definite, the mathematical model discussed in this paper belongs to
the second order parabolic equations with non-negative characteristic form, namely, there
exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control
framework, the problem is transformed into an optimization problem and the existence of
the minimizer is established. After the necessary conditions which must be satisfied by the
minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor
modification of the cost functional and some a priori regularity conditions imposed on the
forward operator, the convergence of the minimizer for the noisy input data is obtained in
this paper. The results can be extended to more general degenerate parabolic equations.
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1 Introduction

In this paper, we study an inverse problem of identifying the radiative coefficient in a
degenerate parabolic equation from the final overspecified data. Problems of this type have
important applications in several fields of applied science and engineering. The problem can be
stated in the following form.

Problem 1.1 Consider the following parabolic equation:{
ut − (a(x)ux)x + q(x)u = 0, (x, t) ∈ Q = (0, l) × (0, T ],
u|t=0 = φ(x), x ∈ (0, l), (1.1)

where a and φ are two given smooth functions, which satisfy

a(0) = a(l) = 0, a(x) > 0, x ∈ (0, l) (1.2)
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and

φ(x) ≥ 0, φ(x) �≡ 0, x ∈ (0, l), (1.3)

respectively, and q(x) is an unknown coefficient in (1.1). In this paper, we always assume that
a(x) is at least C1 continuous, i.e., a(x) ∈ C1[0, l]. Assume that an additional condition is given
as follows:

u(x, T ) = g(x), x ∈ [0, l], (1.4)

where g is a known function. We shall determine the functions u and q satisfying (1.1) and
(1.4), respectively.

If the principle coefficient a(x) is required to be strictly positive, i.e.,

a(x) ≥ a0 > 0, x ∈ [0, l],

then the equation should be rewritten as an initial-boundary value problem, e.g., the homoge-
neous Dirichlet boundary value problem as follows:⎧⎨⎩

ut − (a(x)ux)x + q(x)u = 0, (x, t) ∈ Q,
u|x=0 = u|x=l = 0,
u(x, 0) = φ(x),

(1.5)

which is often referred as the classical parabolic equation. The mathematical model (1.5) arises
in various physical and engineering settings. If (1.5) is used to describe the heat transfer system,
the coefficient q(x) is called the radiative coefficient which is often dependent on the medium
property.

Being different from the ordinary parabolic equation (1.5), (1.1) belongs to the second order
differential equations with non-negative characteristic form. The main character of such kinds
of equations is degeneracy. It can be easily seen that at x = 0 and x = l, (1.1) degenerates into
two hyperbolic equations

∂u

∂t
− a′(0)

∂u

∂x
+ q(0)u = 0,

∂u

∂t
− a′(l)

∂u

∂x
+ q(l)u = 0.

By the well-known Fichera’s theory (see [33]) for degenerate parabolic equations, we know
that whether or not boundary conditions should be given at the degenerate, boundaries are
determined by the sign of the Fichera function. By simple calculations, one can easily check
that boundary conditions for (1.1) on the lateral boundaries x = 0, x = l and the terminal
boundary t = T should not be given, while on t = 0 they are indispensable. In other words,
the parabolic problem (1.1) is well-defined.

In general, most physical and industrial phenomenons can be described by the classical
parabolic model, such as (1.5). However, with the development of the modern financial mathe-
matics, more and more degenerate elliptic or parabolic equations arising in derivatives pricing
have to be taken into account. For example, the well-known Black-Scholes equation

∂V

∂t
+

1
2
σ2(S)S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, (S, t) ∈ [0,∞) × [0, T ) (1.6)
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is such the case, where the degenerate parabolic boundary is S = 0.
For a given coefficient q(x), the degenerate parabolic equation (1.1) which is referred as a

direct problem consists of the determination of the solution from the given initial condition.
It is well-known that in all cases, the inverse problem is ill-posed or improperly posed in the
sense of Hadamard, while the direct problem is well-posed (see [23, 30, 32]). The ill-posedness,
particularly the numerical instability, is the main difficulty for Problem 1.1. Since data errors in
the extra condition g(x) are inevitable, arbitrarily small changes in g(x) may lead to arbitrarily
large changes in q(x), which may make the obtained results meaningless (see, e.g., [20, 36]).

Inverse coefficient problems for parabolic equations are well studied in the literature. How-
ever, most of these inverse problems are governed by classical parabolic equations in which
the principle coefficients are assumed to be strictly positive definite. The inverse problem of
identifying the diffusion coefficient a(x) in the following parabolic equation:

ut −∇ · (a(x)∇u) = f(x, t), (x, t) ∈ Ω × (0, T ),

from some additional conditions was investigated by several authors (see, e.g., [14, 21, 24, 29]).
In [29, 21], the output least-squares method with Tikhonov regularization is applied to the
inverse problem and the numerical solution is obtained by the finite element method. The
determination of a(x) with two Neumann measured data

a(0)ux(0, t) = k(t), a(1)ux(1, t) = h(t), t ∈ [0, T ]

has been considered carefully in [14] by the semigroup approach. In [24], the inverse problem is
reduced to a nonlinear equation and the uniqueness, as well as the conditional stability of the
solution is proved.

The inverse problem of identification of the radiative coefficient q(x) in the following heat
conduction equation:

ut − Δu+ q(x)u = 0, (x, t) ∈ Q,

from the final overdetermination data u(x, T ) was considered by several authors (see, e.g., in
[8, 10–11, 34, 39]). Moreover, treatments on the case of purely time dependent q = q(t) can be
found in [6–7, 12–13]. For the general case in which the unknown coefficient(s) depend(s) on
both spatial and temporal variables, we refer the readers to the references, e.g., in [16, 27–28,
35].

Compared with classical parabolic equations, the main difficulty for degenerate equations
lies in the degeneracy of the principle coefficients which may lead to the corresponding solution
has no sufficient regularity, even if the initial value and the coefficients are sufficiently smooth
functions. Many effective tools, e.g., the Schauder’s type a priori estimate which was extensively
applied in classical parabolic equations, are no longer applicable for the degenerate parabolic
equations. The documents concerned with inverse degenerate problems are quite few in contrast
with those dealt with non-degenerate problems. In [2], the authors investigated an inverse
problem of determining the source term g in the following degenerate parabolic equation:

ut − (xαux)x = g, (x, t) ∈ (0, 1) × (0, T ),
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where α ∈ [0, 2). The uniqueness and Lipschitz stability of the solution are obtained by the
global Carleman estimates, which was introduced in [22] in 1998. Recently, in [37], analogous
methods were applied to a nonlinear inverse coefficient problem arising in the field of climate
evolution, where the diffusion coefficient is assumed to vanish at both extremities of the domain.
For other topics of degenerate parabolic equations, e.g., the null controllability, we may refer
the reader to [3–5] and the references therein.

The most important inverse problem in which the underlying model is degenerate may be
the reconstruction of local volatility in the Black-Scholes equation (1.6). In [25–26], the inverse
problem of identifying the implied volatility σ = σ(S) from current market prices of options was
considered carefully. Based on the optimal control framework, the existence, the uniqueness of
σ(S) and a well-posed algorithm are obtained. Similar results were derived in [15], where a new
extra condition, i.e., the average option premium, was assumed to be known. In [19], on the
basis of the parameter-to-solution mapping, the stability and convergence of approximations
for σ(S) are gained by Tikhonov regularization.

It should be mentioned that the degeneracy in the Black-Scholes equation can be removed
by some change of variable (see [19]). However, the degeneracy in our problem can not be
removed by any method, which is also the main difficulty in this paper.

To our knowledge, this paper is the first one concerning uniqueness, stability and convergence
of optimal solution in inverse problem for degenerate parabolic equations such as (1.1). In this
paper, we use an optimal control framework (see, e.g., [16–17, 25, 39]) to discuss Problem 1.1
mainly from the theoretical analysis angle. The outline of the manuscript is as follows: In
Section 2, the inverse Problem 1.1 is transformed into an optimal control Problem 2.1 and the
existence of minimizer of the cost functional is proved. The necessary condition of the minimizer
is established in Section 3. By assuming that T is relatively small, the local uniqueness and
stability of the minimizer are shown in Section 4. The convergence of the minimizer with
noisy input data is obtained in Section 5 by some a priori regularity conditions imposed on the
forward operator. In Section 6, we complete this paper with concluding remarks.

