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Abstract The authors study an inverse problem for a fractional integrodifferential equa-
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1 Introduction

In this paper, we discuss an inverse problem of determining two unknown coefficients, a
kernel function and a source function, depending only on time in a fractional wave equation
with memory effect. Let Ω be a bounded domain in RN (N = 1, 2, 3) with smooth boundary
∂Ω, QT := Ω× (0, T ) and ΣT := ∂Ω× (0, T ) for a given time T > 0. We consider the following
fractional integrodifferential equation:

∂α
t u(x, t) − L [u](x, t) +

∫ t

0

k(t− s)u(x, s)ds = f(x)p(t), (x, t) ∈ QT (1.1)

with the Caputo time fractional derivative ∂α
t of order 1 < α < 2, defined by

∂α
t v(t) =

1
Γ(2 − α)

∫ t

0

(t− s)1−αv′′(s)ds,

where Γ is the Gamma function, see [16] or [23] for details on the fractional derivative. Here
the operator L is uniformly elliptic on Ω, defined by

L [u](x) =
N∑

i=1

∂

∂xi

( N∑
j=1

Aij(x)
∂

∂xj
u(x)

)
, x ∈ Ω,
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where Aij = Aji, 1 ≤ i, j ≤ N , are smooth functions, and there exist positive constants ν1 and
ν2, such that

ν1

N∑
i=1

|ξi|2 ≤
N∑

i=1

Aij(x)ξiξj ≤
N∑

i=1

ν2|ξi|2, x ∈ Ω, ξ ∈ R
N .

We supplement the above fractional wave equation with the following initial condition:

u(x, 0) = a(x), ut(x, 0) = b(x), x ∈ Ω (1.2)

and the boundary condition

u(x, t) = 0, (x, t) ∈ ΣT . (1.3)

Many modern science and engineering technology areas can be described very successfully
by models using fractional differential equations (see [18, 27, 33, 35]). The direct problem was
extensively studied by many authors (see, e.g., [2, 15, 17, 22, 26] and the references therein). In
practical situations, the function k represents some physical property, which is very hard to be
measured directly in advance. So we consider an inverse problem of determining convolution
kernel function k from some additional measurements on u.

In this paper, we take the following additional conditions of integral overdetermination:

Hi[u(·, t)] = gi(t), i = 1, 2, (1.4)

where Hi are defined by

Hi[h] :=
∫

Ω

φi(x)h(x, t)dx, i = 1, 2

with known functions φi. Here gi(t) are the measurement data representing the average tem-
perature on a small part of Ω, because the weight functions φi(x) are usually chosen to satisfy
Supp(φi) � Ω in practice.

The inverse problem considered in this paper is stated as follows.

Inverse Problem Determine u ∈ C([0, T ];H2(Ω)) ∩ C1([0, T ];L2(Ω)), p ∈ C1[0, T ] and
k ∈ C[0, T ] from (1.1)–(1.3) and the additional measurements (1.4).

As for inverse convolution kernel problems for the integer order integrodifferential equation
with α = 1 or 2, Colombo and Guidetti gave an efficient strategy to prove global in time
existence and uniqueness results based by using analytic semigroup theory (see [7]). Colombo
and Guidetti showed that a semilinear integrodifferential parabolic inverse problem has a unique
solution global in time under suitable growth conditions for the nonlinearity involved in the
evolution equation (see [7]). Lorenzi and Rocca [21] proved the local existence and the global
uniqueness of an identification problem, which focuses on recovering two unknown convolution
kernels in a phase-field system coupling two hyperbolic integro-differential equations. For inverse
problems related to other models, we refer to [4–6, 8–10, 13, 20].

Recently, the subject of inverse problem for the fractional differential equations received
much attention. Cheng, Nakagawa and Yamamoto [3] obtained the uniqueness in determining
α and a diffusion coefficient varying spatial variable on the basis of Gel’fand-Levitan theory.
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Sakamoto and Yamamoto [25] proved the well-posedness in the Hadamard sense for an inverse
problem of determining a spatially varying function of the source by final over-determined data.
As for other kinds of inverse problems related to the fractional differential equations, we refer
to [14, 19, 29–30, 32, 34]. However, all these papers focused on the cases without integral
term, i.e., k ≡ 0. To the authors’ knowledge, there are no works published concerning the
identification of the kernel function and the source function simultaneously for the fractional
integrodifferential equation, even the single source function identification problem.

In this paper, we investigate the global existence and uniqueness of our inverse problem.
First, we prove a local existence of (u, p, k) in a suitable Sobolev space by using a fixed point
argument. Then, we give the proof of global uniqueness result. Finally, with the aid of splitting
process of convolution term, which was successfully used to prove the global existence for the
strongly damped wave equation in [5], we prove the global existence of (u, p, k).

Next we give some notations which will be repeatedly used in the sequent sections.
For any integer m, we denote by Hm(Ω) the usual Sobolev spaces defined for spatial variable

(see, e.g., [1]). For a given Banach space V on Ω, we use the notation Cm([0, T ];V ) to denote
the following space:

Cm([0, T ];V ) := {u; ‖Dβ
t u(t)‖V is continuous in t on [0, T ] for all 0 ≤ β ≤ m}.

We endow Cm([0, T ];V ) with the following norm making it be a Banach space:

‖u‖Cm([0,T ];V ) =
m∑

β=0

(
max

0≤t≤T
‖Dβ

t u(t)‖V

)
.

For r ∈ L1(0, T ) and q : (0, T ) → V , we define the convolution

(r ∗ q)(x, t) :=
∫ t

0

r(t− s)q(x, s)ds,

whenever the integral has a meaning. We next define Banach space XT by

XT := C1([0, T ];L2(Ω)) ∩ C([0, T ];H2(Ω))

with the norm
‖u‖XT = ‖u‖C1([0,T ];L2(Ω)) + ‖u‖C([0,T ];H2(Ω)).

Furthermore, we set
YT = XT × C1[0, T ]× C[0, T ]

endowed with the norm

‖(u, p, k)‖YT := ‖u‖XT + ‖p‖C1[0,T ] + ‖k‖C[0,T ].

In order to discuss the uniformly elliptic operator −L conveniently, we denote the domain
of −L by D(−L ) = H2(Ω)∩H1

0 (Ω). It is well-known that the operator −L has only real and
simple eigenvalues λn, and with suitable numbering, we have 0 < λ1 < λ2 < · · · , lim

n→∞ λn = ∞.

By ϕn, we denote the eigenfunction corresponding to λn, which satisfies ‖ϕn‖2
L2(Ω) = (ϕn, ϕn) =

1, where ( · , · ) denotes the inner product in Hilbert space L2(Ω). Then for γ ∈ R, we define
the function D((−L )γ) by

D((−L )γ) =
{
ψ ∈ L2(Ω);

∞∑
n=1

λ2γ
n |(ψ, ϕn)|2 <∞

}
,
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and that D((−L )γ) is a Hilbert space with norm

‖ψ‖D((−L )γ) =
{ ∞∑

n=1

λ2γ
n |(ψ, ϕn)|2

} 1
2
.

Moreover, we introduce the Mittag-Leffler function in [23]

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, z ∈ C

with α > 0 and β ∈ R. It is known that Eα,β(z) is an entire function in z ∈ C.
We now give the definition of weak solution to (1.1)–(1.3), which is introduced by Sakamoto

and Yamamoto in [24].

Definition 1.1 We call u a weak solution to (1.1)–(1.3) if (1.1) holds in L2(Ω) and u(·, t) ∈
H1

0 (Ω) for almost all t ∈ (0, T ), u, ∂tu ∈ C([0, T ];D((−L )γ)) and

lim
t→0

‖u(·, t) − a‖D((−L )−γ) = lim
t→0

‖∂tu(·, t) − b‖D((−L )−γ) = 0 (1.5)

with some γ > N
4 + 1.

