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Abstract We study multi-parameter regularization (multiple penalties) for solving linear
inverse problems to promote simultaneously distinct features of the sought-for objects. We
revisit a balancing principle for choosing regularization parameters from the viewpoint of
augmented Tikhonov regularization, and derive a new parameter choice strategy called the
balanced discrepancy principle. A priori and a posteriori error estimates are provided to
theoretically justify the principles, and numerical algorithms for efficiently implementing
the principles are also provided. Numerical results on deblurring are presented to illustrate
the feasibility of the balanced discrepancy principle.
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1 Introduction

We investigate a regularization technique for solving linear inverse problems modeled by

Ku† = g†, (1.1)

where g† is the (inaccessible) exact data and u† ∈ X represents the unknown exact solution, and
K : X → Y is a bounded linear operator. Here the spaces X and Y are general Banach spaces,
and the operator K can be an embedding operator (image denoising), a convolution operator
(deblurring, scattering) and the Radon transform (computed tomography). The objective is
to find an approximation u to the solution u† from noisy measurement gδ ∈ Y of the exact
data g†. The accuracy of the noisy data gδ is measured by the standard L2 fidelity functional
φ(u†, gδ) = 1

2‖Ku† − gδ‖2 = 1
2δ

2 with the noise level δ.
As is typical for many inverse problems, problem (1.1) suffers from ill-posedness or insta-

bility. This poses significant challenges to their accurate yet stable numerical solution in the
presence of data noise, which is often the case in practical applications. Often, regularization
is applied to find a stable approximate solution. One of the most widely used approaches is
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known as Tikhonov regularization. It seeks to minimize the following functional

Jη(u) = φ(u, gδ) + η ·ψ(u), (1.2)

over a closed convex feasible solution set C. The solution to the minimization problem, denoted
by uδη (uη in case of the exact data g†), serves as an approximation to the exact solution u†.
Here the (nonnegative) vector-valued penalty functional ψ encodes the a priori knowledge, and
η ·ψ(u) denotes the dot product between the regularization parameter vector η = (η1, η2)t ∈ R

2
+

and the penalty ψ(u) = (ψ1(u), ψ2(u))t. The penalty ψ is selected to promote desirable features
of the sought-for solution, e.g., edge, sparsity and texture; and often the optimization problem
(1.2) is nonsmooth. The (vector) parameter η compromises the fidelity φ with the penalty
ψ, and its appropriate choice plays a crucial role in obtaining stable yet accurate solutions.
Therefore, an automated selection rule and efficient algorithms for determining η are essential.

One distinct feature of the model (1.2) is that it includes multiple penalties (hence termed
as multi-parameter regularization). This is motivated by the following empirical observations.
In practice, many objects exhibit multiple distinct features/structures. However, one single
penalty generally favors one feature over others, and thus unsuitable for promoting multiple
distinct features. For example, total variation (TV) is well suited to reconstructing piecewise
constant structures, however, it results in significant staircases in gray regions. One may im-
prove TV-reconstruction by introducing an additional penalty, say L1 norm of Δu where Δ is
the Laplacian operator. Hence, a reliable recovery of several distinct features naturally calls for
multiple penalties, and it is not surprising that the idea of multi-parameter regularization has
been pursued earlier. For instance, in [9] the authors proposed a model to preserve both flat
and gray regions in natural images by combining TV with Sobolev smooth penalty. We refer
interested readers to [15, 17] (imaging), [19] (microarray data analysis), [18] (geodesy) and [13]
(machine learning) for other interesting applications.

However, a general theory of multi-parameter regularization remains under development
[1, 4, 13, 7]. In [1] the L-hypersurface was suggested for determining regularization parame-
ters for finite-dimensional linear systems, but without any theoretical justification. In [4], a
multi-resolution analysis for ill-posed linear operator equations was analyzed, and some con-
vergence results were established. Lu et al. [13] discussed the discrepancy principle for Hilbert
space scales, and derived some error estimates. However, the parameter selection is vastly
nonunique due to lack of constraints and thus not directly applicable in practice, for which
later a quasi-optimality criterion was suggested (see [14]). Recently, the authors [7] investi-
gated the discrepancy principle and a balancing principle for general convex variational models.
However, the nonuniqueness of the discrepancy principle remains unresolved, and further, there
is still no theory for the balancing principle for multi-parameter regularization.

The present work extends our earlier work [7], and includes the following essential contribu-
tions. We first revisit the balancing principle in [7] from the viewpoint of augmented Tikhonov
regularization (see [12]), and establish the equivalence. Then we derive a novel hybrid principle,
the balanced discrepancy principle, by incorporating constraints into the augmented approach,
which partially resolves the nonuniqueness issue. Further, a priori and a posterior error esti-
mates are derived for both principles. The estimate in Theorem 2.4 was stated in [7] without
a proof. Finally, we develop efficient algorithms for implementing these principles, and briefly
discuss their properties.
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The rest of the paper is organized as follows. In Section 2, we derive the balancing principle
and the new hybrid principle, and develop relevant error estimates. In Section 3 we discuss
efficient implementations of the two principles. Finally, we provide some numerical results to
illustrate the hybrid principle in Section 4.