2 Optimal Control Problem

In general, uniqueness is very important for the inverse problems. It illustrates if the extra
condition is sufficient to identify the unknown information. There are many mathematical tools
can be used to derive the uniqueness, such as maximum principle, energy estimate, unique
continuation, integral equation, Carleman estimate, and so on. It should be mentioned that the
Carleman estimate is an effective tool to derive uniqueness and conditional stability for inverse
problems (see [22]). But unfortunately, it fails in treating the terminal control problems such
as inverse Problem 1.1. We have obtained a uniqueness results of the inverse Problem 1.1 in
a sense of partial order. It seems that the partial order imposed on the uniqueness is rather
disgusting, but until now we do not know how to remove it due to the coefficient degeneration
on the lateral boundaries. The details can be found in [18].

Since the original problem is ill-posed, we would like to discuss the regularization of Problem
1.1. Before this, let us to discuss the forward problem (2.1) and give some basic definitions,
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lemmas and estimations. We would like to consider the more general equation:{
ut − (a(x)ux)x + q(x)u = f(x, t), (x, t) ∈ Q = (0, l) × (0, T ],
u|t=0 = φ(x), x ∈ (0, l). (2.1)

Definition 2.1 Define B to be the closure of C∞
0 (Q) under the following norm:

‖u‖2
B =

∫∫
Q

a(x)(|u|2 + |∇u|2)dxdt, u ∈ B.

Definition 2.2 A function u(x, t) is called the weak solution to (2.1), if u ∈ C([0, T ];
L2(0, l)) ∩ B, and for any ψ ∈ L∞((0, T );L2(0, l)) ∩ B, ∂ψ

∂t ∈ L2(Q), ψ(·, T ) = 0, the following
integration identity holds:∫∫

Q

(
− u

∂ψ

∂t
+ a∇u · ∇ψ + quψ

)
dxdt−

∫ l

0

φ(x)ψ(x, 0)dx =
∫∫

Q

fψdxdt. (2.2)

Remark 2.1 Assume u ∈ C([0, T ];L2(0, l)) ∩ B and ∂u
∂t ∈ L2(Q). Then (2.2) can be

rewritten as ∫∫
Q

(∂u
∂t
ψ + a∇u · ∇ψ + quψ

)
dxdt =

∫∫
Q

fψdxdt,

where u satisfies u|t=0 = φ(x) in the sense of trace.

Theorem 2.1 For any given f ∈ L∞(Q), φ ∈ L∞(0, l), there exists a unique weak solution
to (2.1), which satisfies the following estimate:

‖u‖L∞((0,T ),L2(0,l)) + ‖a|∇u|2‖L1(Q) ≤ C(‖f‖2
L2(Q) + ‖φ‖2

L2(0,l)).

Furthermore, if a|∇φ|2 ∈ L1(0, l), then ∂u
∂t ∈ L2(Q) and∥∥∥∂u

∂t

∥∥∥
L2(Q)

≤ C(‖f‖L2(Q) + ‖φ‖L2(0,l) + ‖a|∇φ|2‖L1(0,l)).

Proof Firstly, we prove the existence. For any given 0 < ε < 1, we consider the following
regularized problem:⎧⎪⎪⎨⎪⎪⎩

∂uε
∂t

− (aε(x)uε,x)x + q(x)uε = f(x, t), (x, t) ∈ Q,

uε(0, t) = uε(l, t) = 0,
uε(x, 0) = φ(x),

(2.3)

where
aε(x) = a(x) + ε, x ∈ [0, l].

From the well-known theory for parabolic equations (see [31]), there exists a unique weak
solution uε(x, t) to (2.3).

Then, we will give some a priori estimates for uε(x, t). Without loss of generality, we assume
that uε(x, t) is the classical solution to (2.3). Otherwise, one can smooth the coefficients of (2.3),
and then consider the solution to the approximation problem.
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Multiplying both sides of (2.3) by uε and integrating on Qt = [0, l]× (0, t), we have∫∫
Qt

∂uε
∂t

uεdxdt −
∫∫

Qt

(aεuε,x)xuεdxdt+
∫∫

Qt

qu2
εdxdt =

∫∫
Qt

fuεdxdt.

Integration by parts, we get∫ l

0

1
2
u2
εdx+

∫ t

0

∫ l

0

aε|uε,x|2dxdt+
∫ t

0

∫ l

0

qu2
εdxdt

≤
∫ l

0

1
2
φ2dx+

1
2

∫ t

0

∫ l

0

|uε|2dxdt+
1
2

∫ t

0

∫ l

0

f2dxdt. (2.4)

From (2.4) and the Gronwall’s inequality, we have

max
0<t≤T

∫ l

0

u2
εdx+

∫∫
Qt

aε|uε,x|2dxdt ≤ C
( ∫ l

0

φ2dx+
∫∫

Qt

f2dxdt
)
.

On the other hand, if a|∇φ|2 ∈ L1(0, l), then by multiplying ∂uε

∂t on both sides of (2.3) and
integrating on Qt, we obtain∫∫

Qt

∣∣∣∂uε
∂t

∣∣∣2dxdt− ∫∫
Qt

(aεuε,x)x · ∂uε
∂t

dxdt+
∫∫

Qt

quε
∂uε
∂t

dxdt

=
∫∫

Qt

f
∂uε
∂t

dxdt.

Integrating by parts, we have∫∫
Qt

∣∣∣∂uε
∂t

∣∣∣2dxdt+
∫∫

Qt

q

2
∂

∂t
(u2
ε)dxdt

−
∫∫

Qt

[ ∂
∂x

(
aε
∂uε
∂x

· ∂uε
∂t

)
− aε

∂uε
∂x

· ∂
2uε
∂x∂t

]
dxdt

=
∫∫

Qt

∣∣∣∂uε
∂t

∣∣∣2dxdt+
∫∫

Qt

q

2
∂

∂t
(u2
ε)dxdt+

∫∫
Qt

aε
2
∂

∂t

∣∣∣∂uε
∂x

∣∣∣2dxdt
=

∫∫
Qt

f
∂uε
∂t

dxdt. (2.5)

From (2.5), we get∫∫
Qt

∣∣∣∂uε
∂t

∣∣∣2dxdt +
∫ l

0

aε

∣∣∣∂uε
∂x

(x, t)
∣∣∣2dx+

∫ l

0

q

2
u2
ε(x, t)dx

≤
∫ l

0

aεφ
2
xdx+

1
2

∫ l

0

qφ2dx+
1
2

∫∫
Qt

f2dxdt+
1
2

∫∫
Qt

∣∣∣∂uε
∂t

∣∣∣2dxdt. (2.6)

From (2.6), we have∥∥∥∂uε
∂t

∥∥∥
L2(Q)

≤ C(‖f‖L2(Q) + ‖φ‖L2(0,l) + ‖aε|∇φ|2‖L1(0,l)).

Moreover, it follows from the maximum principle that

‖uε‖L∞(Q) ≤ C.
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From the estimations above, it can be derived that there exists a subsequence of {uε}
(denoted by itself) and

u ∈ C([0, T ];L2(0, l)),
∂u

∂t
∈ L2(Q),

such that

uε → u in L2(Q),
∇uε ⇀ ∇u in L2

loc(Q),
∂uε
∂t

⇀
∂u

∂t
in L2(Q),

aε∇uε ⇀ a∇u in L2(Q).

Letting u = uε in (2.2), we have∫∫
Q

(
− uε

∂ψ

∂t
+ a∇uε · ∇ψ + quεψ

)
dxdt−

∫ l

0

φ(x)ψ(x, 0)dx =
∫∫

Q

fψdxdt.