We make the following assumptions:
(H1) ∂α

t g1, ∂
α
t g2 ∈ C1[0, T ], a ∈ H2(Ω) ∩H1

0 (Ω), b ∈ H1
0 (Ω), f ∈ D((−L )

1
α );

(H2) ∂α
t gi(0) − Hi[L [a]] = Hi[f ]p(0), i = 1, 2;

(H3) Hi[a] = gi(0), Hi[b] = g′i(0), i = 1, 2;
(H4) c0 := −H1[f(x)]g2(0) + H2[f(x)]g1(0) 
= 0;
(H5) φi(x) ∈ H2

0 (Ω), i = 1, 2.

Remark 1.1 In (H1), ∂α
t gi ∈ C1[0, T ] implies gi ∈ H1[0, T ], which will be used in

Lemma 3.4 below. Indeed, by ∂α
t gi(t) = D

−(2−α)
t g′′i (t) and D2−α

t D
−(2−α)
t g′′i (t) = g′′i (t) (see [23,

(2.114)]), we have

g′′i (t) = D2−α
t D

−(2−α)
t g′′i (t) = D2−α

t ∂α
t gi(t)

=
1

Γ(α− 1)
d
dt

∫ t

0

(t− s)α−2∂α
t gi(s)ds

= − 1
Γ(α)

d
dt

∫ t

0

∂α
t gi(s)d(t − s)α−1

=
1

Γ(α)
d
dt

(∫ t

0

(t− s)α−1(∂α
t gi)′(s)ds+ ∂α

t gi(0)tα−1
)

=
1

Γ(α)

(
− (∂α

t gi)′(0)tα−1 +
1

α− 1

∫ t

0

(t− s)α−2(∂α
t gi)′(s)ds+

∂α
t gi(0)
α− 1

tα−2
)
, (1.6)

where D2−α
t is the Riemann-Liouville fractional derivative, defined by

D2−α
t v(t) =

1
Γ(α− 1)

d
dt

∫ t

0

(t− s)α−2v(s)ds

for 0 < 2−α < 1. Obviously,
∫ t

0
(t− s)α−2ds ≤ C(α, T ), due to 0 < 2−α < 1. Therefore, from

(1.6) and ∂α
t gi ∈ C1[0, T ], we conclude that gi ∈W 2,1(0, T ) ↪→ H1(0, T ).
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Remark 1.2 In order to guarantee ∂α
t gi ∈ C1[0, T ], we could give a usual regularity

condition gi ∈ C3[0, T ], such that g′′i (0) = 0. In fact, by integration by parts and g′′i (0) = 0, we
have

∂α
t gi(t) =

1
Γ(3 − α)

∫ t

0

(t− s)2−αg′′′i (s)ds.

This gives

‖(∂α
t gi)′‖C[0,T ] ≤ max

0≤t≤T

∣∣∣ 1
Γ(2 − α)

∫ t

0

g′′′i (s)(t− s)1−αds
∣∣∣ ≤ C(α, T )‖gi‖C3[0,T ],

because of α− 1 ∈ (0, 1).

Remark 1.3 (H2)–(H3) are the consistency conditions for our problem (1.1)–(1.4) when
dealing with smooth solutions.

Remark 1.4 In engineering, φi(x) can be thought of as an internal (tiny) sensor (see
[12, 28]) measuring the mean temperature in measurement area. Supp(φ) is always chosen
small enough to make the measurement area very small. So hypothese (H5) is reasonable.

Our main result in this paper is the following global existence and uniqueness for our inverse
problem.

Theorem 1.1 Under hypotheses (H1)–(H5), there exists a solution (u, p, k) ∈ XT ×C1[0, T ]
×C[0, T ] to the inverse problem (1.1)–(1.4) for any T .

In order to prove Theorem 1.1, we need the following two lemmas.

Lemma 1.1 Under hypotheses (H1)–(H5), there exists a sufficiently small τ > 0, such
that the inverse problem has a unique solution (u, p, k) ∈ Xτ × C1[0, τ ] × C[0, τ ].

Lemma 1.2 Under hypotheses (H1)–(H5), for given measurement data gi(t) for i = 1, 2
in (1.4), if the inverse problem (1.1)–(1.4) has two solutions (uj, pj , kj) ∈ XT × C1[0, T ] ×
C[0, T ] (j = 1, 2) for any time T , then (u1, p1, k1) = (u2, p2, k2) in [0, T ].

The proofs of these two lemmas will be given in Sections 3–4.

2 Preliminary Results

In this section, we present some preliminary results, including well-posedness for a fractional
differential equation, an equivalent lemma for our inverse problem and a technique result, which
will be used in the proofs of our main results.

We first consider the following initial and boundary problem:⎧⎨
⎩
∂α

t u(x, t) − L [u](x, t) = h(x, t), (x, t) ∈ QT ,
u(x, 0) = a(x), ut(x, t) = b(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ΣT .

(2.1)

Based on the results of [24], we will prove the following well-posedness of (2.1). Different
from [24], we need a better regularity to construct the fixed pointed operator in next section.
Moreover, the constant C below in (2.2) and (2.4) should be taken apart from t, which is
necessary to apply contraction mapping.
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Lemma 2.1 Let a ∈ H2(Ω)∩H1
0 (Ω), b ∈ H1

0 (Ω) and h ∈ C([0, T ];D((−L )
1
α )). Then there

exists a unique weak solution u ∈ XT to (2.1), such that

‖u(·, t)‖H2(Ω) + ‖ut(·, t)‖L2(Ω) ≤ C(1 + tα−1)‖a‖H2(Ω) + C(1 + t1−
α
2 )‖b‖H1(Ω)

+ C(tα−1 + t)‖h‖
C([0,t];D((−L)

1
α ))

(2.2)

for all t ∈ [0, T ], where the constant C is dependent on α,Ω and the coefficients of L , but
independent of T . Furthermore, we have

u(x, t) =
∞∑

n=1

[(a, ϕn)Eα,1(−λnt
α) + (b, ϕn)tEα,2(−λnt

α)]ϕn(x)

+
∞∑

n=1

[ ∫ t

0

(h(·, τ), ϕn)(t− s)α−1Eα,α(−λn(t− s)α)ds
]
ϕn(x). (2.3)

For any t ∈ (0, T ], we also have the following estimate:

‖ut(·, t)‖H1(Ω) ≤ Ct−1‖a‖H2(Ω) + C‖b‖H1(Ω) + Ctα−1‖h‖
C([0,t];D((−L)

1
α ))

. (2.4)

Remark 2.1 The estimate (2.2) will be used to construct the fixed pointed operator in
the next section, which is the key ingredient to prove the local in time existence. In the proof
of the global in time existence, we need (2.4) to extend repeatedly the local solution to a larger
time interval.

To prove Lemma 2.1, we first give a property of the Mittag-Leffler function, i.e., the following
Lemma 2.2.

Lemma 2.2 Let β ∈ R be arbitrary and μ satisfy πα
2 < μ < min{π, απ}. Then there exists

a constant C depending on α, β and μ, such that

|Eα,β(z)| ≤ C

1 + |z| , μ ≤ | arg(z)| ≤ π. (2.5)

The proof of this lemma can be found in [23], and we shall omit here.
Now we give the proof of Lemma 2.1.