2 An Augmented Approach

The augmented Tikhonov (a-Tikhonov) regularization is one principled framework for choos-
ing regularization parameters (see [12]). Here we describe the augmented approach for multi-
parameter models, and derive the balancing principle and a novel balanced discrepancy princi-
ple.

2.1 Derivation of the principles

2.1.1 Balancing principle

First we sketch the augmented approach. For the multi-parameter model (1.2), it can be
derived analogously from hierarchical Bayesian inference as in [12], and the resulting augmented
functional J(u, τ,λ) reads

J(u, τ,λ) = τφ(u, gδ) + λ · ψ(u) + e · (βλ− α lnλ) + β0τ − α0 ln τ,

where the vector e is given by e = (1, 1)t. The functional J(u, τ,λ) maximizes the posterior
probability density function

p(u, τ,λ|gδ) ∝ p(gδ|u, τ,λ) p(u, τ,λ).

The functional J(u, τ,λ) is derived under the assumption that the scalars λi and τ have Gamma
distributions with known parameter pairs. The parameter pairs (α, β) and (α0, β0) are related
to the shape parameters in the statistical priors on the prior precision λi and noise precision
τ , respectively. The special case β0 = β = 0 is known as noninformative prior and customarily
adopted in practice. Hence we focus our derivation on this case. Upon letting ηi = λi

τ ,
the necessary optimality condition of any minimizer (uδη, λi, τ) to the a-Tikhonov functional
J(u, τ,λ) is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uδη = argmin
u∈C

{φ(u, gδ) + η · ψ(u)},

λi =
α

ψi(uδη)
, i = 1, 2,

τ =
α0

φ(uδη, gδ)
.

(2.1)

Now by rewriting the system with γ = α0
α , we arrive at the following system for (uδη,η):

⎧⎪⎪⎨
⎪⎪⎩
uδη = argmin

u∈C
{φ(u, gδ) + η · ψ(u)},

ηi =
1
γ

φ(uδη, g
δ)

ψi(uδη)
, i = 1, 2.

(2.2)
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The optimality system (2.2) reveals the mechanism of the augmented approach: It selects
an optimal regularization parameter η in the model (1.2) by balancing the penalty ψ with
the fidelity φ, from which the term balancing principle follows. We note the term balancing
principle here should not be confused with Lepskii’s principle, which is also sometimes called a
balancing principle (see [16]). The Lepskii’s principle does require a knowledge of noise level.

Next we characterize (2.2) using the value function F (η) (see [8]) defined by

F (η) = inf
u∈C

Jη(u).

The function F (η) is continuous, and it is almost everywhere differentiable, cf. Lemma 2.1. We
denote by Fηi the partial derivative of F (η) with respect to ηi. The proof is analogous to [8],
and hence omitted.

Lemma 2.1 The function F (η) is monotone and concave, and hence almost everywhere
differentiable. Further, if it is differentiable, then there holds

Fηi(η) = ψi(uδη).

Next we provide an alternative characterization of (2.2). First we define the function Φγ(η)
by

Φγ(η) =
F (η)γ+2

η1η2
. (2.3)

The necessary optimality condition for Φγ(η), provided that F (η) is differentiable, reads

∂Φγ
∂ηi

=
F (η)γ+1

η1η2

(−F (η) + (2 + γ)ηiFηi(η))
ηi

= 0, i = 1, 2,

which, upon noting Lemma 2.1, is equivalent to⎧⎨
⎩
−φ(uδη, gδ) + (1 + γ)η1ψ1(uδη) − η2ψ2(uδη) = 0,

−φ(uδη, gδ) − η1ψ1(uδη) + (1 + γ)η2ψ2(uδη) = 0.

Solving the system with respect to ηi yields ηi = 1
γ

φ(uδ
η,g

δ)

ψi(uδ
η)

. Hence, the optimality system of
the function Φγ coincides with that of the functional J(u, τ,λ). In summary, we have shown
our first main result.

Proposition 2.1 Let the value function F (η) be differentiable. Then all critical points of
the function Φγ are solutions to system (2.2).

Remark 2.1 Two remarks on Φγ are in order. First, it is very flexible in that the parameter
γ may be calibrated to achieve specific desirable properties. Second, by the concavity in Lemma
2.1, F (η) is continuous and thus the problem of minimizing Φγ over any bounded and closed
region in R

2
+ is well defined. These observations are valid for a general fidelity.