Letting ε→ 0, one can immediately obtain∫∫
Q

(
− u

∂ψ

∂t
+ a∇u · ∇ψ + quψ

)
dxdt−

∫ l

0

φ(x)ψ(x, 0)dx =
∫∫

Q

fψdxdt,

which implies the existence of weak solutions.
Next, we prove the uniqueness of weak solutions. Suppose that u1, u2 be two solutions to

(2.1), and let
U(x, t) = u1(x, t) − u2(x, t), (x, t) ∈ Q.

It can be easily seen that U ∈ C([0, T ];L2(0, l)) ∩ B, and for any ψ ∈ L∞((0, T );L2(0, l)) ∩ B,
∂ψ
∂t ∈ L2(Q), ψ(·, T ) = 0, the following integration identity holds:∫∫

Q

(
− U

∂ψ

∂t
+ a∇U · ∇ψ + qUψ

)
dxdt = 0. (2.7)

For any given g ∈ C∞
0 (Q), by the existence obtained above, we know that there exists a

weak solution v ∈ L∞((0, T );L2(0, l)) ∩ B and ∂v
∂t ∈ L2(Q) for the following equation:

− ∂v

∂t
− (a(x)vx)x + q(x)v = g(x, t), (x, t) ∈ Q,

v(x, T ) = 0, x ∈ (0, l).

Letting ψ = v in (2.7), we obtain ∫∫
Q

Ugdxdt = 0.

Noting the arbitrariness of g, we have

U(x, t) = 0 a.e. (x, t) ∈ Q,

i.e.,
u1(x, t) = u2(x, t) a.e. (x, t) ∈ Q.

This completes the proof of Theorem 2.1.
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Remark 2.2 The weak solution defined above is on the whole domain Q. If we only
consider the spatial case, we can modify the Definition 2.1 as follows.

Definition 2.1′ Define H 1(0, l) to be the closure of C∞
0 (0, l) under the following norm:

‖v‖2
H 1 =

∫ l

0

a(x)(|v|2 + |∇v|2)dxdt, v ∈ H 1(0, l).

For the case of f ≡ 0, the Definition 2.2 can also be rewritten as follows.

Definition 2.2′ A function u ∈ H1((0, T );L2(0, l))∩L2((0, T ); H 1(0, l)) is called the weak
solution to (2.1), if u satisfies

u(x, 0) = φ(x), x ∈ (0, l) (2.8)

and the following integration identity∫ l

0

utψdx+
∫ l

0

a∇u · ∇ψdx+
∫ l

0

quψdx = 0, ∀ψ ∈ L2(0, l) ∩ H 1(0, l) (2.9)

holds for a.e. t ∈ (0, T ]. Then, by analogously arguments, one can establish the existence,
the uniqueness and the regularity for such kind of weak solution, which are similar to those of
Theorem 2.1.

Remark 2.3. We recall that the principle coefficient a(x) ∈ C1[0, 1]. Due to the degeneracy
at x = 0 and x = l, from u ∈ H 1(0, l), one can only derive u ∈ H1

loc(0, l) rather than
u ∈ H1(0, l), which is different from the case of non-degenerate. However, we may derive

aux → 0 as x→ 0. (2.10)

In fact, if (2.10) is not true, i.e., aux → k, k �= 0, then we have ux ∼ k
a(x) in Bδ(0) ∩ [0, l],

where Bδ(0) is a ball with δ-radius centered at x = 0. Note that

a(x) = a(0) + a′(ξ)x = a′(ξ)x, ξ ∈ [0, x], x ∈ Bδ(0) ∩ [0, l].

Hence,

a|ux|2 ∼ k2

a(x)
∼ k2

a′(ξ)x
,

which is contradicts with a|ux|2 ∈ L1(0, l). By analogous arguments, we have

aux → 0 as x→ l.

It should be mentioned that these conclusions are no longer valid for a /∈ C1[0, l]. For
example, let

a(x) = xα(l − x)β , 0 < α, β < 1. (2.11)

It can be easily seen that a|ux|2 ∈ L1(0, l) can not guarantee aux → 0 as x tends to 0 or l. In
some references (see, e.g., [3–4]), the case (2.11) is called the weak degeneracy and the boundary
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conditions are indispensable for corresponding mathematical model, e.g., we shall replace (1.1)
by the following initial-boundary value problem:⎧⎨⎩

ut − (a(x)ux)x + q(x)u = 0, (x, t) ∈ Q,
u|x=0 = u|x=l = 0,
u(x, 0) = φ(x).

Since the inverse Problem 1.1 is ill-posed, i.e., its solution depends unstably on the data, we
turn to consider the following optimal control Problem 2.1.

Problem 2.1 Find q(x) ∈ A, such that

J(q) = min
q∈A

J(q), (2.12)

where

J(q) =
1
2

∫ l

0

|u(x, T ; q) − g(x)|2dx+
N

2

∫ l

0

|∇q|2dx, (2.13)

A = {q(x) | 0 < α ≤ q ≤ β, ‖q‖H1(0,l) <∞}, (2.14)

u(x, t; q) is the solution to (1.1) for a given coefficient q(x) ∈ A, N is the regularization param-
eter, and α, β are two given positive constants.

For the extra condition (1.4), we shall assume that

g(x) ∈ L∞(0, l). (2.15)

From (2.15) and Theorem 2.1, it can be easily seen that the control functional (2.13) is
well-defined for any q ∈ A.

We are now going to show the existence of minimizers to the problem (2.12). Firstly, we
assert that the functional J(q) is of some continuous property in A in the following sense.

Lemma 2.1 For any sequence {qn} in A which converges to some q ∈ A in L1(0, l) as
n→ ∞, we have

lim
n→∞

∫ l

0

|u(qn)(x, T ) − g(x)|2dx =
∫ l

0

|u(q)(x, T ) − g(x)|2dx. (2.16)

Proof Step 1 By taking q = qn and choosing the test function as u(qn)(·, t) in (2.9) and
then integrating with respect to t, we derive that

‖u(qn; t)‖2
L2(0,l) +

∫ t

0

∫ l

0

a|∇u(qn; t)|2dxdt+
∫ t

0

∫ l

0

qn|u(qn; t)|2dxdt ≤ ‖φ‖2
L2(0,l) (2.17)

for any t ∈ (0, T ].
From (2.17), we know that the sequence {u(qn)} is uniformly bounded in the space L2((0, T );

H 1(0, l)). So we may extract a subsequence, still denoted by {u(qn)}, such that

u(qn)(x, t) ⇀ u∗(x, t) ∈ L2((0, T ); H 1(0, l)). (2.18)



364 Z. C. Deng and L. Yang

Step 2 Prove u∗(x, t) = u(q)(x, t).
By taking q = qn in (2.9) and multiplying both sides by a function η(t) ∈ C1[0, T ] with

η(T ) = 0, we have∫ l

0

u(qn)tψη(t)dx +
∫ l

0

a∇u(qn) · ∇ψη(t)dx +
∫ l

0

qnu(qn)ψη(t)dx = 0. (2.19)

Then integrating with respect to t, we get

−
∫ l

0

φη(0)ψdx = −
∫ T

0

∫ l

0

u(qn)ψηt(t)dxdt +
∫ T

0

∫ l

0

η(t)a∇u(qn) · ∇ψdxdt

+
∫ T

0

∫ l

0

η(t)q(x)u(qn)ψdxdt+
∫ T

0

∫ l

0

η(t)(qn − q)u(qn)ψdxdt. (2.20)

Letting n→ ∞ in (2.20) and using (2.18), we obtain

−
∫ l

0

φη(0)ψdx = −
∫ T

0

∫ l

0

u∗ψηt(t)dxdt+
∫ T

0

∫ l

0

η(t)a∇u∗ · ∇ψdxdt

+
∫ T

0

∫ l

0

η(t)q(x)u∗ψdxdt. (2.21)

By noticing that (2.21) is valid for any η(t) ∈ C1[0, T ] with η(T ) = 0, we have∫ l