Proof of Lemma 2.1 We first split (2.1) into the following two initial and boundary value
problems: ⎧⎨

⎩
∂α

t v(x, t) − L [v](x, t) = 0, (x, t) ∈ QT ,
v(x, 0) = a(x), vt(x, t) = b(x), x ∈ Ω,
v(x, t) = 0, (x, t) ∈ ΣT ,

(2.6)

⎧⎨
⎩
∂α

t w(x, t) − L [w](x, t) = h(x, t), (x, t) ∈ QT ,
w(x, 0) = 0, wt(x, t) = 0, x ∈ Ω,
w(x, t) = 0, (x, t) ∈ ΣT .

(2.7)

For a ∈ H2(Ω) ∩ H1
0 (Ω), b ∈ H1

0 (Ω) and h ∈ C([0, T ];D((−L )
1
α )), by Theorems 2.2–2.3

proved by Sakamoto and Yamamoto [24], there exist unique v ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩

C1([0, T ];L2(Ω)) and w ∈ C([0, T ];H2(Ω)∩H1
0 (Ω)) satisfying (2.6) and (2.7), respectively. And

we have

v(x, t) =
∞∑

n=1

[(a, ϕn)Eα,1(−λnt
α) + (b, ϕn)tEα,2(−λnt

α)]ϕn(x), (2.8)
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w(x, t) =
∞∑

n=1

[ ∫ t

0

(h(·, s), ϕn)(t− s)α−1Eα,α(−λn(t− s)α)ds
]
ϕn(x). (2.9)

Therefore, (2.1) has a unique solution u = v + w given by (2.3).
Next we prove (2.2). By [24, Corollary 2.7, Theorem 2.3], we have

‖vt(·, t)‖L2(Ω) ≤ C(tα−1‖a‖H2(Ω) + ‖b‖L2(Ω)), t ∈ [0, T ] (2.10)

and

‖v(·, t)‖H2(Ω) ≤ C(‖a‖H2(Ω) + t1−
α
2 ‖b‖H1(Ω)), t ∈ [0, T ]. (2.11)

On the other hand, using [23, (1.83)], we have

d
dt

(tα−1Eα,α(−λtα)) = tα−2Eα,α−1(−λtα), (2.12)

from which it follows that

∂

∂t
w(x, t) =

∞∑
n=1

[ ∫ t

0

(h(·, s), ϕn)(t− s)α−2Eα,α−1(−λn(t− s)α)ds
]
ϕn(x). (2.13)

So, combining the above result with Lemma 2.2 and D((−L )
1
α ) ⊂ L2(Ω), we have

‖wt(·, t)‖2
L2(Ω) ≤

∞∑
n=1

∣∣∣ ∫ t

0

(h(·, s), ϕn)(t− s)α−2Eα,α−1(−λn(t− s)α)ds
∣∣∣2

≤
∞∑

n=1

max
0≤s≤t

|(h(·, s), ϕn)|2
∣∣∣ ∫ t

0

sα−2Eα,α−1(−λns
α)ds

∣∣∣2

≤ ‖h‖2
C([0,t];L2(Ω))

∣∣∣ ∫ t

0

sα−2 1
1 + λnsα

ds
∣∣∣2

≤ C‖h‖
C([0,t];D((−L)

1
α ))

t2α−2, t ∈ [0, T ]. (2.14)

Similarly, we have

‖w(·, t)‖2
H2(Ω) ≤

∞∑
n=1

λ2
n

∣∣∣ ∫ t

0

(h(·, s), ϕn)(t− s)α−1Eα,α(−λn(t− s)α)ds
∣∣∣2

≤
∞∑

n=1

max
0≤s≤t

|((−L )
1
α [h](·, s), ϕn)|2

∣∣∣ ∫ t

0

(λn(t− s)α)
α−1

α

1 + λn(t− s)α
ds

∣∣∣2
≤ C‖h‖2

C([0,t];D((−L )
1
α ))

t2, t ∈ [0, T ]. (2.15)

Here in the last inequality of (2.15), we have used

max
0≤y<+∞

y
α−1

α

1 + y
=

(α− 1)
α−1

α

1 + (α − 1)
.

From (2.10)–(2.11) and (2.14)–(2.15), we get the desired estimate (2.2).
Finally, we prove (3.4). Differentiating (2.8) with respect to t leads to

vt(x, t) =
∞∑

n=1

{−λnt
α−1(a, ϕn)Eα,α(−λnt

α) + (b, ϕn)Eα,1(−λnt
α)}ϕn(x). (2.16)
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By the estimate for λn in [11],
λn ≥ Cn

2
N , ∀n ∈ N,

we can choose C∗ sufficiently large, such that

C∗λn ≥ C∗Cn
2
N > 1, ∀n ∈ N,

which implies

(C∗λn)
1
β ≤ C∗λn, ∀n ∈ N, ∀β > 1. (2.17)

Then noticing that D((−L )
1
2 ) = H1

0 (Ω), and applying (2.17) and Lemma 2.2, we obtain

‖vt(·, t)‖2
H1(Ω) ≤

∞∑
n=1

λn| − λnt
α−1(a, ϕn)Eα,α(−λnt

α) + (b, ϕn)Eα,1(−λnt
α)|2

≤ C

∞∑
n=1

(∣∣∣C 1
2∗ λn(a, ϕn)

λnt
α

1 + λntα

∣∣∣2t−2 +
∣∣∣λn

1
2 (b, ϕn)

1
1 + λntα

∣∣∣2)
≤ C‖a‖2

H2(Ω)t
−2 + C‖b‖2

H1(Ω), t ∈ (0, T ]. (2.18)

On the other hand, using (2.13) and

λ
1
2− 1

α
n ≤ λ

1
2− 1

α
1 , n = 1, 2, · · · ,

we have

‖wt(·, t)‖2
H1(Ω) ≤

∞∑
n=1

λn

∣∣∣ ∫ t

0

(h(·, s), ϕn)(t− s)α−2Eα,α−1(−λn(t− s)α)ds
∣∣∣2

≤
∞∑

n=1

max
0≤s≤t

|λ
1
α
n (h(·, s), ϕn)|2

∣∣∣ ∫ t

0

λ
1
2− 1

α
n (t− s)α−2 1

1 + λn(t− s)α
ds

∣∣∣2
≤ Cλ

1− 2
α

1 ‖h‖2

C([0,t];D((−L)
1
α ))

t2α−2, t ∈ (0, T ]. (2.19)

Summing up (2.18)–(2.19) yields (2.4). This completes the proof of Lemma 2.1.

The next lemma aims to transfer the original inverse problem (1.1)–(1.4) to a new form
including the explicit expression of p(t) and k(t).

Lemma 2.3 Let

l(t) =
∫ t

0

k(s)ds.

If the inverse problem (1.1)–(1.4) is solvable, then so is the following system:⎧⎪⎪⎨
⎪⎪⎩
∂α

t u(x, t) − L [u](x, t) +
∫ t

0

k(s)u(x, s)ds = f(x)p(t), (x, t) ∈ QT ,

u(x, 0) = a(x), ut(x, t) = b(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ΣT

(2.20)

with

p(t) =
1
c0

[−g2(0)N1[u, l](t) + g1(0)N2[u, l](t)], (2.21)
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k(t) =
1
c0

[H1[f ]DtN2[u, l](t) − H2[f ]DtN1[u, l](t)], (2.22)

where c0 is the same one in (H4) and Ni (i = 1, 2) are defined by (2.25) below. On the
other hand, if (2.20)–(2.22) has a solution and the compatibility conditions (H2), (H3) and the
technical condition (H4) hold, then there exists a solution to the inverse problem (1.1)–(1.4).

Remark 2.2 From Lemma 2.3, we know that (2.20)–(2.22) is an equivalent form of the
original inverse problem (1.1)–(1.4). So, in the following several sections, we turn to discuss
(2.20)–(2.22), other than the original one.