2.1.2 Balanced discrepancy principle

To solve stably and accurately problem (1.1), one should use all prior information, e.g., the
noise level φ(u†, gδ) = c := 1

2c
2
mδ

2 for some cm ≥ 1, and other relevant knowledge, whenever it is
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available. This can be realized by incorporating constraints into the augmented approach, and
then deriving the corresponding optimal system. For instance, for the constraint φ(u, gδ) ≤ c,
the Lagrangian approach gives the following a-Tikhonov functional:

J(u, τ,λ, μ) = τφ(u, gδ)+λ ·ψ(u) − αe · lnλ− α0 ln τ + τ〈φ(u, gδ) − c, μ〉,

where the unknown scalar μ ≥ 0 is the Lagrange multiplier for the inequality constraint
φ(u, gδ) ≤ c. Its optimality system reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uδη = arg min
u

{φ(u, gδ) + η ·ψ(u) + 〈φ(u, gδ) − c, μ〉},

λi =
α

ψi(uδη)
, i = 1, 2,

τ =
α0

(1 + μ)φ(uδη, gδ)
,

c ≥ φ(uδη, g
δ), μ ≥ 0.

Hence the constraint φ(uδη, g
δ) ≤ c and the balancing principle are both fulfilled:

γηiψi(uδη) = (1 + μ)φ(uδη, g
δ), i = 1, 2. (2.4)

In the case of one single penalty, identity (2.4) does not provide any additional constraint
since the multiplier μ is also unknown. We observe that the active constraint, i.e., ‖Kuδη −
gδ‖ = cmδ, is exactly the discrepancy principle (see [5]). The constraint is active under certain
conditions (see [10]). Nonetheless, in case of multiple penalties, the discrepancy principle alone
cannot uniquely determine η. Hence we include also system (2.4), which might help resolve the
nonuniqueness issue. Upon simplification, this yields a new hybrid principle⎧⎨

⎩
φ(uδη, g

δ) =
1
2
c2mδ

2,

η1ψ1(uδη) = η2ψ2(uδη).
(2.5)

The principle can be interpreted as the augmented approach with the constraint {u : ‖Ku−
gδ‖ = cmδ}, cm ≥ 1. Hence it integrates the classical discrepancy principle ‖Kuδη − gδ‖ =
cmδ with the balancing principle, and we shall name the new rule (2.5) balanced discrepancy
principle. One noteworthy feature of (2.5) is that it does not involve the free parameter γ.

2.2 Error estimates

Now we derive error estimates for (2.3) and (2.5), capitalizing on [3, 5–6]. We discuss the
following three scenarios separately: hybrid principle (2.5), purely balancing principle (2.3) in
Hilbert and Banach spaces. These theoretical results partially justify their practical usages.

2.2.1 Balanced discrepancy principle

In this part, we discuss the consistency and an a priori error estimate for the hybrid principle
(2.5). To this end, we make the following assumption.

Assumption 2.1 There exists a τ-topology such that for any η > 0, the functional Jη(u)
is coercive and its level set {u ∈ C : Jη(u) ≤ c} for any c > 0 is compact in τ-topology, and the
functionals φ and ψi are τ lower semi-continuous.
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Remark 2.2 The τ -topology is naturally induced by the penalty functional ψ, and it is
not arbitrarily in order to ensure the lower semicontinuity.

Now we can state a consistency result. The line of proof is standard (see [7]), and thus
omitted.

Theorem 2.1 Let Assumption 2.1 be fulfilled, and t(η) = η1(δ)
η1(δ)+η2(δ) . Let the sequence

{η(δ)}δ be selected by (2.5). If a subsequence of {η(δ)}δ converges and t̃ := lim
δ→0

t(δ) ∈ (0, 1),

then the subsequence {uδη(δ)}δ contains a subsequence τ-converging to a [t̃, 1− t̃]t ·ψ-minimizing
solution of Ku = g† and

lim
δ→0

[t(δ), 1 − t(δ)]t ·ψ(uδη) = [t̃, 1 − t̃ ]t · ψ(u†).

Remark 2.3 The condition t̃ ∈ (0, 1) in Theorem 2.1 is tantamount to the uniform bound-
edness of the penalties ψi(uδη).

Next we have the following convergence rate, i.e., the distance between the approximation
uδη and the true solution u† (in Bregman distance (see [3])) in terms of the noise level δ. We
denote the subdifferential of a convex functional ψ(u) at u† by ∂ψ(u†), i.e.,

∂ψ(u†) = {ξ ∈ X∗ : ψ(u) ≥ ψ(u†) + 〈ξ, u − u†〉, ∀u ∈ X},
and the Bregman distance dξ(u, u†) for any ξ ∈ ∂ψ(u†) is defined as

dξ(u, u†) := ψ(u) − ψ(u†) − 〈ξ, u− u†〉.
Now we can state a convergence rates result.

Theorem 2.2 Let the exact solution u† satisfy the source condition: For any t ∈ [0, 1],
there exists a wt ∈ Y such that

K∗wt = ξt ∈ ∂([t, 1 − t]t ·ψ(u†)).

Then for any η∗ determined by the principle (2.5) and with

t∗ = t(η∗) =
η∗1(δ)

η∗1(δ) + η∗2(δ)
∈ [0, 1],

the following estimate holds:

dξt∗ (uδη∗ , u†) ≤ (1 + cm)‖wt∗‖δ.