0

u∗tψdx+
∫ l

0

a∇u∗ · ∇ψdx+
∫ l

0

qu∗ψdx = 0, ∀ψ ∈ H 1(0, l) (2.22)

and u∗(x, 0) = φ(x).
Therefore, u∗ = u(q) by the definition of u(q).
Step 3 Prove ‖u(qn)(·, T ) − g‖L2(0,l) → ‖u(q)(·, T ) − g‖L2(0,l) as n→ ∞.
We rewrite (2.9) for q = qn in the form∫ l

0

(u(qn) − g)tψdx+
∫ l

0

a∇(u(qn) − g) · ∇ψdx+
∫ l

0

qn(u(qn) − g)ψdx

= −
∫ l

0

a∇g · ∇ψdx−
∫ l

0

qngψdx. (2.23)

Taking ψ = u(qn) − g in (2.23), we have

1
2

d
dt

‖u(qn) − g‖2
L2(0,l) +

∫ l

0

a|∇(u(qn) − g)|2dx+
∫ l

0

qn|u(qn) − g|2dx

= −
∫ l

0

a∇g · ∇(u(qn) − g)dx−
∫ l

0

qng(u(qn) − g)dx. (2.24)

Similar relations hold for u(q), namely,

1
2

d
dt

‖u(q) − g‖2
L2(0,l) +

∫ l

0

a|∇(u(q) − g)|2dx+
∫ l

0

q|u(q) − g|2dx

= −
∫ l

0

a∇g · ∇(u(q) − g)dx−
∫ l

0

qg(u(q) − g)dx. (2.25)
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Subtracting (2.25) from (2.24), we obtain{∫ l

0

qn|u(qn) − g|2dx−
∫ l

0

q|u(q) − g|2dx
}

+
1
2

d
dt

‖u(qn) − u(q)‖2
L2(0,l)

=
∫ l

0

a∇g · ∇(u(q) − u(qn))dx +
∫ l

0

qg(u(q) − u(qn))dx

+
∫ l

0

(q − qn)g(u(qn) − g)dx+
∫ l

0

a∇(u(q) − u(qn)) · ∇(u(q) + u(qn) − 2g)dx

−
∫ l

0

d
dt

[(u(q) − g)(u(qn) − u(q))]dx. (2.26)

Taking ψ = u(qn) − u(q) in (2.9), we have∫ l

0

u(q)t(u(qn) − u(q))dx

=
∫ l

0

a∇u(q) · ∇(u(q) − u(qn))dx +
∫ l

0

qu(q)(u(q) − u(qn))dx. (2.27)

Similarly, for (u(qn) − u(q))t(u(q) − g), we have∫ l

0

(u(qn) − u(q))t(u(q) − g)dx

=
∫ l

0

a∇(u(qn) − u(q)) · ∇(g − u(q))dx +
∫ l

0

q(u(qn) − u(q))(g − u(q))dx

+
∫ l

0

(qn − q)u(qn)(g − u(q))dx. (2.28)

Substituting (2.27)–(2.28) into (2.26), and after some manipulations, we derive

1
2

d
dt

‖u(qn) − u(q))‖2
L2(0,l) +

∫ l

0

a|∇(u(qn) − u(q))|2dx

+
{∫ l

0

qn|u(qn) − g|2dx−
∫ l

0

q|u(q) − g|2dx
}

= 2
∫ l

0

q(u(qn) − u(q))(u(q) − g)dx+
∫ l

0

(q − qn)g(u(qn) − g)dx

+
∫ l

0

(q − qn)u(qn)(g − u(q))dx := An. (2.29)

Then by rewriting the third term on the left-hand side of (2.29), we have

1
2

d
dt

‖u(qn) − u(q)‖2
L2(0,l) +

∫ l

0

a|∇(u(qn) − u(q)|2dx+
∫ l

0

qn|u(qn) − u(q)|2dx

= An +
{∫ l

0

(q − qn)|u(q) − g|2dx− 2
∫ l

0

qn(u(qn) − u(q))(u(q) − g)dx
}

:= An +Bn. (2.30)

Integrating over the interval (0, t) for any t ≤ T , we get

1
2
‖u(qn; t) − u(q; t)‖2

L2(0,l) ≤
∫ T

0

|An +Bn|dt. (2.31)
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By the convergence of {qn} and the weak convergence of {u(qn)}, one can easily get∫ T

0

|An +Bn|dt→ 0 as n→ ∞. (2.32)

Combining (2.31) and (2.32), we have

max
t∈[0,T ]

‖u(qn; t) − u(q; t)‖L2(0,l) → 0 as n→ ∞. (2.33)

On the other hand, from the Hölder’s inequality, we have∣∣∣ ∫ l

0

|u(qn)(·, T ) − g|2dx−
∫ l

0

|u(q)(·, T ) − g|2dx
∣∣∣

≤
∫ l

0

|u(qn)(·, T ) − u(q)(·, T )| · |u(qn)(·, T ) + u(q)(·, T ) − 2g|dx
≤ ‖u(qn)(·, T ) − u(q)(·, T )‖L2(0,l) · ‖u(qn)(·, T ) + u(q)(·, T ) − 2g‖L2(0,l). (2.34)

From (2.15), (2.17) and (2.33)–(2.34), we obtain

lim
n→∞

∫ l

0

|u(qn)(x, T ) − g(x)|2dx =
∫ l

0

|u(q)(x, T ) − g(x)|2dx.

This completes the proof of Lemma 2.1.

Theorem 2.2 There exists a minimizer q ∈ A of J(q), i.e.,

J(q) = min
q∈A

J(q).

Proof It is obvious that J(q) is non-negative, and thus J(q) has the greatest lower bound
inf
q∈A

J(q). Let {qn} be a minimizing sequence, i.e.,

inf
q∈A

J(q) ≤ J(qn) ≤ inf
q∈A

J(q) +
1
n
, n = 1, 2, · · · .

By noticing that J(qn) ≤ C, we deduce

‖∇qn‖L2(0,l) ≤ C, (2.35)

where C is independent of n. Noticing the boundedness of {qn} and (2.35), we also have

‖qn‖H1(0,l) ≤ C. (2.36)

So we can extract a subsequence, still denoted by {qn}, such that

qn(x) ⇀ q(x) ∈ H1(0, l) as n→ ∞. (2.37)

By the Sobolev imbedding theorem (see [1]), we obtain

‖qn(x) − q(x)‖L1(0,l) → 0 as n→ ∞. (2.38)
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It can be easily seen that {qn(x)} ∈ A. So we get as n→ ∞ that

qn(x) → q(x) ∈ A (2.39)

in L1(0, l).
Moreover, from (2.37), we have

∫ l

0

|∇q|2dx = lim
n→∞

∫ l

0

∇qn · ∇qdx ≤ lim
n→∞

√∫ l

0

|∇qn|2dx ·
∫ l

0

|∇q|2dx. (2.40)

From Lemma 2.1 and the convergence of {qn}, we know that there exists a subsequence of
{qn}, still denoted by {qn}, such that

lim
n→∞

∫ l

0

|u(qn)(x, T ) − g(x)|2dx =
∫ l

0

|u(q)(x, T ) − g(x)|2dx. (2.41)

From (2.39)–(2.41), we get

J(q) = lim
n→∞

∫ l

0

|u(qn)(x, T ) − g(x)|2dx+
∫ l

0

|∇q|2dx
≤ lim
n→∞J(qn) = inf

q∈A
J(q). (2.42)

Hence, J(q) = min
q∈A

J(q).

This completes the proof of Theorem 2.2.

3 Necessary Condition

Theorem 3.1 Let q be the solution to the optimal control problem (2.12). Then there exists
a triple of functions (u, v; q) satisfying the following system:{

ut − (aux)x + qu = 0, (x, t) ∈ Q,
u|t=0 = φ(x), x ∈ (0, l), (3.1){−vt − (avx)x + qv = 0, (x, t) ∈ Q,
v|t=T = u(x, T ) − g(x), x ∈ (0, l) (3.2)

and ∫ T

0

∫ l

0

uv(q − h)dxdt−N

∫ l

0

∇q · ∇(q − h)dx ≥ 0 (3.3)

for any h ∈ A.