Proof of Lemma 2.3 We split the proof into two steps.
Step 1 Assume that (1.1)–(1.4) has a solution (u, p, k) ∈ YT . Applying Hi to both sides

of (1.1) yields

Hi[f ]p(t) = ∂α
t gi(t) − Hi[L [u]](t) + k(t) ∗ gi(t), i = 1, 2. (2.23)

We note that l(t) =
∫ t

0
k(s)ds. Then by integration by parts, we get the following equality:

∫ t

0

k(s)gi(t− s)ds = l(t)gi(0) +
∫ t

0

l(t− s)g′i(s)ds. (2.24)

With the help of (2.24), we can rewrite (2.23) as

Hi[f ]p(t) − gi(0)l(t) = ∂α
t gi(t) − Hi[L [u]](t) +

∫ t

0

l(t− s)g′i(s)ds

:= Ni[u, l], i = 1, 2. (2.25)

Due to (H4), we can solve this system to get (2.21) and

l(t) =
1
c0

[H1[f ]N2[u, l](t) − H2[f ]N1[u, l](t)]. (2.26)

Furthermore, by differentiating (2.26) with respect to t, we get (2.22).

Step 2 Now we assume that (u, p, k) satisfies (2.20)–(2.22). In order to prove that (u, p, k)
is the solution to the inverse problem (1.1)–(1.4), it suffices to show that (u, p, k) satisfies (1.4).
Applying Hi to the equation in (2.20), we have

∂α
t Hi[u](t) − Hi[L [u]](t) + k(t) ∗ Hi[u](t) = Hi[f ]p(t). (2.27)

On the other hand, from (H2), we easily see that

1
c0

[H1[f ]N2[u, l](0)− H2[f ]N1[u, l](0)] = 0.

We get (2.26) by integrating (2.22) over [0, t]. From (2.21) and (2.26), we conclude that

Hi[f ]p(t) = gi(0)l(t) + ∂α
t gi(t) − Hi[L [u]](t) +

∫ t

0

l(t− s)g′i(s)ds

= ∂α
t gi(t) − Hi[L [u]](t) + k(t) ∗ gi(t). (2.28)
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Then substituting (2.28) into (2.27), and using (H3), we have that Hi(t) := Hi[u](t) − gi(t)
(i = 1, 2) satisfy ⎧⎨

⎩∂α
t Hi(t) +

∫ t

0

k(t− s)Hi(s)ds = 0, t > 0,

Hi(0) = H ′
i(0) = 0.

(2.29)

By means of Laplace transform of the Caputo derivative (see [23]), we have that

sαĤi(s) + k̂(s)Ĥi(s) = 0, (2.30)

where Ĥi and k̂ are the Laplace transforms of Hi and k, respectively. This leads to Ĥi(s) = 0,
which implies that Hi(t) = 0. So Hi[u] = gi (i = 1, 2). This completes the proof of Lemma 2.3.

At the end of this section, we give a technical lemma which will be used to estimate p, k in
suitable Sobolev space in subsequent sections.

Lemma 2.4 Let (H1) and (H5) hold. Then for all u ∈ YT and all l ∈ C1([0, T ]), there
exists a constant C > 0 depending on gi, φi, but independent of T , such that

‖Ni[u, l]‖C1[0,T ] ≤ C(1 + ‖u‖C([0,T ];H2(Ω)) + ‖u‖C1([0,T ];L2(Ω)) + T
1
2 ‖l‖C1[0,T ]), (2.31)

where i = 1, 2 and Ni are the same as those in (2.25).

Proof By the Hölder’s inequality, we see that

‖Ni[u, l]‖C[0,T ] ≤ ‖∂α
t gi‖C[0,T ] +

∥∥∥ ∫
Ω

φi(x)L [u](x, t)dx
∥∥∥

C[0,T ]
+ ‖l ∗ g′i‖C[0,T ]

≤ ‖∂α
t gi‖C[0,T ] + ‖φ‖L2(Ω)‖u‖C([0,T ];H2(Ω)) + T

1
2 ‖l‖C[0,T ]‖g′i‖L2(0,T ). (2.32)

On the other hand, a direct calculation yields

DtNi[u, l] = (∂α
t g)

′ − Hi[L [ut]] + l′ ∗ g′i. (2.33)

Here we note that l(0) = 0. By integration by parts, it follows from (H5) that

Hi[L [ut]](t) =
∫

Ω

φi(x)L [ut](x, t)dx =
∫

Ω

L [φi](x)ut(x, t)dx, (2.34)

which gives

‖Hi[L [ut]]‖C[0,T ] ≤ C‖φi‖H2(Ω)‖ut‖C([0,T ];L2(Ω)). (2.35)

Hence, we have

‖DtNi[u, l]‖C[0,T ]

≤ ‖∂α
t g‖C1[0,T ] + C‖φi‖H2(Ω)‖ut‖C([0,T ];L2(Ω)) + T

1
2 ‖l′‖C[0,T ]‖g′i‖L2(0,T ). (2.36)

Combination (2.32) with (2.36) yields the desired estimate (2.31). This completes the proof
of Lemma 2.4.



Well-Posedness of Determination of Two Coefficients 457

3 Proof of Lemma 1.1

We are now in a position to prove local in time existence, i.e., Lemma 1.1, which proceeds
by the fixed point arguments. First, we define the function set

ZT,M = {(u, p, k) ∈ YT : u(x, 0) = a(x), ut(x, 0) = b(x), u(x, t) = 0, (x, t) ∈ ΣT ,

‖u‖XT + ‖p‖C1[0,T ] + ‖k‖C[0,T ] ≤M}.

Here M is a large constant depending on the initial and boundary data a, b and measurement
data gi. For given (u, p, k) ∈ ZT,M , we consider⎧⎨

⎩
∂α

t u(x, t) − L [u](x, t) = −k(t) ∗ u(x, t) + f(x)p(t), (x, t) ∈ QT ,
u(x, 0) = a(x), ut(x, 0) = b(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ΣT

(3.1)

and

p(t) =
1
c0

[−g2(0)N1[u, l ](t) + g1(0)N2[u, l ](t)], (3.2)

k(t) =
1
c0

[H1[f ]DtN2[u, l ](t) − H2[f ]DtN1[u, l](t)] (3.3)

to generate (u, p, k), where l is defined by l(t) =
∫ t

0 k(s)ds, Ni (i = 1, 2) are the same as those
in (2.25).

Remark 3.1 Usually, we use u on the right-hand sides of (3.2)–(3.3) to generate p and k.
But, if we do so, we can not choose suitable T and R to prove ‖p‖C1[0,T ] ≤ R and ‖k‖C[0,T ] ≤ R,
because there is a lack of T in the terms including u in (2.31). In this situation, the fixed point
argument can not be applied to our problem. So we take the solution u to (3.1) to generate p
and k. This process in principle is similar to the Gauss-Seidel iteration.

By (2.17) and the Hölder’s inequality, we have

‖k ∗ u(·, t)‖2

D((−L )
1
α )

=
∞∑

n=1

|λ
1
α
n (k ∗ u, ϕn)|2 ≤

∞∑
n=1

C
2− 2

α∗ |λn(k ∗ u, ϕn)|2

≤ C‖k ∗ u(·, t)‖2
H2(Ω)

≤ C

∫ t

0

|k(t− s)|2ds
∫ t

0

‖u(·, s)‖2
H2(Ω)ds

≤ Ct2‖k‖2
C[0,t]‖u‖2

C([0,t];H2(Ω)), (3.4)

which implies
‖k ∗ u‖

C([0,T ];D((−L )
1
α ))

≤ C(M,T ).