Proof The line of proof is again well known, but we include a sketch for completeness. In
view of the minimizing property of the approximation uδη∗ and the constraint ‖Kuδη∗ − gδ‖ =
cmδ, we have

[t∗, 1 − t∗]t · ψ(uδη∗) ≤ [t∗, 1 − t∗]t · ψ(u†).

The source condition implies that there exists a ξt∗ ∈ ∂([t∗, 1 − t∗]t · ψ(u†)) and wt∗ ∈ Y such
that ξt∗ = K∗wt∗ . From this and the Cauchy-Schwarz inequality, we deduce

dξt∗ (uδη∗ , u†) = [t∗, 1 − t∗]t · ψ(uδη∗) − [t∗, 1 − t∗]t · ψ(u†) − 〈ξt∗ , uδη∗ − u†〉
≤ −〈ξt∗ , uδη∗ − u†〉 = −〈K∗wt∗ , uδη∗ − u†〉 = −〈wt∗ ,K(uδη∗ − u†)〉
≤ ‖wt∗‖‖K(uδη∗ − u†)‖ ≤ ‖wt∗‖(‖Kuδη∗ − gδ‖ + ‖gδ −Ku†‖) ≤ (1 + cm)‖wt∗‖δ.

This shows the desired estimate.



Multi-parameter Tikhonov Regularization 389

Remark 2.4 In Theorem 2.2, the order of convergence relies solely on the constraint ‖Kuδη−
gδ‖ = cmδ, while the weight t∗ is determined by the balancing principle. Hence the reduced
system (2.4) does help resolve the vast nonuniqueness issue in the discrepancy principle.

2.2.2 Balancing principle in Hilbert spaces

We derive a posteriori estimates for the balancing principle Φγ (2.3), i.e., the distance between
the approximation uδη∗ and the exact solution u† in terms of the noise level δ = ‖gδ−g†‖ and the
realized residual δ∗ = ‖Kuδη∗−gδ‖ etc. We first treat quadratic regularizations ψi(u) = 1

2‖Liu‖2

with linear operators Li fulfilling ker(Li)∩ker(K) = {0}, i = 1, 2, and each induces a semi-norm.
One typical choice is that ψ1 and ψ2 impose the L2-norm and higher-order Sobolev smoothness,
e.g., ψ1(u) = 1

2‖u‖2
L2 and ψ2(u) = 1

2‖u‖2
H1. We shall utilize a weighted (semi-)norm ‖·‖t defined

by

‖u‖2
t = t‖L1u‖2 + (1 − t)‖L2u‖2,

where the weight t ≡ t(η) ∈ [0, 1] is defined as before, and by Qt = tL∗
1L1 + (1 − t)L∗

2L2 and

Lt = Q
1
2
t and K̃t = KL−1

t . Clearly, ‖u‖t = ‖Ltu‖. We note that the adjoint K∗ (and hence
K̃∗
t ) depends on the value t.

Theorem 2.3 Let μ ∈ (0, 1] be fixed, and the exact solution u† satisfy the source condition:
For any t ∈ [0, 1], there exists a wt ∈ Y such that Ltu† = (K̃∗

t K̃t)μwt. Then for any parameter
η∗ selected by (2.3) with t∗ = t(η∗) = η∗1 (δ)

η∗1 (δ)+η∗2 (δ) , the following estimate holds:

‖uδη∗ − u†‖t∗ ≤ C
(
‖wt∗‖ 1

2μ+1 +
F

2+γ
4 (δ

2
2μ+1 e)

F
2+γ
4 (η∗)

)
max{δ∗, δ}

2μ
2μ+1 .

Proof We decompose the error uδη − u† into uδη − u† = (uδη − uη) + (uη − u†), and bound
the two terms separately. First we estimate the error uδη − uη. It follows from the optimality
conditions for uη and uδη that

(K∗K + η1L
∗
1L1 + η2L

∗
2L2)(uη − uδη) = K∗(g† − gδ).

Multiplying the identity with uη − uδη and using the Cauchy-Schwarz and Young’s inequalities
give

‖K(uδη − uη)‖2 + η1‖L1(uδη − uη)‖2 + η2‖L2(uδη − uη)‖2

= 〈K(uδη − uη), g† − gδ〉
≤ ‖K(uδη − uη)‖2 +

1
4
‖g† − gδ‖2.

Next let s = η1 + η2. Then we get

‖uδη − uη‖t ≤ ‖gδ − g†‖
2
√
s

≤ δ

2
√
s
≤ δ

2
√

max
i
ηi
.

Meanwhile, the minimizing property of η∗ to the rule Φγ implies that for any η̂,

F 2+γ(η∗)
max(η∗i )2

≤ F 2+γ(η∗)
η∗1η

∗
2

≤ F 2+γ(η̂)
η̂1η̂2

.
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In particular, we may take η̂ = δ
2

2μ+1e and arrive at

‖uδη∗ − uη‖t∗ ≤ F
2+γ
4 (δ

2
2μ+1 e)

F
2+γ
4 (η∗)

δ
2μ

2μ+1 .