Proof For any h ∈ A, 0 ≤ δ ≤ 1, we have

qδ ≡ (1 − δ)q + δh ∈ A.

Then

Jδ ≡ J(qδ) =
1
2

∫ l

0

|u(x, T ; qδ) − g(x)|2dx+
N

2

∫ l

0

|∇qδ|2dx. (3.4)
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Let uδ be the solution to (1.1) with given q = qδ. Since q is an optimal solution, we have

dJδ
dδ

∣∣∣
δ=0

=
∫ l

0

[u(x, T ; q) − g(x)]
∂uδ
∂δ

∣∣∣
δ=0

dx+N

∫ l

0

∇q · ∇(h− q)dx ≥ 0. (3.5)

Let ũδ ≡ ∂uδ

∂δ . Direct calculations lead to the following equation:⎧⎨⎩
∂

∂t
(ũδ) − ∂

∂x

(
a
∂ũδ
∂x

)
+ qδũδ = (q − h)uδ,

ũδ|t=0 = 0.
(3.6)

Let ξ = ũδ|δ=0. Then ξ satisfies{
ξt − (aξx)x + qξ = (q − h)u,
ξ|t=0 = 0. (3.7)

From (3.5), we have∫ l

0

[u(x, T ; q) − g(x)]ξ(x, T )dx +N

∫ l

0

∇q · ∇(h− q)dx ≥ 0. (3.8)

Let Lξ = ξt − (aξx)x + qξ, and suppose that v is the solution to the following problem:{L∗v ≡ −vt − (avx)x + qv = 0,
v(x, T ) = u(x, T ; q) − g(x), (3.9)

where L∗ is the adjoint operator of the operator L.

By the well-known Green’s formula, we have∫ T

0

∫ l

0

(vLξ − ξL∗v)dxdt

=
∫ T

0

∫ l

0

(vξt + ξvt)dxdt+
∫ T

0

∫ l

0

[ξ(avx)x − v(aξx)x]dxdt

=
∫ l

0

ξv|t=Tt=0 dx+
∫ T

0

∫ l

0

(aξvx − avξx)xdxdt

=
∫ l

0

ξ(x, T )[u(x, T ) − g(x)]dx, (3.10)

which implies ∫ T

0

∫ l

0

vLξdxdt =
∫ l

0

ξ(x, T )[u(x, T ) − g(x)]dx. (3.11)

Combining (3.8) and (3.11), one can easily obtain that∫ T

0

∫ l

0

uv(q − h)dxdt −N

∫ l

0

∇q · ∇(q − h)dx ≥ 0.

This completes the proof of Theorem 3.1.
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4 Uniqueness and Stability

The optimal control Problem 1.1 is non-convex. So, in general one may not expect a unique
solution. In fact, it is well-known that the optimization technique is a classical tool to yield
“general solution” for inverse problems without unique solution. However, we find that if the
terminal time T is relatively small, the minimizer of the cost functional can be proved to be
local unique and stable.

Throughout this paper, if there is no specific illustration, C will be denoted the different
constants.

Lemma 4.1 Supposing u ∈ H 1(0, l), we have that for any k ≥ 0,

(u − k)+ = sup(u − k, 0) ∈ H 1,

(u + k)− = sup(−(u + k), 0) ∈ H 1.

Moreover, for a.e. x ∈ (0, l), we have

∂(u− k)+

∂x
=

⎧⎨⎩
∂u

∂x
, if u > k,

0, if u ≤ k

and

∂(u+ k)−

∂x
=

⎧⎪⎨⎪⎩
0, if u > −k,

−∂u
∂x
, if u ≤ −k.

Proof For u ∈ H 1, we know∫ l

0

a(|u|2 + |∇u|2)dx < +∞.

Noting a(x) > 0, x ∈ (0, l), we have that for all δ > 0,

u ∈ H 1(δ, l − δ).

By the definition of weak derivative (see [38]), it can be easily seen that

(u− k)+ ∈ H 1(δ, l − δ)

and for a.e. x ∈ (δ, l− δ),

∂(u− k)+

∂x
=

⎧⎨⎩
∂u

∂x
, if u > k,

0, if u ≤ k.

Then we have ∫ l−δ

δ

a|((u − k)+)x|2dx =
∫
Eδ

a|ux|2dx,

where Eδ = {x ∈ (δ, l − δ) | u(x) > k}. Since the quantity
∫
Eδ
a|ux|2dx is bounded from the

above
∫ l
0 a|ux|2dx, which does not depend on δ, by passing to the limit as δ → 0, we get∫ l

0

a|((u− k)+)x|2dx ≤
∫ l

0

a|ux|2dx < +∞.
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Moreover, the following inequality∫ l

0

a|(u− k)+|2dx ≤
∫ l

0

a|u|2dx < +∞

is obvious. Hence, (u−k)+ ∈ H 1. Similar arguments can be used to treat the case of (u+k)−.
This completes the proof of Lemma 4.1.

Now, we can give a weak maximum principle for the weak solution to (1.1).

Lemma 4.2 Supposing φ ∈ L∞(0, l) ∩ H 1(0, l), we have for u the following estimate:

‖u‖∞ ≤ ‖φ‖∞. (4.1)

Proof Let k = ‖φ‖∞. Multiplying (1.1) by (u − k)+, we get from Lemma 5.1 that∫ l

0

ut(u− k)+dx+
∫ l

0

a|((u − k)+)x|2dx = −
∫ l

0

qu(u− k)+dx. (4.2)

Denoting E = {x ∈ (0, l) | u(x) > k}, one has

−
∫ l

0

qu(u− k)+dx = −
∫
E

qu(u− k)+dx ≤ 0. (4.3)

From (4.2)–(4.3), we have that for all t ∈ [0, T ],

1
2

d
dt

∫ l

0

|(u− k)+|2dx =
∫ l

0

ut(u− k)+dx ≤ 0,

which implies that t �→ ‖(u− k)+(t)‖2
L2 is decreasing on [0, T ]. Since (φ− k)+ ≡ 0, we deduce

that for all t ∈ [0, T ] and for a.e. x ∈ (0, l), u(x, t) ≤ k.
By analogous arguments for (u + k)−, we can obtain that for all t ∈ [0, T ] and for a.e.

x ∈ (0, l), u(x, t) ≥ −k.
This completes the proof of Lemma 4.2.

Lemma 4.3 For (3.2), we have the following estimate:

‖v‖∞ ≤ ‖u(x, T )− g(x)‖∞. (4.4)

Proof Let τ = T − t. Then (3.2) is reduced to{
vτ − (avx)x + qv = 0, (x, t) ∈ Q,
v|τ=0 = u(x, T ) − g(x).

The rest of the proof is similar to that of Lemma 4.2.

Suppose that g1(x) and g2(x) are two given functions which satisfy the condition (2.15).
Let q1(x) and q2(x) be the minimizers of Problem 2.1 corresponding to g = gi (i = 1, 2),
respectively, and let {ui, vi} (i = 1, 2) be solutions to (3.1)–(3.2) in which q = qi (i = 1, 2),
respectively.

Set
u1 − u2 = U, v1 − v2 = V, q1 − q2 = Q.
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Then U and V satisfy {
Ut − (aUx)x + q1U = −Qu2,
U |t=0 = 0, (4.5){−Vt − (aVx)x + q1V = −Qv2,
V |t=T = U(x, T ) − (g1 − g2).

(4.6)

Lemma 4.4 For any bounded continuous function k(x) ∈ C(0, l), we have

‖k‖∞ ≤ |k(x0)| +
√
l ‖∇k‖L2(0,l),

where x0 is a fixed point in (0, l).

Proof For 0 < x < l, we have

|k(x)| ≤ |k(x0)| +
∣∣∣ ∫ x

x0

k′dx
∣∣∣ ≤ |k(x0)| +

( ∫ l

0

dx
) 1

2
( ∫ l

0

|∇k|2dx
) 1

2
.

This completes the proof of Lemma 4.4.