Using this result together with p ∈ C1[0, T ] and f ∈ D((−L )
1
α ), we have

−k(t) ∗ u(x, t) + p(t)f(x) ∈ C([0, T ];D((−L )
1
α )).

Therefore, Lemma 2.1 ensures that there exists a unique solution u ∈ XT to (3.1). Then
(3.2)–(3.3) define the functions p(t) and k(t) in terms of u. Furthermore, by Lemma 3.4, we
have

‖p‖C1[0,T ] + ‖k‖C[0,T ] ≤ C(T )(1 + ‖u‖XT + ‖l‖C1[0,T ]). (3.5)
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Note that l(t) =
∫ t

0 k(s)ds. We obtain

‖l‖C1[0,T ] =
∥∥∥ ∫ t

0

k(s)ds
∥∥∥

C[0,T ]
+ ‖k‖C[0,T ] ≤ (1 + T )‖k‖C[0,T ]. (3.6)

Substituting (3.6) into (3.5) yields

‖p‖C1[0,T ] + ‖k‖C[0,T ] ≤ C(T )(1 + ‖u‖XT + ‖k‖C([0,T ])). (3.7)

This implies that p ∈ C1[0, T ] and k ∈ C[0, T ].
Thus the mapping

S : ZT,M → YT , (u, p, k) �→ (u, p, k)

given by (3.1)–(3.3) is well-defined.
Now we show that S maps ZT,M into itself for sufficiently small T > 0. More precisely, we

have the following result.

Lemma 3.1 For (u, p, k), (U,P ,K) ∈ ZT,M , define

(u, p, k) = S(u, p, k), (U,P,K) = S(U,P ,K).

Then for properly small τ > 0, we have

‖(u, p, k)‖YT ≤M (3.8)

and

‖(u− U, p− P, k −K)‖YT ≤ 1
2
‖(u− U, p− P , k −K)‖YT (3.9)

for all T ∈ (0, τ ].

Throughout the following proof, we use C to denote a constant which depends on Ω, α, the
initial data a, b, the known functions f , φi and measurement data gi, but independent of M
and T .

Proof of Lemma 3.1 From Lemma 2.1 and (3.4), it follows that

‖u‖XT ≤ C(1 + Tα−1)‖a‖H2(Ω) + C(1 + T 1−α
2 )‖b‖H1(Ω)

+ C(Tα−1 + T )(‖k ∗ u‖
C([0,T ];D((−L)

1
α ))

+ ‖pf‖
C([0,T ];D((−L )

1
α ))

)

≤ C + C(Tα−1 + T 1−α
2 ) + C(Tα−1 + T )(TM2 +M). (3.10)

On the other hand, by (3.2)–(3.3), together with Lemma 2.4 and (3.6), we can show that
‖p‖C1[0,T ] and ‖k‖C[0,T ] are bounded with

‖p‖C1[0,T ] + ‖k‖C[0,T ] ≤ C(‖N1[u, l ]‖C1[0,T ] + ‖N2[u, l ]‖C1[0,T ])

≤ C(1 + ‖u‖XT + T
1
2 ‖l‖C1[0,T ])

≤ C[1 + ‖u‖XT + T
1
2 (1 + T )M ]. (3.11)

Then, adding up (3.10)–(3.11) leads to

‖(u, p, k)‖YT ≤ Cω1(T )(1 +M +M2) + C, (3.12)
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where the function ω1(T ) is of the form

ω1(T ) = Tα−1 + T 1−α
2 + Tα + T + T 2 + T

1
2 + T

3
2

and therefore satisfies lim
T→0+

ω1(T ) = 0. Now we take M , such that M = 2C with the constant

C in (3.12). Then there exists a sufficiently small τ > 0, such that

‖(u, p, k)‖YT ≤M (3.13)

for all T ∈ (0, τ ]. That is, S maps ZT,M into itself for each fixed T ∈ (0, τ ].
Next we estimate the increment of operator S. To this end, we deduce the differences

(u− U, p− P, k −K) from (3.1)–(3.3) to yield⎧⎨
⎩
∂α

t (u− U) − L [u− U ] = −(k −K) ∗ u−K ∗ (u− U) + (p− P )f, (x, t) ∈ QT ,
(u− U)(x, 0) = (u− U)t(x, 0) = 0, x ∈ Ω,
(u− U)(x, t) = 0, (x, t) ∈ ΣT

(3.14)

and

p− P =
1
c0

[−g2(0)(N1[u, l ] − N1[U,L ]) + g1(0)(N2[u, l ] − N2[U,L ])], (3.15)

k −K =
1
c0

[H1[f ](DtN2[u, l ] −DtN2[U,L]) − H2[f ](DtN1[u, l ] −DtN1[U,L ])], (3.16)

where l and L satisfy l(t) =
∫ t

0
k(s)ds and L(t) =

∫ t

0
K(s)ds, respectively.

Using Lemma 2.1 and (3.4), we obtain

‖u− U‖XT

≤ C(Tα−1 + T )(‖(k −K) ∗ u‖
C([0,T ];D((−L )

1
α ))

+ ‖K ∗ (u− U)‖
C([0,T ];D((−L )

1
α ))

)

+ C(Tα−1 + T )‖(p− P )f‖
C([0,T ];D((−L)

1
α ))

≤ C(Tα−1 + T )(TM‖k−K‖C[0,T ] + TM‖u− U‖C[0,T ];H2(Ω))

+ C(Tα−1 + T )‖p− P‖C[0,T ]‖f‖D((−L )
1
α )

≤ Cω2(T )(1 +M)(‖u− U‖XT + ‖p− P‖C[0,T ] + ‖k −K‖C[0,T ]), (3.17)

where
ω2(T ) = Tα−1 + Tα + T + T 2

satisfies lim
T→0+

ω2(T ) = 0. Moreover, from (2.25) and φi ∈ H2
0 (Ω), we can easily see that

DtNi[u, l ] −DtNi[U,L ] = −
∫

Ω

φi(x)(L [ut] − L [Ut])(x, t)dx + [(l − L) ∗ g′i]′

= −
∫

Ω

L [φi](x)(u − U)t(x, t)dx + (k −K) ∗ g′i. (3.18)

Therefore, it follows that

‖Ni[u, l ] − Ni[U,L ]‖C1[0,T ]

≤ ‖φi‖H2(Ω)‖u− U‖C1([0,T ];L2(Ω)) + T
1
2 ‖g′i‖L2[0,T ](‖l − L‖C[0,T ] + ‖k −K‖C[0,T ])
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≤ C‖u− U‖C1([0,T ];L2(Ω)) + CT
1
2 (T + 1)‖k −K‖C[0,T ]. (3.19)

Then, from (3.15)–(3.16), together with (3.19), we derive

‖p− P‖C1[0,T ] + ‖k −K‖C[0,T ] ≤ C‖u− U‖XT + C(T
1
2 + T

3
2 )‖k −K‖C[0,T ]. (3.20)

From (3.17) and (3.20), we deduce that

‖(u− U, p− P, k −K)‖YT ≤ Cω2(T )(1 +M)‖(u− U, p− P, k −K)‖YT . (3.21)

Because of lim
T→0+

ω2(T ) = 0, we can obtain (3.9), if we choose τ sufficiently small, such that

Cω2(T )(1 +M) ≤ 1
2 for all T ∈ (0, τ ]. The proof is complete.

Now we are in position to prove Lemma 1.1.

Proof of Lemma 1.1 Lemma 3.1 shows that there exists a sufficiently small τ > 0, such
that S is a contraction mapping from Zτ,M to Zτ,M . Therefore the Banach fixed point theorem
concludes that for sufficiently small τ , there exists a unique solution (u, p, k) ∈ Xτ ×C1[0, τ ]×
C[0, τ ] to the problem constituted by (3.1)–(3.3). As a consequence, the problem constituted
by (1.1) and (1.4) also admits a solution (u, p, k) in [0, τ ] by Lemma 2.3. The proof is complete.