Next we estimate the approximation error uη − u†. To this end, we observe

uη − u† = (K∗K + η1L
∗
1L1 + η2L

∗
2L2)−1(η1L∗

1L1 + η2L
∗
2L2)u†

= s(K∗K + sQt)−1Qtu
† = sL−1

t (L−1
t K∗KL−1

t + sI)−1Ltu
†.

Hence,
Lt(uη − u†) = s(K̃∗

t K̃t + sI)Ltu†.

Consequently, we deduce from the source condition and the moment inequality (see [5])

‖uη − u†‖t = ‖Lt(uη − u†)‖ = ‖s(K̃∗
t K̃t + sI)−1Ltu

†‖
= ‖s(K̃∗

t K̃t + sI)−1(K̃∗
t K̃t)μwt‖

≤ ‖s(K̃∗
t K̃t + sI)−1(K̃∗

t K̃t)
1
2+μwt‖

2μ
2μ+1 ‖s(K̃∗

t K̃t + sI)−1wt‖ 1
2μ+1

= ‖s(K̃∗
t K̃t + sI)−1K̃tLtu

†‖ 2μ
2μ+1 ‖s(K̃∗

t K̃t + sI)−1wt‖
≤ c(‖s(K̃tK̃

∗
t + sI)−1gδ‖ + ‖s(K̃tK̃

∗
t + sI)−1(gδ − g†)‖) 2μ

2μ+1 ‖wt‖ 1
2μ+1 ,

where the constant c depends only on the maximum of rs(t) = s
s+t over [0, ‖K̃t‖2]. Further, we

note the relation

s(K̃tK̃
∗
t + sI)−1gδ = gδ − (K̃tK

∗
t + sI)−1K̃tK̃

∗
t g
δ

= gδ − K̃(K̃∗
t K̃t + sI)−1K̃∗

t g
δ

= gδ −K(K∗K + sQt)−1K∗gδ = gδ −Kuδη.

Hence, we deduce

‖uη∗ − u†‖t∗ ≤ c(δ∗ + cδ)
2μ

2μ+1 ‖wt‖ 1
2μ+1 ≤ c1 max{δ∗, δ}

2μ
2μ+1 .

By combining these two estimates, we arrive at the desired inequality.

2.2.3 Balancing principle in Banach space

Lastly, we turn to the balancing principle for general convex regularization ψ. We first recall
the following technical lemma (see [11]) for single convex regularization ψ. The first estimates
the propagation error, and the second plays the role of a triangle inequality.

Lemma 2.2 (see [11]) Let the exact solution u† satisfy the following source condition: There
exists a w ∈ Y such that K∗w = ξ ∈ ∂ψ(u†), and let ξη = K∗(g† −Kuη) 1

η . Then there hold

dξη (uδη, uη) ≤
δ2

2η
and ‖K(uδη − uη)‖ ≤ 2δ,

|dξ(uδη, u†) − (dξη (uδη, uη) + dξ(uη, u†))| ≤ 6‖w‖δ.
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Now we can state an estimate for the balancing principle (2.3) in Banach spaces. The
estimate has been stated in [7] but without a proof.

Theorem 2.4 Let the exact solution u† satisfy the source condition: For any t ∈ [0, 1] there
exists a wt ∈ Y such that

K∗wt = ξt ∈ ∂([t, 1 − t]t ·ψ(u†)).

Then for every η∗ selected by (2.3) and with t∗ = t(η∗) = η∗1 (δ)
η∗1 (δ)+η∗2 (δ) , the following estimate

holds:

dξt∗ (uδη∗ , u†) ≤ C
(
‖wt∗‖ +

F 1+ γ
2 (δe)

F 1+ γ
2 (η∗)

)
max(δ, δ∗).

Proof For any t ∈ [0, 1], let ψt(u†) = [t, 1 − t]t · ψ(u†) and ξt ∈ ∂ψt(u†), with ξt and wt

being the subgradient and the representer in the source condition, respectively. By Lemma 2.2,
we have that for η

dξt(u
δ
η, u

†) ≤ dξη (uδη, uη) + dξt(uη, u
†) + 6‖wt‖δ,

where ξη = −K∗(K(uη) − g†)1
s ∈ ∂ψt(uη) and s = η1 + η2. It suffices to bound the terms

involving Bregman distance. We first estimate the approximation error dξt(uη, u
†). To this

end, observe by the minimizing property of the element uη, i.e.,

1
2
‖Kuη − g†‖2 + sψt(uη) ≤ 1

2
‖Ku† − g†‖2 + sψt(u†) = sψt(u†).

This inequality, the definition of dξt(uη, u
†), the source condition and Lemma 2.2 imply

dξt(uη, u
†) ≤ −〈wt,K(uη − u†)〉

≤ ‖wt‖‖Kuη − g†‖
≤ ‖wt‖(‖K(uη − uδη)‖ + ‖Kuδη − gδ‖ + ‖gδ − g†‖)
≤ ‖wt‖(2δ + δ∗ + δ) ≤ 4‖wt‖max(δ, δ∗).