Lemma 4.5 For (4.5), we have the following estimate:

max
0≤t≤T

∫ l

0

U2dxdt ≤ C(max |Q|)2
∫ T

0

∫ l

0

|u2|2dxdt, (4.7)

where C is independent of T .

Proof From (4.5), we have that for 0 < t ≤ T ,∫ l

0

∫ t

0

(U2

2

)
t
dxdt−

∫ t

0

∫ l

0

(aUx)xUdxdt+
∫ t

0

∫ l

0

q1U
2dxdt

= −
∫ t

0

∫ l

0

u2QUdxdt. (4.8)

Integrating by parts, we obtain∫ l

0

U2

2

∣∣∣
(x,t)

dx+
∫ t

0

∫ l

0

aU2
xdxdt−

∫ t

0

aUxU |x=lx=0dt+
∫ t

0

∫ l

0

q1U
2dxdt

≤
∫ t

0

∫ l

0

U2dxdt+ (max |Q|)2
∫ t

0

∫ l

0

|u2|2dxdt, (4.9)

which implies ∫ l

0

U2

2

∣∣∣
(x,t)

dx+
∫ t

0

∫ l

0

aU2
xdxdt

≤
∫ t

0

∫ l

0

U2dxdt + (max |Q|)2
∫ t

0

∫ l

0

|u2|2dxdt. (4.10)

From the Gronwall’s inequality and (4.10), we have∫ l

0

U2dxdt +
∫ T

0

∫ l

0

aU2
xdxdt ≤ C(max |Q|)2

∫ T

0

∫ l

0

|u2|2dxdt.
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This completes the proof of Lemma 4.5.

Lemma 4.6 For (4.6), we have the following estimate:

max
0≤t≤T

∫ l

0

V 2dx+
∫ T

0

∫ l

0

a|Vx|2dxdt

≤ C(max |Q|)2
∫ T

0

∫ l

0

(|u2|2 + |v2|2)dxdt+ C

∫ l

0

|g1 − g2|2dx, (4.11)

where C is independent of T .

Proof From (4.6), we have∫ T

t

∫ l

0

−
(V 2

2

)
t
dxdt−

∫ T

t

∫ l

0

(aVx)xV dxdt+
∫ T

t

∫ l

0

q1V
2dxdt

= −
∫ T

t

∫ l

0

v2QV dxdt.

Integrating by parts, we obtain∫ l

0

V 2

2

∣∣∣
(x,t)

dx+
∫ T

t

∫ l

0

a|Vx|2dxdt+
∫ T

t

∫ l

0

q1V
2dxdt

≤
∫ l

0

|U(x, T )|2dx+
∫ l

0

|g1 − g2|2dx−
∫ T

t

∫ l

0

v2QV dxdt

≤
∫ l

0

|U(x, T )|2dx+
∫ l

0

|g1 − g2|2dx+
∫ T

t

∫ l

0

V 2

2
dxdt

+
1
2
(max |Q|)2

∫ T

t

∫ l

0

|v2|2dxdt. (4.12)

From Lemma 4.5 and (4.12), we have∫ l

0

V 2

2

∣∣∣
(x,t)

dx+
∫ T

t

∫ l

0

a|Vx|2dxdt

≤
∫ T

t

∫ l

0

V 2

2
dxdt+

∫ l

0

|g1 − g2|2dx

+ C(max |Q|)2
∫ T

0

∫ l

0

(|u2|2 + |v2|2)dxdt. (4.13)

From the Gronwall’s inequality, we have

max
0≤t≤T

∫ l

0

V 2dx+
∫ T

0

∫ l

0

a|Vx|2dxdt

≤ C(max |Q|)2
∫ T

0

∫ l

0

(|u2|2 + |v2|2)dxdt+ C

∫ l

0

|g1 − g2|2dx.

This completes the proof of Lemma 4.6.

Theorem 4.1 Let q1(x), q2(x) be the minimizers of the optimal control Problem 2.1 cor-
responding to g1(x), g2(x), respectively. If there exists a point x0 ∈ (0, l), such that

q1(x0) = q2(x0),
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then for relatively small T , we have

max
x∈(0,l)

|q1 − q2| ≤ Cl
1
3

N
1
3
‖g1 − g2‖L2(0,l),

where the constant C is independent of T , l and N .

Proof By taking h = q2 when q = q1, and taking h = q1 when q = q2 in (3.3), we have∫ T

0

∫ l

0

(q1 − q2)u1v1dxdt−N

∫ l

0

∇q1 · ∇(q1 − q2)dx ≥ 0, (4.14)∫ T

0

∫ l

0

(q2 − q1)u2v2dxdt−N

∫ l

0

∇q2 · ∇(q2 − q1)dx ≥ 0, (4.15)

where {ui, vi} (i = 1, 2) are solutions to (3.1)–(3.2) with q = qi (i = 1, 2), respectively.
From (4.14)–(4.15), we have

N

∫ l

0

|∇(q1 − q2)|2dx ≤
∫ T

0

∫ l

0

(u1v1 − u2v2)(q1 − q2)dxdt

≤
∫ T

0

∫ l

0

(u1v1 − u2v1 + u2v1 − u2v2)(q1 − q2)dxdt

≤
∫ T

0

∫ l

0

Qv1Udxdt+
∫ T

0

∫ l

0

Qu2V dxdt. (4.16)

From the assumption of Theorem 4.1, there exists a point x0 ∈ (0, l), such that

Q(x0) = q1(x0) − q2(x0) = 0. (4.17)

From Lemma 4.4 and (4.17), we have

max
x∈(0,l)

|Q(x)| ≤
√
l
( ∫ l

0

|∇Q|2dx
) 1

2
. (4.18)

From (4.16), (4.18) and the Young’s inequality, we obtain that

max |Q|2 ≤ l

∫ l

0

|∇Q|2dx

≤ l

N

∫ T

0

∫ l

0

Q(Uv1 + V u2)dxdt

≤ 1
2l

∫ l

0

|Q|2dx+
T l2

2N2

∫ T

0

∫ l

0

|Uv1 + V u2|2dxdt

≤ 1
2

max |Q|2 +
T l2

N2
‖v1‖2

∞

∫ T

0

∫ l

0

U2dxdt+
T l2

N2
‖u2‖2

∞

∫ T

0

∫ l

0

V 2dxdt

≤ 1
2

max |Q|2 + C
T 2l2

N2
‖v1‖2

∞ ·
( ∫ T

0

∫ l

0

|u2|2dxdt
)
· max |Q|2

+ C
T 2l2

N2
‖u2‖2

∞ ·
(∫ T

0

∫ l

0

(|u2|2 + |v2|2)dxdt
)
· max |Q|2

+ C
T 2l2

N2

∫ l

0

|g1 − g2|2dx, (4.19)
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where we have used estimates (4.7) and (4.11).
From Lemmas 4.2–4.3, we have

‖v1‖∞, ‖v2‖∞, ‖u2‖∞ ≤ C. (4.20)

From (4.19)–(4.20), we have

max |Q|2 ≤ C
T 3l2

N2
max |Q|2 + C

T 2l2

N2

∫ l

0

|g1 − g2|2dx. (4.21)

Choose T � 1, such that

C
T 3l2

N2
=

1
2
. (4.22)

Combining (4.21) and (4.22), one can easily get

max
x∈(0,l)

|q1 − q2| ≤ Cl
1
3

N
1
3
‖g1 − g2‖L2(0,l). (4.23)

This completes the proof of Theorem 4.1.

Remark 4.1 It should be mentioned that the regularization parameter plays a major role
in the numerical simulation of ill-posed problems. From Theorem 4.1, we can obtain that if
there exists a constant δ, such that

‖g1 − g2‖ ≤ δ and
δ2

N
2
3
→ 0,

then the reconstructed optimal solution is unique and stable, which is consistent with the existed
results (see, e.g., [20]). Note that the estimate (4.23) is based on (4.22), from which we can see
T = O(N

2
3 ). Since the parameter N is often taken to be very small, particularly in numerical

computations, Theorem 4.1 is indeed the local well-posedness of the optimal solution. For more
detailed discussion on the regularization parameter, we refer the readers to the references (see,
e.g., [9, 20]).