4 Proof of Lemma 1.2

In this section, we give the proof of the global in time uniqueness of solutions to our inverse
problem, i.e., Lemma 1.2.

Proof of Lemma 1.2 By Lemma 2.3, we know that (2.20)–(2.22) is equivalent to our
considered inverse problem. So, in the following we turn to prove the global uniqueness of
(2.20)–(2.22).

Given any time T , we assume that (ui, pi, ki) (i = 1, 2) are two solutions to the problem
(2.20)–(2.22) in [0, T ] with the regularity (ui, pi, ki) ∈ XT × C1[0, T ]× C[0, T ]. This implies

‖(ui, pi, ki)‖YT ≤ C∗, i = 1, 2, (4.1)

where C∗ is depending on α,Ω, T , the initial data a and b, the known functions f, φi and the
measurement data gi.

Let
ũ = u1 − u2, p̃ = p1 − p2, k̃ = k1 − k2.

Then (ũ, p̃, k̃) satisfies⎧⎨
⎩
∂α

t ũ− L [ũ] = −k̃ ∗ u1 − k2 ∗ ũ+ p̃f, (x, t) ∈ QT ,
ũ(x, 0) = ũt(x, 0) = 0, x ∈ Ω,
ũ(x, t) = 0, (x, t) ∈ ΣT

(4.2)

and

p̃ =
1
c0

[−g2(0)(N1[u1, l1] − N1[u2, l2]) + g1(0)(N2[u1, l1] − N2[u2, l2])], (4.3)

k̃ =
1
c0

[H1[f ](DtN2[u1, l1] −DtN2[u2, l2]) − H2[f ](DtN1[u1, l1] −DtN1[u2, l2])]. (4.4)



Well-Posedness of Determination of Two Coefficients 461

Here, in a way similar to l, the functions li (i = 1, 2) satisfy li(t) =
∫ t

0 ki(s)ds. We need to
prove

‖(ũ, p̃, k̃)‖YT = 0. (4.5)

Define
T0 = inf{t ∈ (0, T ] : ‖(ũ, p̃, k̃)‖Yt > 0}.

If (4.5) is not true, then it is obvious that T0 is well-defined and satisfies 0 < T0 < T . Now
we choose a monotone sequence {tn} ⊂ (0, T0) satisfying lim

n→∞ tn = T0. Since T0 < T , we can
choose a sufficiently small ε > 0, such that

tn + ε ≤ T, n = 1, 2, · · · .

From the definition of T0, we see that

ũ = p̃ = k̃ = 0 in [0, tn]. (4.6)

Applying Lemma 3.1 to (4.2) in [0, tn + ε] and using (3.4), (4.1) and (4.6), we obtain

‖ũ‖Xtn+ε ≤ C(T )(‖k̃ ∗ u1‖
C([tn,tn+ε];D((−L )

1
α ))

+ ‖k1 ∗ ũ‖
C([tn,tn+ε];D((−L )

1
α ))

)

+ C(T )‖p̃f‖
C([tn,tn+ε];D((−L )

1
α ))

≤ C(T )(εC∗‖k̃‖C[tn,tn+ε] + εC∗‖ũ‖C([tn,tn+ε];H2(Ω)) + ‖p̃‖C[tn,tn+ε]). (4.7)

Due to p̃(tn) = 0, we have

‖p̃‖C[tn,tn+ε] = max
tn≤t≤tn+ε

∣∣∣ ∫ t

tn

p̃′(s)ds
∣∣∣ ≤ ε‖p̃‖C1[tn,tn+ε]. (4.8)

Substituting (4.8) into (4.7) yields

‖ũ‖Xtn+ε ≤ C(T,C∗)ε‖(ũ, p̃, k̃)‖Ytn+ε . (4.9)

Additionally, from a direct calculation, it follows for i = 1, 2 that

Ni[u1, l1] − Ni[u2, l2] = −
∫

Ω

L [φi](x)ũ(x, t)dx +
∫ t

0

l̃(t− s)g′i(s)ds (4.10)

and

DtNi[u1, l1] −DtNi[u2, l2] = −
∫

Ω

L [φi](x)ũt(x, t)dx +
∫ t

0

k̃(t− s)g′i(s)ds, (4.11)

by which and the Hölder’s inequality, we have

‖Ni[u1, l1] − Ni[u2, l2]‖C1[tn,tn+ε]

≤ C‖φi‖H2(Ω)‖ũ‖C1([tn,tn+ε],L2(Ω)) + ε
1
2 ‖g′i‖L2(tn,tn+ε)(‖l̃‖C[tn,tn+ε] + ‖k̃‖C[tn,tn+ε])

≤ C(T, φi, gi)(‖ũ‖C1([tn,tn+ε],L2(Ω)) + ε
1
2 (ε+ 1)‖k̃‖C[tn,tn+ε]). (4.12)

Here we have used that

‖l‖C[tn,tn+ε] = max
tn≤t≤tn+ε

∣∣∣ ∫ t

tn

k̃(s)ds
∣∣∣ ≤ ε‖k̃‖C[tn,tn+ε].
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Noticing that ‖p̃‖C1[0,tn] = ‖k̃‖C[0,tn] = 0 and applying (4.3)–(4.4), (4.12), we have the following
estimate for p and k:

‖p̃‖C1[0,tn+ε] + ‖k̃‖C[0,tn+ε] ≤ C(T, φi, gi)(‖ũ‖Xtn+ε + ε
1
2 (ε+ 1)‖k̃‖C[tn,tn+ε]). (4.13)

From (4.9) and (4.13), we deduce that

‖(ũ, p̃, k̃)‖Ytn+ε ≤ C(T, φi, gi, C
∗)ω3(ε)‖(ũ, p̃, k̃)‖Ytn+ε (4.14)

with
lim

ε→0+
ω3(ε) = lim

ε→0+
(ε+ ε

1
2 (1 + ε)) = 0.

So, for ε > 0 small enough, such that C(T, φi, gi, C
∗)ω3(ε) < 1, we are led to

‖(ũ, p̃, k̃)‖Ytn+ε = 0, n = 1, 2, · · · .

By taking n→ ∞, we obtain

ũ = p̃ = k̃ = 0 in [0, T0 + ε],

which contradicts with the definition of T0. Therefore (4.5) is proved. Now we can conclude
that

(u1, p1, k1) = (u2, p2, k2) in [0, T ]

for any time T . The proof for Lemma 1.2 is complete.

5 Proof of Theorem 1.1

Now we prove the global solvability Theorem 1.1 for our inverse problem. More precisely,
for every given time T > 0, we will prove the existence of solutions to the problem constituted
by (2.20)–(2.22), which is an equivalent form of our inverse problem.

In order to prove Theorem 1.1, we first show that local solution can be extended to a larger
time interval in Subsection 5.1. Then, we give a preliminary estimate for the extension solution
in Subsection 5.2. Finally, we prove Theorem 1.1 in Subsection 5.3.

5.1 Extension of the solution

Lemma 1.1 ensures that there exists a unique solution (û, p̂, k̂) ∈ Yτ to (2.20)–(2.22) for
sufficiently small τ > 0. In this subsection, we show that the unique solution (û, p̂, k̂) in [0, τ ]
can be extended to a larger time interval [0, τ ′], where 0 < τ < τ ′ ≤ min{2τ, T }. We state the
result as follows.

Lemma 5.1 Let (û, p̂, k̂) ∈ Yτ be the unique solution to (2.20)–(2.22) in [0, τ ]. Then there
exists a τ ′ ∈ (τ,min{2τ, T }), such that (û, p̂, k̂) could be uniquely extended to a solution (u, p, k)
in [0, τ ′], belonging to Yτ ′ .