Next we estimate the term dξη (uδη, uη). In view of Lemma 2.2, we have

dξη (uδη, uη) ≤ δ2

2s
≤ δ2

2 max(ηi)
.

Meanwhile, the minimizing property of η to the rule Φγ gives that for any η̂,

F 2+γ(η)
max(ηi)2

≤ F 2+γ(η)
η1η2

≤ F 2+γ(η̂)
η̂1η̂2

.

Upon letting η̂ = δe and combining the preceding two inequalities, we get

dξη(uδη, uη) ≤ F (δe)1+
γ
2

F (η)1+
γ
2

δ

2
.

Now combining these three estimates gives the desired assertion.

The a posteriori error estimate in Theorem 2.4 coincides with that for a priori choice, e.g.,
η ∼ δe, if the realized discrepancy δ∗ is of the same order with the exact noise level δ.
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3 Numerical Algorithms

Now we describe the algorithms for numerically realizing the hybrid principle and the bal-
ancing principle, i.e., Broyden’s method and fixed-point algorithm, and discuss their properties.

3.1 Broyden’s method

In practice, the application of the hybrid principle invokes solving the nonlinear system
(2.5), which is nontrivial due to its potential nonsmoothness and high degree of nonlinearity.
We propose using Broyden’s method (see [2]) for its efficient solution (see Algorithm 1 for a
complete description).

For the numerical treatment, we reformulate system (2.5) equivalently as

T(η) ≡

⎛
⎜⎝
φ(uδη, g

δ) − 1
2
δ2 + η2ψ2(uδη) − η1ψ1(uδη)

φ(uδη, g
δ) − 1

2
δ2 + η1ψ1(uδη) − η2ψ2(uδη)

⎞
⎟⎠ = 0.

The system is numerically more amenable than (2.4). In Algorithm 1, the Jacobian J0 can
be approximated by finite difference. Step 7 represents the celebrated Broyden update. The
stopping criterion is based on monitoring the residual norm ‖T(η)‖. Note that each iteration
involves evaluating T(η), which in turn incurs solving one optimization problem of minimizing
Jη. Our experiences indicate that it converges fast and steadily, however, a convergence analysis
is still missing.

Algorithm 1 Broyden’s method for system (2.5)

1 Set k = 0 and choose η0.

2 Compute the Jacobian J0 = ∇T(η0) and equation residual T(η0).

3 for k = 1, · · · ,K do

4 Calculate the quasi-Newton update Δη = −J−1
k−1T(ηk−1).

5 Update the regularization parameter η by ηk = ηk−1 + Δη.

6 Evaluate the equation residual T(ηk) and set ΔT = T(ηk) − T(ηk−1).

7 Compute Jacobian update

Jk = Jk−1 +
1

‖Δη‖2
[ΔT − JkΔη] · Δηt.

8 Check the stopping criterion.

9 end for

10 Output the solution

3.2 Fixed point algorithm

In this part, we describe a fixed point algorithm for computing the minimizer of the rule
Φγ . The algorithm was originally introduced in [7], but without any analysis. One basic
version is listed in Algorithm 2, where the subscript −i refers to the index different from i. The
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stopping criterion at Step 4 can be based on monitoring the relative change of the regularization
parameter η or the inverse solution uδη.

Algorithm 2 Fixed point algorithm for minimizing (2.3)

1 Set k = 0 and choose η0.
2 Solve for uk+1 by the Tikhonov regularization

uk+1 = arg min
u

{φ(u, gδ) + ηk ·ψ(u)}.
3 Update the regularization parameter ηk+1 by

ηk+1
i =

1
1 + γ

φ(uk+1, gδ) + ηk−iψ−i(uk+1)
ψi(uk+1)

, i = 1, 2.

4 Check the stopping criterion.

We shall analyze Algorithm 2. First, we introduce a fixed point operator T by

T(η) = (1 + γ)−1

⎛
⎜⎜⎜⎝
φ(uδη, gδ) + η2ψ2(uδη)

ψ1(uδη)

φ(uδη, g
δ) + η1ψ1(uδη)
ψ2(uδη)

⎞
⎟⎟⎟⎠ .

We shall also need the next result (see [8, Lemma 2.1 and Corrollary 2.3]).

Lemma 3.1 The function ψi(uδη) is monotonically decreasing in ηi, and the following re-
lations hold:

∂

∂ηi
(φ(uδη, g

δ) + η−iψ−i(uδη)) + ηi
∂

∂ηi
ψi(uδη) = 0, i = 1, 2.

We have the next monotone result for the fixed point operator T.

Proposition 3.1 Let the function F (η) be twice differentiable. Then the map T(η) is
monotone if F 2(η)Fη1η1(η)Fη2η2(η) > (Fη1 (η)Fη2(η) − F (η)Fη1η2(η))2.