5 Convergence Analysis

In this section, we would like to discuss the convergence of the optimal solution. It has been
shown in previous section that the optimal solution is stable and unique, which is very important
in numerical process. However, the optimization problem is just a “modified problem” rather
than the original one. Therefore, it is necessary to investigate what about the difference between
the optimal solution to the optimization problem and the exact solution to the original problem.

We assume that the “real solution” g(x) is attainable, i.e., there exists a q∗(x) ∈ H1(0, l),
such that

u(x, T ; q∗) = g(x), (5.1)

and that an upper bound δ for the noisy level

‖gδ − g‖L2(0,l) ≤ δ (5.2)
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of the observation is known a priori.
It should be mentioned that for terminal control problems, it is rather difficult to derive the

convergence. To the authors’ knowledge, there is no convergence result for the optimal control
problem with the cost functional whose form is similar to (2.13).

In this paper, we introduce the following auxiliary control problems with observations av-
eraged over the given terminal time interval [T − σ, T ]:

Jσ(q) =
1
2σ

∫ T

T−σ

∫ l

0

|u(x, t; q) − g(x)|2dxdt+
N

2

∫ l

0

|∇q|2dx. (5.3)

Note that as σ → 0+,

1
2σ

∫ T

T−σ

∫ l

0

|u(x, t; q) − g(x)|2dxdt →
∫ l

0

1
2
|u(x, T ; q) − g(x)|2dx,

which implies Jσ(q) → J(q). Analogously, instead of (5.2), we assume that for the real solution
q∗(x), we have

1
2σ

∫ T

T−σ

∫ l

0

|u(x, t; q∗) − gδ(x)|2dxdt ≤ 1
2
δ2. (5.4)

Define the following forward operator u(q):

u(q) : A → H1((0, T );L2(0, l)) ∩ L2((0, T ); H 1(0, l)),

u(q)(x, t) = u(x, t; q(x)),

where u(x, t; q(x)) is the solution to the variational problem (2.9) for q ∈ A. For any q ∈ A and
p ∈ H1(0, l), one can easily deduce that the Gâteaux directional differential u′(q)p satisfies a
homogeneous initial condition and solves∫ l

0

(u′(q)p)tϕdx+
∫ l

0

a∇(u′(q)p) · ∇ϕdx+
∫ l

0

qu′(q)pϕdx = −
∫ l

0

pu(q)ϕdx (5.5)

for any ϕ ∈ L2(0, l) ∩ H 1(0, l). For the remainder term R(q) = u(p + q) − u(q) − u′(q)p, we
have the following variational characterization.

Lemma 5.1 For any q ∈ A and p ∈ H1(0, l), such that p + q ∈ A, the remainder
R(q) = u(p+ q) − u(q) − u′(q)p solves∫ l

0

(R(q))tϕdx+
∫ l

0

a∇(R(q)) · ∇ϕdx+
∫ l

0

qR(q)ϕdx =
∫ l

0

pϕ(u(q) − u(q + p))dx (5.6)

for any ϕ ∈ L2(0, l) ∩ H 1(0, l).

Proof Note that u(q + p) satisfies∫ l

0

(u(q + p))tϕdx +
∫ l

0

a∇(u(q + p)) · ∇ϕdx+
∫ l

0

(q + p)u(q + p)ϕdx = 0. (5.7)

Subtracting (5.7) from (2.9) and denoting W = u(q + p) − u(q), we obtain∫ l

0

ϕWtdx+
∫ l

0

a∇W · ∇ϕdx+
∫ l

0

qWϕdx = −
∫ l

0

pu(q + p)ϕdx. (5.8)
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Now (5.6) follows by subtracting (5.5) from (5.8).
This completes the proof of Lemma 5.1.

To obtain the convergence, we shall require some source conditions. We introduce the
following linear operator F (q):

F (q) : L2((0, T );L2(0, l)) → L2(0, l)

F (q)Φ = − 1
σ

∫ T

T−σ
u(q)Φdt, ∀Φ ∈ L2((0, T );L2(0, l)), (5.9)

where u(q) is the solution to (2.9). Using (5.5), we immediately see that for any p ∈ H1(0, l)
and any ϕ ∈ L2(0, l) ∩ H 1(0, l), the following holds:

〈F (q)ϕ, p〉 = − 1
σ

∫ T

T−σ

∫ l

0

pu(q)ϕdxdt

=
1
σ

∫ T

T−σ

∫ l

0

[(u′(q)p)tϕ+ a∇(u′(q)p) · ∇ϕ+ qu′(q)pϕ]dxdt, (5.10)

where 〈 · , · 〉 denote the scalar product in L2(0, l). Since ∇ is a linear operator, we can define
its adjoint operator ∇∗ by

〈∇∗ω, ϕ〉L2(0,l) = 〈ω, ∇ϕ〉L2(0,l), ∀ω ∈ H1(0, l), ϕ ∈ H1(0, l). (5.11)

It can be easily seen that if ϕ ∈ H1
0 (0, l), then ∇∗ is equivalent to ∇. In this paper, we will

only need a weak form of ∇∗∇.

Theorem 5.1 Assume that there exists a function

ϕ ∈ H1
0 ((T − σ, T );L2(0, l)) ∩ L2((T − σ, T ); H 1(0, l)),

such that the following source condition holds in the weak sense:

F (q∗)ϕ = ∇∗∇q∗ (5.12)

with F (q∗) defined by (5.9), i.e., for any p ∈ H1(0, l),

〈F (q∗)ϕ, p〉 = 〈∇∗∇q∗, p〉 = 〈∇q∗, ∇p〉. (5.13)

Furthermore, assume that

∇ · (a∇ϕ) ∈ L2((T − σ, T );L2(0, l)), (5.14)

and qδN satisfies

qδN (0) = q∗(0), qδN (l) = q∗(l). (5.15)

Then, with N ∼ δ, we have ∫ l

0

|qδN − q∗|2dx ≤ Cδ (5.16)
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and

1
σ

∫ T

T−σ

∫ l

0

|u(qδN ) − u(q∗)|2dxdt ≤ Cδ2, (5.17)

where qδN is a minimizer of (5.3) with g replaced by gδ, u(qδN ) is the solution to the variational
problem (2.9) with q = qδN , and C is a positive constant independent of δ, N and T .

Proof Noting that qδN is a minimizer of (5.3), we have

Jσ(qδN ) ≤ Jσ(q∗),

which implies

1
2σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt+
N

2

∫ l

0

|∇qδN |2dx ≤ 1
2
δ2 +

N

2

∫ l

0

|∇q∗|2dx. (5.18)

From (5.18), we can derive

1
2σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt +
N

2

∫ l

0

|∇qδN −∇q∗|2dx

≤ 1
2
δ2 +

N

2

∫ l

0

|∇q∗|2dx− N

2

∫ l

0

|∇qδN |2dx+
N

2

∫ l

0

|∇qδN −∇q∗|2dx

=
1
2
δ2 +N

∫ l

0

∇q∗ · ∇(q∗ − qδN )dx

=
1
2
δ2 +N〈∇q∗, ∇(q∗ − qδN )〉. (5.19)

Using (5.10) and (5.13), we have for the last term in (5.19) that

〈∇q∗, ∇(q∗ − qδN )〉 = 〈F (q∗)ϕ, q∗ − qδN 〉

= − 1
σ

∫ T

T−σ

∫ l

0

(q∗ − qδN )u(q∗)ϕdxdt

=
1
σ

∫ T

T−σ

∫ l

0

[(u′(q∗)(q∗ − qδN ))tϕ+ a∇(u′(q∗)(q∗ − qδN )) · ∇ϕ

+ q∗u′(q∗)(q∗ − qδN )ϕ]dxdt. (5.20)

Let

RδN := u(qδN ) − u(q∗) − u′(q∗)(qδN − q∗). (5.21)

Using this notation, we obtain

N〈∇q∗, ∇(q∗ − qδN )〉

=
N

σ

∫ T

T−σ

∫ l

0

[(RδN )tϕ+ a∇RδN · ∇ϕ+ q∗RδNϕ]dxdt

− N

σ

∫ T

T−σ

∫ l

0

[u(qδN ) − u(q∗)]tϕdxdt − N

σ

∫ T

T−σ

∫ l

0

a∇(u(qδN ) − u(q∗)) · ∇ϕdxdt
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− N

σ

∫ T

T−σ

∫ l

0

q∗[u(qδN ) − u(q∗)]ϕdxdt

= I1 + I2 + I3 + I4. (5.22)

Now, we need to estimate I1– I4. The main idea is to control I1– I4 by the left-hand side
item of inequality (5.19).