Proof We consider⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂α

t u(x, τ + t) − L [u](x, τ + t) +
∫ τ+t

0

k(τ + t− s)u(x, s)ds

= f(x)p(τ + t), (x, t) ∈ Ω × (0, τ ′ − τ),
u(x, τ) = û(x, τ), ut(x, τ) = ût(x, τ), x ∈ Ω,
u(x, τ + t) = 0, (x, t) ∈ ∂Ω × [0, τ ′ − τ ]

(5.1)
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and

p(τ + t) =
1
c0

[−g2(0)N1[u, l](τ + t) + g1(0)N2[u, l](τ + t)], t ∈ [0, τ ′ − τ ], (5.2)

k(τ + t) =
1
c0

[H1[f ]DtN2[u, l](τ + t) − H2[f ]DtN1[u, l](τ + t)], t ∈ [0, τ ′ − τ ]. (5.3)

It suffices to show that (5.1)–(5.3) has a solution (U(x, τ + t), P (x, τ + t),K(τ + t)) ∈ Yτ ′−τ .
Then (u, p, k) defined by

(u(x, t), p(t), k(t)) =
{

(û(x, t), p̂(t), k̂(t)), if t ∈ [0, τ ],
(U(x, t), P (t),K(t)), if t ∈ [τ, τ ′]

(5.4)

is an extension of (û, p̂, k̂) in [0, τ ′], which has the regularity (u, p, k) ∈ Yτ ′ . Furthermore,
from the global uniqueness result in Lemma 1.2, it follows that (u, p, k) given by (5.4) is the
unique solution to the problem constituted by (2.20)–(2.22) in t ∈ (0, τ ′). This shows that the
extension is unique.

Let
(uτ (x, t), pτ (t), kτ (t)) := (u(x, t+ τ), p(t + τ), k(t+ τ)), t ∈ [0, τ ′ − τ ].

In the sequel, gτ
i , l

τ and other functions with superscript τ are defined analogously. To prove the
solvability of (5.1)–(5.3), we use the following splitting of convolution introduced by Colombo
[11]:

∫ τ+t

0

k(τ + t− s)u(x, s)ds = kτ ∗ û+ k̂ ∗ uτ +
∫ τ

t

k̂(τ + t− s)û(x, s)ds, (5.5)

which was successfully used to prove the global uniqueness of an inverse problem concerning
with the strongly damped wave equation with memory. In a way similar to (5.5), we have

∫ τ+t

0

l(τ + t− s)g′i(x, s)ds = lτ ∗ g′i + l̂ ∗ (g′i)
τ +

∫ τ

t

l̂(τ + t− s)g′i(x, s)ds. (5.6)

Then we find that

Ni[u, l](τ + t) = ∂α
t g

τ
i − Hi[L [uτ ]] + lτ ∗ g′i + l̂ ∗ (gτ

i )′ +
∫ τ

t

l̂(τ + t− s)g′i(s)ds

:= Ñi[uτ , lτ ] +
∫ τ

t

l̂(τ + t− s)g′i(s)ds, t ∈ [0, τ ′ − τ ], i = 1, 2. (5.7)

Based on (5.5) and (5.7), we rewrite the problem (5.1)–(5.3) as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α
t u

τ (x, t) − L [uτ ](x, t) = −kτ (t) ∗ ûτ (x, t) − k̂(t) ∗ uτ (x, t)

−
∫ τ

t

k̂(τ + t− s)û(x, s)ds+ f(x)pτ , (x, t) ∈ Ω × (0, τ ′ − τ),

uτ (x, 0) = û(x, τ), uτ
t (x, 0) = ût(x, τ), x ∈ Ω,

uτ (x, t) = 0, (x, t) ∈ ∂Ω × (0, τ ′ − τ)

(5.8)

and

pτ (t) =
1
c0

[−g2(0)Ñ1[uτ , lτ ](t) + g1(0)Ñ2[uτ , lτ ](t)] + h1(t), t ∈ [0, τ ′ − τ ], (5.9)
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kτ (t) =
1
c0

[H1[f ]DtÑ2[uτ , lτ ](t) − H2[f ]DtÑ1[uτ , lτ ](t)] + h2(t), t ∈ [0, τ ′ − τ ], (5.10)

where h1 and h2 are known functions in terms of l̂ and gi, defined by

h1(t) =
1
c0

[
− g2(0)

∫ τ

t

l̂(τ + t− s)g′1(s)ds+ g1(0)
∫ τ

t

l̂(τ + t− s)g′2(s)ds
]
,

h2(t) =
1
c0

[
H1[f ]

(∫ τ

t

l̂(τ + t− s)g′2(s)ds
)

t
− H2[f ]

(∫ τ

t

l̂(τ + t− s)g′1(s)ds
)

t

]
.

For given (û, p̂, k̂) ∈ Yτ , we have −
∫ τ

t k̂(τ + t − s)û(x, s)ds ∈ C([0, T ];D((−L )
1
α )), h1 ∈

C1[0, τ ′ − τ ], h2 ∈ C[0, τ ′ − τ ]. Then repeating the arguments of the proof of Lemma 1.1, we
could show that there exists a τ̂ > 0, such that (5.8)–(5.10) has a unique solution (U(x, t +
τ), P (t+τ),K(t+τ)) in [0, τ̂ ]. Then (u, p, k) defined by (5.4) is the unique extension of (û, p̂, k̂)
from [0, τ ] to [0, τ ′], if we choose τ ′ = min{τ + τ̂ , 2τ, T }. This completes the proof of Lemma
5.1.

5.2 A preliminary estimate for the extended solution

We give here an a priori estimate on (u, p, k) defined by (5.4), which is the unique extension
of (û, p̂, k̂) in [0, τ ′]. It will be used to guarantee that the process of extension can be repeated.

Lemma 5.2 Assume that the hypotheses (H1)–(H5) hold. Then for (u, p, k) ∈ Yτ ′ defined
by (5.4), we have the following estimate:

‖(u, p, k)‖Yτ′ ≤ C, (5.11)

where C depends on α,Ω, τ, τ ′, the initial data a and b, the known functions f, φi and the
measurement data gi.

In order to prove Lemma 5.2, we need the following two results.

Lemma 5.3 Assume that the hypotheses (H1)–(H5) hold. Then for the solution (uτ , kτ , pτ )
to (5.8)–(5.10), we have the following estimate:

‖uτ‖2
Xt

≤ C
[
1 + ‖pτ‖2

C[0,t] +
∫ t

0

(‖uτ‖2
Xs

+ ‖kτ‖2
C[0,s])ds

]
(5.12)

for t ∈ [0, τ ′ − τ ], where C depends on α,Ω, τ, τ ′, the initial data a and b, the known functions
f, φi and the measurement data gi.