Proof Let A(η) = φ+ η2ψ2 and B(η) = φ+ η1ψ1. By Lemma 3.1, there hold

∂A

∂η1
+ η1

∂ψ1

∂η1
= 0 and

∂B

∂η2
+ η2

∂ψ2

∂η2
= 0. (3.1)

With the help of these two relations, we deduce

∂

∂η1

A

ψ1
=
ψ1

∂A
∂η1

−A∂ψ1
∂η1

ψ2
1

=
ψ1(−η1 ∂ψ1

∂η1
) −A∂ψ1

∂η1

ψ2
1

= − 1
ψ2

1

∂ψ1

∂η1
(η1ψ1 +A) = − F

ψ2
1

∂ψ1

∂η1

and

∂

∂η2

A

ψ1
=
ψ1

∂A
∂η2

−A∂ψ1
∂η2

ψ2
1

=
ψ1

∂
∂η2

(F − η1ψ1) − (F − η1ψ1)∂ψ1
∂η2

ψ2
1

=
1
ψ2

1

[
ψ1ψ2 − F

∂ψ1

∂η2

]
,
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where we have used the relation ∂F
∂η2

= ψ2 from Lemma 2.1. Similarly, we have

∂

∂η2

B

ψ2
= − F

ψ2
2

∂ψ2

∂η2
and

∂

∂η1

B

ψ2
=

1
ψ2

2

[
ψ1ψ2 − F

∂ψ2

∂η1

]
.

Therefore, the Jacobian ∇T of the operator T is given by

∇T = (1 + γ)−1

⎛
⎜⎝

− F

ψ2
1

∂ψ1

∂η1

1
ψ2

1

[
ψ1ψ2 − F

∂ψ1

∂η2

]
1
ψ2

2

[
ψ1ψ2 − F

∂ψ2

∂η1

]
− F

ψ2
2

∂ψ2

∂η2

⎞
⎟⎠ .

Now Lemma 3.1 implies that

−∂ψi
∂ηi

≥ 0.

Hence, it suffices to show that the determinant |∇T| > 0. By Lemma 2.1, the identity

∂ψ1

∂η2
= Fη1η2 =

∂ψ2

∂η1

holds, and thus |∇T| is given by

|∇T| = (1 + γ)−1 1
ψ2

1ψ
2
2

[
F 2 ∂ψ1

∂η1

∂ψ2

∂η2
−

(
ψ1ψ2 − F

∂ψ2

∂η1

)2]
.

Hence, the nonnegativity of |∇T| follows from the assumption

F 2(η)Fη1η1(η)Fη2η2(η) − (Fη1(η)Fη2(η) − F (η)Fη1η2(η))2 > 0.

This concludes the proof.

4 Numerical Experiments

We now provide some numerical results for the hybrid principle (2.5); and the balancing
principle (2.3) has been numerically exemplified in [7] and will not be addressed here. The
examples are integral equations of the first kind with kernel k(s, t) and solution u(t). All the
examples are taken from [7]. The discretized linear system takes the form Ku† = g†. The data
g† is then corrupted by noises, i.e., gδi = g†i + max

i
{|g†i |}εζi, where ζi are standard Gaussian

variables, and ε is the relative noise level.

4.1 H1-TV model

Example 4.1 Let ξ(t) = χ|t|≤3(1 + cos πt3 ), and the kernel k(s, t) is given by ξ(s− t). The
true solution u† exhibits both flat and smoothly varying regions and it is shown in Figure 1, and
the integration interval is [−6, 6]. We adopt two penalties ψ1(u) = |u|2H1 and ψ2(u) = |u|TV.

The numerical results are summarized in Table 1. In the table, the subscripts bdp and
opt respectively refer to the hybrid principle and the optimal choice, i.e., the value giving the
smallest error. The single-parameter models are indicated by subscripts h1 and tv, and the
regularization parameter shown in Table 1 is the optimal one. The accuracy of the results
is measured by the relative L2 error e = ‖u−u†‖L2

‖u†‖L2
. We observe that the H1-TV model in



Multi-parameter Tikhonov Regularization 395

Table 1 Numerical results for Example 4.1

ε ηbdp ηopt ηh1 ηtv ebdp eopt eh1 etv

5e-2 (5.89e-3,9.67e-3) (2.30e-4,2.05e-3) 6.17e-4 9.67e-3 3.50e-2 2.65e-2 3.96e-2 1.07e-1

5e-3 (3.41e-4,5.98e-4) (2.34e-5,3.92e-4) 8.34e-5 4.51e-4 2.45e-2 1.09e-2 2.70e-2 9.49e-2

5e-4 (2.93e-6,5.41e-6) (2.55e-6,4.48e-5) 1.26e-6 5.16e-5 1.22e-2 8.86e-3 1.38e-2 4.49e-2

5e-5 (1.19e-7,2.26e-7) (5.88e-8,4.36e-6) 8.98e-8 3.79e-6 6.91e-3 5.53e-3 9.40e-3 1.68e-2

5e-6 (4.94e-9,9.50e-9) (1.93e-10,6.22e-9) 5.18e-10 2.80e-7 4.64e-3 2.90e-3 5.29e-3 5.13e-3

−

−

− −

ubdp uh1 utv

Figure 1 Numerical results for Example 4.1 with ε = 5% noise.

conjunction with the hybrid principle achieves a smaller error than either H1 or TV with the
optimal choice, thereby showing the advantages of the H1-TV model. Further, the hybrid
principle gives an error fairly close to the optimal one, within a factor of two, and the error
decreases as the noise level decreases.