For I1, we use (5.6) to get

I1 =
N

σ

∫ T

T−σ

∫ l

0

(qδN − q∗)[u(q∗) − u(qδN )]ϕdxdt. (5.23)

From (5.23) and the Hölder’s inequality, we have

|I1| ≤ N

σ

∫ T

T−σ

∫ l

0

|(qδN − q∗)ϕ| · |u(q∗) − gδ|dxdt

+
N

σ

∫ T

T−σ

∫ l

0

|(qδN − q∗)ϕ| · |gδ − u(qδN )|dxdt

≤ N

σ

∫ T

T−σ
‖(qδN − q∗)ϕ‖L2(0,l) · ‖u(q∗) − gδ‖L2(0,l)dt

+
N

σ

∫ T

T−σ
‖(qδN − q∗)ϕ‖L2(0,l) · ‖gδ − u(qδN )‖L2(0,l)dt. (5.24)

Using (2.14) and the Young’s inequality, we obtain

|I1| ≤ 1
8σ

∫ T

T−σ

∫ l

0

|u(q∗) − gδ|2dxdt + CN2

∫ T

T−σ

∫ l

0

|(qδN − q∗)ϕ|2dxdt

+
1

16σ

∫ T

T−σ

∫ l

0

|gδ − u(qδN )|2dxdt+ CN2

∫ T

T−σ

∫ l

0

|(qδN − q∗)ϕ|2dxdt

≤ 1
8
δ2 +

1
16σ

∫ T

T−σ

∫ l

0

|gδ − u(qδN )|2dxdt+ CN2

∫ T

T−σ

∫ l

0

|ϕ|2dxdt, (5.25)

where we have used the assumption (5.4).
For I2, using integration by parts with respect to t and noticing ϕ ∈ H1

0 ((T −σ, T );L2(0, l)),
we derive

|I2| =
N

σ

∣∣∣ ∫ T

T−σ

∫ l

0

(u(qδN ) − u(q∗))ϕtdxdt
∣∣∣

≤ N

σ

∫ T

T−σ

∫ l

0

|(u(qδN ) − u(q∗))ϕt|dxdt

≤ N

σ

∫ T

T−σ

∫ l

0

|(u(qδN ) − gδ)ϕt|dxdt+
N

σ

∫ T

T−σ

∫ l

0

|(gδ − u(q∗))ϕt|dxdt

≤ 1
8
δ2 +

1
16σ

∫ T

T−σ

∫ l

0

|gδ − u(qδN)|2dxdt+ CN2

∫ T

T−σ

∫ l

0

|ϕt|2dxdt. (5.26)

For I3, using integration by parts with respect to x and noticing a(0) = a(l) = 0, we obtain

|I3| =
N

σ

∣∣∣ ∫ T

T−σ

∫ l

0

a∇(u(qδN ) − u(q∗)) · ∇ϕdxdt
∣∣∣
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=
N

σ

∣∣∣ ∫ T

T−σ

{
a(x)(u(qδN ) − u(q∗))

dϕ
dx

∣∣∣x=l
x=0

−
∫ l

0

(u(qδN ) − u(q∗))∇ · (a∇ϕ)dx
}

dt
∣∣∣

≤ N

σ

∫ T

T−σ

∫ l

0

|u(qδN ) − u(q∗)| · |∇ · (a∇ϕ)|dxdt

≤ N

σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ| · |∇ · (a∇ϕ)|dxdt

+
N

σ

∫ T

T−σ

∫ l

0

|gδ − u(q∗)| · |∇ · (a∇ϕ)|dxdt

≤ 1
8
δ2 +

1
16σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt

+ CN2

∫ T

T−σ

∫ l

0

|∇ · (a∇ϕ)|2dxdt. (5.27)

The last term I4 can be estimated similarly as follows by using the Young’s inequality:

|I4| ≤ N

σ

∫ T

T−σ

∫ l

0

|q∗||u(qδN ) − gδ||ϕ|dxdt

+
N

σ

∫ T

T−σ

∫ l

0

|q∗||gδ − u(q∗)||ϕ|dxdt

≤ 1
8
δ2 +

1
16σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt+ CN2

∫ T

T−σ

∫ l

0

|ϕ|2dxdt, (5.28)

where we have used the bound of q∗.
Combining (5.19), (5.22) and (5.25)–(5.28), we obtain

1
2σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt+
N

2

∫ l

0

|∇qδN −∇q∗|2dx

≤ 1
2
δ2 +N〈∇q∗, ∇(q∗ − qδN )〉

≤ 1
2
δ2 +

4∑
j=1

|Ij |

≤ δlta2 +
1
4σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt

+ CN2

∫ T

T−σ

∫ l

0

(|ϕ|2 + |ϕt|2 + |∇ · (a∇ϕ)|2)dxdt. (5.29)

From (5.29) and noticing the regularity of ϕ, we have

1
4σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt +
N

2

∫ l

0

|∇qδN −∇q∗|2dx ≤ δ2 + CN2. (5.30)

By choosing N ∼ δ, one can easily get

1
σ

∫ T

T−σ

∫ l

0

|u(qδN ) − gδ|2dxdt+N

∫ l

0

|∇qδN −∇q∗|2dx ≤ Cδ2. (5.31)
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The estimate (5.16) follows immediately from (5.31) and the Poincaré’s inequality.
This completes the proof of Theorem 5.1.

Remark 5.1 The motivation of replacing the cost functional (2.13) by (5.3) mainly lies
in the difficulty in treating the second integration term in (5.22). In fact, if we choose the
functional form (2.13), then we can deduce the second term in (5.22) (denoted by Ĩ2) to be

Ĩ2 = −N
σ

∫ l

0

(u(qδN ) − u(q∗))t(·, T )ϕdx.

Since we have no information regarding to the t-derivative of the real and approximate solution,
it is quite difficult, even impossible, to control the term Ĩ2 by the left-hand side of (5.19), and
thus we can not obtain any convergence.

6 Concluding Remarks

The inverse problem of identifying the coefficient in parabolic equations from some extra
conditions is very important in some engineering texts and many industrial applications. Clas-
sical parabolic models are plentifully discussed and developed well, while documents dealt with
degenerate parabolic models are quite few.

In this paper, we solve the inverse Problem 1.1 of recovering the radiative coefficient q(x)
in the following degenerate parabolic equation:

ut − (aux)x + q(x)u = 0

in an optimal control framework. Being different from other works (see, e.g., [24, 29]), which
also treat with inverse radiative coefficient problems, the mathematical model discussed in this
paper contains degeneracy on the lateral boundaries. Furthermore, unlike the well-known Black-
Scholes equation whose degeneracy can be removed by some change of variable, the degeneracy
in our problem can not be removed by any method. On the basis of the optimal control
framework, the existence, the uniqueness, the stability and the convergence of the minimizer
for the cost functional are established.

This paper focuses on the theoretical analysis of the 1-D inverse problem. For the multi-
dimensional case, i.e., the determination of q(x) in the following equation:

ut −∇ · (a(x)∇u) + q(x)u = 0, (x, t) ∈ Q = Ω × (0, T ],

where the principle coefficient a(x) satisfies

a(x) ≥ 0, x ∈ Ω

and Ω ⊂ R
m (m ≥ 1) is a given bounded domain, the method proposed in this paper is also

applicable.
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