Proof By Lemma 1.1, we see that there exists a positive constant C∗, depending on α,Ω, τ ,
the initial data a and b, the known functions f, φi and the measurement data gi, such that

‖(û, p̂, k̂)‖Yτ ≤ C∗. (5.13)

Applying Lemma 2.1 to (5.8), we obtain for all t ∈ [0, τ ′ − τ ] that

‖uτ (·, t)‖H2(Ω) + ‖uτ
t (·, t)‖L2(Ω)

≤ C(1 + tα−1)‖û(·, τ)‖H2(Ω) + C(1 + t1−
α
2 )‖ût(·, τ)‖H1(Ω) + C(tα−1 + t)

×
∥∥∥kτ ∗ û− k̂ ∗ uτ −

∫ τ

t

k̂(τ + t− s)û(x, s)ds+ fpτ
∥∥∥

C([0,t];D((−L )
1
α ))

. (5.14)
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From (2.4) in Lemma 2.1 and (3.4), we deduce that

‖ût(·, τ)‖H1(Ω) ≤ Cτ−1‖a‖H2(Ω) + C‖b‖H1(Ω) + Cτα−1‖k̂ ∗ û+ f p̂‖
C([0,τ ];D((−L)

1
α ))

≤ Cτ−1‖a‖H2(Ω) + C‖b‖H1(Ω)

+ Cτα−1(τ‖k̂‖C[0,τ ]‖û‖C([0,τ ];H2(Ω)) + ‖f‖D((−L )
1
α )
‖p̂‖C[0,τ ])

≤ C(τ, a, b, f, C∗). (5.15)

Note that 0 ≤ t ≤ τ ′ − τ ≤ τ . Then by (4.4), we have∥∥∥ ∫ τ

t

k̂(τ + t− s)û(x, s)ds
∥∥∥

C([0,t];D((−L )
1
α ))

≤ C(τ)‖k̂‖C[0,τ ]‖û‖C([0,τ ];H2(Ω)). (5.16)

Moreover, by the Hölder’s inequality, we obtain for all t ∈ [0, τ ′ − τ ] that

‖kτ ∗ û(·, t)‖D((−L )
1
α )

≤ C‖(kτ ∗ û)(·, t)‖H2(Ω)

≤ C
( ∫ t

0

|kτ (s)|2ds
∫ t

0

‖û(·, t− s)‖2
H2(Ω)ds

) 1
2

≤ Ct
1
2 ‖û‖C([0,t];H2(Ω))

(∫ t

0

‖kτ‖2
C[0,s]ds

) 1
2

(5.17)

and

‖k̂ ∗ uτ (·, t)‖D((−L )
1
α )

≤ Ct
1
2 ‖k̂‖C[0,t]

( ∫ t

0

‖uτ (·, s)‖2
H2(Ω)ds

) 1
2

≤ Ct
1
2 ‖k̂‖C[0,t]

( ∫ t

0

‖uτ‖2
Xs

ds
) 1

2
. (5.18)

Finally, substituting (5.13), (5.15)–(5.18) into (5.14), and noticing that t ≤ τ , we get (5.12).
This completes the proof.

Lemma 5.4 Assume that the hypotheses (H1)–(H5) hold. Then for the solution (uτ , kτ , pτ )
to (5.8)–(5.10), we have the following estimate:

‖pτ‖2
C1[0,t] + ‖kτ‖2

C[0,t] ≤ C
(
1 + ‖uτ‖2

Xt
+

∫ t

0

‖kτ‖2
C[0,s]ds

)
(5.19)

for t ∈ [0, τ ′ − τ ], where C depends on α,Ω, τ, τ ′, the initial data a and b, the known functions
f, φi and the measurement data gi.

Proof First by (5.9)–(5.10), we have

‖pτ‖C1[0,t] + ‖kτ‖C[0,t] ≤ C

2∑
i=1

(‖Ñi[uτ , lτ ]‖C1[0,t]) + ‖h1‖C1[0,t] + ‖h2‖C[0,t]. (5.20)

Next we estimate the two terms on the right-hand side of (5.20). We easily see that

d
dt

∫ t

0

lτ (t− s)g′i(s)ds = g′i(0)lτ (t) +
∫ t

0

lτ (s)g′′i (t− s)ds, (5.21)

from which it follows that

‖lτ ∗ g′i‖C1[0,t] ≤ g′i(0)‖lτ‖C[0,t] + ‖lτ‖C[0,t]‖g′′i ‖L1(0,t) + t
1
2 ‖lτ‖C[0,t]‖g′i‖L2(0,t). (5.22)
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Furthermore, noticing that
‖gi‖W 2,1(0,t) ≤ C‖∂α

t gi‖C1[0,t]

(see Remark 1.1) and

‖lτ‖C[0,t] =
∥∥∥ ∫ t

0

kτ (s)ds
∥∥∥

C[0,t]
≤

∫ t

0

‖kτ (s)‖C[0,s]ds,

we have

‖lτ ∗ g′i‖C1[0,t] ≤ C(τ, τ ′, gi)
∫ t

0

‖kτ (s)‖ds. (5.23)

Similarly, we have

‖l̂ ∗ (gτ
i )′‖C1[0,t] ≤ C(τ, τ ′, gτ

i )
∫ t

0

‖k̂(s)‖ds ≤ C(τ, τ ′, gτ
i , C

∗). (5.24)

Then from the definitions of Ñi and (2.34), together with (5.22)–(5.23), we deduce that

‖Ñi[uτ , lτ ]‖C1[0,t]

≤ C
(
‖∂α

t g
τ
i ‖C1[0,t] +

∥∥∥ ∫
Ω

L [φi(x)]uτ (x, ·)dx
∥∥∥

C1[0,t]
+ ‖lτ ∗ g′i‖C1[0,t] + ‖l̂ ∗ (gτ

i )′‖C1[0,t]

)

≤ C(τ, τ ′, gi, g
τ
i , φi, C

∗)
(
1 + ‖uτ‖C1([0,t];L2(Ω)) +

∫ t

0

‖kτ‖C[0,s]ds
)
, i = 1, 2. (5.25)

Moreover, a simple calculation gives

‖h1‖C1[0,t] + ‖h2‖C[0,t] ≤ C(τ, τ ′, C∗). (5.26)

Finally, substituting the estimates (5.25)–(5.26) into (5.20) yields the desired estimate (5.19).
The proof of Lemma 5.3 is complete.

Now we give the proof of Lemma 5.2.

Proof of Lemma 5.2 Noticing

(u(x, t), p(t), k(t)) = (û(x, t), p̂(t), k(t)), t ∈ [0, τ ],

(u(x, t), p(t), k(t)) = (uτ (x, t− τ), pτ (x, t− τ), kτ (t− τ)), t ∈ [τ, τ ′],

it suffices to show that

‖(uτ , pτ , kτ )‖Yt ≤ C, ∀t ∈ [0, τ ′ − τ ]. (5.27)

Adding up (5.12) in Lemma 5.2 and (5.19) in Lemma 5.3 yields that, ∀t ∈ [0, τ ′ − τ ],

‖(uτ , pτ , kτ )‖2
Yt

≤ C + C
[
‖pτ‖2

C[0,t] +
∫ t

0

(‖uτ‖2
Xs

+ ‖kτ‖2
C[0,s])ds

]
. (5.28)

Observe that, ∀t ∈ (0, τ ′ − τ ],

‖pτ‖C[0,t] =
∥∥∥ ∫ t

0

pτ
t (s)ds+ pτ (0)

∥∥∥
C[0,t]

≤
∫ t

0

‖pτ‖C1[0,s]ds+ |p̂(τ)|. (5.29)

Inserting (5.29) into (5.28), we obtain

‖(uτ , pτ , kτ )‖2
Yt

≤ C + C

∫ t

0

‖(uτ , pτ , kτ )‖2
Ys

ds. (5.30)

Hence (5.27) can be obtained by applying the Gronwall’s inequality to (5.30).
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5.3 Proof of Theorem 1.1

Proof of Theorem 1.1 Set

T := {τ ∈ (0, T ] : the problem constituted by (2.20)–(2.22) has

at least a solution (u, p, k) ∈ Yτ in [0, τ ]}.

Obviously, we have T 
= ∅ from Lemma 1.1. Define T1 := sup(T ). By a similar argument to
the proof of Theorem 1.3 in [31], together with Lemmas 5.1–5.2, we could prove T1 = T . This
completes the proof of Theorem 1.1.
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