Let us briefly comment on the performance of the multi-parameter model. The classical H1

model recovers the flat region unsatisfactorily, whereas the TV approach clearly suffers from
staircasing effect in the gray region and reduced magnitude in the flat region, cf. Figure 1. In
contrast, the H1-TV model preserves the magnitude of the flat region while recovering the gray
region excellently. Therefore, the H1-TV model does combine the strengths of both H1 and
TV models. Finally, we would like to remark that Broyden’s method converges rapidly with
the convergence achieved in five iterations, and the convergence behavior is not sensitive to the
initial guess.

4.2 Elastic-net model

Example 4.2 The kernel k(s, t) is given by 1
4 ( 1

16 + (s − t)2)−
3
2 , the exact solution u†

consists of two bumps and it is shown in Figure 2. The penalties are ψ1(u) = ‖u‖1 and
ψ2(u) = 1

2‖u‖2
2 to retrieve the groupwise sparsity structure, which is known as elastic-net in

statistics (see [19]). The integration interval is [0, 1]. The size of the problem is 100.

It is observed from Table 2 that the hybrid principle gives slightly too small but otherwise
reasonable estimate for the optimal choice. A close look at Figure 2 indicates that the solution
ul2 has almost no zero entries, and thus it fails to distinguish between relevant and irrelevant
factors. Meanwhile, many entries of the �1 solution are zero, and thus some relevant factors
are correctly identified. However, it tends to select only a part instead of all relevant factors.
The elastic-net combines the best of both �1 and �2 models, and it achieves the desired goal of
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−

−

−

−

−

−

−

−

ubdp ul1 ul2

Figure 2 Numerical results for Example 4.2 with ε = 5% noise.

Table 2 Numerical results for Example 4.2

ε ηbdp ηopt ηl1 ηl2 ebdp eopt el1 el2

5e-2 (2.44e-3,9.60e-3) (2.81e-3,1.16e-3) 1.16e0 3.11e-3 4.09e-1 8.57e-2 1.29e0 4.58e-1

5e-3 (7.30e-5,2.25e-4) (2.59e-4,1.11e-4) 9.67e-5 3.13e-5 1.96e-1 1.20e-2 9.00e-1 2.90e-1

5e-4 (4.73e-6,1.27e-5) (2.23e-5,1.11e-5) 1.27e-5 4.13e-6 7.50e-2 8.18e-3 6.18e-1 2.17e-1

5e-5 (3.29e-7,8.42e-7) (2.73e-6,1.28e-6) 1.12e-6 3.79e-8 2.01e-2 4.69e-3 4.85e-1 1.66e-1

5e-6 (2.56e-8,6.50e-8) (1.60e-7,9.92e-8) 5.14e-9 1.25e-9 1.16e-2 2.27e-3 2.62e-1 9.55e-2

identifying the group structure.

4.3 Image deblurring

Example 4.3 The kernel k(s, t) performs standard Gaussian blur with standard deviation
1 and blurring width 5. The exact solution u† is shown in Figure 3. The size of the image is
50 × 50. The penalties are ψ1(u) = ‖u‖1 and ψ2(u) = 1

2‖u‖2
2.

This example represents a more realistic problem of image deblurring. Here one half of the
data points are retained, which renders the problem far more ill-posed. The �1 solution is very
spiky, cf. Figure 3, and neighboring pixels act independently of each other. In particular, many
pixels in the blocks and the cross are missing. In contrast, the solution ul2 is smooth, but
there are many small spurious oscillations in the background. The elastic-net model achieves
the best of the two: Retaining the block structure with only few spurious nonzero coefficients.
The numbers are also very telling: ebdp = 2.96e-1, eo = 2.44e-1, el1 = 9.21e-1, and el2 = 3.42e-1.
Hence, the error ebdp agrees well with the optimal choice, and it is smaller than that with the
optimal choice for either �1 or �2 models.

5 Conclusions

We have studied multi-parameter regularization from the viewpoint of augmented Tikhonov
regularization, and shown a unified way to derive the balancing principle and balanced discrep-
ancy principle. A priori and a posteriori error estimates for the principles were provided, and
efficient numerical algorithms (Broyden’s method and fixed point algorithm) were presented
and discussed. Numerical results were presented to illustrate the feasibility of the balanced
discrepancy principle.
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u† uopt

ubdp ul1 ul2

Figure 3 Numerical results for Example 4.3 with ε = 1% noise. The selected regularization

parameters are ηbdp =(4.70e-3,4.65e-3), ηopt =(1.26e-2,1.31e-3), ηl1 = 5.67e-1, and ηl2 = 3.51e-3.
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